## Radiator fan controlled timer

### **Description**

The bipolar integrated circuit, U 6049 B, is designed as a radiator fan controlled timer. After the ignition is switched off, the thermal switch of the engine can activate the

radiator fan via relay for a preset period, to support the cool-off process.

### **Features**

- Delay time range: 3.7 s to 20 h
- Cool-off time starts when thermal switch is closed
- RC oscillator determines switching characteristics
- Relay driver with Z-diode
- Debounced input for coolant temperature switch
- Not debounced input for ignition key (Terminal 15)
- Load dump protection
- RF interference protected
- Protection according to ISO/TR 7637-1 (VDE 0839)

Cases: DIP 8, SO 8

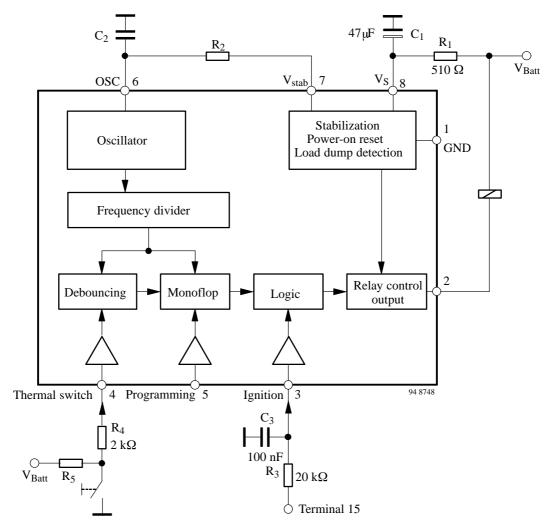
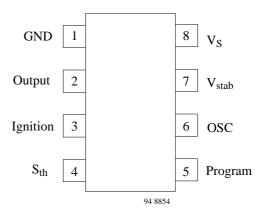




Figure 1 Block diagram with external circuit

| D.    | $\boldsymbol{\alpha}$ | Co.   | 4 •   |
|-------|-----------------------|-------|-------|
| Pin   | ( An                  | fiour | ดบาก  |
| T 111 | COL                   | figur | auvii |

| Pin | Symbol            | Function                |
|-----|-------------------|-------------------------|
| 1   | GND               | Reference point, ground |
| 2   | Output            | Relay control output    |
| 3   | Ignition          | Signal input, ignition  |
| 4   | S <sub>th</sub>   | Thermal switch, input   |
| 5   | Program           | Programming input       |
| 6   | OSC               | RC oscillator input     |
| 7   | V <sub>stab</sub> | Stabilized voltage      |
| 8   | $V_{S}$           | Supply voltage          |



## **Functional description**

### Power supply, Pin 8

For reasons of interference protection and surge immunity, the supply voltage (Pin 8) must be provided with an RC circuit as shown in figure 2a. Dropper resistor,  $R_1$ , limits the current in case of overvoltage, whereas  $C_1$  smoothes the supply voltage at Pin 8.

Recommended values are:  $R_1 = 510 \Omega$ ,  $C_1 = 47 \mu F$ .

The integrated Z-diode (14 V) protects the supply voltage,  $V_S$ , therefore, the operation of the IC is possible between 6 V and 16 V, supplied by  $V_{Batt}$ .

However, it is possible to operate the integrated circuit with a 5 V supply, but it should be free of interference voltages. In this case, Pin 7 is connected to Pin 8 as shown in figure 2b, and the  $R_1C_1$  circuit is omitted.

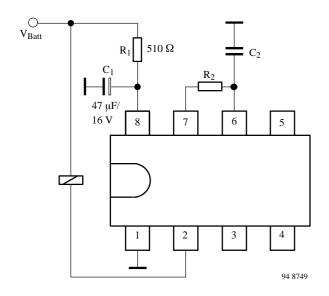



Figure 2a Basic circuit for 12 V voltage supply and oscillator

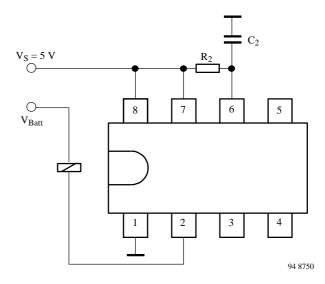



Figure 2b Basic circuit for  $V_S = 5 \text{ V}$ 

U 6049 B

### Oscillator, Pin 6

Oscillator frequency, f, is determined mainly by  $R_2C_2$ -circuit. Resistance,  $R_2$ , determines the charge time, whereas the integrated resistance (2 k $\Omega$ ) is responsible for discharge time. For the stability of the oscillator frequency, it is recommended to select  $R_2$  much greater than internal resistance (2 k $\Omega$ ), because the temperature response and the tolerances of the integrated resistance are considerably greater than the external resistance value.

Oscillator frequency, f, is calculated as follows:

$$f = \frac{1}{t_1 + t_2}$$

where

 $t_1 = charge \ time = \alpha_1 \,.\, R_2 \,.\, C_2$ 

 $t_2$  = discharge time =  $\alpha_2 \cdot 2 \text{ k}\Omega \cdot C_2$ 

 $\alpha_1$  and  $\alpha_2$  are constants and has

 $\alpha_1 = 0.833$  and  $\alpha_2 = 1.551$  when  $C_2 = 470 \ pF$  to  $10 \ nF$ 

 $\alpha_1 = 0.746$  and  $\alpha_2 = 1.284$  when  $C_2 = 10$  nF to 4700 nF

Debounce time,  $t_3$ , and the delay time,  $t_d$ , depend on the oscillator frequency, f, as follows:

$$t_3 = 6 \cdot \frac{1}{f}$$

$$t_d = 73728 \cdot \frac{1}{f}$$

Table 1 shows relationships between  $t_3$ ,  $t_d$ ,  $C_2$ ,  $R_2$  and frequencies from 1 Hz to 20 kHz.

### Output, Pin 2

Output Pin 2 is an open collector Darlington circuit with integrated 23-V Z-diode for limitation of the inductive cut-off pulse of the relay coil. The maximum static collector current must not exceed 300 mA and the saturation voltage is typically  $1.1\ V \ @ 200\ mA$ .

### Interference voltages and load dump

The IC supply is protected by  $R_1$ ,  $C_1$ , and an integrated Z-diode, while the inputs are protected by a series resistor, integrated Z-diode and RF-capacitor (refer to Figure 3).

The relay control output is protected via the integrated 23-V Z-diode in the case of short interference peaks. It is switched to conductive condition for a battery voltage of greater than approx. 40 V in the case of load dump. The output transistor is dimensioned so that it can withstand the current produced.

#### Power-on reset

When the operating voltage is switched on, an internal power-on reset pulse (POR) is generated which sets the logic of the circuits to a defined initial condition. The relay control output is disabled.

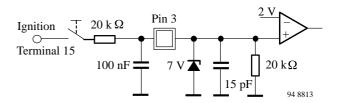



Figure 3a Input circuit for ignition (Pin 3)

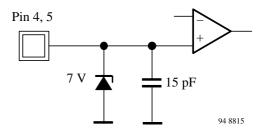



Figure 3b Input circuit Pin 4 and Pin 5

## Relay control output behaviour, Pin 2

Integrated circuit control the cooling fan motor in automobile by means of a relay.

Figure 3a shows the internal input circuit of ignition (Pin 3). It has an integrated pull-down resistor (20 k $\Omega$ ), RF-capacitor (15 pF) and 7-V Z-diode. It reacts to voltages greater than 2 V.

For the programming input, Pin 5, and thermal switch input, Pin 4, there is neither pull-up nor pull-down resistor integrated internally (figure 3b).

One can reduce the standby current through the internal Z-diode by selecting a higher value for resistance  $R_4$  (see figure 5,  $R_4$  up to 200 k $\Omega$ ). Resistance  $R_5$  determines the contact current through the thermal control switch,  $S_{th}$ .

Ignition input (terminal 15) is not debounced. Debouncing can be achieved by external circuit ( $R_3$ , $C_3$ ) connected to Pin 3 (see figures 1 and 5).

## U 6049 B

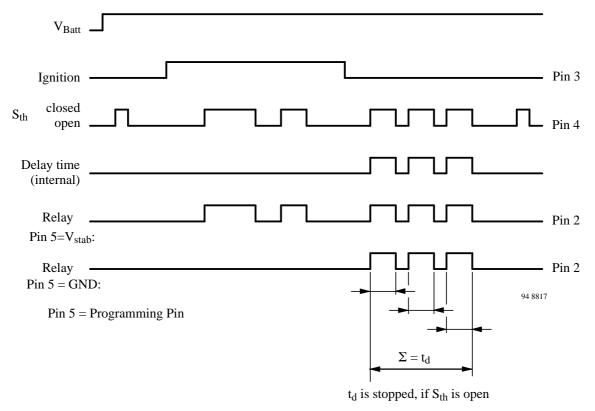
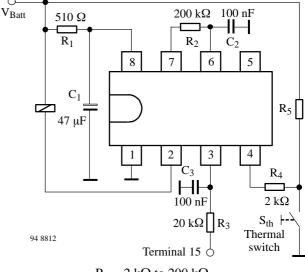




Figure 4 Timing waveform

Programming input (Pin 5) is high-ohmic, therefore it should be connected to Pin 7 ( $V_{stab}$ ) or GND. Relay control output is shown according to Pin 5 connection.

Thermal switch input, Pin 4, is debounced (see figure 1). Relay control output, Pin 2, is disabled when the battery voltage,  $V_{Batt}$ , is applied. Relay control output follows the conditions of the switch,  $S_{th}$ , only when the ignition is switched-ON. This is possible only after the debounce time,  $t_3$ . In this case Pin 5 is connected to Pin 7.

Timing waveforms are shown in figure 4. Total delay time,  $t_d$ , is the sum of all ON-pulses caused by the thermostatic switching. This can run down at once or in parts. If  $S_{th}$  (Pin 4) is open, the oscillator is stopped (switched-off) internally but when it starts ( $S_{th}$  closed), the delay time,  $t_d$ , starts running again. In case of renewed switching of ignition, the counter of the delay time is reset.



 $R_4$  = 2  $k\Omega$  to 200  $k\Omega$ 

Figure 5 Basic circuit

## **TELEFUNKEN Semiconductors**

## **Absolute Maximum Ratings**

| Parameters                       | Symbol            | Value       | Unit |
|----------------------------------|-------------------|-------------|------|
| Operating voltage, static, 5 min | V <sub>Batt</sub> | 24          | V    |
| Ambient temperature range        | T <sub>amb</sub>  | -40 to +125 | °C   |
| Storage temperature range        | T <sub>stg</sub>  | -55 to +125 | °C   |
| Junction temperature             | $T_{j}$           | 150         | °C   |

## **Thermal Resistance**

| Parameters       |       | Symbol     | Maximum | Unit |
|------------------|-------|------------|---------|------|
| Junction ambient | DIP 8 | $R_{thJA}$ | 110     | K/W  |
|                  | SO 8  | $R_{thJA}$ | 160     | K/W  |

### **Electrical Characteristics**

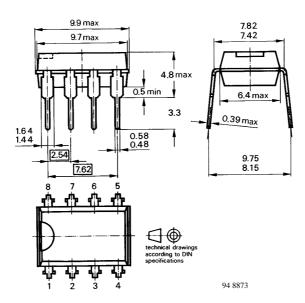
 $V_{Batt}$  =13.5 V,  $T_{amb}$  = 25°C, reference point ground, figure 2, unless otherwise specified

| Parameters                    | Test Conditions                  | / Pin     | Symbol             | Min   | Тур | Max   | Unit   |
|-------------------------------|----------------------------------|-----------|--------------------|-------|-----|-------|--------|
| Operating voltage             | $R_1 \ge 510 \Omega$             |           | $V_{Batt}$         | 6     |     | 16    |        |
|                               | t < 5 min                        |           |                    |       |     | 24    | V      |
|                               | t < 60 min                       |           |                    |       |     | 18    |        |
| 5 V supply                    | Without $R_1$ , $C_1$            |           | $V_8, V_7$         | 4.3   |     | 6.0   | V      |
|                               | figure 2b Pins                   | 7 and 8   |                    |       |     |       |        |
| Stabilized voltage            |                                  | Pin 7     | $V_7$              | 5.0   | 5.2 | 5.4   | V      |
| Undervoltage threshold        | Power on reset                   |           | $V_{S}$            | 3.0   |     | 4.2   | V      |
| Supply current                | Pushbuttons open                 | Pin 8     | $I_S$              |       | 1.3 | 2.0   | mA     |
| Internal Z-diode              | $I_8 = 10 \text{ mA}$            | Pin 8     | $V_{Z}$            | 13.5  | 14  | 16    | V      |
| Relay output                  |                                  | Pin 2     |                    |       |     |       |        |
| Saturation voltage            | $I_2 = 200 \text{ mA}$           |           | $V_2$              |       | 1.2 |       | V      |
| _                             | $I_2 = 300 \text{ mA}$           |           |                    |       |     | 1.5   |        |
| Leakage current               | $V_2 = 14 \text{ V}$             |           | $I_{lkg}$          |       | 2   | 100   | μA     |
| Output current                |                                  |           | $I_2$              |       |     | 300   | mA     |
| Output pulse current          |                                  |           |                    |       |     |       |        |
| Load dump pulse               |                                  |           | $I_2$              |       |     | 1.5   | A      |
| Internal Z-diode              | $I_2 = 10 \text{ mA}$            |           | $V_2$              | 20    | 22  | 24    | V      |
| <b>Oscillator input</b> f     | = 0.001 to $40$ kHz, see         | e table 1 | Pin 6              |       |     |       |        |
| Internal discharge resistance |                                  |           | $R_6$              | 1.6   | 2.0 | 2.4   | kΩ     |
| Switching voltage             | Lower                            |           | $V_{6L}$           | 0.9   | 1.1 | 1.4   | V      |
|                               | Upper                            |           | $V_{6H}$           | 2.8   | 3.1 | 3.5   |        |
| Input current                 | $V_6 = 0 V$                      |           | $-I_6$             |       |     | 1     | μA     |
| Switching times               |                                  |           |                    |       |     |       |        |
| Debounce time                 |                                  |           | t <sub>3</sub>     | 5     |     | 7     | cycles |
| Delay time                    |                                  |           | $t_{d}$            | 72704 |     | 74752 | cycles |
| Inputs                        | Pi                               | n 3, 4, 5 |                    |       |     |       |        |
| Switching threshold           |                                  |           | V <sub>3,4,5</sub> | 1.6   | 2.0 | 2.4   | V      |
| Internal Z-diode              | $I_{3, 4, 5} = 10 \text{ mA}$    |           | V <sub>3,4,5</sub> | 6.5   | 7.1 | 8.0   | V      |
| Ignition input Pin 3          |                                  |           |                    |       |     |       |        |
| Pull-down resistance          | Switched to V <sub>Batt</sub> (1 | 15)       | R <sub>3</sub>     | 13    | 20  | 50    | kΩ     |
| Thermal switch                | Pin 4                            |           |                    |       |     | •     | •      |
| Input current                 | $V_4 = 0 V$                      |           | $-I_4$             |       |     | 2     | μΑ     |
| Programming input             | Pin 5                            |           |                    |       |     | •     | •      |
| Input current                 | $V_5 = 0 \text{ V}$              |           | - I <sub>5</sub>   |       |     | 2     | μΑ     |

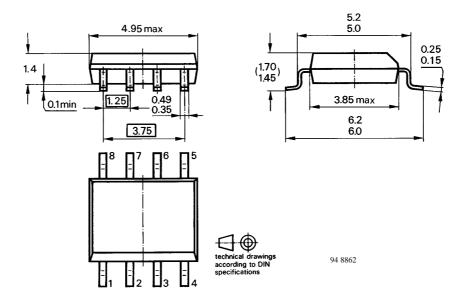
Rev. A2: 28.11.1994 5

# U 6049 B

Table 1 Oscillator frequency, debounce time, delay time. dimensioning


| Fre-   | De-            | Delay time     |     | $C_2$ | R <sub>2</sub> |
|--------|----------------|----------------|-----|-------|----------------|
| quency | bounce         | t <sub>d</sub> |     | 2     | 2              |
| f      | time           | u l            |     |       |                |
|        | t <sub>3</sub> |                |     |       |                |
| Hz     | ms             | min            | S   | nF    | kΩ             |
| 1      | 6000           | 1229           |     | 4700  | 280            |
| 2      | 3000           | 614            |     | 1000  | 650            |
| 3      | 2000           | 410            |     | 1000  | 440            |
| 4      | 1500           | 307            |     | 1000  | 330            |
| 5      | 1200           | 246            |     | 1000  | 260            |
| 6      | 1000           | 205            |     | 1000  | 220            |
| 7      | 857            | 176            |     | 1000  | 190            |
| 8      | 750            | 154            |     | 1000  | 160            |
| 9      | 667            | 137            |     | 1000  | 140            |
| 10     | 600            | 123            |     | 1000  | 130            |
| 20     | 300            | 61             |     | 100   | 650            |
| 30     | 200            | 41             |     | 100   | 440            |
| 40     | 150            | 31             |     | 100   | 330            |
| 50     | 120            | 25             |     | 100   | 260            |
| 60     | 100            | 20             |     | 100   | 220            |
| 70     | 86             | 18             |     | 100   | 190            |
| 80     | 75             | 15             |     | 100   | 160            |
| 90     | 67             | 14             |     | 100   | 140            |
| 100    | 60             | 12             |     | 100   | 130            |
| 200    | 30             |                | 369 | 10    | 600            |
| 300    | 20             |                | 246 | 10    | 400            |
| 400    | 15             |                | 184 | 10    | 300            |
| 500    | 12             |                | 147 | 10    | 240            |

| Frequency | De-<br>bounce<br>time<br>t <sub>3</sub> | Delay time<br>t <sub>d</sub> |     | C <sub>2</sub> | R <sub>2</sub> |
|-----------|-----------------------------------------|------------------------------|-----|----------------|----------------|
| Hz        | ms                                      | min                          | S   | nF             | kΩ             |
| 600       | 10                                      |                              | 123 | 10             | 200            |
| 700       | 9                                       |                              | 105 | 10             | 170            |
| 800       | 8                                       |                              | 92  | 10             | 150            |
| 900       | 7                                       |                              | 82  | 10             | 130            |
| 1000      | 6                                       |                              | 74  | 10             | 120            |
| 2000      | 3.00                                    |                              | 37  | 1              | 600            |
| 3000      | 2.00                                    |                              | 25  | 1              | 400            |
| 4000      | 1.50                                    |                              | 18  | 1              | 300            |
| 5000      | 1.20                                    |                              | 15  | 1              | 240            |
| 6000      | 1.00                                    |                              | 12  | 1              | 200            |
| 7000      | .86                                     |                              | 11  | 1              | 170            |
| 8000      | .75                                     |                              | 9   | 1              | 150            |
| 9000      | .67                                     |                              | 8   | 1              | 130            |
| 10000     | .60                                     |                              | 7   | 1              | 120            |
| 11000     | .55                                     |                              | 6.7 | 1              | 110            |
| 12000     | .50                                     |                              | 6.1 | 1              | 99             |
| 13000     | .46                                     |                              | 5.7 | 1              | 91             |
| 14000     | .43                                     |                              | 5.3 | 1              | 85             |
| 15000     | .40                                     |                              | 4.9 | 1              | 79             |
| 16000     | .38                                     |                              | 4.6 | 1              | 74             |
| 17000     | .35                                     |                              | 4.3 | 1              | 70             |
| 18000     | .33                                     |                              | 4.1 | 1              | 66             |
| 19000     | .32                                     |                              | 3.9 | 1              | 62             |
| 20000     | .30                                     |                              | 3.7 | 1              | 59             |


# TEMIC

### **Dimensions in mm**

Package: DIP 8



Package: SO 8



### We reserve the right to make changes to improve technical design without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423