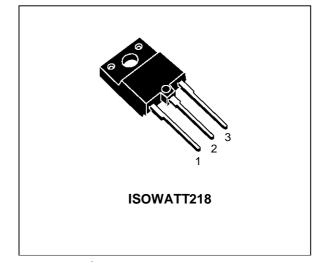


THD218DHI

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- SGS-THOMSON PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- U.L. RECOGNISED ISOWATT218 PACKAGE (U.L. FILE # E81734 (N))
- NPN TRANSISTOR WITH INTEGRATED FREEWHEELING DIODE.


APPLICATIONS

 HORIZONTAL DEFLECTION FOR COLOUR TV

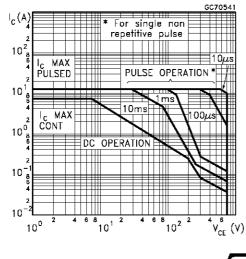
DESCRIPTION

This devices is manufactured using Multiepitaxial Mesa technology for cost-effective high performance and uses a Hollow Emitter structure to enhance switching speeds.

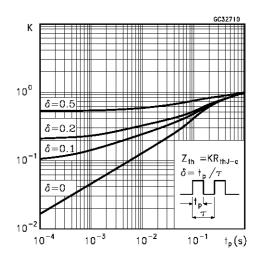
The THD series is designed for use in horizontal deflection circuits in televisions and monitors.

ABSOLUTE MAXIMUM RATINGS

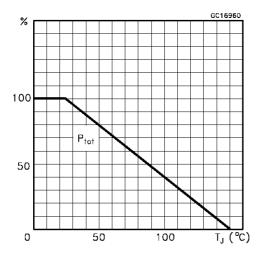
Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	1500	V
Vceo	Collector-Emitter Voltage ($I_B = 0$)	700	V
V_{EBO}	Emitter-Base Voltage ($I_C = 0$)	10	V
lc	Collector Current	7	A
I _{CM}	Collector Peak Current (t _p < 5 ms)	12	A
Ι _Β	Base Current	4	A
I _{BM}	Base Peak Current (t _p < 5 ms)	7	A
Ptot	Total Dissipation at $T_c = 25 \ ^{\circ}C$	50	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

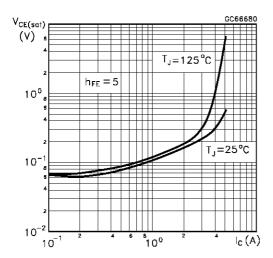

THERMAL DATA

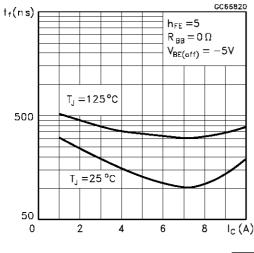
ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \, {}^{\circ}C$ unless otherwise specified)

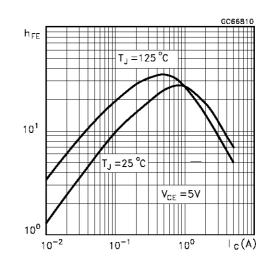

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ICES	Collector Cut-off Current (V _{BE} = 0)	Vce = 1500 V Vce = 1500 V T _j = 125 °C			0.2 2	mA mA
I _{EBO}	Emitter Cut-off Current $(I_c = 0)$	$V_{EB} = 5 V$			300	mA
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 4 A I _B = 1 A			1.5	V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 4 A I _B = 1 A			1.3	V
h _{FE} *	DC Current Gain		5 3.5		10	
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time			4.7 0.48		μs μs
VF	Diode Forward Voltage	I _F = 4 A			2.5	V

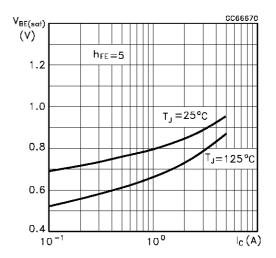
* Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %

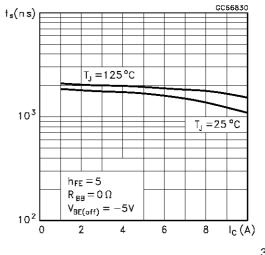

Safe Operating Area

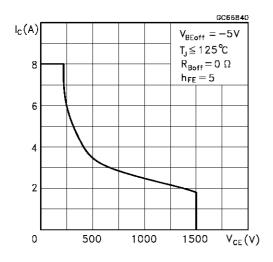

Thermal Impedance


Derating Curve


Collector Emitter Saturation Voltage


Inductive Fall Timel


DC Current Gain


Base Emitter Saturation Voltage

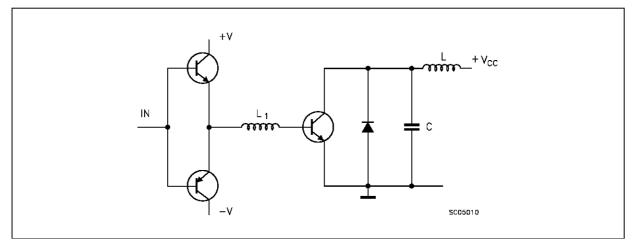
Reverse Biased SOA

BASE DRIVE INFORMATION

In order to saturate the power switch and reduce conduction losses, adequate direct base current I_{B1} has to be provided for the lowest gain h_{FE} at 100 °C (line scan phase). On the other hand, negative base current I_{B2} must be provided to turn off the power transistor (retrace phase).

Most of the dissipation, in the deflection application, occurs at switch-off. Therefore it is essential to determine the value of I_{B2} which minimizes power losses, fall time t_f and, consequently, T_j . A new set of curves have been defined to give total power losses, t_s and t_f as a function of I_{B2} at both 16 KHz and 32 KHz scanning frequencies for choosing the optimum negative drive. The test circuit is illustrated in

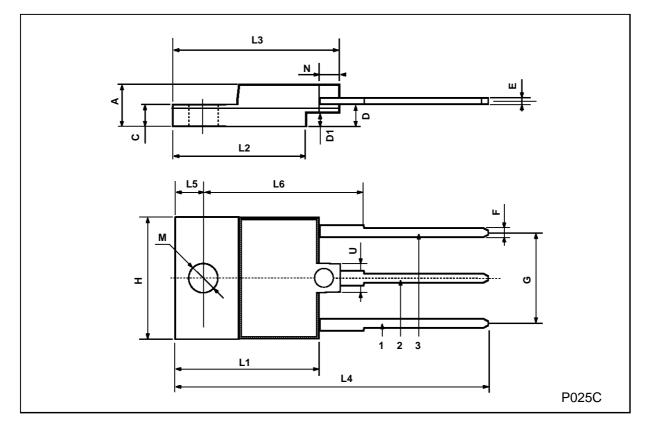
Figure 1: Inductive Load Switching Test Circuit.


figure 1.

Inductance L_1 serves to control the slope of the negative base current I_{B2} to recombine the excess carrier in the collector when base current is still present, this would avoid any tailing phenomenon in the collector current.

The values of L and C are calculated from the following equations:

$$\frac{1}{2}L(I_{C})^{2} = \frac{1}{2}C(V_{CEfly})^{2} \qquad \omega = 2 \pi f = \frac{1}{\sqrt{LC}}$$


Where I_{C} = operating collector current, V_{CEfly} = flyback voltage, f= frequency of oscillation during retrace.

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	5.35		5.65	0.210		0.222
С	3.3		3.8	0.130		0.149
D	2.9		3.1	0.114		0.122
D1	1.88		2.08	0.074		0.081
Е	0.75		1	0.029		0.039
F	1.05		1.25	0.041		0.049
G	10.8		11.2	0.425		0.441
Н	15.8		16.2	0.622		0.637
L1	20.8		21.2	0.818		0.834
L2	19.1		19.9	0.752		0.783
L3	22.8		23.6	0.897		0.929
L4	40.5		42.5	1.594		1.673
L5	4.85		5.25	0.190		0.206
L6	20.25		20.75	0.797		0.817
М	3.5		3.7	0.137		0.145
Ν	2.1		2.3	0.082		0.090
U		4.6			0.181	

ISOWATT218 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

. . .

