IEEE
|
|
TECHNOLOGY AND APPLICATIONS FOR POLARIMETRIC MICROWAVE RADIOMETRYAlbin J. GasiewskiSchool of Electrical and Computer Engineering Georgia Institute of Technology I. IntroductionA relatively new area in Earth remote sensing concerns the measurement and interpretation of the fully-polarized microwave emission signature from geophysical surfaces and volumes. In essence, fully polarized microwave radiometry is an extension of the well-known techniques used to measure and interpret the vertically and horizontally polarized microwave brightness temperatures (Tv and Th). These two quantities are the first two Stokes' parameters. Under specific conditions of observation, however, the third Stokes' parameter (TU = ReIt is the purpose of this paper to discuss the state of technology with regard to the measurement and application of the full Stokes' vector in passive remote sensing. In order to report new developments, the paper will refrain from discussing mature applications of the first two modified Stokes' parameters. Many such sensing and retrieval studies have been reported in the literature.
II. Application Area: Remote Sensing of Ocean Surface WindsThe wind-driven ocean is decidedly anisotropic, with the wave crests and troughs oriented primarily in the direction of the prevailing wind. Both gravity and capillary wave direction are correlated with wind direction; capillary waves are more closely related to local wind direction while gravity waves are related to the average wind direction over a long fetch. The anisotropic nature of this surface gives rise to azimuthal variations in its bistatic scattering function. One result of these variations is that the upwelling Stokes' vector exhibits related azimuthal variations of up to a few degrees Kelvin in amplitude. These brightness variations are due both to harmonic variations in the emissivity (or equivalently, the reflectivity) and to harmonic variations in the elevation angle of the surface scattering lobes. The extent of the latter contribution depends on the magnitude of the first derivative of the downwelling radiation field with respect to elevation angle. In general, the amplitude of the azimuthal harmonics are dependent on wind speed, angle of observation, and frequency. However, azimuthal variations in the upwelling brightness have been observed from X- to W-bands.
The aforementioned anisotropic brightness signatures in Tv and Th could potentially facilitate the retrieval of ocean surface wind direction from space using purely passive means. However, the contribution from the relatively large average brightness temperatures tends to make accurate measurements of subtle azimuthal brightness variations difficult. Moreover, the Tv and Th variations are co-phased, resulting in a four-fold ambiguity in the retrieved wind direction. Here, measurements of the third Stokes' parameter TU are expected to facilitate wave direction measurement by virtue of the zero-mean nature of the azimuthal TU signature along with the quadrature phasing of the dominant TU variation with respect to Tv and Th. It is worthwhile to note that no useful information on wave direction has been observed to be carried by the fourth Stokes' parameter TV
=Im
The IF correlator can either be an adding type (add then-detect) or multiplying type. If an adding correlator is used then the detected signals must be subtracted in software to remove Tv and
Th, and thus to recover TU or TV. If a multiplying correlator is used, then no software differencing is required. The multiplying correlator can be of the analog type; however, reduced-bit digital correlators yield nearly the same accuracy as analog
correlators. By switching a 90° phase shift into one of the two orthogonal-channel signal paths the correlating channel can be made to selectively measure either TU or TV. A 90° quadrature hybrid placed in the IF stage will permit measurement of both TU and TV simultaneously.
Another method employs three looks of a single-channel linearly-polarized radiometer, rotated in polarization by 45° for each look, along with an appropriate subtraction of the resulting brightness temperatures. Either mechanical or ferromagnetic rotation of the radiometer's polarization can be employed. While these schemes (or variants thereof) have been demonstrated to be useful, the optimal configuration for satellite application remains an open issue.
Using any of the above architectures requires accurate absolute polarimetric calibration. The three-look mechanically-rotated radiometer can be calibrated using conventional hot-and-cold blackbody targets. A more accurate means of calibration, applicable for any of the above architectures, utilizes a polarized calibration standard. The polarized standard can be constructed using two targets (hot and cold) along with a polarization-splitting wire grid. Mechanical rotation of the polarized standard around a polarimetric radiometers feedhorn axis allows all twelve parameters (nine gain coefficients and three offsets) of a three-channel (e.g., Tv, Th, and TU) radiometer to be identified. The required viewing interval of a polarized standard depends on the stability of the radiometric hardware.
|