DATA SHEET

TDA6404; TDA6405; TDA6405A 5 V mixer/oscillator-PLL synthesizers for hyperband tuners

File under Integrated Circuits, IC02

PHILIPS

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

TDA6404; TDA6405; TDA6405A

FEATURES

- Single chip 5 V mixer/oscillator-PLL synthesizer for hyperband tuners
- $\mathrm{I}^{2} \mathrm{C}$-bus protocol
- 3 PNP band switch buffers (25 mA)
- 33 V tuning voltage output
- In-lock detector
- 5-level Analog-to-Digital Converter (ADC)
- 15-bit programmable divider
- Programmable reference divider ratio (512, 640 or 1024)
- Programmable charge pump current
- Balanced mixer with a common emitter input for VHF (single input)
- Balanced mixer with a common base input for UHF (double input)
- 4-pin common emitter oscillator for VHF
- 4-pin common emitter oscillator for UHF
- IF amplifier with a low output impedance to drive a SAW filter directly ($\approx 2 \mathrm{k} \Omega$ load)
- Low power, low radiation, small size

APPLICATIONS

- Hyperband tuners for Europe using a 2-band mixer/oscillator in a switched concept.

GENERAL DESCRIPTION

The TDA6404, TDA6405 and TDA6405A are programmable 2-band mixer/oscillator-PLL synthesizers intended for VHF/UHF and hyperband tuners (see Fig.1).

The devices include two double balanced mixers and two oscillators for the VHF and UHF band, an IF amplifier and a PLL synthesizer. With proper oscillator application and by using a switchable inductor to split the VHF band into two sub-bands (the full VHF/UHF and hyperband) the TV bands can be covered.

Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling. Three PNP ports are provided for band switching. Band selection is made according to the band switch bits VHFL, VHFH and UHF.

The PLL synthesizer consists of a divide-by-eight prescaler, a 15 -bit programmable divider, a 4 MHz crystal oscillator and its programmable reference divider and a phase comparator combined with a charge pump which drives the tuning amplifier, including 33 V output.

Depending on the reference divider ratio (512, 640 or 1024), the phase comparator operates at 7.8125 kHz , 6.25 kHz or 3.90625 kHz .

The devices are controlled according to the $\mathrm{I}^{2} \mathrm{C}$-bus format. The in-lock detector bit FL is set to logic 1 when the loop is locked and is read on the SDA line (status byte) during a read operation. The ADC input is available for digital Automatic Frequency Control (AFC). The ADC code is read during a read operation on the ${ }^{2} \mathrm{C}$-bus (see Table 9). In test mode, pin ADC is used as a test output for $f_{\text {REF }}$ and $1 / 2 f_{\text {DIV }}$.

When the charge pump current switch mode is activated and the loop is phase-locked the charge pump current value is automatically switched to LOW. This is to improve carrier-to-noise ratio. The status of this feature can be read in the ACPS flag during a read operation on the $1^{2} \mathrm{C}$-bus (see Table 7).

Five serial bytes (including address byte) are required for the $\mathrm{I}^{2} \mathrm{C}$-bus format to address the devices, select the VCO frequency, program the three PNP ports, set the charge pump current and to set the reference divider ratio. The devices have four independent $\mathrm{I}^{2} \mathrm{C}$-bus addresses which can be selected by applying a specific voltage on the AS input (see Table 4).

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{CC}	supply voltage	operating	4.5	5	5.5	V
I_{CC}	supply current	all PNP ports are 'OFF'	-	78	-	mA
$\mathrm{f}_{\text {XTAL }}$	crystal oscillator frequency	$\mathrm{R}_{\mathrm{XTAL}}=25$ to 150Ω	3.2	4.0	4.48	MHz
$\mathrm{I}_{\text {(PNP) }}$	PNP port output current		-	-	25	mA
$\mathrm{T}_{\text {stg }}$	IC storage temperature		-40	-	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-20	-	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{f}_{(\text {(i) } \mathrm{RF}}$	RF input frequency	VHF band	45.25	-	399.25	MHz
		UHF band	407.25	-	855.25	MHz
Gv	voltage gain	VHF band	-	27	-	dB
		UHF band	-	38	-	dB
F	noise figure	VHF band	-	8	-	dB
		UHF band	-	8.5	-	dB
V 。	output voltage causing 1% cross modulation in channel	VHF band	-	119	-	$\mathrm{dB} \mu \mathrm{V}$
		UHF band	-	118	-	$\mathrm{dB} \mathrm{\mu} \mathrm{~V}$

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA6404TS; TDA6405TS; TDA6405ATS	SSOP28	plastic shrink small outline package; 28 leads; body width 5.3 mm	SOT341-1

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

TDA6404; TDA6405; TDA6405A

BLOCK DIAGRAM

The pin numbers in parenthesis represent the TDA6405 and TDA6405A.
Fig. 1 Block diagram.

5 V mixer/oscillator-PLL synthesizers for

PINNING

SYMBOL	PIN		DESCRIPTION
	TDA6404	TDA6405; TDA6405A	
UHFIN1	1	28	UHF input 1
UHFIN2	2	27	UHF input 2
VHFIN	3	26	VHF input
RFGND	4	25	RF ground
IFFIL1	5	24	IF filter output 1
IFFIL2	6	23	IF filter output 2
PVHFL	7	22	PNP port output for VHF low band
PVHFH	8	21	PNP port output for VHF high band
PUHF	9	20	PNP port output for UHF band
AS	10	19	address selection input
SDA	11	18	serial data input/output (I2C-bus)
SCL	12	17	serial clock input (I2C-bus)
ADC	13	16	Analog-to-Digital Converter input/output
CP	14	15	charge pump output
VT	15	14	tuning output
XTAL	16	13	crystal oscillator input
VCC	17	12	supply voltage
IFOUT1	18	11	IF amplifier output 1
IFOUT2	19	10	IF amplifier output 2
GND	20	9	ground
UHFOSCIB1	21	8	UHF oscillator base input 1
UHFOSCOC1	22	7	UHF oscillator collector output 1
UHFOSCOC2	23	6	UHF oscillator collector output 2
UHFOSCIB2	24	5	UHF oscillator base input 2
VHFOSCIB1	25	4	VHF oscillator base input 1
VHFOSCOC1	26	3	VHF oscillator collector output 1
VHFOSCOC2	27	2	VHF oscillator collector output 2
VHFOSCIB2	28	1	VHF oscillator base input 2

5 V mixer/oscillator-PLL synthesizers for

Fig. 2 Pin configuration for TDA6404.

FUNCTIONAL DESCRIPTION

The devices are controlled via the $\mathrm{I}^{2} \mathrm{C}$-bus.
For programming, there is one module address (7 bits) and the $\mathrm{R} / \overline{\mathrm{W}}$ bit for selecting the read or write mode.

Write mode

Data bytes can be sent to the devices after the address transmission (first byte) by setting the R/W bit to logic 0 . Four data bytes are needed to fully program the devices. The $\mathrm{I}^{2} \mathrm{C}$-bus transceiver has an auto-increment facility which permits the programming of the devices within one single transmission (address +4 data bytes).
The devices can also be partially programmed, providing that the first data byte following the address is divider byte 1 (DB1) or control byte (CB). The bits in the data bytes are defined in Tables 1 and 2.

Fig. 3 Pin configuration for TDA6405(A)

The first bit of the data byte transmitted indicates whether frequency data (first bit $=0$) or control and band switch data (first bit $=1$) will follow. Until an ${ }^{2} \mathrm{C}$-bus STOP condition is sent by the controller, additional data bytes can be entered without the need to re-address the devices. The frequency register is loaded after the 8th clock pulse of the second divider byte (DB2). The control register is loaded after the 8th clock pulse of the CB. The band switch register is loaded after the 8th clock pulse of the band switch byte (BB).

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

Table $1 \quad I^{2} \mathrm{C}$-bus mode, write data format for the TDA6404 and TDA6405

NAME	BYTE	BITS								ACK
		MSB LSB								
Address byte	ADB	1	1	0	0	0	MA1	MAO	$\mathrm{R} / \overline{\mathrm{W}}=0$	A
Divider byte 1	DB1	0	N14	N13	N12	N11	N10	N9	N8	A
Divider byte 2	DB2	N7	N6	N5	N4	N3	N2	N1	N0	A
Control byte	CB	1	CHP	T2	T1	T0	RSA	RSB	OS	A
Band-switch byte	BB	X	X	X	X	X	UHF	VHFH	VHFL	A

Table $2 I^{2}$ C-bus mode, write data format for the TDA6405A

NAME	BYTE	BITS								ACK
		MSB LSB								
Address byte	ADB	1	1	0	0	0	MA1	MAO	R/W $=0$	A
Divider byte 1	DB1	0	N14	N13	N12	N11	N10	N9	N8	A
Divider byte 2	DB2	N7	N6	N5	N4	N3	N2	N1	N0	A
Control byte	CB	1	CHP	T2	T1	T0	RSA	RSB	OS	A
Band-switch byte	BB	X	X	X	X	UHF	X	VHFH	VHFL	A

I2C-bus address selection

The module address contains programmable address bits (MA1 and MA0) which offer the possibility of having several synthesizers (up to 4) in one system by applying a specific voltage on the AS input. The relationship between MA1 and MAO and the input voltage applied to the AS input is given in Table 4.

Table 3 Description of symbols used in Tables 1 and 2

SYMBOL	DESCRIPTION
A	acknowledge
MA1 and MA0	programmable address bits (see Table 4)
N14 to N0	programmable divider bits; $\mathrm{N}=\mathrm{N} 14 \times 2^{14}+\mathrm{N} 13 \times 2^{13}+\ldots+\mathrm{N} 1 \times 2^{1}+\mathrm{N} 0$
CHP	charge pump current bit: $\begin{aligned} & \mathrm{CHP}=0 ; \mathrm{I}_{\mathrm{CP}}=60 \mu \mathrm{~A} \\ & \mathrm{CHP}=1 ; \mathrm{I}_{\mathrm{CP}}=280 \mu \mathrm{~A} \text { (default) } \end{aligned}$
T2, T1 and T0	test bits (see Table 5)
RSA and RSB	reference divider ratio select bits (see Table 6)
OS	tuning amplifier control bit: OS = 0; normal operation; tuning voltage is 'ON' OS = 1 ; tuning voltage is 'OFF' (high-impedance)
UHF, VHFH and VHFL	PNP ports control bits: bit $=0$; buffer n is 'OFF' (default) bit $=1$; buffer n is 'ON'
X	don't care bit: may be a logic 0 or a logic 1

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

Table 4 Address selection $I^{2} \mathrm{C}$-bus

MA1	MA0	VOLTAGE APPLIED ON AS INPUT
0	0	0 to $0.1 \mathrm{~V}_{\mathrm{CC}}$
0	1	open or $0.2 \mathrm{~V}_{\mathrm{CC}}$ to $0.3 \mathrm{~V}_{\mathrm{CC}}$
1	0	$0.4 \mathrm{~V}_{\mathrm{CC}}$ to $0.6 \mathrm{~V}_{\mathrm{CC}}$
1	1	$0.9 \mathrm{~V}_{\mathrm{CC}}$ to $1.0 \mathrm{~V}_{\mathrm{CC}}$

Table 5 Test mode

T2	T1	T0	TEST MODES
0	0	0	automatic charge pump off
0	0	1	automatic charge pump on; note 1
0	1	X	charge pump is 'OFF'
1	1	0	charge pump is sinking current
1	1	1	charge pump is sourcing current
1	0	0	$\mathrm{f}_{\text {REF }}$ is available on pin ADC; note 2
1	0	1	$1 / 2 \mathrm{f}_{\text {DIV }}$ is available on pin ADC; note 2

Notes

1. This is the default mode at Power-on reset.
2. The ADC input cannot be used when these test modes are active.

Table 6 Reference divider ratio select bits

RSA	RSB	REFERENCE DIVIDER RATIO	FREQUENCY STEP (kHz)
X	0	640	6.25
0	1	1024	3.90625
1	1	512	7.8125

Read mode

Data can be read from the devices by setting the R / \bar{W} bit to logic 1 (see Tables 7 and 8). After the slave address has been recognized, the devices generate an acknowledge pulse and the first data byte (status byte) is transferred on the SDA line (MSB first). Data is valid on the SDA line during a HIGH-level of the SCL clock signal. A second data byte can be read from the devices if the processor generates an acknowledge on the SDA line (master acknowledge). End of transmission will occur if no master acknowledge occurs. The devices will then release the data line to allow the processor to generate a STOP condition. The POR flag is set to logic 1 at power-on. The flag is reset when an end-of-data is detected by the devices (end of a read sequence). Control of the loop is made possible with the in-lock flag FL which indicates when the loop is locked ($F L=1$).

The ACPS flag is LOW when the automatic charge pump switch mode is 'ON' and the loop is locked. In other conditions, $\operatorname{ACPS}=1$. When ACPS $=0$, the charge pump current is forced to the LOW value.

A built-in ADC is available on ADC pin. This converter can be used to apply AFC information to the controller from the IF section of the television. The relationship between the bits A2, A1 and A0 is given in Table 9.

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

Table 7 Read data format

NAME	BYTE	BITS								ACK
		MSB ${ }^{(1)}{ }^{\text {a }}$ (LSB								
Address byte	ADB	1	1	0	0	0	MA1	MAO	$\mathrm{R} / \overline{\mathrm{W}}=1$	A
Status byte	SB	POR	FL	ACPS	1	1	A2	A1	A0	-

Note

1. MSB is transmitted first.

Table 8 Description of symbols used in Table 7

SYMBOL	
A	acknowledge
POR	Power-on reset flag (POR = 1 at power-on)
FL	in-lock flag (FL = 1 when the loop is locked)
ACPS	automatic charge pump switch flag: ACPS $=0 ;$ active ACPS $=1 ;$ not active
A2, A1 and A0	digital outputs of the 5-level ADC (see Table 9)

Table 9 Analog-to-digital converter levels; note 1

A2	A1	A0	VOLTAGE APPLIED ON ADC INPUT
1	0	0	$0.60 \mathrm{~V}_{\mathrm{CC}}$ to $1.00 \mathrm{~V}_{\mathrm{CC}}$
0	1	1	$0.45 \mathrm{~V}_{\mathrm{CC}}$ to $0.60 \mathrm{~V}_{\mathrm{CC}}$
0	1	0	$0.30 \mathrm{~V}_{\mathrm{CC}}$ to $0.45 \mathrm{~V}_{\mathrm{CC}}$
0	0	1	$0.15 \mathrm{~V}_{\mathrm{CC}}$ to $0.30 \mathrm{~V}_{\mathrm{CC}}$
0	0	0	0 to $0.15 \mathrm{~V}_{\mathrm{CC}}$

Note

1. Accuracy is $\pm 0.03 \mathrm{~V}_{\mathrm{Cc}}$.

Power-on reset

The power-on detection threshold voltage $\mathrm{V}_{\mathrm{POR}}$ is set to $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ at room temperature. Below this threshold, the device is reset to the power-on state.
At power-on state, the charge pump current is set to $280 \mu \mathrm{~A}$, the tuning voltage output is disabled, the test bits T2, T1 and T0 are set to logic 001 (automatic charge pump switch 'ON') and RSB is set to logic 1.

PUHF is 'OFF', which means that the UHF oscillator and the UHF mixer are switched off. Consequently, the VHF oscillator and the VHF mixer are switched on. PVHFL and PVHFH are 'OFF', which means that the VHF tank circuit is working in the VHF I sub-band. The tuning amplifier is switched off until the first transmission. In that case, the tank circuit in VHF I is supplied with the maximum tuning voltage. The oscillator is therefore working at the end of the VHF I sub-band.

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

Table 10 Default bits at Power-on reset

NAME	BYTE	BITS							
		MSB						LSB	
Address byte	ADB	1	1	0	0	0	MA1	MAO	X
Divider byte 1	DB1	0	X	X	X	X	X	X	X
Divider byte 2	DB2	X	X	X	X	X	X	X	X
Control byte	CB	1	1	0	0	1	X	1	0
Band-switch byte	BB	X	X	X	X	0	0	0	0

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134) (note 1).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {CC }}$	supply voltage	-0.3	+6	V
$\mathrm{V}_{\text {O(n) }}$	output voltage on pins PVHFL, PVHFH and PUHF	-0.3	+6	V
$\mathrm{I}_{(\text {(n) }}$	output current on pins PVHFL, PVHFH and PUHF	-1	+30	mA
$\mathrm{V}_{\text {O(CP) }}$	charge pump output voltage	-0.3	+6	V
$\mathrm{V}_{\text {O(VT) }}$	tuning output voltage	-0.3	+35	V
$\mathrm{V}_{\text {I/O(ADC }}$	ADC input/output voltage	-0.3	+6	V
$\mathrm{V}_{\text {I(SCL) }}$	serial clock input voltage	-0.3	+6	V
$\mathrm{V}_{\text {I/O(SDA }}$	serial data input/output voltage	-0.3	+6	V
$\mathrm{I}_{\text {O(SDA) }}$	data output current	-1	+10	mA
$\mathrm{V}_{1(\mathrm{AS})}$	address selection input voltage	-0.3	+6	V
$\mathrm{V}_{1(\text { (XTAL) }}$	crystal oscillator input voltage	-0.3	+6	V
$\mathrm{I}_{(\text {(})}$	output current of each pin to ground: for TDA6404, pins 1 to 6 and 17 to 28 for TDA6405 and TDA6405A, pins 1 to 12 and 23 to 28	-	$\begin{array}{r} -10 \\ -10 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{t}_{\text {sc (max) }}$	maximum short-circuit time (all pins to V_{CC} and all pins to GND, RFGND)	-	10	S
$\mathrm{T}_{\text {stg }}$	IC storage temperature	-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-20	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	-	150	${ }^{\circ} \mathrm{C}$

Note

1. Maximum ratings can not be exceeded, not even momentarily without causing irreversible IC damage. Maximum ratings can not be accumulated.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
$R_{\text {th }(j-a)}$	thermal resistance from junction to ambient	in free air	85	K/W

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply ($\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$)						
$\mathrm{V}_{\text {CC }}$	supply voltage		4.5	5	5.5	V
I_{CC}	supply current at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	all PNP ports are 'OFF'	-	78	86	mA
		one PNP port is 'ON', sourcing 25 mA	-	110	121	mA
PLL Synthesizer part ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-20$ to $+8{ }^{\circ} \mathrm{C}$; unless otherwise specified)						
Functional range						
$\mathrm{V}_{\mathrm{POR}}$	Power-on reset voltage	below this supply voltage Power-on reset becomes active; see Table 10	1.5	2.0	-	V
D/D	divider ratio	15-bit frequency word	256	-	32767	
$\mathrm{f}_{\text {XTAL }}$	crystal oscillator frequency	$\mathrm{R}_{\text {XTAL }}=25$ to 150Ω	3.2	4	4.48	MHz
$\left\|Z_{\text {XTAL }}\right\|$	input impedance	$\mathrm{f}_{\text {XTAL }}=4 \mathrm{MHz}$	600	1200	-	Ω
PNP PORTS						
$\mathrm{I}_{\mathrm{L} \text { (off) }}$	leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{PNPn}}=0$	-10	-	-	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{O} \text { (sat) }}$	output saturation voltage	one PNP port is 'ON', sourcing 25 mA ; $\mathrm{V}_{\mathrm{PNPn}(\text { sat })}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{PNPn}}$	-	0.25	0.4	V
ADC input						
V_{1}	ADC input voltage	see Table 9	0	-	V_{CC}	V
$\mathrm{IIH}^{\text {H }}$	HIGH-level input current	$\mathrm{V}_{\mathrm{ADC}}=\mathrm{V}_{\mathrm{CC}}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW-level input current	$\mathrm{V}_{\text {ADC }}=0$	-10	-	-	$\mu \mathrm{A}$
Address selection input (AS)						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		0	-	1.5	V
$\mathrm{V}_{\text {IH }}$	HIGH-level input voltage		3	-	5.5	V
I_{IH}	HIGH-level input current	$\mathrm{V}_{\text {AS }}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW-level input current	$\mathrm{V}_{\text {AS }}=0$	-10	-	-	$\mu \mathrm{A}$
SCL AND SDA Inputs						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		0	-	1.5	V
V_{IH}	HIGH-level input voltage		3.0	-	5.5	V
$\mathrm{IIH}^{\text {H }}$	HIGH-level input current	$\mathrm{V}_{\text {bus }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0$	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {bus }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
IIL	LOW-level input current	$\mathrm{V}_{\text {bus }}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0$	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {bus }}=0 ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
$\mathrm{f}_{\text {SCL }}$	serial clock frequency		-	100	150	kHz
SDA OUTPUT						
IL	leakage current	$\mathrm{V}_{\text {SDA }}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
V_{O}	output voltage	$\mathrm{I}_{\text {SDA }}=3 \mathrm{~mA}$ (sink current)	-	-	0.4	V

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

TDA6404; TDA6405; TDA6405A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CHARGE PUMP OUTPUT (CP)						
$\left\|I_{I H}\right\|$	HIGH-level input current	CHP = 1	-	280	-	$\mu \mathrm{A}$
$\left\|I_{\text {IL }}\right\|$	LOW-level input current	CHP = 0	-	60	-	$\mu \mathrm{A}$
V_{O}	output voltage	PLL is locked; $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	-	1.95	-	V
$\mathrm{I}_{\mathrm{L} \text { (off) }}$	off-state leakage current	$\mathrm{T} 2=0 ; \mathrm{T} 1=1$	-15	-0.5	+15	nA
Tuning voltage output (VT)						
$\mathrm{I}_{\mathrm{L} \text { (off) }}$	off-state leakage current	$\mathrm{OS}=1$; tuning supply $=33 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
V_{O}	output voltage when the loop is closed	$\begin{aligned} & \hline \mathrm{OS}=0 ; \mathrm{T} 2=0 ; \mathrm{T} 1=0 ; \mathrm{TO}=1 ; \\ & \mathrm{R}_{\mathrm{L}}=27 \mathrm{k} \Omega ; \text { tuning supply }=33 \mathrm{~V} \end{aligned}$	0.2	-	32.7	V
Mixer/oscillator part ($\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified); measured in Fig. 11						
IF AMPLIFIER						
S_{22}	output reflection coefficient	magnitude at $36.15 \mathrm{MHz} ; \mathrm{Z}_{0}=50 \Omega$	-	-12.5	-	dB
		phase at $36.15 \mathrm{MHz} ; \mathrm{Z}_{0}=50 \Omega$	-	1.41	-	deg
R_{S}	real part of $Z_{0}=R_{s}+j \omega L_{s}$	R_{s} at 36.15 MHz	-	81	-	Ω
L_{s}	imaginary part of $Z_{o}=R_{s}+j \omega L_{s}$	L_{s} at 36.15 MHz	-	9.5	-	nH
VHF MIXER (INCLUDING IF AMPLIFIER)						
$\mathrm{f}_{\text {(}} \mathrm{RF}$)	RF input frequency	picture carrier frequency	45.25	-	399.25	MHz
F	noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Figs 8 and 9	-	7	9	dB
		$\mathrm{f}_{\mathrm{RF}}=150 \mathrm{MHz}$; see Figs 8 and 9	-	8	10	dB
		$\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$;	-	9	11	dB
gos	optimum source conductance for noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$	-	0.7	-	mS
		$\mathrm{f}_{\mathrm{RF}}=150 \mathrm{MHz}$	-	0.9	-	mS
		$\mathrm{f}_{\mathrm{RF}}=300 \mathrm{MHz}$	-	1.5	-	mS
g_{i}	input conductance	$\mathrm{f}_{\mathrm{RF}}=45.25 \mathrm{MHz}$	-	0.25	-	mS
		$\mathrm{f}_{\mathrm{RF}}=399.25 \mathrm{MHz}$	-	0.5	-	mS
C_{i}	input capacitance	$\mathrm{f}_{\mathrm{RF}}=45.25$ to 399.25 MHz	-	2	-	pF
V_{0}	output voltage causing 1\% cross modulation in channel	$\mathrm{f}_{\mathrm{RF}}=45.25 \mathrm{MHz}$; see Fig. 6	116	119	-	$\mathrm{dB} \mathrm{\mu} \mathrm{~V}$
		$\mathrm{f}_{\mathrm{RF}}=399.25 \mathrm{MHz}$; see Fig. 6	116	119	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage causing pulling in channel $(750 \mathrm{~Hz})$	$\mathrm{f}_{\mathrm{RF}}=399.25 \mathrm{MHz}$; note 1	-	88	-	$\mathrm{dB} \mu \mathrm{V}$
G_{V}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=45.25 \mathrm{MHz}$; see Fig. 4	24.5	27	29.5	dB
		$\mathrm{f}_{\mathrm{RF}}=399.25 \mathrm{MHz}$; see Fig. 4	24.5	27	29.5	dB
VHF OSCILLATOR						
$\mathrm{f}_{\text {osc }}$	oscillator frequency		84.15	-	438.15	MHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$	oscillator frequency shift with supply voltage	$\Delta V_{C C}=5 \%$; worst case in the frequency range; note 2	-	100	200	kHz
		$\Delta V_{C C}=10 \%$; worst case in the frequency range; note 2	-	200	-	kHz

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\Delta \mathrm{f}_{\text {osc }(\mathrm{T})}$	oscillator frequency drift with temperature	$\Delta \mathrm{T}=25^{\circ} \mathrm{C}$ with compensation; worst case in the frequency range; note 3	-	1300	2000	kHz
$\Delta \mathrm{f}_{\text {osc }(t)}$	oscillator frequency drift with time	with compensation; worst case in the frequency range; note 4	-	600	900	kHz
$\Phi_{\text {osc }}$	phase noise, carrier to noise sideband	$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range	-	106	-	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{RSC}_{(p-p)}$	ripple susceptibility of V_{CC} (peak-to-peak value)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; worst case in the frequency range; ripple frequency 500 kHz ; note 5	15	40	-	mV
UHF MIXER (INCLUDING IF AMPLIFIER)						
$\mathrm{f}_{\mathrm{i} \text { (RF) }}$	RF input frequency	picture carrier frequency	407.25	-	855.25	MHz
F	noise figure	$\mathrm{f}_{\mathrm{RF}}=407.25 \mathrm{MHz}$; not corrected for image; see Fig. 10	-	8	10	dB
		$\mathrm{f}_{\mathrm{RF}}=855.25 \mathrm{MHz}$; not corrected for image; see Fig. 10	-	9	11	dB
R_{s}	real part of $Z_{i}=R_{s}+j \omega L_{s}$	$\mathrm{f}_{\mathrm{RF}}=407.25 \mathrm{MHz}$	-	30	-	Ω
		$\mathrm{f}_{\mathrm{RF}}=855.25 \mathrm{MHz}$	-	38	-	Ω
L_{s}	imaginary part of $Z_{i}=R_{s}+j \omega L_{s}$	$\mathrm{f}_{\mathrm{RF}}=407.25 \mathrm{MHz}$	-	9	-	nH
		$\mathrm{f}_{\mathrm{RF}}=855.25 \mathrm{MHz}$	-	6	-	nH
V	output voltage causing 1% cross modulation in channel	$\mathrm{f}_{\mathrm{RF}}=407.25 \mathrm{MHz}$; see Fig. 7	116	119	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=855.25 \mathrm{MHz}$; see Fig. 7	114	117	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage causing pulling in channel $(750 \mathrm{~Hz})$	$\mathrm{f}_{\mathrm{RF}}=855.25 \mathrm{MHz}$; note 1	-	78	-	$\mathrm{dB} \mu \mathrm{V}$
G_{V}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=407.25 \mathrm{MHz}$; see Fig. 5	35	38	41	dB
		$\mathrm{f}_{\mathrm{RF}}=855.25 \mathrm{MHz}$; see Fig. 5	35	38	41	dB
UHF OSCILLATOR						
$\mathrm{f}_{\text {osc }}$	oscillator frequency		446.15	-	894.15	MHz
$\Delta \mathrm{f}_{\text {osc }}(\mathrm{V})$	oscillator frequency shift with supply voltage	$\Delta \mathrm{V}_{\mathrm{CC}}=5 \%$; worst case in the frequency range; note 2	-	30	80	kHz
		$\Delta V_{C C}=10 \%$; worst case in the frequency range; note 2	-	80	-	kHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{T})}$	oscillator frequency drift with temperature	$\Delta \mathrm{T}=25^{\circ} \mathrm{C}$; with compensation; worst case in the frequency range; note 3	-	600	1000	kHz
$\Delta \mathrm{f}_{\text {osc }(t)}$	oscillator frequency drift with time	with compensation; worst case in the frequency range; note 4	-	200	400	kHz
$\Phi_{\text {osc }}$	phase noise, carrier to noise sideband	$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range	-	106	-	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{RSC}_{(p-p)}$	ripple susceptibility of V_{CC} (peak-to-peak value)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$; worst case in the frequency range; ripple frequency 500 kHz ; note 5	15	20	-	mV

5 V mixer/oscillator-PLL synthesizers for

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Rejection at the if amplifier output						
$\mathrm{INT}_{\text {DIF }}$	level of divider interferences in the IF signal	note 6	-	20	-	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{INTR}_{\text {XTAL }}$	crystal oscillator interferences rejection	note 7	60	-	-	dBc
INTRF $_{\text {REF }}$	reference frequency rejection	note 8	50	-	-	dBc
$\mathrm{INT}_{\text {CHX }}$	channel x beat	note 9	60	-	-	dBc
$\mathrm{INT}_{\text {S02 }}$	S02 beat	note 10	66	-	-	dBc

Notes

1. This is the level of the RF signal (100% amplitude modulated with 11.89 kHz) that causes a 750 Hz frequency deviation on the oscillator signal; it produces sidebands 30 dB below the level of the oscillator signal.
2. The frequency shift is defined as the change of the oscillator frequency when the supply voltage varies from $\mathrm{V}_{\mathrm{CC}}=5$ to $4.75 \mathrm{~V}(4.5 \mathrm{~V})$ or from $\mathrm{V}_{\mathrm{CC}}=5$ to $5.25 \mathrm{~V}(5.5 \mathrm{~V})$. The oscillator is free-running during this measurement.
3. The frequency drift is defined as the change of the oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25$ to $0^{\circ} \mathrm{C}$ or from $\mathrm{T}_{\mathrm{amb}}=25$ to $50^{\circ} \mathrm{C}$. The oscillator is free-running during this measurement.
4. The switching on drift is defined as the change of the oscillator frequency between 5 seconds and 15 minutes after switching on. The oscillator is free-running during this measurement.
5. The ripple susceptibility is measured for a 500 kHz ripple at the IF amplifier output using the measurement circuit; the level of the ripple signal is increased until a difference of 53.5 dB between the IF carrier set at $100 \mathrm{~dB} \mu \mathrm{~V}$ and the sideband components is reached.
6. This is the level of divider interferences close to the IF frequency. For example:

Ch S1: $\mathrm{f}_{\text {osc }}=144.15 \mathrm{MHz}$ and $1 / 4 \mathrm{f}_{\mathrm{osc}}=36.0375 \mathrm{MHz}$.
Ch S2: $f_{\text {osc }}=151.15 \mathrm{MHz}$ and $1 / 4 f_{\text {osc }}=37.7875 \mathrm{MHz}$.
Ch S14: $\mathrm{f}_{\text {osc }}=291.15 \mathrm{MHz}$ and $1 / 8 \mathrm{f}_{\text {osc }}=36.39375 \mathrm{MHz}$.
The VHF RF input must be left open (i.e. not connected to any load or cable).
The UHF RF inputs are connected to a hybrid.
7. Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator. The rejection should be $>60 \mathrm{~dB}$ for an IF output signal of $100 \mathrm{~dB} \mu \mathrm{~V}$.
8. The reference frequency rejection is the level of reference frequency sidebands related to the sound subcarrier. The rejection should be $>50 \mathrm{~dB}$ for an IF output signal of $100 \mathrm{~dB} \mu \mathrm{~V}, \mathrm{f}_{\mathrm{REF}}=7.8125 \mathrm{kHz}$.
9. Channel x beat: picture carrier frequency (69.25 MHz) and sound carrier frequency (74.75 MHz) both at $80 \mathrm{~dB} \mu \mathrm{~V}$, $\mathrm{f}_{\text {osc }}$ at 108.15 MHz . The rejection of the interfering product RF picture carrier frequency + RF sound carrier frequency - $\mathrm{f}_{\text {osc }}$ at 35.85 MHz should be $>60 \mathrm{~dB}$.
10. Channel S02: picture carrier frequency is 76.25 MHz at $80 \mathrm{~dB} \mu \mathrm{~V}, \mathrm{f}_{\text {osc }}=115.15 \mathrm{MHz}$.

The rejection of $\mathrm{f}_{\mathrm{osc}}-2 \times \mathrm{f}_{\mathrm{IF}}=37.35 \mathrm{MHz}$ should be $>66 \mathrm{~dB}$.

5 V mixer/oscillator-PLL synthesizers for

TEST AND APPLICATION INFORMATION

(1) N1 is 2×5 turns
(2) N 2 is 2 turns
$\mathrm{Z}_{\mathrm{i}} \gg 50 \Omega \Rightarrow \mathrm{~V}_{\mathrm{i}}=2 \times \mathrm{V}_{\text {meas }} ; \mathrm{V}_{\mathrm{i}}=80 \mathrm{~dB} \mu \mathrm{~V}$
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {'meas }}^{\prime}+16 \mathrm{~dB}$ (transformer ratio $\frac{\mathrm{N} 1}{\mathrm{~N} 2}=5$ and transformer loss)
$G_{v}=20 \log \frac{V_{0}}{V_{i}}$

Fig. 4 Voltage gain $\left(\mathrm{G}_{\mathrm{v}}\right)$ measurement in the VHF band.

(1) N1 is 2×5 turns
(2) N2 is 2 turns
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }} ; \mathrm{V}_{\mathrm{i}}=70 \mathrm{~dB} \mu \mathrm{~V}$
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}^{\prime}$ meas +16 dB (transformer ratio $\frac{\mathrm{N} 1}{\mathrm{~N} 2}=5$ and transformer loss)
$\mathrm{G}_{\mathrm{v}}=20 \log \frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}}+1 \mathrm{~dB}(1 \mathrm{~dB}=$ correction for hybrid loss $)$

Fig. 5 Voltage gain $\left(G_{v}\right)$ measurement in the UHF band.

5 V mixer/oscillator-PLL synthesizers for

(1) N1 is 2×5 turns
(2) N2 is 2 turns
$\mathrm{Z}_{\mathrm{i}} \gg 50 \Omega \Rightarrow \mathrm{~V}_{\mathrm{i}}=2 \times \mathrm{V}_{\text {meas }} ; \mathrm{V}_{\text {meas }}^{\prime}=\mathrm{V}_{\mathrm{o}}-16 \mathrm{~dB}$ (transformer ratio $\frac{\mathrm{N} 1}{\mathrm{~N} 2}=5$ and transformer loss)
Wanted input signal $\mathrm{V}_{\mathrm{i}}=80 \mathrm{~dB} \mu \mathrm{~V}$ at wanted $\mathrm{f}_{\mathrm{RF}}=45.25 \mathrm{MHz}(399.25 \mathrm{MHz})$.
Measured level of the unwanted output signal $\mathrm{V}_{\text {ou }}$ causing $0,3 \% \mathrm{AM}$ modulation in the wanted output signal;
unwanted $\mathrm{f}_{\mathrm{RF}}=50.75 \mathrm{MHz}(404.75 \mathrm{MHz}) ; \mathrm{V}_{\text {ou }}=\mathrm{V}_{\text {meas }}+16 \mathrm{~dB}$.
Fig. 6 Cross modulation measurement in the VHF band.

(1) N1 is 2×5 turns
(2) N2 is 2 turns
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }} ; \mathrm{V}^{\prime}$ meas $=\mathrm{V}_{\mathrm{o}}-16 \mathrm{~dB}$ (transformer ratio $\frac{\mathrm{N} 1}{\mathrm{~N} 2}=5$ and transformer loss)
Wanted input signal $\mathrm{V}_{\mathrm{i}}=70 \mathrm{~dB} \mu \mathrm{~V}$ at $\mathrm{f}_{\mathrm{RF}}=407.25 \mathrm{MHz}(855.25 \mathrm{MHz})$.
Measured level of the unwanted output signal $\mathrm{V}_{\text {ou }}$ causing $0,3 \% \mathrm{AM}$ modulation in the wanted output signal;
unwanted $\mathrm{f}_{\mathrm{RF}}=412.75 \mathrm{MHz}(860.75 \mathrm{MHz}) ; \mathrm{V}_{\text {ou }}=\mathrm{V}^{\prime}$ meas +16 dB .
Fig. 7 Cross modulation measurement in the UHF band.

(a)
(a) For $f_{R F}=50 \mathrm{MHz}$

VHF mixer frequency response measured $=57 \mathrm{MHz}$; loss $=0 \mathrm{~dB}$.
Image suppression $=16 \mathrm{~dB}$.
$\mathrm{C} 1=9 \mathrm{pF} ; \mathrm{C} 2=15 \mathrm{pF}$.
$\mathrm{L} 1=7$ turns ($\varnothing 5.5 \mathrm{~mm}$; wire $\varnothing=0.5 \mathrm{~mm}$).
11 = semi rigid cable (RIM): 5 cm long.
(semi rigid cable (RIM); $33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega ; 96 \mathrm{pF} / \mathrm{m}$).

(b) For $f_{R F}=150 \mathrm{MHz}$:

VHF mixer frequency response measured $=150.3 \mathrm{MHz}$; loss $=1.3 \mathrm{~dB}$.
Image suppression $=13 \mathrm{~dB}$
$\mathrm{C} 3=5 \mathrm{pF} ; \mathrm{C} 4=25 \mathrm{pF}$.
$12=$ semi rigid cable (RIM): 30 cm long
$13=$ semi rigid cable (RIM): 5 cm long
(semi rigid cable (RIM); $33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega ; 96 \mathrm{pF} / \mathrm{m}$).

Fig. 8 Input circuit for optimum noise figure in the VHF band.

5 V mixer/oscillator-PLL synthesizers for
 TDA6404; TDA6405; hyperband tuners

Fig. 10 Noise figure (F) measurement in the UHF band.

5 V mixer/oscillator-PLL synthesizers for
TDA6404; TDA6405; hyperband tuners

The pin numbers in parenthesis represent the TDA6405 and TDA6405A.
Fig. 11 Measurement circuit.

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

Component values for measurement circuit

Table 11 Capacitors (all SMD and NPO unless otherwise specified)

COMPONENT	VALUE
C1	1 nF
C2	150 pF
C3	1 nF
C4	2.2 pF (N750)
C5	4.7 nF
C6	1 nF
C7	2.2 pF (N750)
C8	2.2 pF (N750)
C9	100 pF (N750)
C10	4.7 nF
C11	15 pF
C12	1 pF (N750)
C13	15 pF
C14	1 pF (N750)
C15	47 pF
C16	1 pF (N750)
C17	1 pF (N750)
C18	10 pF (N750)
C19	1 nF
C20	1 nF
C21	18 pF
C22	10 nF
C23	18 pF
C24	10 nF
C25	100 nF
C26	2.2 nF
C27	$10 \mu \mathrm{~F}$ (16 V; electrolytic)
C28	$10 \mu \mathrm{~F}$ (16 V; electrolytic)
C29	10 nF
C30	4.7 nF

Table 12 Resistors (all SMD)

COMPONENT	VALUE
$R 1$	$1.5 \mathrm{k} \Omega$
$R 2$	$22 \mathrm{k} \Omega$
R3	$22 \mathrm{k} \Omega$
R4	$1.5 \mathrm{k} \Omega$
R5	$2.7 \mathrm{k} \Omega$
R6	$22 \mathrm{k} \Omega$
R7	$22 \mathrm{k} \Omega$
R8	330Ω
R9	$4.7 \mathrm{k} \Omega$
R10	330Ω
R11	330Ω
R12	330Ω
R13	330Ω
R14	$22 k \Omega$
R15	$33 k \Omega$
R16	$22 k \Omega$
R17	$1.2 k \Omega$
R18	$1 \mathrm{k} \Omega$
R19	330Ω
R20	$68 k \Omega$
R21	$22 k \Omega$
R22	50Ω

5 V mixer/oscillator-PLL synthesizers for
 TDA6404; TDA6405; hyperband tuners
 TDA6405A

Table 13 Diodes and ICs

COMPONENT	VALUE
D1	BB149
D2	BB152
D3	BA792
D4	BB149
D5	LED-3R
D6	LED-3Y
D7	LED-3G
IC	TDA6404; TDA6405; TDA6405A

Table 14 Coils

COMPONENT	VALUE
L1	$1 \mu \mathrm{H}$ (inductor)
L2	30 nH
L4	80 nH
L5	16 nH
L6	30 nH
L8	80 nH
L9	80 nH

Table 15 Transformer

COMPONENT	VALUE
L3	23 turns (TOKO, wire 0.07 mm)
L7	$\mathrm{N} 1=2 \times 5$ turns
	$\mathrm{N} 2=2$ turns
	(TOKO, wire 0.09 mm)

Table 16 Crystal

COMPONENT	VALUE
X 1	4 MHz

Table 17 Transistors

COMPONENT	VALUE
TR1	BC847B
TR2	BC847B

5 V mixer/oscillator-PLL synthesizers for
TDA6404; TDA6405; hyperband tuners

TDA6405A

INTERNAL PIN CONFIGURATION

SYMBOL	PIN		CONFIGURATION ${ }^{(1)}$	AVERAGE DC VOLTAGE (V)	
	TDA6404	TDA6405: TDA6405A		VHF	UHF
UHFIN1	1	28		note 2	1.0
UHFIN2	2	27		note 2	1.0
VHFIN	3	26	(3) (26)	1.9	note 2
RFGND	4	25		0.0	0.0
IFFIL1	5	24		3.4	3.4
IFFIL2	6	23		3.4	3.4
PVHFL	7	22	MGK814	$\begin{array}{\|l\|} \hline 0.0 \text { or } \\ \left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}}\right) \\ \hline \end{array}$	0.0
PVHFH	8	21		$\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}}\right) \\ & \text { or } 0.0 \end{aligned}$	0.0
PUHF	9	20		0.0	$\left(\mathrm{V}_{C C}-\mathrm{V}_{\text {CE }}\right)$

5 V mixer/oscillator-PLL synthesizers for
TDA6404; TDA6405; hyperband tuners

SYMBOL	PIN		CONFIGURATION ${ }^{(1)}$	AVERAGE DC VOLTAGE (V)	
	TDA6404	TDA6405: TDA6405A		VHF	UHF
AS	10	19		$\mathrm{V}_{\text {AS }}$	$\mathrm{V}_{\text {AS }}$
SDA	11	18	(11) (18)	note 2	note 2
SCL	12	17		note 2	note 2
ADC	13	16		1.9	1.9
CP	14	15		1.9	1.9

5 V mixer/oscillator-PLL synthesizers for
TDA6404; TDA6405; hyperband tuners

TDA6405A

SYMBOL	PIN		CONFIGURATION ${ }^{(1)}$	AVERAGE DC VOLTAGE (V)	
	TDA6404	TDA6405: TDA6405A		VHF	UHF
VT	15	14		V_{VT}	V_{VT}
XTAL	16	13		3.0	3.0
V_{CC}	17	12	supply voltage	5.0	5.0
IFOUT1	18	11		2.2	2.2
IFOUT2	19	10		2.2	2.2
GND	20	9		0.0	0.0
UHFOSCIB1	21	8		note 2	1.9
UHFOSCOC1	22	7		note 2	2.5
UHFOSCOC2	23	6		note 2	2.5
UHFOSCIB2	24	5		note 2	1.9

5 V mixer/oscillator-PLL synthesizers for	TDA6404; TDA6405;
hyperband tuners	TDA6405A

Notes

1. The pin numbers in parenthesis represent the TDA6405 and TDA6405A.
2. Not applicable.

5 V mixer/oscillator-PLL synthesizers for
 TDA6404; TDA6405; hyperband tuners TDA6405A

PACKAGE OUTLINE

SSOP28: plastic shrink small outline package; 28 leads; body width 5.3 mm
SOT341-1

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	2.0	0.21 0.05	1.80	0.65	0.25	0.38 0.25	0.20 0.09	10.4 10.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.1
0.7	8^{0}																	

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT341-1		MO-150AH		\square ¢	$\begin{aligned} & 93-09-08 \\ & 95-02-04 \end{aligned}$

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $230^{\circ} \mathrm{C}$.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD	
	WAVE	REFLOW ${ }^{(1)}$
BGA, SQFP	not suitable	suitable
HLQFP, HSQFP, HSOP, HTSSOP, SMS	not suitable	
PLCC $^{(3)}$, SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended ${ }^{(3)(4)}$	suitable
SSOP, TSSOP, VSO	not recommended ${ }^{(5)}$	suitable

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

5 V mixer/oscillator-PLL synthesizers for hyperband tuners

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips' $\mathrm{I}^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939839340011.

5 V mixer/oscillator-PLL synthesizers for	TDA6404; TDA6405;
hyperband tuners	TDA6405A

NOTES

5 V mixer/oscillator-PLL synthesizers for	TDA6404; TDA6405;
hyperband tuners	TDA6405A

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160101 1248, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773

Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +453329 3333, Fax. +4533293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615 800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1489 4339/4239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, JI. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800234 7381, Fax +9-5 8009430087

Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SAO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800234 7381, Fax. +1 8009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 1162 5344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1999
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Let's make things better.
PHILIPS

