## QUAD SMART POWER SOLID STATE RELAY FOR COMPLETE H-BRIDGE CONFIGURATIONS

| TYPE | $\mathbf{R}_{\text {DS(on) }}{ }^{*}$ | $\mathbf{I}_{\text {OUT }}$ | $\mathbf{V}_{\text {CC }}$ |
| :---: | :---: | :---: | :---: |
| VN771 | $0.140 \Omega$ | 14 A | 26 V |

* Total resistance of one side in bridge configuration
- IDEAL AS A LOW VOLTAGE BRIDGE
- VERY LOW STAND-BY POWER DISSIPATION
- OVER-CURRENT PROTECTED
- STATUS FLAG DIAGNOSTICS ON UPPER SIDE
- OPEN DRAIN DIAGNOSTICS OUTPUT
- UNDER-VOLTAGE PROTECTION
- SUITABLE AS QUAD SWITCH


MOS off at a minimum junction temperature of $140^{\circ} \mathrm{C}$. When this temperature returns to $125^{\circ} \mathrm{C}$ the switch is automatically turned on again. In short circuit the protection reacts with virtually no delay, the sensor (one for each channel) being located inside each of the two Power MOS areas. This positioning allows the device to operate with one channel in automatic thermal cycling and the other one on a normal load. An internal function of the devices ensures the fast demagnetization of inductive loads with a typical voltage ( $\mathrm{V}_{\text {demag }}$ ) of -18 V . This function allows to greatly reduces the power dissipation according to the formula:
$\mathrm{P}_{\text {dem }}=0.5 \bullet \mathrm{~L}_{\text {oad }} \bullet(\text { lload })^{2} \bullet\left[\left(\mathrm{~V}_{\mathrm{CC}}+\mathrm{V}_{\text {demag }}\right) / V_{\text {demag }}\right] \bullet \mathrm{f}$ where $\mathrm{f}=\mathrm{switching}$ frequency and $V_{\text {demag }}=$ demagnetization voltage.
In this device if the GND pin is disconnected, with VCc not exceeding 16V, both channel will switch off.
Power MOSFETs
During normal operation, the Input pin is electrically connected to the gate of the internal power MOSFET. The devices can be used as a switch from DC to very high frequency.

## BLOCK DIAGRAM



5611900

## CONNECTION DIAGRAM

DRAIN 3
INPUT 3
DRAIN 3
N.C.
VCC
GND
INPUT 1
DIAGNOSTIC
INPUT 2

## PIN FUNCTION

| No | NAME | FUNCTION |
| :---: | :---: | :--- |
| $1,3,25,28$ | DRAIN 3 | Drain of Switch 3 (low-side switch) |
| 2 | INPUT 3 | Input of Switch 3 (low-side switch) |
| 4,11 | N.C. | Not Connected |
| $5,10,19,24$ | VCC | Drain of Switches 1and 2 (high-side switches) and Power Supply Voltage |
| 6 | GND | Ground of Switches 1 and 2 (high-side switches) |
| 7 | INPUT 1 | Input of Switch 1 (high-side switch) |
| 8 | DIAGNOSTIC | Diagnostic of Switches 1 and 2 (high-side switches) |
| 9 | INPUT 2 | Input of Switch 2 (high-side switch) |
| $12,14,15,18$ | DRAIN 4 | Drain of Switch 4 (low-side switch) |
| 13 | INPUT 4 | Input of Switch 4 (low-side switch) |
| 16,17 | SOURCE 4 | Source of Switch 4 (low-side switch) |
| 20,21 | SOURCE 2 | Source of Switch 2 (high-side switch) |
| 22,23 | SOURCE 1 | Source of Switch 1 (high-side switch) |
| 26,27 | SOURCE 3 | Source of Switch 3 (low-side switch) |

## PROTECTION CIRCUITS

## DUAL HIGH SIDE SWITCH

The simplest way to protect the device against a continuous reverse battery voltage $(-26 \mathrm{~V})$ is to insert a a small resistor between pin 2 (GND) and ground. The suggested resistance value is about $150 \Omega$. In any case the maximum voltage drop on this resistor should not overcome 0.5 V .

If there is no need for the control unit to handle external analog signals referred to the power GND, the best approach is to connect the reference potential of the control unit to the device ground (see application circuit in fig. 3), which becomes the common signal GND for the whole control board avoiding shift of Vih, Vil and $V_{\text {stat }}$.

TRUTH TABLE (for Dual high-side switch only)

|  |  | INPUT 1 | INPUT 2 | SOURCE 1 | SOURCE 2 | DIAGNOSTIC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Normal Operation |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ |
| Under-voltage |  | X | X | L | L | H |
| Thermal Shutdown | Channel 1 | H | X | L | X | L |
|  | Channel 2 | X | H | X | L | L |
| Open Load | Channel 1 | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
|  | Channel 2 | $\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Output Shorted to $\mathrm{V}_{\mathrm{CC}}$ | Channel 1 | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
|  | Channel 2 | $\begin{aligned} & \hline X \\ & \text { L } \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |

NOTE: The low-side switches have the fault feedback which can be detected by monitoring the voltage at the input pins.
L = Logic LOW, H = Logic HIGH, X = Don't care

ABSOLUTE MAXIMUM RATING $\left(-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{j}}<150^{\circ} \mathrm{C}\right)$
HIGH SIDE SWITCH

| Symbol | Parameter | Value | Unit |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$ | Drain-Source Brekdown Voltage | 40 | V |
| lout | Output Current (continuous) | 14 | A |
| $\mathrm{I}_{\mathrm{R}}$ | Reverse Output Current | -14 | A |
| 1 IN | Input Current | $\pm 10$ | mA |
| $-\mathrm{V}_{\text {cc }}$ | Reverse Supply Current | -4 | V |
| Istat | Status Current | $\pm 10$ | mA |
| Vesd | Electrostatic Discharge ( $\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{~K} \Omega$ ) | 2000 | V |
| $\mathrm{P}_{\text {tot }}$ | Power Dissipation @ $\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$ | Internally Limited | W |
| $\mathrm{T}_{\mathrm{j}}$ | Junction Operating Temperature | -40 to 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature | -55 to 150 | ${ }^{\circ} \mathrm{C}$ |

ABSOLUTE MAXIMUM RATING (continued)
LOW SIDE SWITCH

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{DS}}$ | Drain-Source Voltage $(\mathrm{V}$ Gs = 0) | 60 | V |
| $\mathrm{~V}_{\mathrm{DGR}}$ | Drain-Gate Voltage (RGS $=20 \mathrm{~K} \Omega)$ | 60 | V |
| $\mathrm{~V}_{\mathrm{GS}}$ | Gate-Source Voltage | $\pm 20$ | V |
| $\mathrm{ID}_{\mathrm{D}}$ | Drain Current (continuous) @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 36 | A |
| $\mathrm{I}_{\mathrm{D}}$ | Drain Current (continuous) @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ | 24 | A |
| $\mathrm{I}_{\mathrm{DM}\left({ }^{*}\right)}$ | Drain Current (pulsed) | 144 | A |
| $\mathrm{dv} / \mathrm{dt}(1)$ | Peak Diode Recovery Voltage Slope | 7 | $\mathrm{~V} / \mathrm{ns}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature | -55 to 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{j}}$ | Operating Junction Temperature | -40 to 150 | $\mathrm{~W} /{ }^{\circ} \mathrm{C}$ |

## THERMAL DATA

| $R_{\text {thj-case }}$ | Thermal | Resistance | Junction-case (High-side switch) | Max | 20 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $R_{\text {thj-case }}$ | Thermal | Resistance Junction-case (Low-side switch) | Max | 20 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| $R_{\text {thj-amb }}$ | Thermal | Resistance | Junction-ambient | Max | 60 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## ELECTRICAL CHARACTERISTICS FOR DUAL HIGH SIDE SWITCH

( $8<\mathrm{V}_{\mathrm{CC}}<16 \mathrm{~V} ;-40 \leq \mathrm{T}_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}$ unless otherwise specified)
POWER

| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{Cc}}$ | Supply Voltage |  | 6 | 13 | 26 | V |
| $\ln \left({ }^{*}\right)$ | Nominal Current | $\mathrm{T}_{\mathrm{C}}=85{ }^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{DS} \text { (on) }} \leq 0.5 \mathrm{~V}_{\text {cC }}=13 \mathrm{~V}$ | 3.4 |  | 5.2 | A |
| Ron | On State Resistance | lout $=\operatorname{In} \mathrm{V}_{\text {cc }}=13 \mathrm{~V} \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ | 0.065 |  | 0.1 | $\Omega$ |
| Is | Supply Current | Off State $\quad \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{C C}=13 \mathrm{~V}$ |  | 35 | 100 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {DS(MAX) }}$ | Maximum Voltage Drop | IoUt $=13 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{j}}=85^{\circ} \mathrm{C} \quad \mathrm{V}_{\text {CC }}=13 \mathrm{~V}$ | 1.2 |  | 2 | V |
| $\mathrm{R}_{\mathrm{i}}$ | Output to GND internal Impedance | $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ | 5 | 10 | 20 | $\mathrm{K} \Omega$ |

## SWITCHING

| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{d}(\mathrm{on})}(\wedge)$ | Turn-on Delay Time Of <br> Output Current | $\mathrm{R}_{\text {out }}=2.7 \Omega$ | 5 | 35 | 200 | $\mu \mathrm{~s}$ |
| $\mathrm{t}_{\mathrm{r}}(\wedge)$ | Rise Time Of Output <br> Current | $\mathrm{R}_{\text {out }}=2.7 \Omega$ | 28 | 110 | 360 | $\mu \mathrm{~s}$ |
| $\mathrm{t}_{\mathrm{d}(\mathrm{off})}(\wedge)$ | Turn-off Delay Time Of <br> Output Current | $\mathrm{R}_{\text {out }}=2.7 \Omega$ | 140 | 500 | $\mu \mathrm{~s}$ |  |
| $\mathrm{t}_{\mathrm{f}}(\wedge)$ | Fall Time Of Output <br> Current | $\mathrm{R}_{\text {out }}=2.7 \Omega$ | 28 | 75 | 360 | $\mu \mathrm{~s}$ |

ELECTRICAL CHARACTERISTICS FOR DUAL HIGH SIDE SWITCH (continued)

| $(\mathrm{di} / \mathrm{dt})_{\text {on }}$ | Turn-on Current Slope | $\mathrm{R}_{\text {out }}=2.7 \Omega$ | 0.003 |  | 0.1 | $\mathrm{~A} / \mathrm{\mu s}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $(\mathrm{di} / \mathrm{dt})_{\text {off }}$ | Turn-off Current Slope | $\mathrm{R}_{\text {out }}=2.7 \Omega$ | 0.005 |  | 0.1 | $\mathrm{~A} / \mu \mathrm{s}$ |

LOGIC INPUT

| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIL | Input Low Level Voltage |  |  |  | 1.5 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Level Voltage |  | 3.5 |  | (•) | V |
| $\mathrm{V}_{1 \text { (hyst.) }}$ | Input Hysteresis Voltage |  | 0.2 | 0.9 | 1.5 | V |
| 1 IN | Input Current | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ |  | 30 | 100 | $\mu \mathrm{A}$ |
| VICL | Input Clamp Voltage | $\begin{aligned} & \mathrm{I}_{\mathrm{N}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{N}}=-10 \mathrm{~mA} \end{aligned}$ | 5 | $\begin{gathered} 6 \\ -0.7 \end{gathered}$ | 7 | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |

PROTECTION AND DIAGNOSTICS

| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V Stat | Status Voltage Output Low | ISTAT $=1.6 \mathrm{~mA}$ |  |  | 0.4 | V |
| Vusd | Under Voltage Shut Down |  | 3.5 | 4.5 | 6 | V |
| V SCL | Status Clamp Voltage | $\begin{aligned} & \text { ISTAT }=10 \mathrm{~mA} \\ & \text { ISTAT }=-10 \mathrm{~mA} \end{aligned}$ | 5 | $\begin{gathered} 6 \\ -0.7 \end{gathered}$ | 7 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{T}_{\text {TSD }}$ | Thermal Shut-down Temperature |  | 140 | 160 | 180 | ${ }^{\circ} \mathrm{C}$ |
| TSD(hyst.) | Thermal Shut-down Hysteresis |  |  |  | 50 | ${ }^{\circ} \mathrm{C}$ |
| TR | Reset Temperature |  | 125 |  |  | ${ }^{\circ} \mathrm{C}$ |
| Vol | Open Voltage Level | Off-State (note 2) | 2.5 | 4 | 5 | V |
| loL | Open Load Current Level | On-State | 0.6 | 0.9 | 1.4 | A |
| $t_{\text {povl }}$ | Status Delay | (note 3) |  | 5 | 10 | $\mu \mathrm{s}$ |
| $t_{\text {pol }}$ | Status Delay | (note 3) | 50 | 500 | 2500 | $\mu \mathrm{s}$ |

$\left(^{*}\right) \mathrm{In}=$ Nominal current according to ISO definition for high side automotive switch (see note 1)
(^) See switching time waveform
() The $\mathrm{V}_{\mathrm{IH}}$ is internally clamped at 6 V about. It is possible to connect this pin to an higher voltage via an external resistor calculated to not exceed 10 mA at the input pin.
note 1: The Nominal Current is the current at $\mathrm{T}_{\mathrm{c}}=85^{\circ} \mathrm{C}$ forbattery voltage of 13 V which produces a voltage drop of 0.5 V
note 2: $\mathrm{loL}_{\text {Loff }}=\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OL}}\right) / \mathrm{RoL}_{\mathrm{L}}$
note 3: tpovi tpol: ISO definition

## ELECTRICAL CHARACTERISTICS FOR LOW SIDE SWITCH

( $\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)
OFF

| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {(BRDSS) }}$ | Drain-source <br> Brekdown Voltage | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A} \mathrm{~V} \mathrm{~V}_{\mathrm{GS}}=0$ | 60 |  |  | V |
| IDSS | Zero Gate Voltage <br> Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$ | $\mathrm{V}_{\mathrm{DS}}=$ Max Rating <br> $\mathrm{V}_{\mathrm{DS}}=$ Max Rating, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ |  |  | 1 | $\mu \mathrm{~A}$ |
| IGSS | Gate-Body Leakage <br> Current $\left(\mathrm{V}_{\mathrm{DS}}=0\right)$ | $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$ |  |  | $\pm 100$ | nA |

ON (*)

| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $V_{G S(t h)}$ | Gate Threshold <br> Voltage | $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \quad \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ | 1 |  | 2.5 | V |
| RDS(on) | Static Drain-Source <br> On Resistance | $\mathrm{V}_{G S}=10 \mathrm{~V} \quad \mathrm{I}_{\mathrm{D}}=18 \mathrm{~A}$ |  | 0.032 | 0.04 | $\Omega$ |
| $\mathrm{I}_{\mathrm{D}(\mathrm{on})}$ | On State Drain <br> Current $\left(\mathrm{V}_{\mathrm{DS}}=0\right)$ | $\mathrm{V}_{\mathrm{DS}}>\mathrm{I}_{\mathrm{D}(o n)} \times \mathrm{R}_{\mathrm{DS}(o n) \max }$ <br> $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$ | 36 |  |  | A |

## DYNAMIC

| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{g}_{\mathrm{fs}}(*)$ | Forward <br> Transconductance | $\mathrm{V}_{\mathrm{DS}}>\mathrm{I}_{\mathrm{D} \text { (on) }} \times \mathrm{R}_{\mathrm{DS} \text { (on) }{ }^{\text {max }}} \quad \mathrm{I}_{\mathrm{D}}=18 \mathrm{~A}$ | 7 |  |  | S |
| $\begin{aligned} & \hline \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\text {rss }} \end{aligned}$ | Input Capacitance Output Capacitance Reverse Transfer Capacitance | $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{MHz} \quad \mathrm{V}_{\mathrm{GS}}=0$ |  | $\begin{gathered} 2115 \\ 260 \\ 65 \end{gathered}$ | $\begin{gathered} 2800 \\ 350 \\ 90 \end{gathered}$ | $\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$ |

## SWITCHING-ON (**)

| Symbol | Parameter | Test Conditions |  | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{d}(0 n)}$ | Turn-on Time Rise Time | $\begin{aligned} & \mathrm{VDD}=30 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \end{aligned}$ | $\begin{aligned} \mathrm{ID} & =18 \mathrm{~A} \\ \mathrm{~V} G & =10 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 28 \\ & 85 \end{aligned}$ | $\begin{gathered} 40 \\ 115 \end{gathered}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |
| (di/dt)on | Turn-on Current Slope | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=48 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=47 \Omega \end{aligned}$ | $\begin{aligned} & \mathrm{ID}=36 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ |  | 250 |  | A/ $\mu \mathrm{s}$ |
| $\begin{gathered} Q_{g} \\ Q_{g s} \\ Q_{g d} \end{gathered}$ | Total Gate Charge Gate-Source Charge Gate-Drain Charge | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=48 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ | $\mathrm{ID}=36 \mathrm{~A}$ |  | $\begin{aligned} & 50 \\ & 13 \\ & 18 \end{aligned}$ | 70 | $\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$ |

## SWITCHING-OFF

| Symbol | Parameter | Test Conditions |  | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r} \text { (Voff) }}$ | Off-Voltage Rise Time | $\mathrm{V}_{\mathrm{DD}}=48 \mathrm{~V}$ | $\mathrm{I}_{\mathrm{D}}=36 \mathrm{~A}$ |  | 12 | 16 | ns |
| $\mathrm{t}_{r}$ | Fall Time | $\mathrm{R}_{\mathrm{G}}=4.7 \Omega$ | $\mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ |  | 25 | 35 | ns |
| $\mathrm{t}_{\mathrm{c}}$ | Cross-Over Time |  |  |  | 40 | 55 | ns |

ELECTRICAL CHARACTERISTICS FOR DUAL LOW SIDE SWITCH (continued)

SOURCE-DRAIN DIODE

(*) Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle $1.5 \%$
(**) Pulse width limited by Safe Operating Area.

TYPICAL APPLICATION DIAGRAM


SO-28 MECHANICAL DATA

| DIM. | mm |  |  | inch |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. |
| A |  |  | 2.65 |  |  | 0.104 |
| a1 | 0.10 |  | 0.30 | 0.004 |  | 0.012 |
| b | 0.35 |  | 0.49 | 0.013 |  | 0.019 |
| b1 | 0.23 |  | 0.32 | 0.009 |  | 0.012 |
| C |  | 0.50 |  |  | 0.020 |  |
| c1 | 45 (typ.) |  |  |  |  |  |
| D | 17.7 |  | 18.1 | 0.697 |  | 0.713 |
| E | 10.00 |  | 10.65 | 0.393 |  | 0.419 |
| e |  | 1.27 |  |  | 0.050 |  |
| e3 |  | 16.51 |  |  | 0.650 |  |
| F | 7.40 |  | 7.60 | 0.291 |  | 0.299 |
| L | 0.40 |  | 1.27 | 0.016 |  | 0.050 |
| S | 8 (max.) |  |  |  |  |  |



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com

