| 
       
    
  |  
    
     
    
    Getting to
    Know Your Projector 
    By
    Patrick Murphy, Pangolin Laser Systems 
    (This
    is an excerpt of a more detailed article available at: http://www.pangolin.com/resguide01.htm) 
     
    The first requirement for a laser show is, of course, a laser.
    There are three general types of light show graphics lasers:
    low power helium-neon (red), and medium and high power argon
    (green-blue) or mixed gas argon/krypton (red-yellow-green-blue). 
 
    The power you need depends on whether you're concentrating on
    beams or graphics, and on the scope of your shows -- for small
    or large audiences. 
    Low power HeNe lasers are fine for studio work and small-scale
    indoor graphics. Medium power lasers use standard 110 volt AC
    power and are air-cooled by fans. They can handle many indoor
    graphics, and small-scale indoor beam effects. High power lasers
    need 220 or 440 volts and require water cooling using hoses or
    chillers. They are for large-scale indoor graphics, outdoor graphics
    and beam effects. 
 
    Usually, a laser projector will work with just about any laser.
    Therefore, if your emphasis is on graphics, spend less on the
    laser initially and more on the projector and computer system.
    This is because you can later rent or purchase a more powerful
    laser for your existing projector. If your emphasis is on beam
    effects, spend more on the laser to get the maximum possible
    brightness. You want as much power as possible so beams show
    up even under adverse conditions, such as outdoor shows in high-brightness
    areas. 
 
    A popular laser for beams is based on frequency-doubled YAG technology.
    YAGs are great for beams, but are poorly suited for graphics
    as they have larger diameters and usually are not continuous.
    (Scanned graphics may have fat, dotted lines.) If you are buying
    only one laser for both graphics and beams, stick with continuous-wave
    gas laser technology such as argon/krypton. 
 
    You can purchase new or used lasers. Probably the best value
    is a used laser which has been re-gassed or re-tubed by a company
    specializing in this work. Warranties are available from reputable
    used laser dealers.  
 
    Laser
    projectors 
    T he laser projector includes a pair of galvanometer scanners,
    a blanking or color system, and related electronics. You can
    either buy a fully assembled laser projector, or put together
    your own projector. 
    Fully assembled projectors are usually made on a semi-custom
    basis. The manufacturer will design a system with components
    matched for your particular requirements. Full-color (PCAOM-based)
    graphics projectors start at around $7500. Adding beam tables
    and lumia effects quickly raises the cost. If you are technically
    minded, you can buy the projector components and assemble them
    into a system. This is an especially attractive approach for
    those on a budget with relatively simple needs, or for those
    who have previous experience with laser projectors. 
 
    Before going into detail on the projector parts, let's look at
    the final components of a laser system: the computer and software. 
 
    Computer
    and software 
    Laser show software is available for almost every personal computer,
    from the Amiga and Macintosh to IBM PC compatibles. There are
    even programs with their own custom computers. Look for the software
    first; this will help narrow down your choice of computer. 
 
    There are three general levels of software: hobbyist, intermediate
    and professional. Roughly speaking, price ranges are under $1000
    for the hobbyist level, $1000-5000 for intermediate, and above
    $5000 for professional. This may seem costly in comparison with
    spreadsheets or word processors. But remember that the market
    for laser show programs is much more limited. 
 
    As with all software, the more expensive programs give you more
    features, a friendlier user interface and better service and
    support. Be sure to choose software that meets your needs, both
    for now and for the future. 
    The
    laser projector is the heart of a graphics system. It contains
    the galvanometer scanners and scanner amplifiers, which together
    move the beam fast enough to create graphics. It also contains
    an intensity device that blanks and/or colors the laser beam.
    This section discusses these two vital parts of a projector.
    There can be other parts, such as beam tables and lumia special
    effect devices. However, this section will concentrate on the
    graphics-specific parts, since graphics are vital to today's
    laser shows. 
 
    Here's some essential information on what's necessary to put
    together a good graphics projector: 
 
    X-Y
    scanners 
    Scanners move tiny (3 x 5 mm) mirrors that deflect the beam.
    Two are needed; one for horizontal motion (X) and one for vertical
    (Y). Together, they can position the beam anywhere on the display
    screen. 
    For the most accurate graphics reproduction, use closed-loop
    galvanometer scanners (they're also called "position-detecting"
    scanners). 
 
    The mirrors and mirror mounts for the scanners may be included
    with the scanners, or may be priced separately. You also need
    a positioning mount. This holds the scanners at right angles
    to each other, in the best orientation for X-Y scanning. You
    can purchase this or machine your own.  
 
    Scanner
    amp 
    Each closed-loop galvo scanner requires a closed-loop scanner
    amplifier to condition and amplify the computer's laser control
    signals. You can obtain the amplifiers either as circuit boards
    or as fully assembled units. Circuit board amps use trimpots
    for control adjustments, and require a power supply, usually
    +/-15 VDC or +/- 24 VDC at 2 to 4 amps. Fully assembled amps
    come in a case with 110 volt AC power supply and knobs to adjust
    controls. An advantage of boards is that you save money and you
    can mount them inside your projector chassis, avoiding another
    box to carry around. 
 
    A cable connects the boards to the scanners. You can purchase
    this or make your own. The cable is usually short, to provide
    the most accurate feedback signals between the scanners and the
    amp. 
 
    Before
    you buy 
    Before you buy scanners, be sure you know exactly what you're
    getting. For example, you may see ads for "abstract graphics"
    projectors. This term means that the projector is not intended
    for accurate computer control. It usually uses open-loop scanners
    with simple amps. Also avoid resonant scanners; these scan only
    simple patterns at fixed frequencies. 
 
    Incidentally, used scanners of any type are often a wise buy
    -- if you know the scanners are in good condition. Should you
    be purchasing new scanners, note that there is often a backlog.
    Lead times can be as much as ten weeks. 
 
    Single-color
    control 
    Most graphics projectors use some type of blanking device, to
    turn off the laser's beam as it moves between the visible lines
    of a drawing. Blanking in a single-color projector can be done
    with a galvo scanner or with an acousto-optic modulator (AOM)
    crystal. 
 
    The advantage of galvo blanking scanners is their compatibility
    with galvo mirror scanners. Their on/off response time inherently
    synchronizes with the galvo mirrors' movements. The disadvantage
    is that this response time is relatively slow. It is not enough
    to simply use an arm which rotates in and out of the beam. Complex,
    multi-mirror optical paths are required, so that a small movement
    of the blanking galvo can instantly cut off the laser beam. 
 
    AOMs operate much faster than galvos, automatically giving clean
    on/off response. Many people feel they are easier to work with,
    since they do not require the optical path lengthening of galvo
    blanking. However, timing adjustments are necessary in the laser
    software or in the AOM driver circuit so that the AOM is synchronized
    with the much slower X-Y scanners. 
 
    Full-color
    projectors 
    A
    white-light laser beam enters the PCAOM crystal from the right,
    while a radio-frequency signal is injected from the top. The
    RF signal sets up a diffraction pattern which acts as a prism. 
    The result is two beams exiting on the left: the desired color
    and a "waste" beam with all colors except the desired
    color. Since 1992, most full-color projectors use polychromatic
    AOMs (PCAOMs). These control both blanking and color selection
    in one device. They are usually used with so-called "white-light"
    beams to do full-color graphics. 
 
    You can create a white-light beam on a budget by using an air-cooled
    argon and a helium-neon laser. The two beams are mixed using
    a dichroic filter into a single white-light beam containing red
    (HeNe) plus green and blue (argon). For more power and convenience,
    select a mixed-gas laser. This will provide white light (either
    red-green-blue or red-yellow-green-blue) in a single beam. 
 
    Color balance is important, so be sure your beam has a good mix
    of colors to make a balanced white. Because the eye is more sensitive
    to green, there should be more red and blue light than green. 
    In a PCAOM system, a white-light beam is directed into a crystal.
    Signals from the computer go into the PCAOM driver, which causes
    the crystal to diffract different wavelengths (color) away from
    the original beam. The diffracted, colored beam continues on
    to the X-Y scanners. 
 
    PCAOM driver electronics come in 4-, 6- or 8-channel models.
    This refers to how many wavelengths (colors) can be simultaneously
    controlled. Usually, the more channels the better. For example,
    Pangolin's LD Pro controls up to six channels. This lets you
    create unique colors such as a pure violet. It is not a mixture
    of red and blue, but it is the argon's natural violet wavelength
    coming through. 
 
    PCAOMs have become the de facto method of color control. This
    is because they are simple to align, relatively inexpensive,
    and provide extremely fast control. PCAOMs are so fast that each
    point in an image can have a different color. (One benefit of
    this speed is that TV-like raster images can be created.) 
    Even if you don't have a white-light laser beam, you may still
    want to consider a PCAOM. It can give higher throughput since
    it will modulate all available wavelengths (such as the greens
    and blues in an argon laser). And, you can move up to full color
    at any time, simply by using a white-light beam as input to your
    projector. 
    Basics
    and add-ons 
    Here are some suggested system configurations. Costs given are
    only for the parts in a graphics projector; they do not include
    the projector chassis, laser or computer. 
 
    If you're a hobbyist on a very tight budget, start with a simple
    two-scanner system. One scanner controls the X (horizontal) axis,
    the other controls the Y (vertical) axis. At a minimum, you will
    need: two scanners with mounted front-surface mirrors, a mount
    to position the scanners relative to one another, two single-channel
    scanner amps (or one dual-channel amp), a power supply for the
    amp(s), and a cable to connect the amps and scanners. 
 
    To give an idea of costs, the above is about $2000 using the
    fastest available scanners, Cambridge Technology model 6800.
    Cambridge provides everything except the power supply. 
 
    The system above will not have blanking. Although it is possible
    to do clever drawings which hide the retrace line, most people
    should also add a blanking or color control device. It is certainly
    easier to create images when you can hide the beam. A blanking
    projector adds a blanking device (galvo or AOM), a driver (scanner
    amp or AOM driver), a bracket to hold the device in position,
    and a power supply for the driver. Expect to pay roughly $1000
    for a monochrome blanking device and driver. A PCAOM can be the
    best way to go. At a cost of $1000 - $3000, it serves not only
    to blank the beam, but to control color of all but the highest
    power laser beams. Having a PCAOM gives you great flexibility
    to move up in power and capabilities without buying any new equipment. 
 
    The costs given above do not include a chassis. One important
    reason to buy a fully assembled projector is that the manufacturer
    provides the chassis plus additional convenience and safety features,
    such as a shutter. In the United States, the manufacturer should
    also provide CDRH certification. 
    This
    last item means that the projector has been built to the standards
    of the U.S. laser safety agency, the Center for Devices and Radiological
    Health. If you perform public shows in the U.S., you must certify
    both your equipment and show sites to the CDRH. Most manufacturers
    of complete, turnkey projectors will include equipment certification
    as part of their service. 
    Patrick Murphy is
    president of Pangolin Laser Systems, past president of ILDA,
    and currently services as ILDA's Air Space Issues Coordinator.
    http://www.pangolin.com 
      
    Additional
    Show Basics Links 
    
      
      
      
       |  
    
       
    X-Y laser
    scanners by Cambridge Technology Inc. 
     
      
    Ion
    lasers and power supply by Spectra Physics 
      
      
      
      
      
      
      
      
      
      
       |