
Multi Standard Feature Phone Integrated Circuit

Description

The U3800BM multi-standard feature phone circuit is designed to be used with a microcontroller using a 2-wire serial bus. It performs all speech and line interface functions required in an electronic telephone set: the ringing function with switching regulator and melody generator, the DTMF dialling, the loudhearing with antilarsen and antidistortion systems, a power supply, a clock and a reset for the microcontroller. Transmit, receive and loudhearing gains control / AGC range / DTMF frequencies, pre-emphasis and level / melody generator, and mutes are programmable through the serial bus.

Block Diagram

Applications

- Feature phones
- Answering machines
- Fax machines

Benefits

- Complete system integration of analog signal processing and digital control circuitry
- One IC for various PTT standards, e.g. programmable specification via μC
- Only three low-cost transducers needed (instead of four)

Features

- Slope of DC characteristics adjustable by an external resistor.
- Gain of transmit and receive amplifiers automatically adjusted by line length control
- Regulation range adjustable by the serial bus
- Possibility of fixed gain (PABX)
- Sidetone balancing system adjustable with line length or by the serial bus.
- Dynamic impedance adjustable by external components.
- Stabilized power supply for peripherals.
- Confidence level during dialling.
- +6 dB possibility on second stage transmit gain.
- Transmit and receive gains adjustable by serial bus.
- Extra transmit input for handsfree and answering machine purpose.
- +6 dB possibility on receive gain.
- Receive amplifier for dynamic or piezo-electric earpieces.
- Extra receive output for handsfree purpose.
- High impedance microphone inputs are suitable for dynamic, magnetic, piezo-electric or electret microphone.
- Dynamic range limitation in transmission (anticlipping) prevents distortion of line signal and sidetone.

- Squelch system in transmission prevents "room noise" are being transmitted, and improves antilarsen efficiency (can be inhibited).
- Loudhearing gain programmable in eight steps of 4 dB using the serial bus, or linearly adjusted using a potentiometer.
- Antilarsen system efficiency is increased when inhibiting squelch.
- Loudhearing antidistortion system by automatic gain control versus available current.
- Switching regulator in ringing phase
- Input ringing detection, threshold and impedance adjustable with external resistors.
- Ringing zero crossing information for external microprocessor.
- Ringing programmable gain in eight steps of 4 dB using the serial bus.
- Melody generator, with 30 frequencies in steps of semi tones, driven by serial bus.
- Internal speed-up circuit permits a faster charge of VDD and VCC capacitor.
- DTMF dialer driven by serial bus, in particular level and pre-emphasis adjustment.
- Ability to transmit a confidence tone in speech mode using melody generator frequencies.
- Five independent mutes driven by serial bus (two in transmission, two in reception, one for the transmit / receive loop).
- Standard low cost ceramic 455 kHz / clock output for the microcontroller.

TELEFUNKEN Semiconductors

U3800BM

Block Diagram

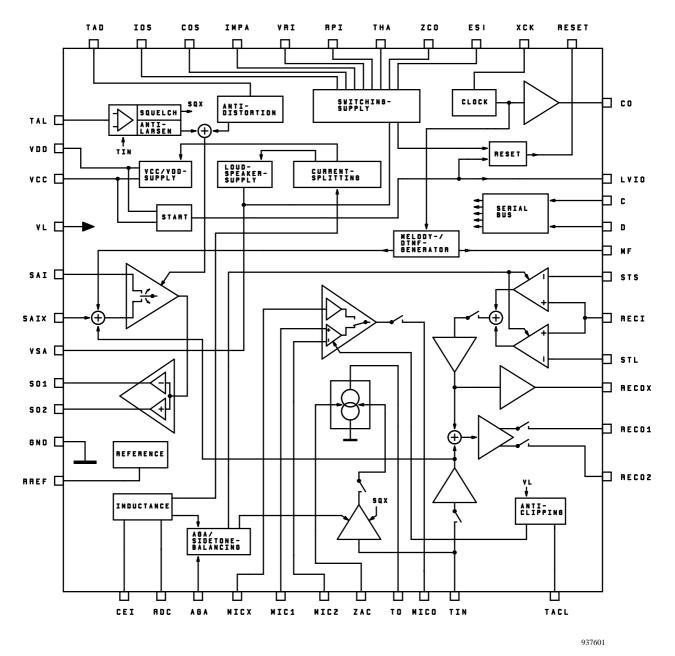


Figure 2.

TELEFUNKEN Semiconductors

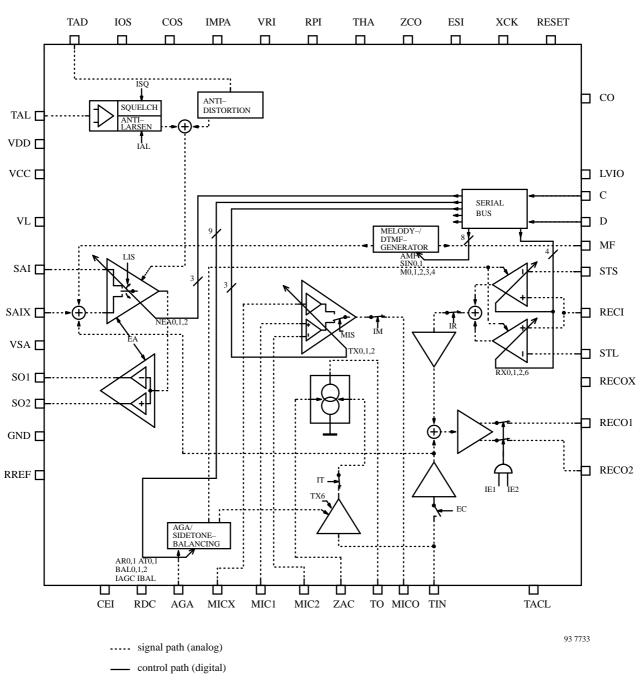


Figure 3. Digital adjustment of the analog parameters by the serial bus microprocessor-interface

TELEFUNKEN Semiconductors

U3800BM

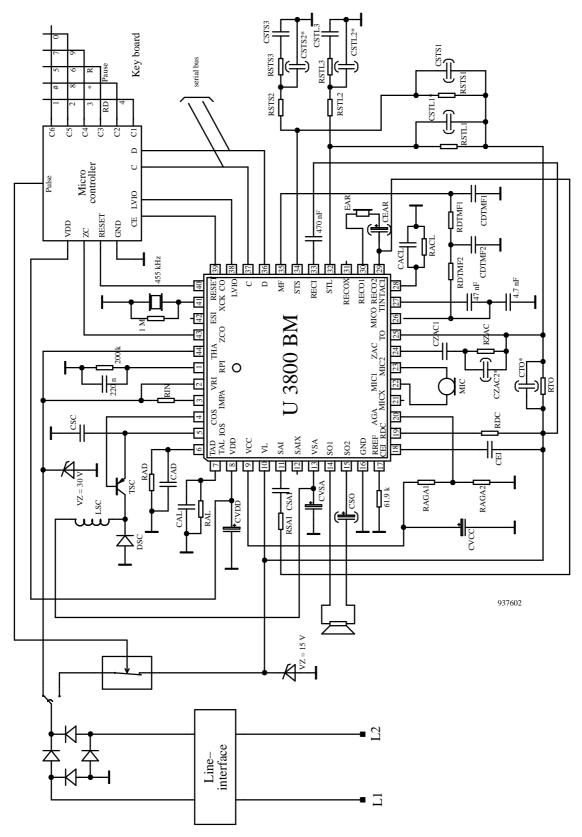


Figure 4. Application for feature phone

Max

Тур

470 pF) $240 \ k\Omega$ $330 \, k\Omega$ 4.7 nF 220 pF $0.47 \ \mu F$ $6.8~\mathrm{M}\Omega$ 4.7 μF $\sim 1 \ k\Omega$ $\sim\!100~\Omega$ $6.2 \ k\Omega$ 330 pF) $6.2 \ k\Omega$ 330 pF) $43 \ k\Omega$ $18 \, k\Omega$ $100 \ k\Omega$ $75 \ k\Omega$ 10 nF 10 nF 470 pF 1.2 nF CSB455E (Murata)

Typical Value of External Components

Components	Min	Тур	Max	Components	Min
RIN	0.3 MΩ	$1.0 \text{ M}\Omega$	1.5 MΩ	(CZAC2	
CSC		0.1 µF		RDTMF1	
TSC		2N5401A		RDMTF2	
LSC		1 mH		CDTMF1	
DSC		SD103A		CDTMF2	
RAD		100 kΩ		CACL	
CAD		470 nF		RACL	
CAL		470 nF		CEAR	
RAL		$68 \text{ k}\Omega$	82 kΩ	Earphone	
CVDD		470 μF		Loudspeaker	
RSAI		$20 \text{ k}\Omega$		RSTL1	
CSAI		0.1 µF		(CSTL1	
CVSA		220 µF		RSTS1	
CSO		47 μF		(CSTS1	
CVCC		100 µF		RSTL2	
RAGA1		$100 \text{ k}\Omega$		RSTS2	
RAGA2		51 kΩ		RSTL3	
CEI		0.47 μF		RSTS3	
RDC		$20 \text{ k}\Omega$		CSTL3	
RTO		62Ω		CSTS3	
(CTO		0.33 µF)		CSTS2	
CZAC1		0.47 μF		CSTL2	
RZAC		12 kΩ		X1	

Pin Description

I RPI Ringing power information. The RC combination smooths the drive current of the loudspeaker amplifier. 2 VRI Tone-ringer supply voltage. The rectified ringing voltage is delivered to VRI and then converted into the lower supply voltage, VSA, by the converter. 3 IMPA External adjustment of input ringing impedance. IMPA is adjusted with a resistance betw pin 2 and 3. ZIN = RIN100 4 COS Control output switching supply. COS drives the base of the external switching transistor the converter. 5 IOS Current output of switching supply. This output provides a constant current, which suppl the external part of converter. The magnitude of the current depends on the VRI voltage the value of resistance RIN. 6 TAD Adjustment of antilaristoriton time constant in loudhearing with external RC combination. 7 TAL Adjustment of antilaristorito rime constant in loudhearing mode and operation wit external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of th circuit and is achieved in all three modes: speech mode, ringing mode and operation with external supply. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, sust be supplied at least in one of the two other mod the digital part of circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD in this inde can be connected here. The power is drawn only from	Pin	Symbol	Function
Ioudspeaker amplifier. 2 VRI Tone-ringer supply voltage. The rectified ringing voltage is delivered to VRI and then converted into the lower supply voltage, VSA, by the converter. 3 IMPA External adjustment of input ringing impedance. IMPA is adjusted with a resistance betw pin 2 and 3. ZIN = RIN/100 4 COS Control output switching supply. COS drives the base of the external switching transistor the converter. 5 IOS Current output of switching supply. This output provides a constant current, which suppl the external part of converter. The magnitude of the current depends on the VRI voltage the value of resistance RIN. 6 TAD Adjustment of antilarsen time constant in loudhearing with external RC combination 7 TAL Adjustment of antilarsen time constant in loudhearing with external RC combination. 8 VDD External logic supply. Power supply for peripherals. VCC and VDD are stabilized supply voltages buffered wit external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of the circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD in this tit intervals is fed only from the buffer capacity, the power consumption from VDD must ne cause the total voltage dump. VCC supplies no internal parts of circuit and microprocessor most continue operatin gduring line breaks they occur during pulse dialing or f			
converted into the lower supply voltage, VSA, by the converter. 3 IMPA External adjustment of input ringing impedance. IMPA is adjusted with a resistance betw pin 2 and 3. ZIN = RIN/100 4 COS Control output switching supply. COS drives the base of the external switching transistor the converter. 5 IOS Current output of switching supply. This output provides a constant current, which suppl the external part of converter. The magnitude of the current depends on the VRI voltage the value of resistance RIN. 6 TAD Adjustment of antidistortion time constant in loudhearing with external RC combination. 8 VDD External logic supply. 9 VCC Power supply for peripherals. VCC and VDD are stabilized supply voltages buffered wit external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of t circuit and is achieved in all three modes: speech mode, ringing mode and operation with external suppl. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other mod The digital part of circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD in this ti intervals is fed only from the buffer capacity, the power consumption from VDD must n cause the total voltage durm. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode. External components, which must opera			
pin 2 and 3. ZIN = RIN/100 4 COS Control output switching supply. COS drives the base of the external switching transistor the converter. 5 IOS Current output of switching supply. This output provides a constant current, which suppl the external part of converter. The magnitude of the current depends on the VRI voltage the value of resistance RIN. 6 TAD Adjustment of antidistortion time constant in loudhearing with external RC combination. 7 TAL Adjustment of antilarsen time constant in loudhearing with external RC combination. 8 VDD External logic supply. 9 VCC Power supply for peripherals. VCC and VDD are stabilized supply voltages buffered wit external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of the circuit and is achieved in all three modes: speech mode, ringing mode and operation with external supply. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other mod The digital part of circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD in this tin intervals is fed only from the buffer capacity, the power consumption from VDD must ne cause the total voltage dump. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode, they signal transmission. 10VLLine voltage. <tr< td=""><td>2</td><td>VRI</td><td></td></tr<>	2	VRI	
the converter. 5 IOS Current output of switching supply. This output provides a constant current, which suppl the external part of converter. The magnitude of the current depends on the VRI voltage the value of resistance RIN. 6 TAD Adjustment of antidistorion time constant in loudhearing with external RC combination. 7 TAL Adjustment of antidistorion time constant in loudhearing with external RC combination. 8 VDD External logic supply. 9 VCC Power supply for peripherals. VCC and VDD are stabilized supply voltages buffered wit external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of t circuit and is achieved in all three modes: speech mode, ringing mode and operation witl external supply. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other mod The digital part of circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD in this ti in intervals is fed only from the buffer capacity, the power consumption from VDD must no cause the total voltage dump. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode. External components, which must operate only in this mode can be connected here. The power is drawn only from the relevant buffer capacitor in the supply intervals during pulse dialing or flash-signal transmission. 10VLLine voltage.	3	IMPA	External adjustment of input ringing impedance. IMPA is adjusted with a resistance between pin 2 and 3. $ZIN = RIN/100$
the external part of converter. The magnitude of the current depends on the VRI voltage the value of resistance RIN. 6 TAD Adjustment of antilarsen time constant in loudhearing with external RC combination. 7 TAL Adjustment of antilarsen time constant in loudhearing with external RC combination. 8 VDD External logic supply. 9 VCC Power supply for peripherals. VCC and VDD are stabilized supply voltages buffered wit external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of t circuit and is achieved in all three modes: speech mode, ringing mode and operation with external supply. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other mod The digital part of circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD in this tin intervals is fed only from the buffer capacity, the power consumption from VDD must n cause the total voltage dump. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode. External components, which must operate only in this mode can be connected here. The power is draw only from the relevant buffer capacitor in the supply intervals during pulse dialing or flash-signal transmission. 10 VL Line voltage. 11 SAI Speaker amplifier input. The signal coming from the receive part, e.g. from REC01 or RECO2, is fed in here. </td <td>4</td> <td>COS</td> <td>Control output switching supply. COS drives the base of the external switching transistor of the converter.</td>	4	COS	Control output switching supply. COS drives the base of the external switching transistor of the converter.
7 TAL Adjustment of antilarsen time constant in loudhearing with external RC combination. 8 VDD External logic supply. 9 VCC Power supply for peripherals. VCC and VDD are stabilized supply voltages buffered wit external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of th circuit and is achieved in all three modes: speech mode, ringing mode and operation with external supply. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other mod The digital part of circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD must ne cause the total voltage dump. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode. External components, which must operate only in this mode can be connected here. The power is drawn only from the relevant buffer capacitor in the supply intervals during pulse dialing or flash-signal transmission. 10 VL Line voltage. 11 SAI Speaker amplifier input for special application i.e. answering machine. SAIX is selected the serial bus. Antidistortion and antilarsen are not effective in this case. 13 VSA Supply voltage for the loudhearing amplifier. Stabilized supply voltage buffered with an external capacitor for the loughearing amplifier ad zero crossing detector; additional connection point for an external supply. In speech mode, VSA is supplied by the analog of the circui	5	IOS	Current output of switching supply. This output provides a constant current, which supplies the external part of converter. The magnitude of the current depends on the VRI voltage and the value of resistance RIN.
8 VDD External logic supply. 9 VCC Power supply for peripherals. VCC and VDD are stabilized supply voltages buffered wit external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of the circuit and is achieved in all three modes: speech mode, ringing mode and operation with external supply. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other mod The digital part of circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD in this thi intervals is fed only from the buffer capacity, the power consumption from VDD must ne cause the total voltage dump. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode. External components, which must operate only in this mode can be connected here. The power is drawn only from the relevant buffer capacitor in the supply intervals during pulse dialing or flash-signal transmission. 10 VL Line voltage. 11 SAI Speaker amplifier input. The signal coming from the receive part, e.g. from REC01 or RECO2, is fed in hree. 12 SAIX Speaker amplifier input for special application i.e. answering machine. SAIX is selected the serial bus. Antidistortion and antilarsen are not effective in this case. 13 VSA Supply voltage for the loudhearing amplifier. Stabilized supply voltage buffered with an external capacitor for the loudhearing amplifier and zero crossing de	6	TAD	Adjustment of antidistortion time constant in loudhearing with external RC combination.
9 VCC Power supply for peripherals. VCC and VDD are stabilized supply voltages buffered wite external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of th circuit and is achieved in all three modes: speech mode, ringing mode and operation will external supply. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other mod The digital part of circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD in this timinervals is fed only from the buffer capacity, the power consumption from VDD must no cause the total voltage dump. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode. External components, which must operate only in this mode can be connected here. The power is drawn only from the relevant buffer capacitor in the supply intervals during pulse dialing or flash-signal transmission. 10 VL Line voltage. 11 SAI Speaker amplifier input. The signal coming from the receive part, e.g. from REC01 or REC02, is fed in here. 12 SAIX Speaker amplifier input for special application i.e. answering machine. SAIX is selected the serial bus. Antidistortion and antilarsen are not effective in this case. 13 VSA Supply voltage for the loudhearing amplifier. Stabilized supply voltage buffered with an external capacitor for the loudhearing amplifier and zero crossing detector; additional connection point for an external supply. The stabilization point is adjusted to th	7	TAL	Adjustment of antilarsen time constant in loudhearing with external RC combination.
external capacitors. They are derived internally from the same voltage source, but are separated from each other by electronic switches. VDD also supplies the digital part of th circuit and is achieved in all three modes: speech mode, ringing mode and operation with external supply. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other mod The digital part of circuit and microprocessor must continue operating during line breaks they occur during pulse dialing or during flash-signal transmission. Since VDD in this tin intervals is fed only from the buffer capacity, the power consumption from VDD must ne cause the total voltage dump. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode. External components, which must operate only in this mode can be connected here. The power is drawn only from the relevant buffer capacitor in the supply intervals during pulse dialing or flash-signal transmission. 10 VL Line voltage. 11 SAI Speaker amplifier input. The signal coming from the receive part, e.g. from REC01 or RECO2, is fed in here. 12 SAIX Speaker amplifier input for special application i.e. answering machine. SAIX is selected the serial bus. Antidistortion and antilarsen are not effective in this case. 13 VSA Supply voltage for the loudhearing amplifier and zero crossing detector; additional connection point for an external supply. VDD, is fed by a switch from VSA. VSA = 5.2 V. In the case of an external supply. VSA serves as a point for a current from a powe supply. The stabilization point of VSA and supply for the logic correspond to the operati conditions in ringing mode.	8	VDD	External logic supply.
10 VL Line voltage. 11 SAI Speaker amplifier input. The signal coming from the receive part, e.g. from REC01 or RECO2, is fed in here. 12 SAIX Speaker amplifier input for special application i.e. answering machine. SAIX is selected the serial bus. Antidistortion and antilarsen are not effective in this case. 13 VSA Supply voltage for the loudhearing amplifier. Stabilized supply voltage buffered with an external capacitor for the loudhearing amplifier and zero crossing detector; additional connection point for an external supply. In speech mode, VSA is supplied by the analog of the circuit. In this case, the stabilization point is adjusted to the DC line voltage VSA VL/1.5. In ringing mode, and VSA is supplied directly from the converter. The stabilizat point is permanently set. The logic supply, VDD, is fed by a switch from VSA. VSA = 5.2 V. In the case of an external supply, VSA serves as a point for a current from a powe supply. The stabilization point of VSA and supply for the logic correspond to the operati conditions in ringing mode. 14 SO1 Loudspeaker output 1. 15 SO2 Loudspeaker output 2. Differential output of loudhearing amplifier. The loudspeaker can also be connected asymmetrically to ground or to VSA via a capacitor at one of the two outputs. As a result of this connection there is a bigger output power in reference to low currents and loudspeakers with low impedance, while the differential connection method	9	VCC	separated from each other by electronic switches. VDD also supplies the digital part of the circuit and is achieved in all three modes: speech mode, ringing mode and operation with external supply. According to the application, peripheral modules are connected to VDD which, in addition to speech mode, must be supplied at least in one of the two other modes. The digital part of circuit and microprocessor must continue operating during line breaks, as they occur during pulse dialing or during flash-signal transmission. Since VDD in this time intervals is fed only from the buffer capacity, the power consumption from VDD must not cause the total voltage dump. VCC supplies no internal parts of circuit and is supplied exclusively in speech mode. External components, which must operate only in this mode, can be connected here. The power is drawn only from the relevant buffer capacitor in the
11 SAI Speaker amplifier input. The signal coming from the receive part, e.g. from REC01 or REC02, is fed in here. 12 SAIX Speaker amplifier input for special application i.e. answering machine. SAIX is selected the serial bus. Antidistortion and antilarsen are not effective in this case. 13 VSA Supply voltage for the loudhearing amplifier. Stabilized supply voltage buffered with an external capacitor for the loudhearing amplifier and zero crossing detector; additional connection point for an external supply. In speech mode, VSA is supplied by the analog of the circuit. In this case, the stabilization point is adjusted to the DC line voltage VSA VL/1.5. In ringing mode, and VSA is supplied directly from the converter. The stabilizat point is permanently set. The logic supply, VDD, is fed by a switch from VSA. VSA = 5.2 V. In the case of an external supply, VSA serves as a point for a current from a powe supply. The stabilization point of VSA and supply for the logic correspond to the operati conditions in ringing mode. 14 SO1 Loudspeaker output 1. 15 SO2 Loudspeaker output 2. Differential output of loudhearing amplifier. The loudspeaker can also be connected asymmetrically to ground or to VSA via a capacitor at one of the two outputs. As a result of this connection there is a bigger output power in reference to low currents and loudspeakers with low impedance, while the differential connection method	10	VL	
12 SAIX Speaker amplifier input for special application i.e. answering machine. SAIX is selected the serial bus. Antidistortion and antilarsen are not effective in this case. 13 VSA Supply voltage for the loudhearing amplifier. Stabilized supply voltage buffered with an external capacitor for the loudhearing amplifier and zero crossing detector; additional connection point for an external supply. In speech mode, VSA is supplied by the analog point the circuit. In this case, the stabilization point is adjusted to the DC line voltage VSA VL/1.5. In ringing mode, and VSA is supplied directly from the converter. The stabilizat point is permanently set. The logic supply, VDD, is fed by a switch from VSA. VSA = 5.2 V. In the case of an external supply, VSA serves as a point for a current from a power supply. The stabilization point of VSA and supply for the logic correspond to the operatic conditions in ringing mode. 14 SO1 Loudspeaker output 1. 15 SO2 Loudspeaker output 2. Differential output of loudhearing amplifier. The loudspeaker can also be connected asymmetrically to ground or to VSA via a capacitor at one of the two outputs. As a result of this connection there is a bigger output power in reference to low currents and loudspeakers with low impedance, while the differential connection method			Speaker amplifier input. The signal coming from the receive part, e.g. from REC01 or
external capacitor for the loudhearing amplifier and zero crossing detector; additional connection point for an external supply. In speech mode, VSA is supplied by the analog i of the circuit. In this case, the stabilization point is adjusted to the DC line voltage VSA VL/1.5. In ringing mode, and VSA is supplied directly from the converter. The stabilizat point is permanently set. The logic supply, VDD, is fed by a switch from VSA. VSA = 5.2 V. In the case of an external supply, VSA serves as a point for a current from a power supply. The stabilization point of VSA and supply for the logic correspond to the operation in ringing mode. 14 SO1 Loudspeaker output 1. 15 SO2 Loudspeaker output 2. Differential output of loudhearing amplifier. The loudspeaker can also be connected asymmetrically to ground or to VSA via a capacitor at one of the two outputs. As a result of this connection there is a bigger output power in reference to low currents and loudspeakers with low impedance, while the differential connection method	12	SAIX	Speaker amplifier input for special application i.e. answering machine. SAIX is selected via
15 SO2 Loudspeaker output 2. Differential output of loudhearing amplifier. The loudspeaker can also be connected asymmetrically to ground or to VSA via a capacitor at one of the two outputs. As a result of this connection there is a bigger output power in reference to low currents and loudspeakers with low impedance, while the differential connection method	13	VSA	external capacitor for the loudhearing amplifier and zero crossing detector; additional connection point for an external supply. In speech mode, VSA is supplied by the analog part of the circuit. In this case, the stabilization point is adjusted to the DC line voltage VSA = VL/1.5. In ringing mode, and VSA is supplied directly from the converter. The stabilization point is permanently set. The logic supply, VDD, is fed by a switch from VSA. VSA = 5.2 V. In the case of an external supply, VSA serves as a point for a current from a power supply. The stabilization point of VSA and supply for the logic correspond to the operation
15SO2Loudspeaker output 2. Differential output of loudhearing amplifier. The loudspeaker can also be connected asymmetrically to ground or to VSA via a capacitor at one of the two outputs. As a result of this connection there is a bigger output power in reference to low currents and loudspeakers with low impedance, while the differential connection method	14	SO1	
results in a higher power output and lower harmonic distortion with medium or high line currents	15		Loudspeaker output 2. Differential output of loudhearing amplifier. The loudspeaker can also be connected asymmetrically to ground or to VSA via a capacitor at one of the two outputs. As a result of this connection there is a bigger output power in reference to low line currents and loudspeakers with low impedance, while the differential connection method results in a higher power output and lower harmonic distortion with medium or high line
16 GND Ground.	16	GND	

TEMIC

TELEFUNKEN Semiconductors

Pin	Symbol	Function
17	RREF	External reference resistor. Connection for external reference resistor to generate the
		reference current. All basic currents of the circuit which must satisfy certain absolute
10	CEI	accuracy requirements depend on this current.
18	CEI	Capacitor for electronic inductance. Connection for capacitor of the electronic coil. The circuit contains a first order RC-active low-pass filter. The capacitor is connected externally
		between CEI and VL.
19	RDC	DC characteristic slope adjustment. A voltage across resistor RDC is proportional to the dc
		line voltage. This means the current flow through RDC is also proportional to the line voltage. This current drives the supply currents drawn from VL by the most important loads,
		and therefore defines the total current consumption of the circuit. Adjustment to the slope characteristic is realized by modification of RDC resistance.
20	AGA	Line length adjustment. Reference voltage level for AGA. The potential at this point defines the start threshold for the AGA and the automatic balancing in the receive part (both can be switched off by the serial bus). The potential is normally formed between VCC and ground using a voltage divider. When the line voltage exceeds the threshold level, the AGA or balancing becomes effective.
21	MICX	Asymmetrical microphone input for special applications. The input of the first stage of the transmit amplifier, selected by the serial bus. Anticlipping is not effective at this input.
22	MIC1	Inverting input of microphone amplifier.
23	MIC2	Noninverting input of microphone amplifier.
24	ZAC	AC impedance adjustment. Adjustment of the ac circuit impedance to the line by changing of RZAC.
25	ТО	Transmit amplifier output. Transmit amplifier output modulates the current flowing into this output (typically 4.8 mA).
26	MICO	Microphone amplifier output. Output MICO; open-circuit potential = 2*Vbe
27	TIN	Transmit and DTMF input. Input of the second transmit stage.
28	TACL	Adjustment of anticlipping time constant with external RC combination. Anticlipping controls the transmitter input level to prevent clipping with high signal levels. The dynamic range of the transmit peak limiter is controlled by an internal circuit.
29	RECO2	Symmetrical output of receive amplifier.
30	RECO1	Symmetrical output of receive amplifier.
31	RECOX	Receive amplifier output for handsfree and answering machine applications.
32	STL	Long line sidetone network.
33	RECI	Receive amplifier input. It is driven by a signal from VL.
34	STS	Short line sidetone network.
35	MF	Multifrequency output. Output DTMF signal and confidence tone in pulse-density modu- lated form. DTMF signal and confidence tone are generated by special generators in the digital part of the circuit. The DTMF signal consists of two weighted and superimposed pulse-density modulated signals, while in the case of confidence tone, a pulse-density modu- lated signal is superimposed on a high frequency rectangular-pulse signal with pulse duty factor 0.5. The superimposed signals are sent out to MF for further processing.
36	D	Data input of serial bus (see Pin 37). Serial data input from microprocessor for programming the circuit.
37	C	Clock line: 2-wire serial bus. This pin is used together with the data input (pin 36) to transfer data from the microprocessor to the circuit. The last 8 bits, consisting of 5 data bits and 3 address bits, are accepted by the circuit if, during the high phase at pin 37, a positive edge on pin 36 takes place.

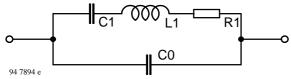
TEMIC

TELEFUNKEN Semiconductors

Pin	Symbol	Function
38	LVIO	Line voltage information output. State indicator of the line voltage, VL, and the supply voltage, VDD. Indicates to microprocessor whether line voltage VL is present across the circuit and the supply voltage VDD is sufficiently high. If both conditions are fulfilled, LVIO is on high level.
39	СО	Clock output. Output 455 kHz clock pulse for the microprocessor. The 455 kHz clock signal generated in the circuit is amplified and sent to CO. This signal is delivered to the microprocessor as a clock signal. Various internal signals can be output to CO in test mode.
40	RESET	Reset signal for periphery. A reset signal (active low) is generated to clear all registers of the circuit. This can be tapped by peripheral modules, particularly by the microprocessor. This pin enables synchronous resetting of the circuit and peripheral modules.
41	ХСК	Clock signal generator. Connector for ceramic resonator (455 kHz). The clock for the digital part of the circuit is generated by a one-pin oscillator, the frequency of which is determined by the ceramic resonator.
42	ESI	Input for external supply information. Input to indicate the operating state external supply. In the case of VSA supplied by a power supply unit, the supply source is connected directly to ESI. ESI is connected to VSA by an external diode in forward mode. The ESI voltage will be one forward voltage higher than the voltage on VSA. This voltage causes the circuit to be in external supply mode.
43	ZCO	Zero crossing output in ringing phase. ZCO operates when the ringer voltage, VRI, and the supply voltage, VSA, are sufficiently high. The output voltage ZCO changes state each time the rectified AC signal of THA crosses the ringing detect turn-on and turn-off thresholds, thus providing information on the frequency of the ring signal. Further analysis of the ring frequency is be done by the microprocessor. Secondly, this pin is used as an input for switching on the test mode. Therefore, a negative voltage of approximately 1 V must be applied to pin 43.
44	THA	Ringing detection threshold adjustment. Input amplitude and frequency identification. The rectified ringing voltage is present at this pin. The circuit evaluates the amplitude of the rectified voltage at THA and the supply voltage VSA (pin 13). If both voltages exceed certain thresholds, the signal present at THA is converted to a rectangular-pulse signal and is sent via pin 43 to the microprocessor. If the frequency is in the required range, the microprocessor initiates transmission of the ringing signal. The start threshold can be raised with a resistor connected in series to pin 44.

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
DC calling voltage (pin 2)	VRI	35	V
DC calling current (pin 2)	IR	30	mA
Conversation line voltage (pin 10)	VL	15	V
		17	V pulse 20 ms
Conversation line current	IL	150	mA
Total power dissipation *)	P _{tot}	1	W
Operating temperature range	T _{amb}	-25 to +55	°C
Storage temperature range	T _{stg}	-55 to +150	°C
Junction temperature	Ti	125	°C


*) Note: Assembly on PC board $\geq 24 \text{ cm}^2 \text{ assumed}$

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient *)	R _{thJA}	70	K/W

Electrical Characteristics

 $I_L = 28 \text{ mA}$, $T_{amb} = 25^{\circ}\text{C}$, f = 1 kHz, $R_{DC} = 20 \text{ k}\Omega$, all internal registers cleared, unless otherwise specified

• 455 kHz ceramic resonator: MURATA or equivalent

• Refer to the tests circuits

Figure 5.

Resonance factor $Q_m = 3100$, L1 = 6.1 mH, C1 = 21 pF, CO = 268.5 pF, $R1 = 5.5 \Omega$ (Schematic above). All resistances are specified at 1%, all capacitances at 2%.

Parameters	Test Con	ditions / Pins	Min.	Тур.	Max.	Unit	Fig.
Line voltage	$I_L = 15 \text{ mA}$		4.2	4.75	5.2		
	$I_L = 28 \text{ mA}$		6.7	7.2	7.5	V	6
	$I_L = 60 \text{ mA}$		12.8	13.45	14.1		
VDD, VCC stabilized	$I_L = 8 \text{ mA},$		2.5	2.65			
power supply	-Idd (ICC) = 0.6 n	nA					
	$I_{L} = 28 \text{ mA},$		3.2	3.45	3.6	V	6
	-Idd(ICC) = 2.3 n	nA					
IDD at	S4 on 3			180	210	μA	9
VDD = 3.5 V							
Internal operating supply current							
Leakage current					100	nA	
Speed up off threshold VSOFF	See figure 11	$I_{Lmax} = 80 \text{ mA}$ $V_L = 4 \text{ V}$	2.45	2.65	2.8	V	7
Speed up on line-current ISON	See figure 14	I_L decreasing VDD = 2.8 V	5.0	5.9	7.5	mA	
Speed up current	$V_L = 4 V$		40	70		mA	7

ΤΕΜΙΟ

TELEFUNKEN Semiconductors

U3800BM

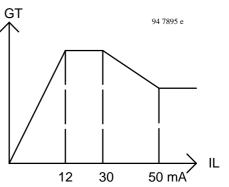
Parameters	Test Conditions / Pins					Min.	Тур.	Max.	Unit	Fig.
Transmission										
Transmit gain (note 1)	$V_{\rm MIC} = 3 {\rm m}^3$	V _{rms}								
5 ()	Mie	MIS	TX2	TX1	TX0					
on MIC1 / MIC2	max. gain	0	1	1	1	47.0	48.0	49.0	dB	
	min. gain	0	0	0	0	39.8	41.0	42.2	dB	
	U									
	$V_{MICX} = 5 r$	nVrms								
	MICK	MIS	TX2	TX1	TX0					6
on MICX	max. gain	1	1	1	1	42.5	43.5	44.5	dB	
	min. gain	1	0	0	0	35.3	36.5	37.7	dB	
Gain adjustment of mi-	Gain change	betwee	en two s	steps (b	ooth on					
crophone amplifier	MIC1/MIC2					0.8	1.0	1.2	dB	6
Transmit gain without	$V_{\rm MIC} = 3 {\rm m}^3$			-						
AGC			TX2	TX1	TX0					
G _T at 28 mA			0	1	1	42.6	44.0	45.5		
$\Delta G_{\rm T}$ at I _L = 20 to 28 mA			0	1	1	-0.5	0.0	0.5	dB	6
$\Delta G_{\rm T}$ at I _L = 28 to 60 mA			0	1	1	-0.5	0.0	0.5		
Gain change between	$V_{MIC} = 3mV$	V _{rms} :		AT1	AT0					
28 and 60 mA	(MIS = 0)			0	0	3.6	4.1	4.6		
on MIC1 / MIC2				0	1	4.9	5.35	5.9		
on MICX	or V _{MICX} =	5 mV _{rn}	18	1	0	6.3	6.9	7.4	dB	6
	(MIS = 1)			1	1	7.7	8.2	8.7		
+6 dB delta transmit gain	$I_L = 28 \text{ mA}$									
	$V_{\rm MIC} = 1.5$ m		Bit TX	6 = 1		5.4	6.0	6.5	dB	6
Noise at line	GT = max.			_						
psophometrically	$V_{\rm MIC} = 0$ (N						-79	-75	15	6
weighted	$V_{\rm MIC} = 0$ (N						-71	-68.5	dBmp	
	$V_{MICX} = 0$							-64		
*Max. gain is without +6			_		evoted f	or DTMF	1	1	1	_
Muted gain	$V_{MIC} = 3 \text{ m}^3$									
	$V_{\rm MIC} = 5 {\rm m}$)						
	(at max. and	mın. g		r 1		65			10	
on MIC1 / MIC2			Bit IN			65			dB	6
on MICX	$V_{\rm MIC} = 3 {\rm m}^3$	v a	Bit IT			45 60			dB dB	
on whex	$V_{\text{MIC}} = 5 \text{ m}$ $V_{\text{MIC}} = 5 \text{ m}$					60			dB	
Microphone input	* MIC – 5 III	• rms (1v	<u>110 – U</u>	,					uD	
impedance										
on MIC1/MIC 2	$V_{\rm MIC} = 3 {\rm m}^3$	Vrma (N	IIS = 0)		70	110		kΩ	6
on MICX	$V_{\text{MIC}} = 5 \text{ m}$ $V_{\text{MICX}} = 5 \text{ r}$					35	55		kΩ	
CMRR common mode re-	$G_T = at max$,			65		dB	6
jection ratio		innunn E	Juin				05			
Voltage step on pin 26	I _L =28 mA a	nd 60 r	mΔ							
when going from trans-	$V_{\rm MIC} = 0 (N$					-110		+110	mV	6
mission to mute mode	$V_{\text{MIC}} = 0$ ($V_{\text{MICX}} = 0$ (110	111 V	
Bit IM from 0 to 1	At maximum		-/							
	- it maximum	- 5um				1				1

ΤΕΜΙΟ

TELEFUNKEN Semiconductors

	Te	st Con	ditions / Pins	Min.	Тур.	Max.	Unit	Fig.
							IC2	
							_	
	1	1		3.5	3.95	4.4	Vnn	6
VMIC	$= 4 \text{ m}^{2}$	-		0.00	0.70		. հե	Ũ
Wite								
				-200	0	200	mVan	6
VMIC	•			200	Ŭ	200	III ' pp	Ŭ
- MIC								
				-200	0	200	mVnn	6
AT1 =				200	Ŭ	200	III ' pp	Ŭ
0						2	%	
			$V_{MIC} = 9 \text{ mV}_{rms} + 26 \text{ dB}$					
						5	70	
1	1	1	$1 V_{MIC} = 2 mV_{rms}$			2	%	
			$V_{MIC} = 2 m V_{rms} + 26 dB$					6
			I = 60 m			0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ũ
			1110 - 1111 - 1					
0	0	0	$0 V_{MIC} = 22 mV_{rms}$			3	%	
			V _{MIC} =22mV _{rms} +26dB			3	%	
CAL	= 470	nF, RA	$AL = 68 k\Omega$					
(note	2),			8.3	9.3	10.3	dB	6
		and 60	mA					
				-0.3	0	0.3	dB	6
				0.0	Ŭ	0.0	42	
		<u><u> </u></u>	4.7nF 4.7nF 170 4 4.7nF 4.7nF 4 4.7nF 4 4.7nF 4 4.7nF 4 4.7nF 4 4.7nF 4 4.7nF 4 4.7nF 4 4.7nF 4 4.7nF 4 170 4 170 7 170 7		455kHz 455kHz			
	V_{MIC} V_{MIC} $AT1 = TX6$ 0 1 1 0 CAL (note I _L = 2 ΔG_{T1} (GT2 (GT2 (47) 47) 47	ping) CACL TX2 1 $V_{MIC} = 4 m$ TX2 0 $V_{MIC} = 9 m$ TX2 0 AT1 = AT0 = TX6 TX2 0 0 1 1 1 1 0 0 CAL = 470 (note 2), I _L = 28 mA $\Delta G_{T} = G_{T1}($ $G_{T1} (V_{MIC} = G_{T2} (V_{MIC} =$	ping) CACL = 470 TX2 TX1 1 1 $V_{MIC} = 4 mV_{rms} +$ TX2 TX1 0 $V_{MIC} = 9 mV_{rms} +$ TX2 TX1 0 0 AT1 = AT0 = 1, V_{MIC} TX6 TX2 TX1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 CAL = 470 nF, RA (note 2), I _L = 28 mA and 600 $\Delta G_{T} = G_{T1}(ISQ =$ $G_{T1} (V_{MIC} = 160 \mu)$ $G_{T2} (V_{MIC} = 3 mV)$ $G_{T1} = 470 rF, RA$ (note 2), I _L = 28 mA and 600 $\Delta G_{T} = G_{T1}(ISQ =$ $G_{T1} (V_{MIC} = 160 \mu)$ $G_{T2} (V_{MIC} = 3 mV)$ $G_{T1} = 470 rF$ $G_{T1} = 470 rF$ $G_{T2} = 3 mV$	TX2 TX1 TX0 1 1 1 $V_{MIC} = 4 mV_{rms} + 10 dB$ TX2 TX1 TX0 0 0 0 $V_{MIC} = 9 mV_{rms} + 10 dB$ TX2 TX1 TX0 0 0 0 IL = 60 mA AT1 = AT0 = 1, $V_{MIC} = 22 mV_{rms} + 10 dB$ TX6 TX2 TX1 TX0 0 0 0 0 $V_{MIC} = 9 mV_{rms} + 26 dB$ 1 1 1 1 $V_{MIC} = 2 mV_{rms} + 26 dB$ 1 1 1 1 $V_{MIC} = 2 mV_{rms} + 26 dB$ I 1 1 1 $V_{MIC} = 2 mV_{rms} + 26 dB$ I 1 1 1 $V_{MIC} = 2 mV_{rms} + 26 dB$ I 1 1 1 $V_{MIC} = 2 mV_{rms} + 26 dB$ I 1 1 0 $V_{MIC} = 22 mV_{rms} + 26 dB$ I 1 1 0 $V_{MIC} = 22 mV_{rms} + 26 dB$ I 1 1 0 $V_{MIC} = 22 mV_{rms} + 26 dB$ I 1 1 0 $V_{MIC} = 22 mV_{rms} + 26 dB$ I 1 1 0 $V_{MIC} = 22 mV_{rms} + 26 dB$ I 1 1 0 $V_{MIC} = 22 mV_{rms} + 26 dB$ I 1 1 0 $V_{MIC} = 10 mA$ AT0 = AT1 = 1 0 0 0 0 $V_{MIC} = 22 mV_{rms} + 26 dB$ I 1 2 28 mA and 60 mA $\Delta G_{T} = G_{T1}(ISQ = 1) - G_{T2}(ISQ = 0)$ GT1 ($V_{MIC} = 160 \ \mu V_{rms}$), GT2 ($V_{MIC} = 3 \ mV_{rms}$), at max. gain $AT0 = AT1 = 1 \ AT0 = 12 \ AT0 = 3 \ mV_{rms}$), at max. gain $AT0 = AT1 = 1 \ AT0 = 12 \ AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT1 = 1 \ AT0 = 12 \ AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT1 = 1 \ AT0 = 12 \ AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT1 = 1 \ AT0 = 12 \ AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT1 = 1 \ AT0 = 12 \ AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT1 = 1 \ AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT1 = 1 \ AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT1 = 1 \ AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT1 = 1 \ AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 = 3 \ mV_{rms}$, at max. gain $AT0 = AT0 \ mV_{rms}$, at max. gain $AT0 = AT0 \ mV_{rms}$, at max. gain $AT0 = AT0 \ mV_{rms}$, at max. gain AT	ing) CACL = 470 nF, RACL = 6.8 MΩ operation TX2 TX1 TX0 3.5 1 1 1 3.5 $V_{MIC} = 4$ mV _{rms} + 10 dB TX2 TX1 TX0 0 0 0 -200 $V_{MIC} = 9$ mV _{rms} + 10 dB TX2 TX1 TX0 0 0 0 -200 AT1 = AT0 = 1, V _{MIC} = 22 mV _{rms} + 10 dB TX6 TX2 TX1 TX0 0 0 0 V _{MIC} = 9 mV _{rms} + 26 dB 1 1 1 1 V _{MIC} = 2 mV _{rms} + 26 dB IL = 60 mA AT0 = AT1 = 1 0 0 0 V _{MIC} = 22 mV _{rms} + 26 dB IL = 26 mA and 60 mA AT0 = AT1 = 1 0 0 0 V _{MIC} = 22 mV _{rms} + 26 dB IL = 28 mA and 60 mA AGT = GT1(ISQ = 1) - GT2(ISQ = 0) -0.3 GT1 (V _{MIC} = 160 µV _{rms}), GT2 (V _{MIC} = 3 mV _{rms}), at max. gain So1 So1 So1 So1 SAIA U3800BBM ST5 SO2 SO2	ing) CACL = 470 nF, RACL = 6.8 MΩ operational only on TX2 TX1 TX0 3.5 3.95 VMIC = 4 mV _{rms} + 10 dB TX2 TX1 TX0 0 0 0 TX2 TX1 TX0 -200 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ping) CACL = 470 nF, RACL = 6.8 MΩ operational only on MIC1/MIC2 TX2 TX1 TX0 1 1 1 TX2 TX1 TX0 0 0 0 0 V _{MIC} = 4 mV _{mis} + 10 dB TX2 TX1 TX0 0 0 0 0 0 LL = 60 mA 0 0 0 0 0 LL = 60 mA AT1 = AT0 = 1, V _{MIC} = 22 mV _{mis} + 10 dB TX6 TX2 TX1 TX0 0 0 0 0 V _{MIC} = 9 mV _{mis} + 26 dB 1 1 1 V _{MIC} = 2 mV _{mis} + 26 dB 1 1 1 1 V _{MIC} = 2 mV _{mis} + 26 dB 1 1 1 1 V _{MIC} = 2 mV _{mis} + 26 dB 3 % CAL = 470 nF, RAL = 68 kΩ (note 2), IL = 60 mA AT1 = AT0 = 1, OML = 60 mA CAL = 470 nF, RAL = 68 kΩ (note 2), IL = 28 mA and 60 mA AGT = Gri(ISQ = 1) - Gr ₂ (ISQ = 0) Gr ₁ (V _{MIC} = 160 μV _{mis}), at max. gain (Note 2), IL = 10 mV _{mis}), at max. gain (Note 2), MIC = 10 μV _{mis}), at max. gain (Note 2), (Note 2) mV _{mis}), at max. gain (Note 2), (Note 2

Figure 6. Test circuit


TELEFUNKEN Semiconductors

• Note 1: transmit gain: $G_T = V_L/V_{MIC}$ on MIC1/MIC2

 G_T = $V_L \! / \! V_{MIC}$ on MICX with the above values of RAG1 and RAG2

• Note 2: Squelch dynamic range: $\Delta G_T = G_{T0} - G_{T1}$

 $G_{T0} \text{ measured at } V_{MIC} = 1 \text{ mV}_{rms} \\ G_{T1} \text{ measured at } V_{MIC} = 160 \text{ } \mu V_{rms}$

Parameters	Test Con	Min.	Тур.	Max.	Unit	Fig.			
Receive									
G_R receiving gain $G_R = V_R^*/V_L$	$V_{\text{GEN}} = 0.3 V_{\text{rms}}$			RX0					
(for normal output)	maximum gain minimum gain	1 0	1 0	1 0	3.5 -3.7	4.5 -2.5	5.5 -1.3	dB dB	7
$\Delta G_R = V_R / V_{E3}$	$V_{\text{GEN}} = 0.3 V_{\text{rms}}$				14.0	15.0	16.0	dB	7
Gain adjustment at earphone	$I_L = 28 \text{ mA} \text{ and } 60$ Attenuation between REC01/REC02 and	n two s	1 ·	oth on	0.8	1.0	1.3	dB	7
Receiving gain without AGC	$V_{\text{GEN}} = 0.3 V_{\text{rms}}$ IBAL = 1		Bit: A	AGC =1					
$G_{R} = V_{R}/V_{L}$ $G_{R} \text{ at } 28 \text{ mA}$ $\Delta G_{R} \text{ at}$	Bits	RX2 1	RX1 1	RX0 1	-3	-1.5	0	dB	7
$20 \text{ mA} < I_L < 28 \text{ mA}$ ΔG_R at		1	1	1	-0.5	0	0.5	dB	
$28 \text{ mA} < I_L < 60 \text{ mA}$		1	1	1	-0.5	0	0.5	dB	
ΔG_R receiving gain be- tween 28 and 60 mA on RECO1/RECO2	$V_{\text{GEN}} = 0.3 V_{\text{rms}}$	Bits	AR1 0 0	AR0 0 1	3.6 4.9	4.1 5.5	4.6 5.9	dB dB	7
and on RECOX			1 1	1 0 1	6.3 7.5	6.9 8.3	7.4 8.7	dB dB dB	
+6 dB delta receiving gain on RECO1/RECO2	$V_{GEN} = 0.3 V_{rms}, I_{I}$ (At maximum and I	ninimu	m gain)			C 1	C7	10	7
and on RECOX Muted gain	$V_{\text{GEN}} = 0.3 V_{\text{rms}}$	Bit R	X6 = 1		5.6	6.1	6.7	dB	7
Witted gain	Mute on REC01/RI		Bit E1 = IE2 IR=1	IR=1 2 = 1	65 60 36			dB dB dB	7
Noise at earpiece psophometric weighted	At maximum gain $V_{GEN} = 0 V$					150	220	μVp	7
Receiving distortion	$I_L = 28 \text{ mA and } 60$ max gain, RX6 = 1 min. gain, RX6 = 0	VR =	5 V _{pp} 2 V _{pp}			1	3	%	7
Receiver output impedance on RECO1/RECO2 (pins 29-30)	$V_R = 50 \text{ mV}_{rms}$				40	65	85	Ω	7

TELEFUNKEN Semiconductors

TEMIC

Parameters	Test Conditions / Pins	Min.	Тур.	Max.	Unit	Fig.
Receiver output impedance on RECOX (pin 31)	$V_{RECOX} = 50 \text{ mV}_{rms}$	950	1150	1350	Ω	7
Receiver output offset (pin 29-30)	$I_L = 28 \text{ mA and } 60 \text{ mA}$ Maximum gain $RX6 = 1$	-800		+600	mV	7
Automatic sidetone balancing (V_R^*/V_{MIC})			24 16		dB dB	6
Digital balanced sidetone tested on receiving gain V _R /V _L	$\begin{array}{c} V_{GEN} = 0.3 \ V_{rms} & maximum gain \\ close \ switch \ S1 & Bit \ IBAL = 1 \\ & Bits & BAL2 \ BAL1 \ BAL0 \\ & 0 & 0 & 0 \\ & 0 & 0 & 1 \\ & 0 & 1 & 0 \\ & 0 & 1 & 1 \\ & 1 & 0 & 1 \\ & 1 & 1 & 0 \\ & 1 & 1 & 1 \end{array}$	18.0 16.9 15.5 4.2	19.0 17.9 16.5 14.5 12.3 9.2 5.7	20.0 18.9 17.5 7.2	dB dB dB dB dB dB dB dB	7
Confidence level attenuation	$V_{MIC} = 2 mV_{rms}$ Bit $I_R = 1$	60			dB	6
Confidence level gain V_R/V_{MIC}	$V_{\text{MIC}} = 2 \text{ mV}_{\text{rms}} \qquad I_{\text{R}} = 1 \text{ EC} = 1$	19.5	22.0	23.5	dB	6
Z line match. impedance	$V_{\text{GEN}} = 0.3 \text{ V}_{\text{rms}}$ I _L = 28 and 60 mA	520	570	620	Ω	7

VR = VRECO1 - VRECO2

*

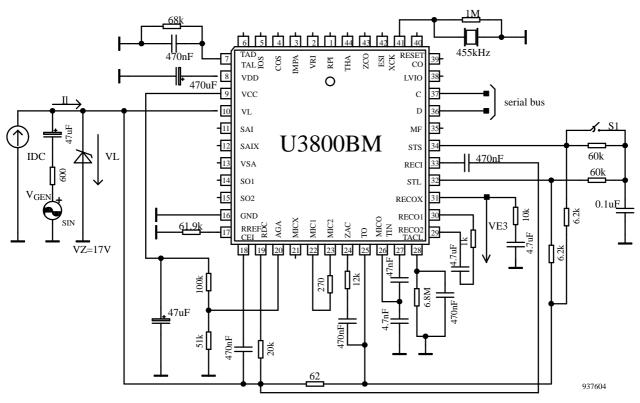


Figure 7. Test circuit

ΤΕΜΙΟ

TELEFUNKEN Semiconductors

U3800BM

Parameters	Test Conditions	Min	Тур	Max	Unit	Fig
Speaker amplifier			~ 1		1	
VSA shunt regulator power supply (pin 13) in transmission mode	Speaker amplifier without signal EA = 1 IL = 28 mA IL = 60 mA	4.0 7.85	4.3 8.3	4.6 8.7	V V	8
Loudhearing gain (note3) from SAI/SAIX to SO1, SO2	$GSA1 = \frac{VSO1 - VSO2}{VSAI} EA = 1$ $GSA2 = \frac{VSO1 - VSO2}{VSAIX}$ Bits					8
	$\begin{array}{c cccc} \text{BIS} \\ \text{NEA2} & \text{NEA1} & \text{NEA0} & \text{VSAI} = \text{VSAIX} \\ 1 & 1 & 1 & \text{VSAI} = 3.5 \text{mV}_{\text{rms}} \\ 0 & 0 & 0 & \text{VSAI} = 88 \text{mV}_{\text{rms}} \end{array}$	33 5	34 6	35 7	dB dB	
Loudhearing gain be- tween 28 and 60 mA GSA1 and GSA2 (note 3)	EA = 1	-0.5	0	0.5	dB	8
Gain adjustment of speaker amplifier	EA = 1 gain change between two steps	3.8	4.0	4.2	dB	8
Distortion (measured on $100 \ \Omega$ load)	$ \begin{array}{c c} EA = 1, Bits \\ NEA2 \ NEA1 \ NEA0 \ VSAI \\ 1 & 1 & 1 & VSAI = 12 \ mV_{rms} \\ & VSAI = 30 \ mV_{rms} \\ 0 & 0 & VSAI = 250 \ mV_{rms} \\ \end{array} \\ \begin{array}{c} Bits EA = 1 & I_L = 60 \ mA \\ NEA2 \ NEA1 \ NEA0 \\ 1 & 1 & VSAI = 80 \ mV_{rms} \\ \end{array} $			2.0 4.0 1.5 2.0	% % %	8
Input impedance SAI	$\begin{array}{ccc} 0 & 0 & 0 & VSAI = 250 \text{ mV}_{rms} \\ \hline \text{EA} = 1 \end{array}$	4	7	2.0 10	%	0
SAIX Confidence gain in loud- hearing	$V_{\text{MIC}} = 4 \text{ mV} \qquad \frac{\text{VSO}}{\text{V}_{\text{MIC}}} \text{EA} = 1$ $V_{\text{MIC}} \text{EC} = 1$	4 36	7	10 40	kΩ dB	8 8
Loudhearing input cross talk attenuation		50 45			dB dB	8
Output power (Note 4, 6)	$ \begin{array}{ll} EA = 1 \ I_L = 20 \ mA & 100 \ \Omega \ load \\ EA = 1 \ I_L = 28 \ mA & 50 \ \Omega \ load \\ 100 \ \Omega \ load \\ EA = 1 \ I_L = 60 \ mA & 50 \ \Omega \ load \\ 100 \ \Omega \ load \\ 100 \ \Omega \ load \\ \end{array} $	3.0 8.0	4.5 7 12 100 150		mW mW mW mW	8
Output offset (pin 14-15)	LIS = 0, 1 $EA = 1$ max. and min. gain	-200		+200	mV	8
Leakage current (pin 6) Offset (pin 7)	EA = 1 RAL = 68 k $\Omega\Omega$ I _L = 28 mA and 60 mA EA = 1			140 140	nA mV	8 6
Antilarsen system	$CAL = 470 \text{ nF}, RAL = 68 \text{ k}\Omega$	1		1	1	-
Dynamic range attenua- tion	(note 5) IL = 28 mA and 60 mA EA = 1 VSAI = 6 mV _{rms} Bit ISQ = 0 BIT ISQ = 1	5.5 15.0	6.0 16.3	6.5 17.5	dB dB	8

TELEFUNKEN Semiconductors

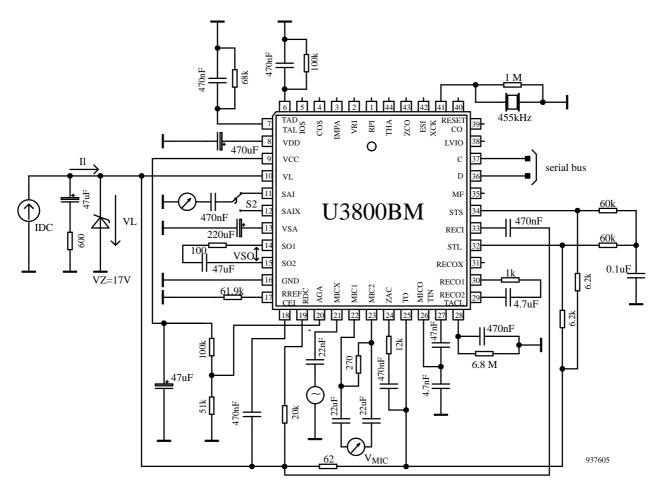


Figure 8. Test circuit

- Note 3: GSA1 measured with S2 on 11 GSA2 measured with S2 on 12 and Bit LIS = 1
- Note 4: With 50 Ω single ended load, it is possible, at low line current, to have power 6 dB higher than with 50 Ω differential load. Un this case antidistortion function is not completely effective.
- Note 5: Antilarsen dynamic range: $\Delta GLS = GLSA - GLSB$ $GLSA \text{ measured at } V_{MIC} = 160 \ \mu V_{rms}$ $GLSB \text{ measured at } V_{MIC} = 1 \ m V_{rms}$
- Note 6: The available output current of the speaker amplifier can be increased by reduction of the quiescent current of the receiver output stage (bits IE1, IE2, see "contents of internal registers").

DTMF Dialing

The output pin MF provides the multifrequency signal to be transmitted on line. This signal is the result of the sum of two frequency pulse modulations and requires an external filter to compose a dual sine wave. The frequencies are chosen in a low group and a high group.

The circuit conforms to the T/CS 46-02 CEPT recommendation concerning DTMF option 1 (-9/-11 dBm) and option 2 (-6/-8 dBm) transmit level 5 (example: in figure 6, option 2 can be fulfilled with 3.5 dB pre-emphasis and 1.5 Vpp low frequency level pin 35).

Two different low levels (with 3 dB difference) and two different pre-emphasis (2.5 and 3.5 dB) can be chosen through the serial bus.

Melody – Confidence Tone

Melody/confidence tone frequencies are given in table 2.

In the state SIN1 = 1, SIN0 = 0, the IC delivers a single pulse density modulated frequency at pin MF (the same behavior as DTMF), denoted as a confidence tone. The confidence tone is sent either to the line or on the earpiece. In the state SIN1 = 0, SIN0 = 1, a square wave is sent to the loudhearing input for ringing melodies.

Standard Frequency	Tone Output	Frequency Deviation			
Hz	Frequency Hz	%	Hz		
Low Group					
697	697.85	0.12	+0.85		
770	771.18	0.15	+1.18		
852	852.06	0.01	+0.06		
941	940.08	-0.10	-0.92		
High Group					
1209	1210.1	0.09	+1.1		
1336	1338.2	0.17	+2.2		
1477	1477.3	0.02	+0.3		
1633	1636.7	0.22	+3.7		

Table 5. Frequency tolerance of the output tones for DTMF signalling tone output frequency when using 455 kHz

Note: Frequency can be directly measured on CO when S3 is closed (Figure 9)

AMF	SIN0	SIN1	СО
1	1	1	DTMF : HF
0	1	1	DTMF : LF
0	1	0	MELODY
0	0	1	CONFIDENCE TONE

	1209	1336	1477	1633
697	1	2	3	А
770	4	5	6	В
852	7	8	9	С
941	*	0	#	D

TEMIC TELEFUNKEN Semiconductors

Standard	Tone Output	Frequency
Frequency	Frequency	Deviation
Hz	Hz	0/00
440	440.04	0.09
466.16	466.19	0.06
493.88	493.49	-0.78
523.25	522.99	-0.50
554.36	554.88	0.92
587.33	587.86	0.89
622.25	621.58	-1.07
659.25	659.42	0.26
698.46	697.85	-0.87
740	741.04	1.41
784	784.48	0.62
830	830.29	-0.37
880	878.38	-1.84
932.3	932.38	0.08
987.77	989.13	1.38
1046.5	1048.39	1.80
1108.73	1109.76	0.93
1174.66	1172.68	-1.69
1244.5	1243.17	-1.07
1318.5	1315.03	-2.63
1396.9	1395.71	-0.86
1480	1477.27	-1.84
1568	1568.97	0.62
1661.2	1660.58	-0.37
1760	1763.57	2.03
1864.65	1864.75	0.06
1975.5	1978.26	1.40
2093	2087.16	-2.79
2217.46	2208.74	-3.93
2349.3	2345.36	-1.68

Table 6. Frequency tolerance of the output tone – Tone output frequency when using 455 kHz

Parameters		Test Conditions			Max	Unit	Fig.
DTMF Generation (specified	ied pin MF)						
Tone frequency accuracy	See table 1						
Low group tone level	Note 7	BFOA (Pre-emphasis A)	1.35	1.50	1.65	V	9
without attenuation	S3 closed	BFOB (Pre-emphasis B)	1.25	1.40	1.55	V	
High group tone level	Note 7 HFO	A (Pre-emphasis A) S3	1.80	2.00	2.20	V	9
without attenuation	closed HFO	B (Pre-emphasis B)	1.90	2.10	2.35	V	
Pre-emphasis A	Note 7	PROA	2.04	2.54	3.04	dB	9
without attenuation	S3 closed						
Pre-emphasis B	Note 7	PROB	3.02	3.52	4.02	dB	9
without attenuation	S3 closed						
Low group tone level	Note 7	BF1A (Pre-emphasis A)	0.95	1.05	1.15	V	9
with attenuation	S3 closed	BF1B (Pre-emphasis B)	0.90	1.00	1.10	V	
High group tone level	Note 7	HF1A (Pre-emphasis A)	1.25	1.40	1.55	V	9
with attenuation	S3 closed	HF1B (Pre-emphasis B)	1.35	1.50	1.65	V	
Pre-emphasis A	Note 7	PR1A	2.04	2.54	3.04	dB	9
with attenuation	S3 closed						
Pre-emphasis B	Note 7	PR1B	3.02	3.52	4.02	dB	9
with attenuation	S3 closed						

ΤΕΜΙΟ

TELEFUNKEN Semiconductors

U3800BM

Parameters	Test Co	onditior	ns		Min	Тур	Max	Unit	Fig.
Leakage	S4 = 2	Bits	SIN1	SIN0					
	S3 closed		0	0	-100		100	nA	9
Distortion at line	IL = 28 mA								
	$M = 8 \text{ Key} = \ll 3 \gg$								
	TX6 = 1	TX6 = 1 $IM = 1$							6
						1	3	%	
Low group tone level	IL = 28 mA and 60	mA							
at line	$M = 8 \text{ Key} = \ll 3 \gg$								6
	TX6 = 1	IM =	1		-10	-8	-6	dBm	
Melody generation	Melody generation								
Tone frequency accuracy	see table 2								
Confidence tone level	Note: 7		CTL		2.10	2.33	2.60	V	9

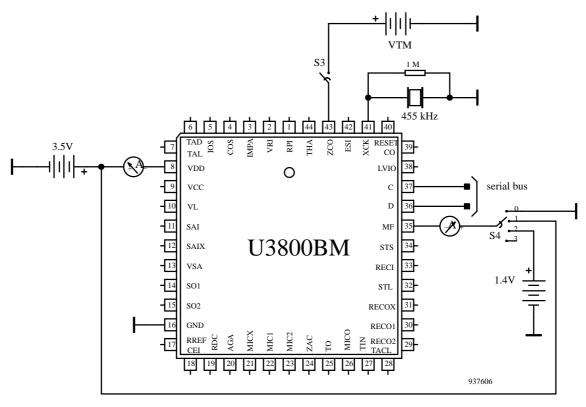


Figure 9. Test circuit

ΤΕΜΙΟ

U3800BM

TELEFUNKEN Semiconductors

		Internal I Set by Set			Internal Signal Set by Clock Count			
S4 (Fig. 9)	AMF	SIN1	SIN0	M4	FB	FH	F227	I measured
0	0	1	1	0	1	0	X	I1
0	0	1	1	0	0	1	X	I2
0	0	1	1	1	0	1	X	I3
0	0	1	0	0	0	X	1	I4
0	1	1	1	Х	0	0	1	I5
1	0	1	1	1	0	1	X	I6
1	0	1	1	0	1	0	X	I7
1	0	1	1	1	1	0	X	18
1	0	1	0	Х	1	Х	0	I9
1	1	1	1	Х	1	1	0	I10

X: either 1 or 0

Note 7: DTMF calculations

BF level without attenuation with pre-emphasis A:	$BFOA = \left(\frac{I1}{I1 + I7} + \frac{I6}{I6 + I2}\right)\frac{VDD}{2}$
BF level without attenuation with pre-emphasis B:	$BFOB = \left(\frac{I1}{I1 + I8} + \frac{I6}{I6 + I3}\right)\frac{VDD}{2}$
HF level without attenuation with pre-emphasis A:	HFOA = $\left(\frac{I2}{I2 + I6} + \frac{I7}{I7 + I1}\right)\frac{VDD}{2}$
HF level without attenuation with pre-emphasis B:	HFOB = $\left(\frac{I3}{I3 + I6} + \frac{I8}{I8 + I1}\right) \frac{VDD}{2}$
Pre-emphasis A without attenuation:	$PROA = 20 \log \left(\frac{HFOA}{BFOA}\right)$
Pre-emphasis B without attenuation:	$PROB = 20 \log \left(\frac{HFOB}{BFOB}\right)$
BF level with attenuation with pre-emphasis A:	$BF1A = \left(\frac{I1}{I1 + I7 + I10} + \frac{I6}{I6 + I2 + I5}\right)\frac{VDD}{2}$
BF level with attenuation with pre-emphasis B:	$BF1B = \left(\frac{I1}{I1 + I8 + I10} + \frac{I6}{I6 + I3 + I5}\right)\frac{VDD}{2}$
HF level with attenuation with pre-emphasis A:	$HF1A = \left(\frac{I2}{I2 + I6 + I10} + \frac{I7}{I7 + I1 + I5}\right)\frac{VDD}{2}$
HF level with attenuation with pre-emphasis B:	HF1B = $\left(\frac{I3}{I3 + I6 + I10} + \frac{I8}{I8 + I1 + I5}\right)\frac{VDD}{2}$
Pre-emphasis A without attenuation:	$PR1A = 20 \log \left(\frac{HF1A}{BF1A}\right)$
Pre-emphasis B without attenuation:	$PR1B = 20 \log \left(\frac{HF1B}{BF1B}\right)$
Confidence tone level:	$CTL = \left(\frac{I1}{I1 + I9} + \frac{I6}{I6 + I4}\right)\frac{VDD}{2}$

TEMIC

TELEFUNKEN Semiconductors

Parameters	Test Conditions	Min	Тур	Max	Unit	Fig.
Ringer			, , , , , ,			0
THA threshold voltage THTV	$V_S = 5 V$ S5 on 1	8.30	8.75	9.20	V	10
THA hysteresis ΔTH	$V_S = 5 V$ S5 on 1	435	465	495	mV	10
VSA threshold voltage VSAON (ring detector en- abled)	VTHA = 12 V S5 on 1	3.0	3.2	3.4	V	10
VSA threshold voltage VSAOFF (ring detector disabled)	VTHA = 12 V S5 on 1	2.45	2.5	2.65	V	10
Switching supply output current	VS = 5 V VIN = 30 V S7 on 1 S5 on 1 RIN = $300 \text{ k}\Omega$	33	37		mA	10
Input impedance VIN/IIN	S5 on 1 VS = 5 V S7 on 1 Off state VIN = 5 V RIN = 300 k Ω On state VIN = 30 V RIN = 300 k Ω On state VIN = 30 V RIN = 1500 k Ω	50.0 2.78 13.4	2.90 14.1	3.05 15.0	$k\Omega k\Omega k\Omega$	10
RPI ringing power information	$ \begin{array}{cccc} RIN = 300 \ k\Omega & S7 \ on \ 2 \\ S5 \ on \ 2 & VIN = 30 \ V & VESI = 0 \ V \\ S5 \ on \ 1 & VIN = \ 0 \ V & VESI = 5 \ V \\ \end{array} $	1.48 1.57	1.55 1.61	1.64 1.64	V V	10
VSA/VDD switch off VSAOFF1 (measured on VSA)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	5.55	5.8	6.0	v	10
VSA shunt regulator VSAL VSAH	S5 on 3 $ISA = 2 mA$ ISA = 45 mA	4.75 5.0	5.0 5.3	5.15 5.7	V V	10
Difference between max. VSA-voltage and cut-off-voltage	VSADIFF = VSAOFF1 – VSAH	250	500		mV	10
ZCO Zero crossing information	$\label{eq:VS} \begin{array}{ll} VS = 5 \ V & S5 \ on \ 1 & S6 \ closed \\ IZCO = 100 \ \mu A & VTHA = \ 7.5 \ V \\ IZCO = -100 \ \mu A & VTHA = \ 12.0 \ V \end{array}$	4.4		0.5	V V	10
Ringer output power (on 100 Ω load)	$VIN = 30 V RIN = 300 k\Omega$ S7 on 2 S5 on 2 SIN1 SIN0 LIS EA 0 1 1 1 NEA – maximum gain	70	105	130	mW	10
Extra ringing attenuation	$VIN = 30 V RIN = 300 k\Omega$ S7 on 2 S5 on 2 SIN1 SIN0 LIS AMF EA 0 1 1 1 1 NEA – maximum gain	-12.8	-12.2	-11.6	dB	10

TEMIC TELEFUNKEN Semiconductors

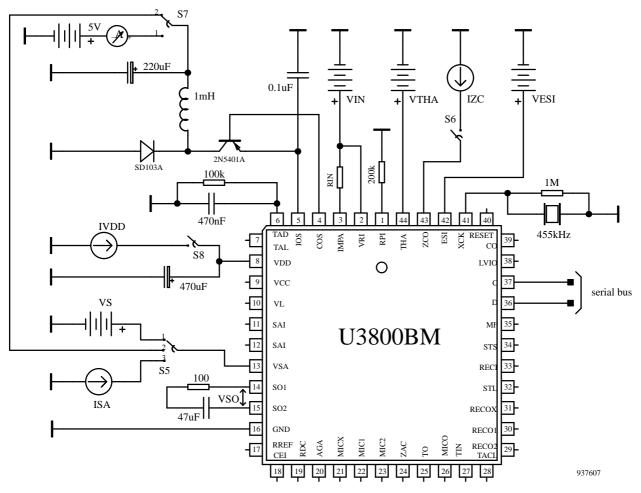
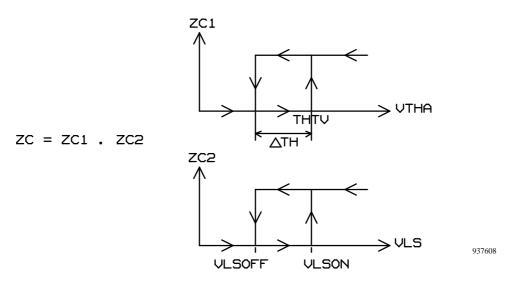
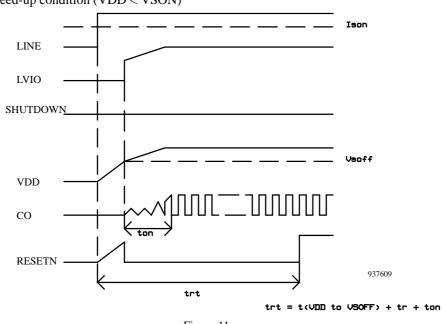



Figure 10. Test circuit

Rev. A1: 17.07.1996

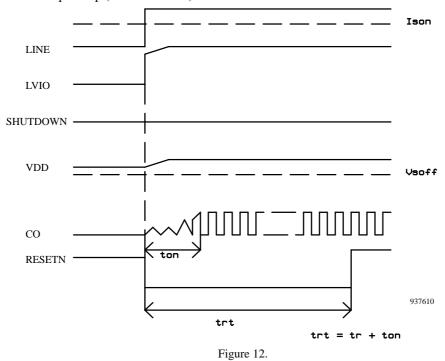
Electrical Characteristics of Logical Part

 $f_{xck} = 455 \text{ kHz}, \text{ VDD} = 3.5 \text{ V}$

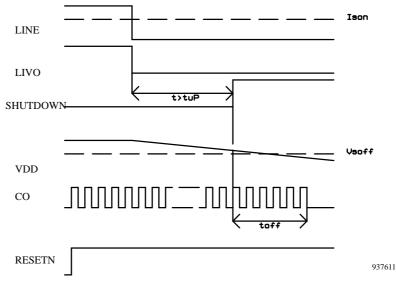

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
INPUTS : C, D	Low-voltage input Vil High-voltage input Vih		2.8		0.7	V V
	Input leakage current Ii (0 < VI < VDD)		-1		1	μΑ
Output: RESET, CO, LVIO	Low-voltage output (Iol = $100 \mu A$) Vol				0.35	V
	High-voltage output (loh = -100μ A) Voh		3.1			V
CLOCK: CO (fig. 15)						
Using reference ceramic						
resonator	period: t _{cyc}		2.19	2.20	2.21	μs
	High pulse width: t _{wch}		1.10		1.45	μs
SERIAL BUS (fig. 19)	Data set-up time t _{sud}		0.1			μs
	Data hold time t _{hd}		0			μs
	Clock low time t _{cl}		2 2			μs
	Clock high time t _{ch}		2			μs
	Hold time before transfer		0.1			μs
	condition t _{eon}					
	Data low pulse on transfer		0.2			μs
	condition t _{eh}					
	Data high pulse on transfer		0.2			μs
	condition t _{eoff}					
RESET TIMING	Clock start-up time ton			3	5	ms
(fig. 11, 12, 13)	Clock inhibition time toff		35.2		75	μs
	Reset time (without t_{on}) t_r		30.0	31.6	32	ms

Power-on-Reset and Reset Pin

The system (U3800BM + microcontroller) is woken up by an initial condition:


- line voltage (VL)
- ringer (THA)
- external supply (ESI)
- 1. Power-on in speed-up condition (VDD < VSON)

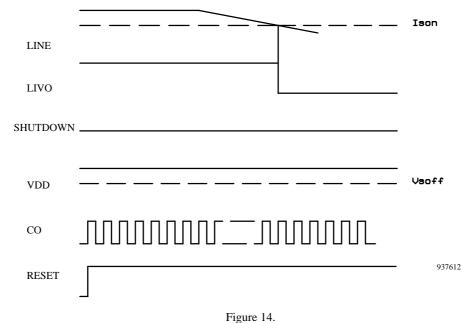
To avoid undefined states of the system when it is powered on, an internal reset clears the internal registers, and maintains pin RESET low during trt.


2. Power-on without speed-up (VDD > VSON)

TELEFUNKEN Semiconductors

U3800BM

3. Line break



When the microprocessor detects LIVO low during $t > t\mu P$ (internal microprocessor timing special for line breaks), it forces high the shutdown bit through the serial bus, thus leading the IC, after t_{off}, to go into standby mode

(oscillator stop). Pin RESET remains high.

When the line break is shorter than t μ P, nothing appears.

4. Line current fall

TELEFUNKEN Semiconductors

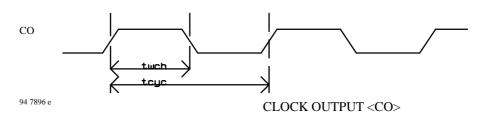


Figure 15.

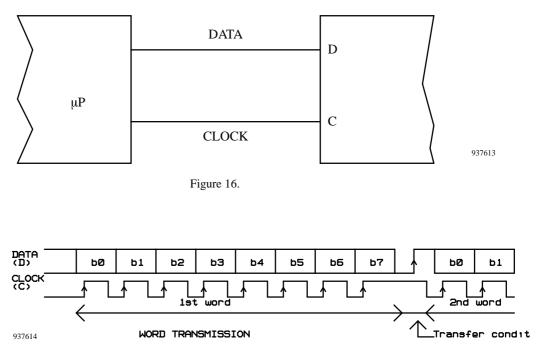
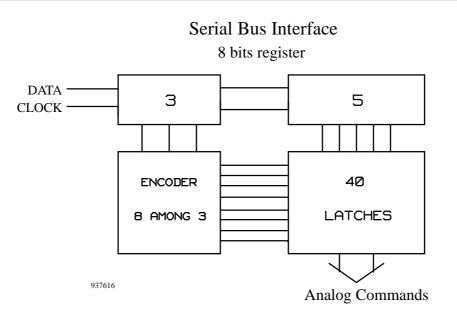
Serial Bus

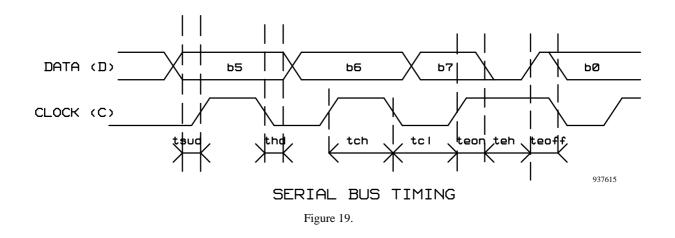
The circuit is remoted by an external microcontroller through the serial bus:

The data is an 8-bit word:

B7 - B6 - B5: address of the destination register (0 to 7) B4 - B0: contents of register The data line must be stable when the clock is high and data must be serially shifted.

After 8 clock periods, the transfer to the destination register is (internally) generated by a low to high transition of the data line when the clock is high.


Figure 17.

Content of Internal Registers

0: Transmission mode

MIS	TX6	TX2	TX1	TX0	MIS: Microphone input switching TX6: +6dB TX: Transmission gain adjustment
-----	-----	-----	-----	-----	--

1: Reception mode

LIS	RX6	RX2	RX1	RX0	LIS: Loudhearing input switching RX6: +6dB RX: Reception gain adjustment
-----	-----	-----	-----	-----	--

2: Loudhearing mode

IAL	EA	NEA2	NEA1	NEA0	IAL: Antilarsen inhibition EA: Loudhearing enable NEA: Loudhearing gain adjustment
-----	----	------	------	------	--

TEMIC TELEFUNKEN Semiconductors

3: AGC mode

IAGC	AR1	AR0	AT1	AT0	IAGC: AGC inhibitionAT:Transmission AGC adjustmentAR:Reception AGC adjustment
------	-----	-----	-----	-----	---

4: Sidetone mode

IE2	IBAL	BAL2	BAL1	BAL0	IE2: Reception output amplifier current adjustment IBAL: Inhibition of automatic sidetone balance
-----	------	------	------	------	--

BAL		Z
0	1	STS
1	5/6	STS + 1/6 STL
2	2/3	STS + 1/3 STL
3	1/2	STS + 1/2 STL
4	1/2	STS + 1/2 STL
5	1/3	STS + 2/3 STL
6	1/6	STS + 5/6 STL
7		1 STL

5: Internal inhibitions

IR	EC	IT	IM	IE1	IR:Reception inhibitionEC:Confidence enableIT:Transmit inhibitionIM:Microphone inhibitionIE1:Reception output amplifier current adjustment	lence enable nit inhibition phone inhibition tion output amplifier curren
----	----	----	----	-----	---	--

IE1	IE2	IREC	
0	0	3 mA	
0	1	2 mA	
1	0	1 mA	
1	1	0 mA	Earpiece inhibition

6: Melody / DTMF choice

M4	M3	M2	M1	M0	
----	----	----	----	----	--

Τεμις

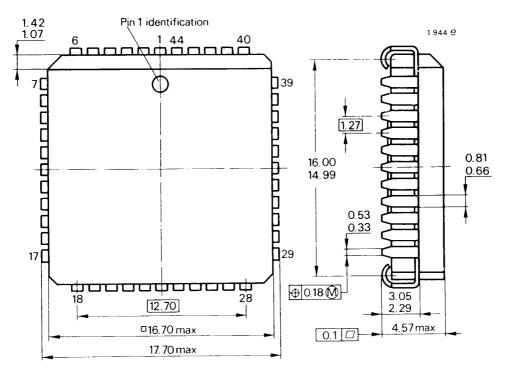
TELEFUNKEN Semiconductors

Table 7.

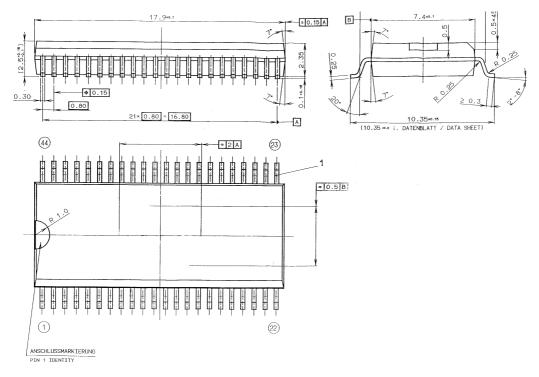
			DTM	Fmode
М	-	onfidence tone	Key	HF/LF
00		tput	-	
00	A3	440.0	«1»	2.5 dB
01	A#3	466.2	«4»	,,
02	B3	493.5	«7»	,,
03	C4	523.0	«*»	
04	C#4	554.9	«2»	"
05	D4	587.8	«5»	,,
06	D#4	621.6	«8»	,,
07	E4	659.4	«0»	,,
08	F4	697.8	«3»	"
09	F#4	741.0	«б»	,,
0A	G4	784.5	«9»	"
0B	G#4	830.3	«#»	"
0C	A4	878.4	«A»	"
0D	A#4	932.4	«B»	"
0E	B4	989.1	«C»	,,
0F	C5	1048.4	«D»	"
10	C#	1109.7	«1»	3.5 dB
11	D5	1172.7	«4»	"
12	D#5	1243.2	«7»	"
13	E5	1315.0	«*»	"
14	F5	1395.7	«2»	,,
15	F#5	1477.3	«5»	,,
16	G5	1569.0	«8»	,,
17	G#5	1660.6	«0»	,,
18	A5	1763.6	«3»	,,
19	A#5	1864.7	«6»	"
19 1A	B5	1978.3	«0» «9»	,,
1A 1B	Б3 С6	2087.2	«9» «#»	,,
1B 1C	C6 C#6	2087.2	«#» «A»	,,
				,,
1D	D6	2345.4	«B»	,,
1E			«C»	,,
1F			«D»	

7: Control register

AMF	ISQ	SD	SIN1	SIN0	AMF: MF output attenuation -3 dB extra ringing attenuation (12 dB) ISQ: Squelch inhibition SD: Shutdown SIN: Generator mode 0: OFF 1: Melody (Ringer) 2: Confidence tone 3: DTMF
-----	-----	----	------	------	--


Order Information

Extended Type Number	Package	Remarks
U3800BM-CP	PLCC44	
U3800BM-FN	SSO44	


TELEFUNKEN Semiconductors

Dimensions in mm

Package: PLCC44

Package: SSO44

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423