## Monolithic Integrated Feature Phone Circuit

## Description

The $\mu \mathrm{c}$ controlled telephone circuit U4092B is a linear integrated circuit for use in feature phones, answering machines and fax machines. It contains the speech circuit, tone ringer interface with dc/dc converter, sidetone equivalent and ear protection rectifiers. The circuit is line powered and contains all components necessary for amplification of signals and adaptation to the line.

## Features

- DC characteristic adjustable
- Transmit and receive gain adjustable
- Symmetrical input of microphone amplifier
- Anti-clipping in transmit direction
- Automatic line loss compensation
- Built-in ear protection
- DTMF and MUTE input
- Adjustable sidetone suppression independent of sending and receiving amplification
- Integrated amplifier for loudhearing operation
- Anti-clipping for loudspeaker amplifier
- Improved acoustical feedback suppression
- Power down
- Voice switch
- Tone ringer interface with $\mathrm{dc} / \mathrm{dc}$ converter


## Applications

Feature phone, answering machine, fax machine, speaker phone

An integrated voice switch with loudspeaker amplifier allows loudhearing or handsfree operation. With an anti-feedback function, acoustical feedback during loudhearing can be reduced significantly. The generated supply voltage is suitable for a wide range of peripheral circuits.

- Zero crossing detection
- Common speaker for loudhearing and tone ringer
- Supply voltages for all functional blocks of a subscriber set
- Integrated transistor for short circuiting the line voltage
- Answering machine interface
- Operation possible from 10 mA line currents


## Benefits

- Savings of one piezo electric transducer
- Complete system integration of analog signal processing on one chip
- Very few external components

U4092

## Block diagram



Figure 1

## TEMIC



Figure 2 Application circuit for loudhearing


Figure 3 Application for handsfree operation

## Temic

## Typical value of external components

| $\mathrm{C}_{1}$ | 100 nF | $\mathrm{R}_{2}$ | $20 \mathrm{k} \Omega$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}_{2}$ | 4.7 nF | $\mathrm{R}_{3}$ | $>68 \mathrm{k} \Omega$ |
| $\mathrm{C}_{3}$ | $10 \mu \mathrm{~F}$ | $\mathrm{R}_{4}$ | $10 \Omega$ |
| $\mathrm{C}_{4}$ | $220 \mu \mathrm{~F}$ | $\mathrm{R}_{5}$ | $1.5 \mathrm{k} \Omega$ |
| $\mathrm{C}_{5}$ | $47 \mu \mathrm{~F}$ | $\mathrm{R}_{6}$ | $62 \mathrm{k} \Omega$ |
| $\mathrm{C}_{6}$ | $470 \mu \mathrm{~F}$ | $\mathrm{R}_{7}$ | $680 \mathrm{k} \Omega$ |
| $\mathrm{C}_{7}$ | 820 nF | $\mathrm{R}_{8}$ | $22 \mathrm{k} \Omega$ |
| $\mathrm{C}_{8}$ | $100 \mu \mathrm{~F}$ | $\mathrm{R}_{9}$ | $330 \Omega$ |
| $\mathrm{C}_{9}$ | 100 nF | $\mathrm{R}_{10}$ | $3 \mathrm{k} \Omega$ |
| $\mathrm{C}_{10}$ | 150 nF | $\mathrm{R}_{11}$ | $62 \mathrm{k} \Omega$ |
| $\mathrm{C}_{11}$ | 68 nF | $\mathrm{R}_{12}$ | $30 \mathrm{k} \Omega$ |
| $\mathrm{C}_{12}$ | 33 nF | $\mathrm{R}_{13}$ | $62 \mathrm{k} \Omega$ |
| $\mathrm{C}_{13}$ | $10 \mu \mathrm{~F}$ | $\mathrm{R}_{14}$ | $120 \mathrm{k} \Omega$ |
| $\mathrm{C}_{14}$ | 100 nF | $\mathrm{R}_{15}$ | $47 \mathrm{k} \Omega$ |
| $\mathrm{C}_{15}$ | $1 \mu \mathrm{~F}$ | $\mathrm{R}_{16}$ | $1 \mathrm{k} \Omega$ |
| $\mathrm{C}_{16}$ | $47 \mu \mathrm{~F}$ | $\mathrm{R}_{17}$ | $1.2 \Omega$ |
| $\mathrm{C}_{17}$ | $10 \mu \mathrm{~F}$ | $\mathrm{R}_{18}$ | $30 \mathrm{k} \boldsymbol{\Omega}$ |
| $\mathrm{C}_{18}$ | $10 \mu \mathrm{~F}$ | $\mathrm{R}_{19}$ | $6.8 \mathrm{k} \Omega$ |
| $\mathrm{C}_{19}$ | 68 nF | $\mathrm{R}_{20}$ | $6.8 \mathrm{k} \Omega$ |
| $\mathrm{C}_{20}$ | 68 nF | $\mathrm{R}_{21}$ | $15 \mathrm{k} \Omega$ |
| $\mathrm{C}_{21}$ | $1 \mu \mathrm{~F}$ | $\mathrm{R}_{22}$ | $330 \mathrm{k} \Omega$ |
| $\mathrm{C}_{22}$ | 100 nF | $\mathrm{R}_{23}$ | $220 \mathrm{k} \Omega$ |
| $\mathrm{C}_{23}$ | 6.8 nF | $\mathrm{R}_{24}$ | $68 \mathrm{k} \Omega$ |
| $\mathrm{C}_{24}$ | 10 nF | $\mathrm{R}_{25}$ | $2 \mathrm{k} \Omega$ |
| $\mathrm{C}_{25}$ | 100 nF | $\mathrm{R}_{26}$ | $3.3 \mathrm{k} \Omega$ |
| $\mathrm{C}_{26}$ | 470 nF | $\mathrm{R}_{27}$ | $18 \mathrm{k} \Omega$ |
| $\mathrm{C}_{27}$ | 33 nF | $\mathrm{R}_{28}$ | $2 \mathrm{k} \Omega$ |
| $\mathrm{C}_{28}$ | $10 \mu \mathrm{~F}$ | $\mathrm{R}_{29}$ | $1 \mathrm{k} \Omega$ |
| $\mathrm{L}_{1}$ | 2.2 mH | $\mathrm{R}_{30}$ | $12 \mathrm{k} \Omega$ |
| $\mathrm{R}_{1}$ | $27 \mathrm{k} \Omega$ | $\mathrm{R}_{31}$ | $56 \mathrm{k} \Omega$ |

U4092


## Pin description

| Pin | Symbol | Function |
| :---: | :---: | :---: |
| 1 | $\mathrm{G}_{\mathrm{T}}$ | A resistor from this pin to GND sets the amplification of microphone and DTMF signals; the input amplifier can be muted by applying VMP to $\mathrm{G}_{\mathrm{T}}$. |
| 2 | DTMF | Input for DTMF signals. Also used for the answering machine and handsfree input. |
| 3 | MICO | Output of microphone preamplifier. |
| 4 | MIC 2 | Non-inverting input of microphone amplifier. |
| 5 | MIC 1 | Inverting input of microphone amplifier. |
| 6 | PD | Active high input for reducing the current consumption of the circuit. Simultaneously $\mathrm{V}_{\mathrm{L}}$ is shorted by an internal switch. |
| 7 | IND | The internal equivalent inductance of the circuit is proportional to the value of the capacitor at this pin. A resistor connected to ground may be used to reduce the dc line voltage. |
| 8 | $\mathrm{V}_{\mathrm{L}}$ | Line voltage |
| 9 | GND | Reference point for dc- and ac-output signals. |
| 10 | SENSE | A small resistor (fixed) connected from this pin to $\mathrm{V}_{\mathrm{L}}$ sets the slope of the dc characteristic and also effects the line length equalization characteristics and the line current at which the loudspeaker amplifier is switched on. |
| 11 | $\mathrm{V}_{\mathrm{B}}$ | Unregulated supply voltage for peripheral circuits (voice switch); limited to typically 7 V . |
| 12 | SAO | Output of loudspeaker amplifier. |
| 13 | $\mathrm{V}_{\text {MPS }}$ | Unregulated supply voltage for $\mu \mathrm{P}$, limited to 6.3 V . |
| 14 | $\mathrm{V}_{\mathrm{MP}}$ | Regulated supply voltage 3.3 V for peripheral circuits (especially microprocessors). The maximum output current is 2 mA . |
| 15 | SWOUT | Output for driving external switching transistor |
| 16 | COSC | 40 kHz oscillator for ringing power converter |


| Pin | Symbol | Function |
| :---: | :---: | :---: |
| 17 | VRING | Input for ringing signal |
| 18 | THA | Threshold adjustment for ringing frequency detector |
| 19 | RFDO | Output of ringing frequency detector |
| 20 | $\begin{aligned} & \text { IMP- } \\ & \text { SEL } \end{aligned}$ | Control input for selection of line impedance <br> 1. $600 \Omega$ <br> 2. $900 \Omega$ <br> 3. Mute of second transmit stage (TXA); also used for indication of external supply (answering machine); last chosen impedance is stored. |
| 21 | TSACL | Time constant of anticlipping of speaker amplifier |
| 22 | GSA | Current input for setting the gain of the speaker amplifier. Adjustment characteristic is logarithmical. For RGSA > $2 \mathrm{M} \Omega$, the speaker amplifier is switched off. |
| 23 | SA I | Speaker amplifier input (for loudspeaker, tone ringer and handsfree use) |
| 24 | MUTX | Three state input of transmit mute: <br> 1) Speech condition; inputs MIC1 / MIC2 active <br> 2) DTMF condition; input DTMF active. A part of the input signal is passed to the receiving amplifier as a confidence signal during dialing. <br> 3) Input DTMF used for answering machine and handsfree use; receive branch not affected. |
| 25 | ATAFS | Attenuation of acoustical feedback suppression. Maximum attenuation of AFS circuit is set by a resistor at this pin. Without the resistor, AFS is switched off. |
| 26 | INLDT | Input of transmit level detector |
| 27 | INLDR | Input of receive level detector |


| Pin | Symbol | Function |
| :---: | :---: | :---: |
| 29 | TLDT | Time constant of transmit level detector |
| 29 | TLDR | Time constant of receive level detector |
| 30 | AGA | Automatic gain adjustment with line current. A resistor connected from this pin to GND sets the starting point. Max. gain change is 6 dB . |
| 31 | IREF | Internal reference current generation; $\mathrm{RREF}=62 \mathrm{k} \Omega$; $\mathrm{IREF}=$ $20 \mu \mathrm{~A}$ |
| 32 | STO | Side tone reduction output. Output resistance is approximately $300 \Omega$. Maximum load impedance is $10 \mathrm{k} \Omega$. |
| 33 | $\mathrm{V}_{\mathrm{M}}$ | Reference node for microphone-earphone and loudspeaker amplifier. Supply for electret microphone ( $\mathrm{IM} \leq 300 \mu \mathrm{~A}$ ). |
| 34 | RECO | Output of receiving amplifier |
| 35 | STI | Input for side tone network |
| 36 | RAC | Input of receiving amplifier for ac coupling in feedback path |
| 37 | $\mathrm{G}_{\mathrm{R}}$ | A resistor connected from this pin to GND sets the receiving amplification of the circuit; amplifier RA1 can be muted by applying VMP to GR |
| 38 | TTXA | Time constant of anticlipping in transmit path |
| 39 | RECIN | Input of receiving path; input impedance is typically $80 \mathrm{k} \Omega$ |
| 40 | TXIN | Input of intermediate transmit stage, input resistance is typically $20 \mathrm{k} \Omega$ |

## DC line interface and supply voltage generation

The DC line interface consists of an electronic inductance and a dual port output stage, which charges the capacitors at $V_{\text {MPS }}$ and $V_{B}$. The value of the equivalent inductance is given by

$$
\mathrm{L}=\mathrm{R}_{\text {SENSE }} \cdot \mathrm{C}_{\mathrm{IND}} \cdot\left(\mathrm{R}_{\mathrm{DC}} \cdot \mathrm{R}_{30}\right) /\left(\mathrm{R}_{\mathrm{DC}}+\mathrm{R}_{30}\right)
$$

In order to improve the supply during worst case operating
conditions two PNP current sources - $\mathrm{I}_{\text {BOPT }}$ and $\mathrm{I}_{\text {MPSOPT }}$ - hand an extra amount of current to the supply voltages, when the NPNs in parallel are unable to conduct current.

A flowchart for the control of the current sources (figure 5) shows, how a priority for supply $\mathrm{V}_{\text {MPS }}$ is achieved.


Figure 4 DC line interface with electronic inductance and generation of a regulated and an unregulated supply


Figure 5 Supply capacitors CMPS and CB are charged with priority on CMPS

The U4092B contains two identical series regulators, which provide a supply voltage $\mathrm{V}_{\mathrm{MP}}$ of 3.3 V at 2 mA suitable for a microprocessor. In speech mode both regulators are active, because $\mathrm{V}_{\text {MPS }}$ and $\mathrm{V}_{\mathrm{B}}$ are charged simultaneously by the DC-line interface. The capacitor at $\mathrm{V}_{\text {MPS }}$ is used to provide the microcomputer with sufficient
power during long line interruptions. Thus long flash pulses can be bridged or a LCD display can be turned on for more than 2 seconds after going on hook. When the system is in ringing mode, $\mathrm{V}_{\mathrm{B}}$ is charged by the on chip ringing power converter. In this mode only one regulator is used to supply $\mathrm{V}_{\text {MPs }}$.


Figure 6 Supply of functional blocks is controlled by input voltages $V_{L}, V_{B}$, $V_{\text {ring }}$ and by logic inputs PD and IMPSEL

There are four major supply states:

1. Speech condition
2. Power down (pulse dialing)
3. Ringing
4. External supply
5. In speech condition the system is supplied by the line current. If the LIDET-block detects a line voltage above the fixed threshold ( 1.9 V ), the internal signal VLON is activated, thus switching off RFD and RPC and switching on all other blocks of the chip.

For line voltages below 1.9 V the switches remain in their quiescent state as shown the diagram.

OFFSACOMP disables the group listening feature (SAI, SA, SACL, AFS) below line currents of approximately 10 mA .
2. When the chip is put into Power-down mode ( $\mathrm{PD}=$ high ), e.g. during pulse dialing, the internal switch QS shorts the line and all amplifiers are switched off. In this condition LIDET, voltage regulators and IMPED CONTR are the only active blocks.
3. During ringing the supply for the system is fed into $V_{B}$ via the ringing power converter (RPC). The only functional amplifiers are found in the speaker amplifier section (SAI, SA, SACL).
4. In an answering machine the chip is powered by an external supply via pin $\mathrm{V}_{\mathrm{B}}$. This application demands a posibility to activate all amplifiers (except the transmit line interface TXA). Selecting IMPSEL = high impedance activates all switches at the ES line.

## Acoustic feedback suppression

Acoustical feedback from the loudspeaker to the handset microphone may cause instability in the system. The U4092B offers a very efficient feedback suppression circuit, which uses a modified voice switch topology. figure 8 shows the basic system configuration.


Figure 8 Basic voice switch system

Two attenuators (TX ATT and RX ATT) reduce the critical loop gain by introducing an externally adjustable amount of loss either in the transmit or in the receive path.The sliding control in block ATT CONTR determines, wether the TX or the RX signal has to be attenuated. The overall loop gain remains constant under all operating conditions.
Selection of the active channel is made by comparison of
the logarithmically compressed TX- and RX- envelope curve.

The system configuration for group listening, which is realized in the U4092B, is illustrated in figure 9. TXA and SAI represent the two attenuators, whereas the logarithmic envelope detectors are shown in a simplified way (operational amplifiers with two diodes).

## TEMIC



Figure 9 Integration of acoustic feedback suppression circuit into the speech circuit environment

A detailed diagram of the AFS (acountic feedback suppression) is given in figure 10. Receive and Transmit signals are first processed by logorithmic rectifiers in order
to produce the envelopes of the speech at TLDT and RLDT. After amplification a decision is made by the differential pair, which direction should be transmitted.


Figure 10 Accoustic feedback suppression by alternative control of transmit- and speaker amplifier gain

The attenuation of the controlled amplifiers TXA and SAI is determined by the emitter current IAT, which is comprised of three parts:
$\mathrm{I}_{\text {ATAFS }}$ sets maximum attenuation
$I_{\text {ATGSA }}$ decreases the attenuation, when speaker amplifier gain is reduced
$\mathrm{I}_{\text {AGAFS }}$ decreases the attenuation according to the loop gain reduction caused by the AGA-function
$\mathrm{I}_{\mathrm{AT}}=\mathrm{I}_{\text {ATAFS }}-\mathrm{I}_{\text {ATGSA }}-\mathrm{I}_{\text {AGAFS }}$
$\Delta \mathrm{G}=\mathrm{I}_{\mathrm{AT}} * 0.67 \mathrm{~dB} / \mu \mathrm{A}$
Figure 11 illustrates the principal relationship between speaker amplifier gain (GSA) and attenuation of AFS
(ATAFS). Both parameters can be adjusted independently, but the internal coupling between them has to be considered. Maximum usable value of GSA is 36 dB . The shape of the characteristic is moved in the x-direction by adjusting resistor RATAFS, thus changing ATAFS $_{m}$. The actual value of attenuation $\left(\mathrm{ATAFS}_{\mathrm{a}}\right)$, however, can be determined by reading the value which belongs to the actual gain $\mathrm{GSA}_{\mathrm{a}}$. If the speaker amplifier gain is reduced, the attenuation of AFS is automatically reduced by the same amount, in order to achieve a constant loop gain. Zero attenuation is set for speaker gains GSA $\leq$ GSA $0=36 \mathrm{~dB}$ - ATAFS $_{\mathrm{m}}$.

## TEMIC



Figure 11 Reducing speaker amplifier gain results in an equal reduction of AFS attenuation

## Ringing power converter (RPC)

RPC transforms the input power at VRING (high voltage/ low current) into an equivalent output power at $\mathrm{V}_{\mathrm{B}}$ (low voltage/ high current), which is capable of driving the low ohmic loudspeaker. Input impedance at VRING is fixed at $5 \mathrm{k} \Omega$ and the efficiency of the step down converter is approx. $65 \%$.

## Ringing frequency detector (RFD)

The U4092B offers an output signal for the microcontroller, which is a digital representation of the double ringing frequency. It is generated by a current comparator with hysteresis. Input voltage VRING is transformed into a current via RTHA. Thresholds are $8 \mu \mathrm{~A}$ and $24 \mu \mathrm{~A}$. RFDO and VRING are in phase. A second comparator with hysteresis is used to enable the output RFDO, as long as the supply voltage for the microprocessor VMP is above $2.4 \mathrm{~V}(2.9 \mathrm{~V})$.

U4092

## Absolute maximum ratings

| Parameters | Symbol | Value | Unit |
| :--- | :---: | :---: | :---: |
| Line current | $\mathrm{I}_{\mathrm{L}}$ | 140 | mA |
| DC line voltage | $\mathrm{V}_{\mathrm{L}}$ | 12 | V |
| Maximum input current $\operatorname{Pin} 17$ | $\mathrm{I}_{\mathrm{RING}}$ | 15 | mA |
| Junction temperature | $\mathrm{T}_{\mathrm{j}}$ | 125 | ${ }^{\circ} \mathrm{C}$ |
| Ambient temperature | $\mathrm{T}_{\mathrm{amb}}$ | -25 to +75 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | $\mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Total power dissipation, $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ | $\mathrm{P}_{\text {tot }}$ | 1 | W |

## Thermal resistance

|  | Parameters | Symbol | Value |
| :--- | :---: | :---: | :---: | Unit | Junction ambient | SDIP 40 | $\mathrm{R}_{\text {thJA }}$ |
| :--- | :---: | :---: |

## Electrical characteristics

$\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{dBm}=775 \mathrm{mV}_{\mathrm{rms}}, \mathrm{I}_{\mathrm{M}}=0.3 \mathrm{~mA}, \mathrm{I}_{\mathrm{MP}}=2 \mathrm{~mA}, \mathrm{RDC}=130 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{RGSA}=560 \mathrm{k} \Omega$,
$Z_{\text {ear }}=68 \mathrm{nF}+100 \Omega, \mathrm{Z}_{\mathrm{M}}=68 \mathrm{nF}$, pin 31 open, $\mathrm{V}_{\text {IMPSEL }}=\mathrm{GND}, \mathrm{V}_{\mathrm{MUTX}}=\mathrm{GND}$, unless otherwise specified.

| Parameters | Test conditions / Pin | Symbol | Min. | Typ. | Max. | Unit | Figure |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DC characteristics |  |  |  |  |  |  |  |
| DC voltage drop over circuit | $\mathrm{I}_{\mathrm{L}}=2 \mathrm{~mA}$ | $\mathrm{~V}_{\mathrm{L}}$ |  | 2.4 |  |  |  |
|  | $\mathrm{I}_{\mathrm{L}}=14 \mathrm{~mA}$ |  | 4.6 | 5.0 | 5.4 | V | 22 |
|  | $\mathrm{I}_{\mathrm{L}}=60 \mathrm{~mA}$ |  |  | 7.8 |  |  |  |
|  | $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$ |  | 8.8 | 9.4 | 10.0 |  |  |


| Transmission amplifier, $\mathrm{I}_{\mathrm{L}}=\mathbf{1 4} \mathbf{m A}, \mathrm{V}_{\text {MIC }}=2 \mathrm{mV}$, RGT $=\mathbf{2 7} \mathbf{k} \Omega$, unless otherwise specified |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Adjustment range of transmit gain |  | $\mathrm{G}_{\mathrm{T}}$ | 40 | 45 | 50 | dB | 24 |
| Transmitting amplification | $\begin{aligned} & \text { RGT }=12 \mathrm{k} \Omega \\ & \text { RGT }=27 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{G}_{\mathrm{T}}$ | $\begin{gathered} 47 \\ 39.8 \end{gathered}$ | 48 | $\begin{gathered} 49 \\ 41.8 \end{gathered}$ | dB | 24 |
| Frequency response | $\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA}, \\ & \mathrm{f}=300 \text { to } 3400 \mathrm{~Hz} \end{aligned}$ | $\Delta \mathrm{G}_{\mathrm{T}}$ |  |  | $\pm 0.5$ | dB | 24 |
| Gain change with current | Pin 31 open $\mathrm{I}_{\mathrm{L}}=14$ to 100 mA | $\Delta \mathrm{G}_{\mathrm{T}}$ |  |  | $\pm 0.5$ | dB | 24 |
| Gain deviation | $\mathrm{T}_{\mathrm{amb}}=-10$ to $+60^{\circ} \mathrm{C}$ | $\Delta \mathrm{G}_{\mathrm{T}}$ |  |  | $\pm 0.5$ | dB | 24 |
| CMRR of microphone amplifier |  | CMRR | 60 | 80 |  | dB | 24 |
| Input resistance of MIC amplifier | $\begin{aligned} & \mathrm{RGT}=12 \mathrm{k} \Omega \\ & \text { RGT }=27 \mathrm{k} \Omega \\ & \hline \end{aligned}$ | $\mathrm{R}_{\mathrm{i}}$ | 45 | $\begin{aligned} & \hline 50 \\ & 75 \\ & \hline \end{aligned}$ | 110 | $\mathrm{k} \Omega$ | 24 |
| Distortion at line | $\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{L}}=700 \mathrm{mVrms} \\ \hline \end{array}$ | $\mathrm{d}_{\mathrm{t}}$ |  |  | 2 | \% | 24 |
| Maximum output voltage | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}>19 \mathrm{~mA} \\ & \mathrm{~d}<5 \% \\ & \text { Vmic }=25 \mathrm{mV} \\ & \text { CTXA }=1 \mu \mathrm{~F} \end{aligned}$ | $\mathrm{V}_{\text {Lmax }}$ | 1.8 | 3 | 4.2 | dBm | 24 |
| Noise at line psophometrically weighted | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA} \\ & \mathrm{G}_{\mathrm{T}}=48 \mathrm{~dB} \\ & \hline \end{aligned}$ | no |  | -80 | -72 | dBmp | 24 |
| Anti-clipping attack time release time | $\begin{array}{\|l} \hline \text { CTXA }=1 \mu \mathrm{~F} \\ \text { each } 3 \mathrm{~dB} \text { overdrive } \\ \hline \end{array}$ |  |  | $\begin{gathered} 0.5 \\ 9 \end{gathered}$ |  | ms | 24 |

## TEMIC

TELEFUNKEN Semiconductors

| Parameters | Test conditions / Pin | Symbol | Min. | Typ. | Max. | Unit | Figure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gain at low operating current | $\begin{aligned} & \hline \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{MP}}=1 \mathrm{~mA} \\ & \mathrm{RDC}=68 \mathrm{k} \Omega \\ & \mathrm{Vmic}=1 \mathrm{mV} \\ & \mathrm{I}_{\mathrm{M}}=300 \mu \mathrm{~A} \\ & \hline \end{aligned}$ | $\mathrm{G}_{\text {T }}$ | 40 |  | 42.5 | dB | 24 |
| Distortion at low operating current | $\begin{aligned} & \hline \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{M}}=300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{MP}}=1 \mathrm{~mA} \\ & \mathrm{RDC}=68 \mathrm{k} \Omega \\ & \mathrm{Vmic}=10 \mathrm{mV} \end{aligned}$ | $\mathrm{d}_{\text {t }}$ |  |  | 5 | \% | 24 |
| Line loss compensation | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}, \\ & \mathrm{RAGA}=20 \mathrm{k} \Omega \end{aligned}$ | $\Delta \mathrm{G}_{\text {TI }}$ | -6.4 | -5.8 | -5.2 | dB | 24 |
| Mute suppression <br> a) MIC muted (microphone preamplifier | $\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \text { Mutx }=\text { open } \end{aligned}$ | $\mathrm{G}_{\text {TM }}$ | 60 | 80 |  | dB | 24 |
| b) TXA muted (second stage) | IMPSEL = open | $\mathrm{G}_{\text {TTX }}$ | 60 |  |  | dB | 24 |
| Receiving amplifier, $\mathrm{I}_{\mathbf{L}}=\mathbf{1 4} \mathbf{~ m A , ~} \mathrm{RGR}=\mathbf{6 2} \mathbf{~ k}$, unless otherwise specified, $\mathrm{V}_{\text {GEN }}=300 \mathrm{mV}$ |  |  |  |  |  |  |  |
| Adjustment range of receiving gain | $\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA}, \text { single } \\ & \text { ended } \end{aligned}$ | $\mathrm{G}_{\mathrm{R}}$ | -8 |  | +2 | dB | 23 |
| Receiving amplification | $\begin{aligned} & \text { RGR }=62 \mathrm{k} \Omega \\ & \text { RGR }=22 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{G}_{\mathrm{R}}$ | -7.75 | $\begin{array}{r} \hline-7 \\ 1.5 \end{array}$ | -6.25 | dB | 23 |
| Amplification of DTMF signal from DTMF IN to RECO | $\begin{aligned} & \hline \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MUTX}}=\mathrm{V}_{\mathrm{MP}} \\ & \hline \end{aligned}$ | $\mathrm{G}_{\mathrm{RM}}$ | 1 | 4 | 7 | dB | 23 |
| Frequency response | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA}, \\ & \mathrm{f}=300 \text { to } 3400 \mathrm{~Hz} \\ & \hline \end{aligned}$ | $\Delta \mathrm{G}_{\mathrm{RF}}$ |  |  | $\pm 0.5$ | dB | 23 |
| Gain change with current | $\mathrm{I}_{\mathrm{L}}=14$ to 100 mA | $\Delta \mathrm{G}_{\mathrm{R}}$ |  |  | $\pm 0.5$ | dB | 23 |
| Gain deviation | $\mathrm{T}_{\mathrm{amb}}=-10$ to $+60^{\circ} \mathrm{C}$ | $\Delta \mathrm{G}_{\mathrm{R}}$ |  |  | $\pm 0.5$ | dB | 23 |
| Ear protection | $\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ \text { VGEN }=11 \mathrm{Vrms} \\ \hline \end{array}$ | EP |  |  | 1.1 | Vrms | 23 |
| MUTE suppression DTMF operation | $\begin{aligned} & \hline \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MUTX}}=\mathrm{V}_{\mathrm{MP}} \\ & \hline \end{aligned}$ | $\Delta \mathrm{G}_{\mathrm{R}}$ | 60 |  |  | dB | 23 |
| Output voltage $\mathrm{d} \leq 2 \%$ | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=14 \mathrm{~mA} \\ & \mathrm{Z}_{\text {ear }}=68 \mathrm{nF} \\ & \hline \end{aligned}$ |  | 0.5 |  |  | Vrms | 23 |
| Maximum output current $\mathrm{d} \leq 2 \%$ | $\mathrm{Z}_{\text {ear }}=100 \Omega$ |  | 4 |  |  | $\begin{gathered} \mathrm{mA} \\ \text { (peak) } \end{gathered}$ | 23 |
| Receiving noise psophometrically weigthed | $\begin{aligned} & \mathrm{Z}_{\text {ear }}=68 \mathrm{nF}+100 \Omega \\ & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \hline \end{aligned}$ | ni |  | -80 | -77 | dBmp | 23 |
| Output resistance | Output against GND | Ro |  |  | 10 | $\Omega$ | 23 |
| Line loss compensation | $\begin{aligned} & \text { RAGA }=20 \mathrm{k} \Omega, \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \end{aligned}$ | $\Delta \mathrm{G}_{\mathrm{RI}}$ | -7.0 | -6.0 | -5.0 | dB | 23 |

U4092
TELEFUNKEN Semiconductors

| Parameters | Test conditions / Pin | Symbol | Min. | Typ. | Max. | Unit | Figure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gain at low operating current | $\begin{aligned} & \hline \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{MP}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{M}}=300 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GEN}}=560 \mathrm{mV} \\ & \mathrm{RDC}=68 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{G}_{\mathrm{R}}$ | -8 | -7 | -6 | dB | 23 |
| AC impedance | $\begin{aligned} & \mathrm{V}_{\text {IMPSEL }}=\mathrm{GND} \\ & \mathrm{~V}_{\text {IMPSEL }}=\mathrm{V}_{\mathrm{MP}} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Z}_{\mathrm{imp}} \\ & \mathrm{Z}_{\mathrm{imp}} \\ & \hline \end{aligned}$ | $\begin{aligned} & 570 \\ & 840 \end{aligned}$ | $\begin{aligned} & \hline 600 \\ & 900 \end{aligned}$ | $\begin{aligned} & \hline 640 \\ & 960 \end{aligned}$ | $\begin{aligned} & \Omega \\ & \Omega \end{aligned}$ | 23 |
| Distortion at low operating current | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{MP}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{GEN}}=560 \mathrm{mV} \\ & \mathrm{RDC}=68 \mathrm{kD} \Omega \end{aligned}$ | dR |  |  | 5 | \% | 23 |
| Speaker amplifier |  |  |  |  |  |  |  |
| Minimum line current for operation | No ac signal | $\mathrm{I}_{\text {Lmin }}$ |  |  | 15 | mA | 27 |
| Input resistance | Pin 24 |  | 14 |  | 22 | $\mathrm{k} \Omega$ | 27 |
| Gain from SAI to SAO | $\begin{aligned} & \mathrm{V}_{\mathrm{SAI}}=3 \mathrm{mV}, \\ & \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}, \\ & \text { RGSA }=560 \mathrm{k} \Omega \\ & \text { RGSA }=20 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{G}_{\text {SA }}$ | 35.5 | $\begin{gathered} 36.5 \\ -3 \end{gathered}$ | 37.5 | dB | 27 |
| Output power | Load resistance $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~d}<5 \%$ $\mathrm{V}_{\mathrm{SAI}}=20 \mathrm{mV}$ $\mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{SA}} \\ & \mathrm{P}_{\mathrm{SA}} \\ & \hline \end{aligned}$ | 3 | $\begin{gathered} 7 \\ 20 \\ \hline \end{gathered}$ |  | mW | 27 |
| Output noise (Input SAI open) psophometrically weighted | $\mathrm{I}_{\mathrm{L}}>15 \mathrm{~mA}$ | $\mathrm{n}_{\text {SA }}$ |  |  | 200 | $\mu \mathrm{V}_{\text {psoph }}$ | 27 |
| Gain deviation | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=-10 \text { to }+60^{\circ} \mathrm{C} \end{aligned}$ | $\Delta \mathrm{G}_{\text {SA }}$ |  |  | $\pm 1$ | dB | 27 |
| Mute suppression | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{dBm}, \\ & \mathrm{~V}_{\mathrm{SAI}}=4 \mathrm{mV} \\ & \text { Pin } 23 \text { open } \\ & \hline \end{aligned}$ | VSAO |  |  | -60 | dBm | 27 |
| Gain change with current | $\mathrm{I}_{\mathrm{L}}=15$ to 100 mA | $\Delta \mathrm{G}_{\text {SA }}$ |  |  | $\pm 1$ | dB | 27 |
| Resistor for turning off speaker amplifier | $\mathrm{I}_{\mathrm{L}}=15$ to 100 mA | RGSA | 0.8 | 1.3 | 2 | $\mathrm{M} \Omega$ | 27 |
| Gain change with frequency | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA} \\ & \mathrm{f}=300 \text { to } 3400 \mathrm{~Hz} \\ & \hline \end{aligned}$ | $\Delta \mathrm{G}_{\text {SA }}$ |  |  | $\pm 0.5$ | dB | 27 |
| Attack time of anti-clipping | 20 dB over drive | tr |  | 5 |  | ms | 27 |
| Release time of anti-clipping |  | tf |  | 80 |  | ms | 27 |
| DTMF-amplifier Test conditions: IMP = 2 mA, IM = 0.3 mA, $\mathbf{V}_{\text {MUTX }}=$ VMP |  |  |  |  |  |  |  |
| Adjustment range of DTMF gain | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA} \\ & \text { Mute active } \end{aligned}$ | $\mathrm{G}_{\mathrm{D}}$ | 40 |  | 50 | dB | 25 |
| DTMF amplification | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}, \\ & \text { VDTMF }=8 \mathrm{mV} \end{aligned}$ <br> Mute active: <br> MUTX = VMP | $\mathrm{G}_{\mathrm{D}}$ | 40.7 | 41.7 | 42.7 | dB | 25 |
| Gain deviaton | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{amb}}=-10 \text { to }+60^{\circ} \mathrm{C} \end{aligned}$ | $\mathrm{G}_{\mathrm{D}}$ |  |  | $\pm 0.5$ | dB | 25 |

## Temic

TELEFUNKEN Semiconductors
U4092B

| Parameters | Test conditions / Pin | Symbol | Min. | Typ. | Max. | Unit | Figure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input resistance | $\begin{aligned} & \mathrm{RGT}=27 \mathrm{k} \Omega, \\ & \mathrm{RGT}=15 \mathrm{k} \Omega \\ & \hline \end{aligned}$ | $\mathrm{R}_{\mathrm{i}}$ | $\begin{aligned} & \hline 60 \\ & 26 \\ & \hline \end{aligned}$ | $\begin{gathered} 180 \\ 70 \end{gathered}$ | $\begin{aligned} & 300 \\ & 130 \\ & \hline \end{aligned}$ | k $\Omega$ | 25 |
| Distortion of DTMF signal | $\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{dBm} \\ & \hline \end{aligned}$ | $\mathrm{d}_{\mathrm{D}}$ |  |  | 2 | \% | 25 |
| Gain deviation with current | $\mathrm{I}_{\mathrm{L}}=15$ to 100 mA | $\Delta \mathrm{GD}$ |  |  | $\pm 0.5$ | dB | 25 |
| AFS acousting feedback suppression |  |  |  |  |  |  |  |
| Adjustment range of attenuation | $\mathrm{I}_{\mathrm{L}} \geq 15 \mathrm{~mA}$ |  | 0 |  | 50 | dB | 27 |
| Attenuation of transmit gain | $\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 15 \mathrm{~mA}, \\ & \mathrm{I}_{\text {INLDT }}=0 \mu \mathrm{~A} \\ & \mathrm{R}_{\text {ATAFS }}=30 \mathrm{k} \Omega \\ & \mathrm{I}_{\text {INLDR }}=10 \mu \mathrm{~A} \end{aligned}$ | $\Delta \mathrm{G}_{\mathrm{T}}$ |  | 45 |  | dB | 27 |
| Attenuation of speaker amplifier | $\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 15 \mathrm{~mA} \\ & \mathrm{I}_{\text {INLDP }}=0 \mu \\ & \mathrm{R}_{\text {ATAFS }}=30 \mathrm{k} \Omega \\ & \mathrm{I}_{\text {INLDR }}=10 \mu \end{aligned}$ | $\Delta \mathrm{G}_{\text {SA }}$ |  | 50 |  | dB | 27 |
| AFS disable | $\mathrm{I}_{\mathrm{L}} \geq 15 \mathrm{~mA}$ | $\mathrm{V}_{\text {ATAFS }}$ | 1.5 |  |  | V | 27 |
| Supply voltages, Vmic $=\mathbf{2 5} \mathrm{mV}, \mathrm{T}_{\text {amb }}=\mathbf{- 1 0}$ to +60 ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| $\mathrm{V}_{\text {MP }}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=14 \mathrm{~mA}, \\ & \mathrm{RDC}=68 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{MP}}=2 \mathrm{~mA} \end{aligned}$ | $\mathrm{V}_{\text {MP }}$ | 3.1 | 3.3 | 3.5 | V | 22 |
| $\mathrm{V}_{\text {MPS }}$ | $\begin{aligned} & \hline \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \\ & \mathrm{RDC}=\mathrm{inf} ., \\ & \mathrm{I}_{\mathrm{MP}}=0 \mathrm{~mA} \\ & \hline \end{aligned}$ | $\mathrm{V}_{\text {MPS }}$ |  |  | 6.7 | V | 22 |
| $\mathrm{V}_{\mathrm{M}}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{M}}=300 \mu \mathrm{~A} \\ & \mathrm{RDC}=130 \mathrm{k} \Omega \end{aligned}$ | $\mathrm{V}_{\mathrm{M}}$ | 1.4 |  | 3.3 | V | 22 |
| $\mathrm{V}_{\text {B }}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{B}}=+20 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA} \end{aligned}$ | $\mathrm{V}_{\mathrm{B}}$ |  | 7 | 7.6 | V | 22 |
| Ringing power converter, IMP = $1 \mathbf{m A}, \mathrm{IM}=0$ |  |  |  |  |  |  |  |
| Maximum output power | $\mathrm{V}_{\text {RING }}=20.6 \mathrm{~V}$ | $\mathrm{P}_{\text {SA }}$ |  | 20 |  | mW | 26 |
| Threshold of ring frequency detector | RFDO: low to high $\mathrm{V}_{\text {HYST }}$ $=\mathrm{V}_{\mathrm{RING}} \mathrm{ON}-\mathrm{V}_{\mathrm{RING}}$ <br> OFF | $\mathrm{V}_{\text {RINGON }}$ <br> VHYST |  | $\begin{aligned} & 17.5 \\ & 11.0 \end{aligned}$ |  | V | 26 |
| Input impedance | $\mathrm{V}_{\text {RING }}=30 \mathrm{~V}$ | $\mathrm{R}_{\text {RING }}$ | 4 | 5 | 6 | k $\Omega$ | 26 |
| Input impedance in speech mode | $\begin{aligned} & \mathrm{f}=300 \mathrm{~Hz} \text { to } 3400 \mathrm{~Hz} \\ & \mathrm{I}_{\mathrm{L}}>15 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{RING}}=20 \mathrm{~V}+1.5 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$ | RRINGSP | 150 |  |  | k $\Omega$ | 26 |
| Logic-level of frequency detector | $\begin{aligned} & \mathrm{V}_{\text {RING }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{B}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{RING}}=25 \mathrm{~V} \end{aligned}$ | $\mathrm{V}_{\text {RFDO }}$ |  | $\begin{gathered} 0 \\ \text { VMP } \end{gathered}$ |  | V | 26 |
| Ring detector enable | $\mathrm{V}_{\mathrm{RING}}=25 \mathrm{~V}$, RFDO high | VMPON | 2.7 | 2.9 | 3.1 | V | 26 |
| Ring detector disable | $\mathrm{V}_{\mathrm{RING}}=25 \mathrm{~V} \text {, }$ RFDO low | VMPOFF | 2.2 | 2.35 | 2.5 | V | 26 |

U4092
TELEFUNKEN Semiconductors

| Parameters | Test conditions / Pin | Symbol | Min. | Typ. | Max. | Unit | Figure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PD input |  |  |  |  |  |  |  |
| PD input current | $\begin{aligned} & \text { PD active, } \mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{PD}}=\mathrm{V}_{\mathrm{MP}} \end{aligned}$ | Ipd |  | 9 |  | uA | 28 |
| Input voltage | $\begin{aligned} & \mathrm{PD}=\text { active } \\ & \mathrm{PD}=\text { inactive } \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{pd}} \\ & \mathrm{~V}_{\mathrm{pd}} \\ & \hline \end{aligned}$ | 2 |  | 0.3 | V | 28 |
| Voltage drop at $\mathrm{V}_{\mathrm{L}}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{L}}=14 \mathrm{~mA}, \\ & \mathrm{PD}=\text { active } \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}, \\ & \mathrm{PD}=\text { active } \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{L}} \\ \mathrm{~V}_{\mathrm{L}} \end{gathered}$ |  | $\begin{aligned} & 1.5 \\ & 1.9 \end{aligned}$ |  | V | 28 |
| Input characteristics of IMPSEL |  |  |  |  |  |  |  |
| Input current | $\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IMPSEL }}=\mathrm{V}_{\mathrm{MP}} \\ & \mathrm{~V}_{\text {IMPSEL }}=\mathrm{GND} \end{aligned}$ | IIMPSEL I IMPSEL |  | $\begin{gathered} 18 \\ -18 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ | 28 |
| Input voltage | Input high | $\mathrm{V}_{\text {IMPSEL }}$ | VMP-0.3V |  |  | V | 28 |
|  | Input low | $\mathrm{V}_{\text {IMPSEL }}$ |  |  | 0.3 | V | 28 |
| MUTX input |  |  |  |  |  |  |  |
| Input current | $\begin{aligned} & \mathrm{V}_{\text {MUTX }}=\mathrm{V}_{\mathrm{MP}} \\ & \mathrm{~V}_{\text {MUTX }}=\mathrm{GND} \end{aligned}$ | $\mathrm{I}_{\text {MUTX }}$ <br> $\mathrm{I}_{\text {MUTX }}$ |  | $\begin{gathered} \hline 20 \\ -20 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 30 \\ -30 \\ \hline \end{gathered}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ | 28 |
| Input voltage | Input high | $\mathrm{V}_{\text {MUTX }}$ | VMP-0.3V |  |  | V | 28 |
|  | Input low | $\mathrm{V}_{\text {MUTX }}$ |  |  | 0.3 | V | 28 |

## U4092B - control

| IMPSEL |  | MODE |
| :--- | :--- | :--- |
| 0 | Line-impedance $=600 \Omega$ <br> TXA $=$ on <br> ES $=$ off | Speech |
| 0 to Z | Line-impedance $=600 \Omega$ <br> TXA $=$ off <br> ES = on | Transmit-mute |
| 1 to Z | Line-impedance $=900 \Omega$ <br> TXA $=$ off <br> ES $=$ on | Transmit-mute |
| 1 | Line-impedance $=900 \Omega$ <br> TXA $=$ on <br> ES $=$ off | Speech |


| MUTX |  | MODE |
| :--- | :--- | :--- |
| 0 | MIC $1 / 2$ transmit enabled <br> receive enable <br> AFS $=$ on <br> AGA $=$ on <br> TXACL $=$ on | Speech |
| Z | DTMF transmit enabled <br> receive enable <br> AFS $=$ on <br> AGA $=$ on <br> TXACL $=$ on | For answering <br> machine |
| 1 | DTMF transmit enabled <br> DTMF to receive enable <br> AFS $=$ off <br> AGA $=$ off <br> TXACL $=$ off | DTMF dialling |


| Logic-level |
| :--- |
| $0=<(0.3 \mathrm{~V})$ |
| $\mathrm{Z}=>(1 \mathrm{~V})<(\mathrm{VMP}-1 \mathrm{~V})$ or (open input) |
| $1=>(\mathrm{VMP}-0.3 \mathrm{~V})$ |


| RECATT $=$ | Receive attenuation |
| :--- | :--- |
| STI $=$ | Input of sidetone balancing amplifier |
| ES $=$ | External supply |
| AFS $=$ | Acoustical feedback supression control |
| AGA $=$ | Automatic gain adjustment |
| TXACL $=$ | Transmit anticlipping control |

## TEMIC

TELEFUNKEN Semiconductors
U4092B


Figure 14 Typical DC characteristic


Figure 15 Typical adjustment range of transmit gain

## Temic

TELEFUNKEN Semiconductors


Figure 16 Typical adjustment range of receive gain


Figure 17 Typical AGA-characteristic

## Temic



Figure 18 Typical load characteristic of $\mathrm{V}_{\mathrm{B}}$ for a maximum ( $\mathrm{RDC}=$ infinity) DC-characteristic and 3 mW loudspeaker output


Figure 19 Typical load characteristic of $\mathrm{V}_{\mathrm{B}}$ for a medium DC-characteristic $(\mathrm{RDC}=130 \mathrm{k} \Omega)$ and 3 mW loudspeaker output

## Temic

U4092
TELEFUNKEN Semiconductors


Figure 20 Typical load characteristic of $\mathrm{V}_{\mathrm{B}}$ for a minimum DC-characteristic $(\mathrm{RDC}=68 \mathrm{k} \Omega)$ and 3 mW loudspeaker output


Figure 21 Basic test circuit

U4092


Figure 22 DC characteristics, line detection

## TEMIC



Figure 23 Receiving amplifier

U4092


Figure 24 Transmission amplifier


Figure 25 DTMF amplifier


Figure 26 Ringing power converter


Figure 27 Speaker amplifier

U4092


Figure 28 Input characteristic

## Ordering information

| Type |  | Package |
| :--- | :--- | :--- |
| U4092B-SD | SDIP 40 |  |

## Dimensions in mm

Package: SDIP 40


We reserve the right to make changes without further notice to improve technical design.
Parameters can vary in different applications. All operating parameters must be validated for each customer application by customer. Should Buyer use TEMIC products for any unintended or unauthorized application, Buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 672412

## OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

1. Meet all present and future national and international statutory requirements and
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

Of particular concern is the control or elimination of releases into the atmosphere of these substances which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) will severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of any ODSs listed in the following documents that all refer to the same substances:
(1) Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
(2) Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA and
(3) Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.

