Rear Wiper Interval/Wipe-Wash Control

Description

The bipolar integrated circuit, U690B, is designed with a time coded input for the rear pane wiper application. The length of the input signal determines the mode of

Features

- Time controlled interval/ wipe-wash
- Wiper arm's park position control
- Interval pause typ. 7 s
- Dry wiping time typ. 4.4 s
- Multipurpose frequency comparator
- Relay driver with Z-diode
- RC-oscillator determines switching characteristics
operation i.e., intermittent or wipe/ wash; therefore, only one signal line is sufficient from the input switch to the electronic module.
- Debounced main signal input
- Power-on reset by low-voltage identification
- Protection according to ISO / TR 7637-1 (VDE 0839)
- Load-dump protection

Applications

Speed or R.P.M. detection

Ordering Information

Extended Type Number	Package	Remarks
U690B	DIP8	

Pin Configuration

Pin	Symbol	Function
1	GND	Ground
2	Output	Relay control output
3	Input	Signal input
4	Retrigger	Retrigger
5	Program	Program input
6	OSC	RC-oscillator
7	Hyst	Hysteresis output
8	$\mathrm{~V}_{\text {stab }}$	Supply voltage 7.3 V

Figure 4. Pinning

Block Diagram

Figure 1. Application circuit for rear wiper interval/wipe-wash control

Functional Description

Power Supply, Pin 8

For reasons of interference protection and surge immunity, the supply voltage (Pin 8) must be provided with an RC-circuit as shown in figure 2. Dropper resistor, R_{1}, limits the current in case of overvoltage, whereas C_{1} smoothes the supply voltage at Pin 8 .

Recommended values are: $\mathrm{R}_{1}=1 \mathrm{k} \Omega, \mathrm{C}_{1}=47 \mu \mathrm{~F}$.

An integratd Z-diode (7.3 V) generates the stabilized voltage, $\mathrm{V}_{\text {stab }}$, therefore, the operation of the IC is possible between 6 V and 16 V , supplied by $\mathrm{V}_{\text {Batt }}$ (Terminal 15).

Figure 2. Basic circuitry

Interference Voltages and Load-Dump, Pins 3 and 4

Pin 3 (signal input) and Pin 4 (retrigger input) are protected against short interference peaks via the integrated Z-diodes and external series resistance.

Relay Control Output, Pin 2

The relay control output is an open collector Darlington circuit with an integrated 21-V Z-diode for limitation of the inductive cut-off pulse of the relay coil. The maximum static collector current must not exceed 200 mA and the saturation voltage is typically $1.0 \mathrm{~V} @ 100 \mathrm{~mA}$, whereas the typical resistive load is 80Ω.

Figure 3. Relay control output

Oscillator, Pin 6

Oscillator frequency, f , is determined mainly by the $\mathrm{R}_{2} \mathrm{C}_{2}$ circuit. The resistance, R_{2}, determines the charge time, and the integrated resistance ($2 \mathrm{k} \Omega$) is responsible for discharge time. For the stability of the oscillator frequency, it is recommended that the selected R_{2} value be much greater than the internal resistance ($2 \mathrm{k} \Omega$), because the temperature response and the tolerances of the integrated resistance are considerably greater than the external resistance value.

Oscillator frequency, f , is calculated as follows:

$$
\mathrm{f}=1 / \mathrm{C}_{2} \cdot\left(0.632 \cdot \mathrm{R}_{2}+1900\right)
$$

Minimum value for $\mathrm{R}_{2}=68 \mathrm{k} \Omega$
Maximum oscillator frequency is 20 kHz .
For further information, please refer to table 1, regarding relationship between oscillator frequency and different timings.

Rear Wiper Interval/Wipe-Wash Control, Figures 1 and 4

A single high-side switch at terminal L is responsible for all switching sequences. The water pump motor is con-
nected at terminal L and the wiper motor is connected at terminal 53 , as shown in figure 1.

Figure 4 shows three different modes of operation. The input signal pulse width, t_{p}, (see figure 1 , terminal L) determines the operation mode, with an assumed oscillator frequency of $\mathrm{f}=400 \mathrm{~Hz}$. Pin 5 and Pin 7 are open. As a debouncing measure, input pulses of t_{p} less than 50 ms do not activate the relay.

Further explanation is given with typical values. For detailed information, please refer to table 1.

- \quad Interval mode: $50 \mathrm{~ms} \leq \mathrm{t}_{\mathrm{p}} \leq 610 \mathrm{~ms}$ Pin 2 (relay control output) is activated for 640 ms , where the interval pause, t_{3}, is approximately 7 s .
- Wipe/wash mode: $\mathrm{t}_{\mathrm{p}} \geq 610 \mathrm{~ms}$

Dry wiping time is 4.4 s after the negative edge of t_{p}.

- Wipe/wash mode with retrigger

Retriggering for Large Park Segment

After dry wiping, the slip ring contact cuts off the supply of the wiper motor and stops the wiper in its parking position.

However due to mechanical tolerances, the contact may pass over the park segment so that the wiper is switched off by the relay. The wiper arm then stops at an undefined position on the screen.

By retriggering the U690B prevents the wiper arm from stopping anywhere other than its parking position. The voltage of the relay contact is fed back to the retrigger input which detects the negative switch off pulse (see figure 4) and reactivates the wiper motor immediately for approximately 640 ms . After another turn, the wiper is switched off correctly via the slip ring contact.

The interval mode can be activated during the dry wiping time, but the retriggering mode is switched-off during this time.

Figure 4. Pulse diagram for different modes - wipe/wash

Table 1. Time for rear wiper interval operation

Index t	Description	Oscillator Clocks
1	Interval ON (first pulse)	252
2	Interval ON (following pulses)	256
3	Interval pause (except first pause)	2816
4	Pause (dry wiping interval pulse)	1024
5	Dry wiping time min/max	$1738 / 1810$
6	Gate for retrigger	8
7	Min/max lengthening at retrigger	$248 / 256$
8	Debounce time min/max	$16 / 24$
9	Recognition time for dry wiping min/max	$240 / 248$

$\mathrm{f}_{\text {osc }}$ (Hz)	$\begin{gathered} 1 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{gathered} 2 \\ (\mathrm{~ms}) \end{gathered}$	3 (s)	4 (s)	$\begin{gathered} 5_{\min }^{5_{\max }} \\ (\mathrm{s}) \end{gathered}$	$\begin{gathered} 6 \\ (\mathrm{~ms}) \end{gathered}$	$\begin{aligned} & 7_{\min } \\ & 77_{\max } \\ & (\mathrm{ms}) \end{aligned}$	$\begin{aligned} & 8_{\text {min }} \\ & 8_{\text {max }} \\ & (\mathrm{ms}) \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \min \\ & 9_{\max } \\ & (\mathrm{ms}) \end{aligned}$
300	840	853	9.387	3.410	5.790	27	827	53	800
					6.030		853	80	827
310	813	826	9.084	3.300	5.603	26	800	52	774
					5.835		826	77	800
320	788	800	8.800	3.197	5.428	25	775	50	750
					5.653		800	75	775
330	764	776	8.533	3.100	5.264	24	752	48	727
					5.482		776	73	752
340	741	753	8.282	3.009	5.109	24	729	47	706
					5.321		753	71	729
350	720	731	8.064	2.923	4.963	23	709	46	686
					5.169		731	69	709
360	700	711	7.822	2.842	4.825	22	689	44	667
					5.025		711	67	689
370	681	692	7.611	2.765	4.695	22	670	43	649
					4.889		692	65	670
380	663	674	7.411	2.692	4.571	21	653	42	632
					4.761		674	63	653
390	646	656	7.221	2.623	4.454	21	636	41	615
					4.638		656	62	636
400	630	640	7.040	2.558	4.343	20	620	40	600
					4.523		640	60	620
410	615	624	6.868	2.495	4.237	20	605	39	585
					4.412		624	59	605
420	600	610	6.705	2.436	4.136	19	590	38	571
					4.307		610	57	590
430	586	595	6.549	2.379	4.040	19	577	37	558
					4.207		595	56	577
440	573	582	6.400	2.325	3.948	18	564	36	545
					4.111		582	55	564
450	560	569	6.258	2.273	3.860	18	551	36	533
					4.020		569	53	551
460	548	557	6.122	2.224	3.776	17	539	35	522
					3.933		557	52	539
470	536	545	5.991	2.177	3.696	17	528	34	511
					3.849		545	51	528
480	525	533	5.867	2.131	3.619	17	517	33	500
					3.769		533	50	517
490	514	522	5.747	2.088	3.545	16	506	33	490
					3.692		522	49	506
500	504	512	5.632	2.046	3.474	16	496	32	480
					3.618		512	48	496

U690B

Absolute Maximum Ratings

Reference point Pin 1 (31), unless otherwise specified

Parameters	Symbol	Value	Unit
Operating voltage, static 5 min., Terminal 15	$\mathrm{V}_{\text {Batt }}$	24	V
Ambient temperature range	$\mathrm{T}_{\text {amb }}$	-40 to +95	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Parameters		Symbol	Value
Junction ambient	DIP 8	$\mathrm{R}_{\text {thJA }}$	110
Unit			

Electrical Characteristics

Reference point Ground (Pin 1), $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {Batt }}=12 \mathrm{~V}$, unless otherwise specified, see basic circuitry figure 2

Parameters	Test Cond	/ Pin	Symbol	Min	Typ	Max	Unit
Operating voltage	$\begin{gathered} \mathrm{R}_{1} \geq 1 \mathrm{k} \Omega \\ \mathrm{t}<5 \mathrm{~min} \\ \mathrm{t}<60 \mathrm{~min} \end{gathered}$		$\mathrm{V}_{\text {Batt }}$	6.0		$\begin{aligned} & 16.0 \\ & 24.0 \\ & 18.0 \end{aligned}$	V
Stabilized voltage	$\mathrm{I}_{8}=10 \mathrm{~mA}$	Pin 8	V_{8}		7.35		V
Low voltage detection	Terminal 15		$\mathrm{V}_{\text {Batt }}$	4.0	4.5	5.0	V
Relay control output Pin 2							
Saturation voltage	$\begin{aligned} & \mathrm{I} \leq 200 \mathrm{~mA} \\ & \mathrm{I} \leq 100 \mathrm{~mA} \end{aligned}$		V_{2}			$\begin{aligned} & 1.5 \\ & 1.2 \\ & \hline \end{aligned}$	V
Internal Z-diode	$\mathrm{I}_{2}=10 \mathrm{~mA}$	Pin 2	V_{Z}	20	21	23	V
Oscillator $\mathrm{f}=0.001$ to 20 kHz							
Integrated discharge resistor	$\mathrm{V}_{6}=\mathrm{V}_{8}$		r_{6}	1.6	2.0	2.4	$\mathrm{k} \Omega$
Switching threshold voltage	lower upper		$\begin{aligned} & \hline \mathrm{V}_{6 \mathrm{~L}} \\ & \mathrm{~V}_{6 \mathrm{H}} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1.8 \\ & 4.6 \\ & \hline \end{aligned}$		V
Input current	$\mathrm{V}_{6}=0 \mathrm{~V}$		$-\mathrm{I}_{6}$			1	$\mu \mathrm{A}$
Hysteresis current		Pin 7	$-\mathrm{I}_{7}$			200	$\mu \mathrm{A}$
Saturation voltage	$\mathrm{I}_{7}=-100 \mu \mathrm{~A}$	Pin 7	V_{7-8}		100	200	mV
Programming input Pin 5							
Pull-up resistor			r_{5}	40	50	60	$\mathrm{k} \Omega$
Temperature drift of r_{5}			TC		0.45		\%/deg.
Switching threshold voltage			V_{5}		2		V
Signal input, $\quad \mathrm{R}_{3}=1 \mathrm{k} \boldsymbol{\Omega}$ (min), fig.1, Pin 3							
Input current	$\mathrm{V}_{3}=2 \mathrm{~V}$		$-\mathrm{I}_{3}$			0.5	$\mu \mathrm{A}$
Threshold voltage	$\begin{aligned} & \mathrm{ON} \\ & \mathrm{OFF} \end{aligned}$		V_{3}	$\begin{aligned} & 2.1 \\ & 1.6 \end{aligned}$		$\begin{aligned} & 2.3 \\ & 1.8 \end{aligned}$	V
Internal Z-diode	$\begin{aligned} & \mathrm{I}_{3}=10 \mathrm{~mA} \\ & \mathrm{I}_{3}=-10 \mathrm{~mA} \end{aligned}$		$\begin{array}{r} \mathrm{V}_{3} \\ -\mathrm{V}_{3} \\ \hline \end{array}$		$\begin{aligned} & 7.5 \\ & 0.7 \\ & \hline \end{aligned}$		V
Retrigger $\quad \mathrm{R}_{4}=1 \mathrm{k} \Omega(\mathrm{min}$), fig. 1, Pin 4							
Threshold voltage	ON OFF		V_{4}	$\begin{aligned} & \hline 2.1 \\ & 1.6 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 2.3 \\ & 1.8 \\ & \hline \end{aligned}$	V
Internal Z-diode	$\begin{aligned} & \mathrm{I}_{4}=10 \mathrm{~mA} \\ & \mathrm{I}_{4}=-10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline \mathrm{V}_{4} \\ -\mathrm{V}_{4} \\ \hline \end{gathered}$		$\begin{aligned} & \hline 7.5 \\ & 0.7 \\ & \hline \end{aligned}$		V
Integrated pull-up resistor			r_{4}	40	50	60	$\mathrm{k} \Omega$
Temperature drift of r_{4}			TC		0.45		\%/deg.

Applications

Frequency Comparator

Speed Depending Switch with Hysteresis, Figure 5

This circuit can be used to activate a load, such as a warning lamp or buzzer via the relay (terminal A) at a certain speed. The speed information is applied to signal input, Pin 3, e.g. from Hall generator via terminal V.
It is compared in the integrated circuit with a reference frequency created by the oscillator. The oscillator frequency, f, is generated with external resistor, $\mathrm{R}_{2} \| \mathrm{R}_{7}$, and capacitor, C_{2}.
If the frequency at Pin 3 is less than $f / 64$, the relay control ouput is deactivated.

If the frequency at Pin 3 is greater than $f / 64$, the relay control output is activated and at the same time the hysteresis output, Pin 7, is disabled, the frequency is reduced. This means Pin 7 supplies no current for charging the capacitor, C_{2}; therefore, R_{2} and C_{2} alone define the oscillator frequency i.e., $\mathrm{f} \approx \mathrm{R}_{2} \cdot \mathrm{C}_{2}$.
The hysteresis frequency is determined with the resistor, R7.

Motor Speed Depending Switch with Hysteresis, Figure 6

This circuit, figure 6 , has the same function as the speed with hysteresis mentioned above.
Information regarding motor speed (rpm) from the ignition coil is delivered to signal input, Pin 3, via terminal 1. Resistor values, R_{3} and R_{5} are so dimensioned, that there is a peak voltage of nearly 3 V at Pin 3 (from the ignition coil). Pin 4 is connected to GND, so that there is a bypass for debouncing. In this way, ignition pulse is supplied to frequency comparator.

Figure 5. Speed switch

Figure 6. Motor speed switch with hysteresis

Package Information

Package DIP8
Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

[^0]TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 672423

[^0]: We reserve the right to make changes to improve technical design and may do so without further notice.
 Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

