DATA SHEET

TDA8706A
 6-bit analog-to-digital converter with multiplexer and clamp

Product specification
File under Integrated Circuits, IC02

6-bit analog-to-digital converter with multiplexer and clamp

FEATURES

-6-bit resolution

- Binary 3-state CMOS outputs
- CMOS compatible digital inputs
- 3 multiplexed video inputs
- R, G and B clamps on code 0
- Single 6-bit ADC operation allowed up to 40 MSPS
- External control of clamping level
- Internal reference voltage (external reference allowed)
- Power dissipation only 36 mW (typical)
- Operating temperature of -40 to $+85^{\circ} \mathrm{C}$
- Operating between 2.7 and 5.5 V .

APPLICATIONS

- General purpose video applications
- R, G and B signals
- Automotive (car navigation)
- LCD systems
- Frame grabber.

GENERAL DESCRIPTION

The TDA8706A is a 6-bit analog-to-digital converter (ADC) with 3 analog multiplexed inputs. Each input has an analog clamp on code 0 for RGB video processing. Clamping level can also be adjusted externally up to code 20. It can also be used as a single 6-bit ADC.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{\text {DDA }}$	analog supply voltage		2.7	3.0	5.5	V
$\mathrm{V}_{\text {DDD }}$	digital supply voltage		2.7	3.0	5.5	V
$\mathrm{V}_{\text {DDO }}$	output stages supply voltage		2.7	3.0	5.5	V
$\mathrm{I}_{\text {DDA }}$	analog supply current		-	7	10	mA
$\mathrm{I}_{\text {DDD }}$	digital supply current		-	4	6	mA
$\mathrm{I}_{\text {DDO }}$	output stages supply current	$\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}$; ramp input	-	1	1.5	mA
INL	integral non-linearity	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \text { ramp input; } \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	-	± 0.25	± 0.6	LSB
DNL	differential non-linearity	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \text { ramp input; } \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	-	± 0.20	± 0.5	LSB
$\mathrm{f}_{\mathrm{clk}(\text { max })}$	maximum clock frequency		40	-	-	MHz
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{f}_{\text {clk }}=40 \mathrm{MHz}$; ramp input 3 V supplies 5.5 V supplies		36	96	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA8706AM	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1

6-bit analog-to-digital converter with multiplexer and clamp

BLOCK DIAGRAM

Fig. 1 Block diagram.

6-bit analog-to-digital converter with multiplexer and clamp

PINNING

SYMBOL	PIN	DESCRIPTION
SR	1	select input RED
SG	2	select input GREEN
SB	3	select input BLUE
CLP	4	clamping pulse input (positive pulse)
V $_{\text {DDA }}$	5	analog supply voltage
V $_{\text {RB }}$	6	reference voltage BOTTOM input
V SSA	7	analog ground
RED	8	RED input
GREEN	9	GREEN input
BLUE	10	BLUE input
V $_{\text {CLPR }}$	11	RED clamping voltage level input
V $_{\text {CLPB }}$	12	BLUE clamping voltage level input
V $_{\text {CLPG }}$	13	GREEN clamping voltage level input
V $_{\text {SSO }}$	14	digital output ground
D0	15	digital voltage output; bit 0 (LSB)
D1	16	digital voltage output; bit 1
D2	17	digital voltage output; bit 2
D3	18	digital voltage output; bit 3
D4	19	digital voltage output; bit 4
D5	20	digital voltage output; bit 5
$V_{\text {DDO }}$	21	supply voltage for output stage
V $_{\text {SSD }}$	22	digital ground
VDD	23	digital supply voltage
CLK	24	clock input

Fig. 2 Pin configuration.

6-bit analog-to-digital converter with multiplexer and clamp

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {DDA }}$	analog supply voltage	-0.3	+7.0	V
$\mathrm{~V}_{\mathrm{DDD}}$	digital supply voltage	-0.3	+7.0	V
$\Delta \mathrm{~V}_{\mathrm{DD}}$	supply voltage difference			
	$\mathrm{V}_{\text {DDA }}-\mathrm{V}_{\text {DDD }}$			
	$\mathrm{V}_{\text {DDA }}-\mathrm{V}_{\text {DDO }}$	-1.0	+1.0	V
	$\mathrm{~V}_{\mathrm{DDD}}-\mathrm{V}_{\mathrm{DDO}}$	-1.0	+1.0	V
	input voltage	-1.0	+1.0	V
$\mathrm{~V}_{\mathrm{I}}$	output current	-0.3	+7.0	V
I_{O}	storage temperature	-	10	mA
$\mathrm{~T}_{\text {stg }}$	operating ambient temperature	-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	junction temperature	-40	+85	${ }^{\circ} \mathrm{C}$
T_{j}		-	+150	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$\mathrm{R}_{\text {th j }-\mathrm{a}}$	thermal resistance from junction to ambient in free air	119	K/W

6-bit analog-to-digital converter with multiplexer and clamp

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{5}$ to $\mathrm{V}_{7}=2.7$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DDD}}=\mathrm{V}_{23}$ to $\mathrm{V}_{22}=2.7$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{DDO}}=\mathrm{V}_{21}$ to $\mathrm{V}_{14}=2.7$ to 5.5 V ;
$\mathrm{V}_{S S A}, \mathrm{~V}_{S S D}$ and $\mathrm{V}_{\mathrm{SSO}}$ shorted together; $\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=0.7 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; typical values measured at
$\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDD}}=\mathrm{V}_{\mathrm{DDO}}=3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
$\mathrm{V}_{\text {DDA }}$	analog supply voltage		2.7	3.0	5.5	V
$\mathrm{V}_{\text {DDD }}$	digital supply voltage		2.7	3.0	5.5	V
$\mathrm{V}_{\text {DDO }}$	output stages supply voltage		2.7	3.0	5.5	V
$\Delta \mathrm{V}_{\mathrm{DD}}$	supply voltage difference $\begin{aligned} & \mathrm{V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{DDD}} \\ & \mathrm{~V}_{\mathrm{DDA}}-\mathrm{V}_{\mathrm{DDO}} \\ & \mathrm{~V}_{\mathrm{DDD}}-\mathrm{V}_{\mathrm{DDO}} \\ & \hline \end{aligned}$		$\begin{array}{r} -0.3 \\ -0.3 \\ -0.3 \\ \hline \end{array}$	\|	$\begin{array}{r} +0.3 \\ +0.3 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$
$\mathrm{I}_{\text {DDA }}$	analog supply current		-	7	10	mA
$\mathrm{I}_{\text {DDD }}$	digital supply current		-	4	6	mA
$\mathrm{I}_{\mathrm{DDO}}$	output stages supply current	$\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}$; ramp input	-	1	1.5	mA
Inputs						
Clock input CLK (REFERENCED to $\mathrm{V}_{\text {SSD }}$); note 1						
VIL	LOW level input voltage		0	-	$\mathrm{V}_{\text {DDD }} \times 0.3$	V
		$\mathrm{V}_{\mathrm{DDD}}<3.3 \mathrm{~V}$	0	-	$V_{\text {DDD }} \times 0.2$	V
V_{IH}	HIGH level input voltage		$\mathrm{V}_{\text {DDD }} \times 0.7$	-	$V_{\text {DDD }}$	V
		$\mathrm{V}_{\text {DDD }}<3.3 \mathrm{~V}$	$\mathrm{V}_{\text {DDD }} \times 0.8$	-	$\mathrm{V}_{\text {DDD }}$	V
$\mathrm{I}_{\text {IL }}$	LOW level input current	$\mathrm{V}_{\mathrm{clk}}=\mathrm{V}_{\mathrm{DDD}} \times 0.2$	-1	0	+1	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	HIGH level input current	$\mathrm{V}_{\mathrm{clk}}=\mathrm{V}_{\mathrm{DDD}} \times 0.8$	-	2	10	$\mu \mathrm{A}$
Z_{i}	input impedance	$\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}$	-	4	-	$\mathrm{k} \Omega$
C_{1}	input capacitance	$\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz}$	-	3	-	pF
Inputs SR, SG, SB, CLP (REFERENCED To V ${ }_{\text {SSD }}$)						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		0	-	$\mathrm{V}_{\text {DDD }} \times 0.3$	V
		$\mathrm{V}_{\mathrm{DDD}}<3.3 \mathrm{~V}$	0	-	$\mathrm{V}_{\text {DDD }} \times 0.2$	V
V_{IH}	HIGH level input voltage		$V_{\text {DDD }} \times 0.7$	-	$V_{\text {DDD }}$	V
		$\mathrm{V}_{\mathrm{DDD}}<3.3 \mathrm{~V}$	$\mathrm{V}_{\text {DDD }} \times 0.8$	-	$\mathrm{V}_{\text {DDD }}$	V
$\mathrm{I}_{\text {IL }}$	LOW level input current	$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{DDD}} \times 0.2$	-1	-	-	$\mu \mathrm{A}$
I_{IH}	HIGH level input current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {DDD }} \times 0.8$	-	-	+1	$\mu \mathrm{A}$
InPuts $\mathrm{V}_{\text {CLPR }}$, $\mathrm{V}_{\text {CLPG }}$ AND $\mathrm{V}_{\text {CLPB }}$ (REFERENCED To $\mathrm{V}_{\text {SSA }}$); see Tables 1 and 2						
$\mathrm{V}_{\text {CLP }}$	input voltage for clamping		$\mathrm{V}_{\text {code - }}$	-	$\mathrm{V}_{\text {code } 20}$	V
$\mathrm{I}_{\text {CLP }}$	input current		-	-	30	$\mu \mathrm{A}$

6-bit analog-to-digital converter with multiplexer and clamp

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Analog inputs RED, GREEN and BLUE; see Table 1						
$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	input voltage amplitude (peak-to-peak value)	$\begin{aligned} & \mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDD}}=3 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	0.665	0.70	0.735	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDD}}=5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	0.625	0.66	0.695	V
I_{i}	input current		-	-	10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {clamp }}$	clamp coupling capacitance		1	10	100	nF
Reference voltages for the resistor ladder; see Table 1						
V_{RB}	reference voltage BOTTOM	$\mathrm{V}_{\text {DDA }}=3 \mathrm{~V}$	-	$\mathrm{V}_{\text {DDA }}-1.19$	-	V
		$\mathrm{V}_{\text {DDA }}=5 \mathrm{~V}$	-	$\mathrm{V}_{\text {DDA }}-1.13$	-	V
$\Delta \mathrm{T}_{\mathrm{VRB}}$	temperature variation on V_{RB}	$\mathrm{T}_{\mathrm{amb}}=0$ to $50{ }^{\circ} \mathrm{C}$	-	0.7	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Outputs						
DIGITAL OUTPUTS D5 to D0 (REFERENCED To $\mathrm{V}_{\text {SSD }}$)						
$\mathrm{V}_{\text {OL }}$	LOW level output voltage	$\mathrm{l}_{0}=1 \mathrm{~mA}$	0	-	0.5	V
V_{OH}	HIGH level output voltage	$\mathrm{l}_{\mathrm{O}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\text {DDO }}-0.5$	-	$\mathrm{V}_{\mathrm{DDO}}$	V
Switching characteristics						
Clock input CLK; see Fig.3; note 1						
$\mathrm{f}_{\mathrm{clk}(\text { max })}$	maximum clock frequency		40	-	-	MHz
$\mathrm{f}_{\text {mux (max) }}$	maximum multiplexer frequency		20	-	-	MHz
$\mathrm{t}_{\text {CPH }}$	clock pulse width HIGH		8	-	-	ns
$\mathrm{t}_{\text {CPL }}$	clock pulse width LOW		8	-	-	ns
t_{r}	clock rise time	$\begin{aligned} & 10 \% \text { to } 90 \% ; \mathrm{f}_{\mathrm{clk}} \leq 25 \mathrm{MHz} \\ & \text { LOW }=\mathrm{V}_{\mathrm{SSD}}, \mathrm{HIGH}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	-	-	10	ns
t_{f}	clock fall time	$\begin{aligned} & 90 \% \text { to } 10 \% ; \mathrm{f}_{\mathrm{clk}} \leq 25 \mathrm{MHz} \\ & \text { LOW }=\mathrm{V}_{\mathrm{SSD}}, \mathrm{HIGH}=\mathrm{V}_{\mathrm{DDD}} \end{aligned}$	-	-	10	ns
Analog signal processing						
LINEARITY						
INL	integral non-linearity	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \text { ramp input; } \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-	± 0.25	± 0.6	LSB
DNL	differential non-linearity	$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \text { ramp input; } \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	-	± 0.20	± 0.5	LSB
EfFECTIVE BITS; note 2						
EB	effective bits	$\mathrm{f}_{\mathrm{clk}}=40 \mathrm{MHz} ; \mathrm{f}_{\mathrm{i}}=4.43 \mathrm{MHz}$	-	5.8	-	bits

6-bit analog-to-digital converter with multiplexer and clamp

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Timing ($\mathrm{f}_{\mathrm{clk}}=\mathbf{4 0} \mathrm{MHz}$; $\mathrm{C}_{\mathrm{L}}=\mathbf{2 0} \mathrm{pF}$); $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; see Fig. 3						
Output data; note 3						
t_{ds}	sampling delay time		-	-	7	ns
t_{h}	output hold time		5	-	-	ns
t_{d}	output delay time	$\mathrm{V}_{\text {DDO }}=4.75 \mathrm{~V}$	-	12	15	ns
		$\mathrm{V}_{\text {DDO }}=3.15 \mathrm{~V}$	-	17	20	ns
		$\mathrm{V}_{\mathrm{DDO}}=2.70 \mathrm{~V}$	-	18	21	ns

Select infut signals SR, SG, SB and CLP

$\mathrm{t}_{\text {su }}$	set-up time SR, SG and SB	with no overlap; see Fig. 3	10	-	-	ns
		with overlap	see Fig. 4			ns
tr_{r}	rise time SR, SG and SB	10\% to 90\%	4	6	-	ns
t_{f}	fall time SR, SG and SB	90\% to 10\%	4	6	-	ns
$\mathrm{t}_{\text {over }}$	R, G and B (active) overlap time with respect to select signals SR, SG and SB	see Fig. 4	0	-	-	ns
$\mathrm{t}_{\text {CLPP }}$	clamp pulse time	$\mathrm{C}_{\text {CLP }}=10 \mathrm{nF}$	-	3	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {MH }}$	multiplexer hold time SR, SG and SB		9	-	-	ns

Notes

1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock must not be less than 1 ns .
2. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8 K acquisition points per equivalent fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency). Conversion to signal-to-noise ratio: $\mathrm{S} / \mathrm{N}=\mathrm{EB} \times 6.02+1.76 \mathrm{~dB}$.
3. Output data acquisition: the output data is available after the maximum delay time of t_{d}.

6-bit analog-to-digital converter with multiplexer and clamp

Table 1 Output coding and input voltage (typical values)

STEP	$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}(\mathrm{V})$		BINARY OUTPUT BITS					
	$\mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{DDD}}=3 \mathrm{~V}$	$\mathrm{V}_{\text {DDA }}=\mathrm{V}_{\text {DDD }}=5 \mathrm{~V}$	D5	D4	D3	D2	D1	D0
Underflow	$<\mathrm{V}_{\text {DDA }}-1.1$	$<\mathrm{V}_{\text {DDA }}-1.06$	0	0	0	0	0	0
0	$\mathrm{V}_{\text {DDA }}-1.1$	$\mathrm{V}_{\text {DDA }}-1.06$	0	0	0	0	0	0
1	.	.	0	0	0	0	0	1
.
.
62	.	.	1	1	1	1	1	0
63	$\mathrm{V}_{\text {DDA }}-0.4$	$\mathrm{V}_{\text {DDA }}-0.4$	1	1	1	1	1	1
Overflow	$>\mathrm{V}_{\text {DDA }}-0.4$	$>\mathrm{V}_{\text {DDA }}-0.4$	1	1	1	1	1	1

Table 2 Clamping input level ($\mathrm{V}_{\text {CLPR }}, \mathrm{V}_{\mathrm{CLPG}}$ and $\left.\mathrm{V}_{\mathrm{CLPB}}\right)$

$\mathbf{V}_{\text {CLPR }}, \mathbf{V}_{\text {CLPG }}$ AND $\mathbf{V}_{\text {CLPB }}$	CLAMPING LEVEL
Open-circuit(1)	code 0
$\mathrm{V}_{\text {code-9 }}$ to $\mathrm{V}_{\text {code 20 }}$	code -9 to code 20

Note

1. Use capacitor $\geq 10 \mathrm{pF}$ to $\mathrm{V}_{\mathrm{SSA}}$.

Table 3 Clamp and inputs RED, GREEN and BLUE; $V_{D D A}=V_{D D D}=V_{D D O}=3 \mathrm{~V}$

SR or SG or SB	CLAMP	$\mathbf{V}_{\text {CLPR }}, \mathbf{V}_{\text {CLPG }}$ or $\mathbf{V}_{\text {CLPB }}$	$\mathbf{V}_{\mathbf{i}}$ RED or GREEN or BLUE	DIGITAL OUTPUTS
0	1	open	$\mathrm{V}_{\text {DDA }}-1.1 \mathrm{~V}$	${ }^{(1)}$
		$\mathrm{~V}_{\mathrm{CLP}}$	$\mathrm{V}_{\mathrm{CLP}}$	
		open	$\mathrm{V}_{\text {DDA }}-1.1 \mathrm{~V}$	0
		$\mathrm{~V}_{\mathrm{CLP}}$	$\mathrm{V}_{\mathrm{CLP}}$	code $\left(\mathrm{V}_{\mathrm{CLP}}\right)$

Note

1. Where $\mathrm{X}=$ don't care

Table 4 Clamping characteristic related to TV signals

PARAMETER	MIN.	TYP.	MAX.	UNIT
Clamping time per line (signal active)	2.2	3.0	-	$\mu \mathrm{s}$
Input signals clamped to correct level	-	3	10	lines

Fig.3 AC characteristics select signals, clamp and output data.

6-bit analog-to-digital converter with multiplexer and clamp

Fig. 4 Anti-overlap system for analog multiplexer.

Fig. 5 AC characteristics select signals; clamp and data.

6-bit analog-to-digital converter with multiplexer and clamp

INTERNAL PIN CONFIGURATIONS

Fig. 6 CMOS data outputs.

Fig. 7 VBB.

Fig. 8 CLK input.

6-bit analog-to-digital converter with multiplexer and clamp

APPLICATION INFORMATION

The analog and digital supplies should be separated and decoupled.
V_{RB} must not be connected to $\mathrm{V}_{\mathrm{CLPR}}, \mathrm{V}_{\mathrm{CLPB}}$ or $\mathrm{V}_{\mathrm{CLPG}}$ pins.
For applications where the black level is clamped to code $0, V_{C L P R}, V_{C L P B}$ and $V_{C L P G}$ must be left open-circuit with their respective decoupling capacitors. In that event, they may also be connected together in order to use only one single decoupling capacitor.
(1) V_{RB} is decoupled to $\mathrm{V}_{\text {SSA }}$. Eventually an external regulator can be connected to V_{RB}.
(2) $\mathrm{V}_{\mathrm{CLPR}}, \mathrm{V}_{\mathrm{CLPB}}$ and $\mathrm{V}_{\mathrm{CLPG}}$ are decoupled to $\mathrm{V}_{\text {SSA }}$. Eventually external voltages can be forced on $\mathrm{V}_{\mathrm{CLPR}}, \mathrm{V}_{\mathrm{CLPB}}$ and $\mathrm{V}_{\mathrm{CLPG}}$.

Fig. 9 Application diagram.

6-bit analog-to-digital converter with multiplexer and clamp

PACKAGE OUTLINE

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & \hline 0.8 \\ & 0.4 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT340-1		MO-150AG			$-09-08$	

6-bit analog-to-digital converter with multiplexer and clamp

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO and SSOP packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

SO

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

SSOP
Wave soldering is not recommended for SSOP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end.

Even with these conditions, only consider wave soldering SSOP packages that have a body width of 4.4 mm , that is SSOP16 (SOT369-1) or SSOP20 (SOT266-1).

Method (SO and SSOP)

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

6-bit analog-to-digital converter with multiplexer and clamp

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

6-bit analog-to-digital converter with multiplexer and clamp

NOTES

6-bit analog-to-digital converter with multiplexer and clamp

NOTES

6-bit analog-to-digital converter with multiplexer and clamp

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +453288 2636, Fax. +4531571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 615 800, Fax. +358 61580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. +30 14894 339/911, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722 Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095926 5361, Fax. +7 0955648323
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11470 5911, Fax. +27114705494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEl 100, Tel. +886 2382 4443, Fax. +886 23824444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11825 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1996
SCA51
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

PHILIPS

