DATA SHEET

TDA3604
 Multiple voltage regulator with external reset delay and switch

Preliminary specification
Supersedes data of 1995 Feb 16
File under Integrated Circuits, IC01

Multiple voltage regulator with external reset delay and switch

FEATURES

- One V_{P} state controlled regulator (regulator 2)
- Regulator 2, reset and ignition buffer operates during load dump and thermal shutdown
- Separate control pins for switching regulator 1 and the power switch
- Supply voltage range of -18 to 50 V (operating from 9.75 V)
- Low reverse current of regulator 2
- Low quiescent current (when regulator 1 is switched off, standby)
- Ignition input/output
- Reset output
- Reset delay time adjustable
- High ripple rejection
- Power switch
- Separate supply for the power switch.

PROTECTIONS

- Reverse polarity safe (down to -18 V without high reverse current)
- Able to withstand voltages up to 18 V at the outputs (supply line may be shortened)
- ESD protected on all pins
- Thermal protection
- Load dump protection
- Foldback current limit protection for regulators 1 and 2
- Delayed second current limit protection for the powerswitch
- The regulator outputs and the power switch are DC short-circuited safe to ground and V_{P}.

GENERAL DESCRIPTION

The TDA3604 is a multiple output voltage regulator with a power switch, intended for use in car radios with or without a microcontroller.

It contains one fixed voltage regulator with a foldback current protection (regulator 1) and one fixed voltage regulator (regulator 2), intended to supply a microcontroller, that also operates during load dump and thermal shutdown.

There is a power switch with protections, operated by an enable input.

The reset and ignition outputs can be used to interface by the microcontroller. The reset-signal can be used to call up the microcontroller and the ignition output indicates ignition voltage available.

Both supply pins can withstand load dump pulses and negative supply voltages.

Regulator 2 will be switched on at a supply voltage $>6.5 \mathrm{~V}$ and off at a voltage of regulator $2<1.9 \mathrm{~V}$.

ORDERING INFORMATION

| TYPE NUMBER | PACKAGE | | |
| :--- | :---: | :---: | :---: | :---: |
| | NAME | DESCRIPTION | VERSION |
| TDA3604 | DBS13P | plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm) | SOT141-6 |

Multiple voltage regulator with external reset delay and switch

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage operating regulator 2 on jump start load dump protection	note 1 $\mathrm{t} \leq 10$ minutes during 50 ms ; $\mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	$\begin{array}{\|l} 9.75 \\ 2.4 \\ - \\ - \end{array}$	$\begin{array}{\|l} 14.4 \\ 14.4 \\ - \\ - \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{q}	total quiescent current	standby mode	-	400	500	$\mu \mathrm{A}$
T_{vj}	operating virtual junction temperature		-	-	150	${ }^{\circ} \mathrm{C}$
Voltage regulators						
$\mathrm{V}_{\text {REG1 }}$	output voltage regulator 1	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 1} \leq 300 \mathrm{~mA}$	8.65	9.0	9.35	V
$\mathrm{V}_{\text {REG2 }}$	output voltage regulator 2	$\begin{aligned} & 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{REG} 2} \leq 30 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} \end{aligned}$	4.8	5.0	5.2	V
$\mathrm{V}_{\text {drop(REG1) }}$	drop-out voltage	$\mathrm{I}_{\text {REG1 }}=0.3 \mathrm{~A}$; note 2	-	-	0.5	V
Power switch						
$\mathrm{V}_{\text {drop(sw) }}$	drop-out voltage	$\mathrm{I}_{\text {sw }}=0.5 \mathrm{~A}$; note 3	-	-	1.4	V
I_{M}	peak current	$\mathrm{t} \leq 10 \mathrm{~ms}$	1.4	-	-	A

Notes

1. Minimum operating voltage, only if V_{P} has exceeded 6.5 V .
2. The drop-out voltage of regulator 1 is measured between V_{P} and $V_{R E G} 1$.
3. The drop-out voltage of the power switch is measured between V_{P} and V_{sw}.

Multiple voltage regulator with external reset delay and switch

BLOCK DIAGRAM

Fig. 1 Block diagram.

Multiple voltage regulator with external reset delay and switch

PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
$\mathrm{V}_{\text {I(sw) }}$	2	power switch input voltage
V_{P}	3	supply voltage
REG1	4	regulator 1 output
RES	5	reset output voltage (+5 V)
$\mathrm{V}_{\text {en(REG1) }}$	6	regulator 1 enable input
$\mathrm{V}_{\text {en(sw) }}$	7	power switch enable input voltage
$\mathrm{V}_{\text {O(ig) }}$	8	ignition output voltage
$\mathrm{C}_{\text {RES }}$	9	reset capacitor
GND	10	ground (0 V)
REG2	11	regulator 2 output
$\mathrm{V}_{\text {I(ig) }}$	12	ignition input voltage
$\mathrm{V}_{\text {O(sw) }}$	13	power switch output voltage

Fig. 2 Pin configuration.

Multiple voltage regulator with external reset delay and switch

FUNCTIONAL DESCRIPTION

The TDA3604 is a multiple output voltage regulator with a power switch, intended for use in car radios with or without a microcontroller. Because of low-voltage operation of the car radio, low-voltage drop regulators are used.
Regulator 2 will switch on when the supply voltage exceeds 6.5 V for the first time and will switch off again when the output voltage of regulator 2 is below 1.9 V (this is below an engine start). When regulator 2 is switched on and the output voltage of this regulator is within its voltage range, the reset output will be enabled (reset will go HIGH via a pull-up resistor) to generate a reset to the microcontroller. The reset cycles can be extended by an external capacitor at pin 9). The above mentioned start-up feature is built in to secure a smooth start-up of the microcontroller at first connection, without uncontrolled switching of regulator 2 during the start-up sequence.

When both regulator 2 and the supply voltage ($\mathrm{V}_{\mathrm{P}}>4.5 \mathrm{~V}$) are available, regulator 1 and the switch can be operated by enable inputs (pins 6 and 7 respectively).

All output pins are fully protected. The regulators are protected against load dump (regulator 1 will switch off at supply voltages higher than 25 V and short-circuit (foldback current protection).
The switch contains a current protection which is delayed for $\geq 10 \mathrm{~ms}$ (in short-circuit condition). During this time the current is limited to 1.4 $\mathrm{A}\left(\mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}\right)$.

At supply voltages over 16.9 V the switch is clamped at 15.0 V (to avoid externally connected circuitry being damaged by an overvoltage) and the switch will switch off at load dump.
Interfacing with the microcontroller can be accomplished by an ignition Schmitt-trigger and ignition output buffer, (simple full/semi on/off logic applications).
The total timing of a semi on/off logic set is shown Fig.3.

Multiple voltage regulator with external reset delay and switch

Fig. 3 Timing diagram.

Multiple voltage regulator with external reset delay and switch

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{P}	supply voltage operating jump start load dump protection	$t \leq 10$ minutes during 50 ms ; $\mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & 25 \\ & 30 \\ & 50 \end{aligned}$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$
V_{P}	reverse battery voltage	non-operating	-	-18	V
$\mathrm{V}_{\text {ppi }}$	positive pulse voltage at ignition buffer	$\mathrm{V}_{\mathrm{P}}=14.4 ; \mathrm{R}_{\mathrm{I}}=1 \mathrm{k} \Omega$	-	50	V
$\mathrm{V}_{\text {npi }}$	negative pulse voltage at ignition buffer	$V_{P}=14.4 ; \mathrm{R}_{\mathrm{I}}=1 \mathrm{k} \Omega$	-	-100	V
$\mathrm{T}_{\text {stg }}$	storage temperature	non-operating	-55	+150	${ }^{\circ} \mathrm{C}$
T_{vj}	operating virtual junction temperature		-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation		-	15.6	W

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$R_{\text {th } j-\mathrm{c}}$	thermal resistance from junction to case	8	K/W
$R_{\text {th } j-a}$	thermal resistance from junction to ambient in free air	50	K/W

Multiple voltage regulator with external reset delay and switch

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{Psw}}=14.4 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; see test Figs. 4 and 5 unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage operating Regulator 2 on jump start load dump protection	note 1 $\mathrm{t} \leq 10$ minutes during $50 \mathrm{~ms} ; \mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	$\begin{aligned} & 9.75 \\ & 2.4 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 14.4 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 30 \\ & 50 \end{aligned}$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$
I_{q}	quiescent current	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=12.4 \mathrm{~V} \text {; note } 2 \\ & \mathrm{~V}_{\mathrm{P}}=14.4 \mathrm{~V} \text {; note } 2 \end{aligned}$	-	$\begin{aligned} & \hline 400 \\ & 420 \end{aligned}$	500	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Schmitt-trigger power supply for the power switch

$\mathrm{V}_{\text {thr }}$	rising voltage threshold		4.0	4.5	5.0	V	
$\mathrm{~V}_{\text {thf }}$	falling voltage threshold		3.5	4.0	4.5	V	
$\mathrm{~V}_{\text {hys }}$	hysteresis		-	0.5	-	V	
Schmitt-trigger power supply for regulator $\mathbf{1}$							
$\mathrm{V}_{\text {thr }}$	rising voltage threshold		4.0	4.5	5.0	V	
$\mathrm{~V}_{\text {thf }}$	falling voltage threshold		3.5	4.0	4.5	V	
$\mathrm{~V}_{\text {hys }}$	hysteresis	-	0.5	-	V		

Schmitt-trigger power supply for regulator 2

$\mathrm{V}_{\text {thr }}$	rising voltage threshold		6.0	6.5	7.1	V
$\mathrm{~V}_{\text {thf }}$	falling voltage threshold		1.7	1.9	2.2	V
$\mathrm{~V}_{\text {hys }}$	hysteresis		-	4.7	-	V

Schmitt-trigger for enable input

$\mathrm{V}_{\text {thr }}$	rising voltage threshold		1.7	2.2	2.7	V
$\mathrm{~V}_{\text {thf }}$	falling voltage threshold		1.5	2.0	2.5	V
$\mathrm{~V}_{\text {hys }}$	hysteresis		-	0.2	-	V

Schmitt-trigger for reset buffer

$\mathrm{V}_{\mathrm{r}(\text { REG2 })}$	rising voltage of regulator 2	note 3	-	$\mathrm{V}_{\text {REG2 }}-0.15$	-	V
$\mathrm{V}_{\mathrm{f}(\text { REG2 })}$	falling voltage of regulator 2	note 3	-	$\mathrm{V}_{\text {REG2 }}-0.25$	-	V
$\mathrm{V}_{\text {spread }}$	voltage spread on tracking	note 4	-	10	-	mV

Schmitt-trigger for ignition buffer

$\mathrm{V}_{\text {thr }}$	rising voltage threshold		1.7	2.2	2.7	V
$\mathrm{~V}_{\text {thf }}$	falling voltage threshold		1.5	2.0	2.5	V
$\mathrm{~V}_{\text {hys }}$	hysteresis		-	0.2	-	V

Reset buffer

$I_{\text {sink }}$	LOW-level sink current	$\mathrm{V}_{\text {RES }} \leq 0.8 \mathrm{~V}$	15	20	-	mA
$\mathrm{I}_{\text {leak }}$	leakage current	$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{V}_{\text {RES }}=5 \mathrm{~V}$	25	50	100	$\mu \mathrm{~A}$

Multiple voltage regulator with external reset delay and switch

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Ignition buffer						
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{l}_{\mathrm{OL}}=0 \mathrm{~mA}$	0	0.2	0.8	V
V_{OH}	HIGH-level output voltage	note 5	-	5.0	5.2	V
$\mathrm{IOL}^{\text {l }}$	LOW-level output current	$\mathrm{V}_{\mathrm{OL}} \leq 0.8 \mathrm{~V}$	0.3	0.8	-	mA
IOH	HIGH-level output current	$\mathrm{V}_{\mathrm{OH}} \geq 3 \mathrm{~V}$	0.3	2.0	-	mA

Regulator 1 (note 6)

$\mathrm{V}_{\text {REG1 }}$	output voltage off		-	1	400	mV
$\mathrm{V}_{\text {REG1 }}$	output voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG1 }} \leq 300 \mathrm{~mA}$	8.65	9.0	9.35	V
		$10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	8.65	9.0	9.35	V
$\Delta \mathrm{~V}_{\text {REG1 }}$	line regulation	$10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	-	-	50	mV
$\Delta \mathrm{V}_{\text {REGL1 }}$	load regulation	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG1 }} \leq 300 \mathrm{~mA}$	-	-	70	mV
SVRR1	supply voltage ripple rejection	$\mathrm{f}_{\mathrm{i}}=200 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V} \mathrm{(p-p)}$	60	-	-	dB
$\mathrm{V}_{\text {REGd1 }}$	drop-out voltage	$\mathrm{I}_{\text {REG1 }}=300 \mathrm{~mA} ;$ note 7	-	0.4	0.5	V
$\mathrm{I}_{\text {REGm1 }}$	current limit	$\mathrm{V}_{\text {REG1 }}>7 \mathrm{~V} ;$ note 8	0.45	-	1.2	A
$\mathrm{I}_{\text {REGsc1 }}$	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega ;$ note 9	50	300	-	mA
$\alpha_{\text {ct }}$	cross talk	note 10	-	50	-	dB

Regulator 2 (note 11)

$\mathrm{V}_{\text {REG2 }}$	output voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 }} \leq 30 \mathrm{~mA}$ $7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$ $18 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 50 \mathrm{~V}$	4.8	5.0	5.2	V
		$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	4.75	5.0	5.2	V
$\Delta \mathrm{~V}_{\text {REG2 }}$	line regulation	-	-	50	mV	
$\Delta \mathrm{V}_{\text {REGL2 }}$	load regulation	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG1 }} \leq 30 \mathrm{~mA}$	-	-	50	mV
SVRR2	supply voltage ripple rejection	$\mathrm{f}_{\mathrm{i}}=200 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	60	-	-	dB
$\mathrm{V}_{\text {REGd2 }}$	drop-out voltage	$\mathrm{I}_{\text {REG2 }}=30 \mathrm{~mA} ;$ note 12	-	0.3	0.4	V
$\mathrm{I}_{\text {REGm2 }}$	current limit	$\mathrm{V}_{\text {REG2 }}>4.5 \mathrm{~V} ;$ note 8	0.1	-	0.5	A
$\mathrm{I}_{\text {REGsc2 }}$	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega ;$ note 9	-	50	-	mA
α_{ct}	cross talk	note 13	-	50	-	dB

Power switch

$\mathrm{V}_{\text {swd }}$	drop-out voltage	$\mathrm{I}_{\mathrm{sw}}=0.4 \mathrm{~A} ;$ note 14	-	0.8	1.4	V
$\mathrm{I}_{\text {swcc }}$	continuous current		0.5	-	-	A
$\mathrm{V}_{\text {swcl }}$	clamping voltage	$\mathrm{V}_{\mathrm{P}} \geq 16.9 \mathrm{~V}$	-	15.0	16.2	V
I_{M}	peak current	$\mathrm{t} \leq 10 \mathrm{~ms}$	1.4	-	-	A
$\mathrm{V}_{\text {swfb }}$	fly back voltage behaviour	$\mathrm{I}_{\mathrm{sw}}=-200 \mathrm{~mA}$	-	-	20	V
$\mathrm{I}_{\mathrm{lim}(\mathrm{sw})}$	current limit	$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{sw}}=10 \mathrm{~V} ;$ note 8	0.6	-	1.0	A

Reset delay

I_{O}	output current		-	3	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {thr }}$	rising voltage threshold		2.7	3.0	3.3	V
t_{d}	delay time	$\mathrm{C}_{\mathrm{l}}=47 \mathrm{nF} ;$ note 15	25	50	100	ms

Multiple voltage regulator with external reset delay and switch

Notes to the characteristics

1. Minimum operating voltage, only if V_{P} has exceeded 6.5 V .
2. Enable inputs of regulator 1 , ignition and switch are low. Regulator 2 is unloaded.
3. Voltage drop due to load condition.
4. The spread on tracking is one sigma value.
5. Ignition output voltage will be less than or equal to the output voltage of regulator 2 .
6. $\mathrm{I}_{\mathrm{REG} 1}=5 \mathrm{~mA}$.
7. The drop-out voltage of regulator 1 is measured between V_{P} and $V_{R E G 1}$.
8. At current limit, $I_{\text {REGm }}$ is held constant (behaviour in accordance with the broken line in Fig. 4.
9. The foldback current protection limits the dissipated power at short circuit (see Figs 4 and 5).
10. The cross talk of regulator 1 is measured with an $I_{\text {REG } 2}=0.5 \mathrm{~mA}$ up to 30 mA with an input frequency of $f_{i}=100 \mathrm{kHz}$.
11. $\mathrm{I}_{\text {REG2 }}=5 \mathrm{~mA}$.
12. The drop-out voltage of regulator 2 is measured between V_{P} and $V_{\text {REG2 }}$.
13. The cross talk of regulator 2 is measured with an $I_{\text {REG } 1}=0.5 \mathrm{~mA}$ up to 100 mA with an input frequency of $\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$.
14. The drop-out voltage of the power switch is measured between V_{P} and $V_{s w}$.
15. The delay time depends on the value of the capacitor

$$
t_{d}=\frac{C}{l} \times V_{t h r C}=C \times 2.5 \times 10^{6}
$$

Multiple voltage regulator with external reset delay and switch

Fig. 5 Foldback current protection of the power switch.

Multiple voltage regulator with external reset delay and switch

TEST AND APPLICATION INFORMATION

(1) Capacitor not required for stability.

Fig. 6 Test circuit.

Noise information

The noise at the output of the regulators depends on the bandwidth of the regulators, which can be adjusted by the output capacitors. Table 1 shows the noise figures.
Although stability is guaranteed when C_{L} is higher than $10 \mu \mathrm{~F}$ (over temperature range) with $\tan (\phi)=1$ in the frequency range 1 to 10 kHz , however, for low noise, a $47 \mu \mathrm{~F}$ load capacitor is required.

The noise on the supply line depends on the value of the supply capacitor and is caused by a current noise (output noise of the regulators is translated into a current noise by the output capacitors). When a high frequency capacitor of 220 nF with an electrolytic capacitor of $100 \mu \mathrm{~F}$ in parallel is placed directly over pins 3 and 10 (supply and ground) the noise is minimized.

Table 1 Noise figures

REGULATOR	NOISE $(\mu \mathbf{V})^{(1)}$	OUTPUT CAPACITOR $(\mu \mathbf{F})$
	tbf	10
	150	47
	tbf	100
	tbf	220
2	tbf	10
	100	47
	tbf	100
	tbf	220

Note

1. Bandwidth of 100 kHz .

Multiple voltage regulator with external reset delay and switch

PACKAGE OUTLINE

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	\mathbf{d}	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{e}_{\mathbf{2}}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{j}	\mathbf{L}	$\mathbf{L}_{\mathbf{3}}$	\mathbf{m}	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{x}	$\mathbf{Z}^{(\mathbf{1})}$	
mm	17.0	4.6	0.75	0.48	24.0	20.0	10	12.2	3.4	1.7	5.08	6	3.4	12.4	2.4		4.3	2.1	0.8	0.25	0.03	2.00
	15.5	4.2	0.60	0.38	23.6	19.6		11.8														

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE	
	IEC	JEDEC	EIAJ			
					-	$92-11-17$
$95-03-11$						

Multiple voltage regulator with external reset delay and switch

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors - a worldwide company

Argentina: IEROD, Av. Juramento 1992-14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050,5600 PB EINDHOVEN, The Netherlands, Tel. (31)40-2783749, Fax. (31)40-2788399
Brazil: Rua do Rocio 220-5 floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970), Tel. (011)821-2333, Fax. (011)829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS: Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. (852)2319 7888, Fax. (852)2319 7700
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO Tel. (358)0-615 800, Fax. (358)0-61580 920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 1063 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, Bombay 400018 Tel. (022) 4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)7640 000, Fax. (01)7640 200
Italy: PHILIPS SEMICONDUCTORS S.r.I., Piazza IV Novembre 3, 20124 MILANO, Tel. (0039)2 6752 2531, Fax. (0039)2 67522557
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108, Tel. (03)3740 5130, Fax. (03)3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)709-1412, Fax. (02)709-1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. (040)2783749, Fax. (040)2788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax. (022)74 8341

Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (63) 2816 6380, Fax. (63) 28173474
Portugal: PHILIPS PORTUGUESA, S.A., Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430, Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494
Spain: Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)301 4243
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978 , TAIPEI 100, Tel. (886) 2382 4443, Fax. (886) 23824444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (66) 2 745-4090, Fax. (66) 2 398-0793
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0212)279 27 70, Fax. (0212)282 6707
United Kingdom: Philips Semiconductors LTD., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. (0181)730-5000, Fax. (0181)754-8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601

Internet: http://www.semiconductors.philips.com/ps/
For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BE-p,
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,

Telex 35000 phtcnl, Fax. +31-40-2724825

SCD44 © Philips Electronics N.V. 1995

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands
513061/1500/02/pp16
Date of release: 1995 Oct 04
Document order number: 939775000343

PHILIPS

