TDA9102C SELECTION vs HORIZONTAL DUTY CYCLE

CONTENTS Page
I. INTRODUCTION. 1
II. DUTY CYCLE CALCULATION 2
II.1. DUTY MIN 2
II.2. DUTY MAX 3
II.3. TYPICAL LIMITS 4
III. APPLICATION FOR INCREASING THE DUTY CYCLE OF A TDA9102C 5
III.1. STANDARD APPLICATION 5
III.1.1. Modified Application 5
III.1.2. Components Calculation in Modified Application 6
III.1.3. Summing 6
IV. APPLICATION FOR DECREASING THE DUTY CYCLE OF A TDA9102C 6
IV.1. STANDARD APPLICATION 6
IV.1.1. Modified Application 7
IV.1.2. Components Calculation in Modified Application 7
V. CONCLUSION 8

I. INTRODUCTION

The TDA9102C is a horizontal and vertical deflection processor particularly well suited for high end monitors.

One of the key parameters is the very low jitter of the horizontal deflection processor.

The horizontal duty cycle is the ratio between the time during which the line switching transistor receives an off command and the line period.
As the monitors are using more and more various and higher line frequencies, this duty cycle must be well adapted to the actual application.
The following pages show how to calculate the min and max duty cycle for which typical application can
work.
For the rare cases where the TDA9102C do not fit to the used diagram, a simple application is given, both to increase or to decrease the device duty cycle. It is anyway important to note that the experience shown that in most of the case, when the TDA9102C does not fit the application, it is because of too low value. Consequently, mainly the application to increase the duty cycle will be used.

Nota Bene :

For a quick over view a floppy disk is available using the formulas given here-after and allowing to find at once the right application.
For starting the program, just type "9102"

II. DUTY CYLE CALCULATION

Figure 1

II.1. Duty Min.

- When the output of the line processor turns low, it takes a time t_{1}, before the line switching transistor actually turns off.
- Then it takes a time $t_{f}=t_{2}-t_{1}$ for the current in line yoke to invert (fly back time)
- As soon as the flyback is finished, the line transistor may be turned on again, although it will actually conduct only when the line current becomes positive (at t4).
Thus the minimum off time t_{d} is :

$$
t_{d} \min =t_{1} \max +t_{f} \max
$$

Since the duty cycle is defined as $\frac{t_{d}}{T}$ where T is the line period: $d_{\text {min }}=\left(t_{1}\right.$ max $\left.+t_{f \text { max }}\right) f$ where $f=\frac{1}{T}$
So the worst case for $d_{\text {min }}$ is at the highest fre-
quency used in the monitor :

$$
\begin{equation*}
\mathrm{d}_{\min }=\mathrm{f}_{\max }\left(\mathrm{t}_{1} \max +\mathrm{t}_{\mathrm{m}} \max \right) \tag{1}
\end{equation*}
$$

tf is usually well know by the designer ; shortening t_{f} is limited by the switching transistor T_{1} breakdown voltage.
t_{1} is the delay between the command for switching off the line transistor T_{1} and its actual switching.
In diagram 1 and $2, t_{1}$ is the recovery time $t_{r 1}$ of T_{1} In diagram $3, t_{1}$ is the recovery time $t_{r 1}$ of T_{1} added to the turn on time t_{02} of transistor T_{2}.
So :

$$
\begin{align*}
& \mathrm{d}_{\min }=\mathrm{f}_{\max }\left(\mathrm{t}_{\mathrm{r} 1}^{\max }+\mathrm{t}_{\mathrm{f} \max }\right) \tag{2}\\
& \mathrm{for} \text { diagram } 1 \text { and } 2 \\
& \mathrm{~d}_{\min }=\mathrm{f}_{\max }\left(\mathrm{t}_{\mathrm{r} 1} \max +\mathrm{t}_{\mathrm{o} 2} \max +\mathrm{tf}_{\max }\right. \tag{3}\\
& \text { for diagram } 3
\end{align*}
$$

Diagram 1 : Direct Drive

Diagram 2 : Transformer Drive

Diagram 3 : Indirect Drive

II.2. Duty Max.

Refering to Fig 1, the line switching transistor T_{1} must be turned on before t_{4}, that is to say before the current becomes positive.
Since it takes a time t_{0} for T_{1} to turn on, the command, that is to say the positive going edge of Pin 7 must arrive at a time $\mathrm{t}_{3}<\mathrm{t}_{4}-\mathrm{t}_{0}$.
t_{4} would be in the middle of the trace time, at $\frac{t_{2}+t_{6}}{2}$, if no energy was lost.
Since the negative part of the current (from t2 to $\frac{t_{2}+t_{6}}{2}$) is giving energy back to the power supply
$\stackrel{\infty}{\underset{\sim}{\infty}}$. while the positive part is drawing energy from it, the latter must be greater. The consequence is that t_{4} arrives before the first half of the trace time, say at

$$
\begin{aligned}
& t_{4}=t_{2}+\frac{k}{2}\left(t_{6}-t_{2}\right) \\
& t_{4}=t_{2}+\frac{k}{2}\left(T-t_{f}\right)
\end{aligned}
$$

$k<1$ is an inefficiency factor.
This sets the maximum allowable off time to to :

$$
t_{d} \max =t_{3} \max =\left(t_{1}+t_{f}+\frac{k}{2}+\left(T-t_{f}\right)-t_{0} \min \right)_{\min }
$$

Since the duty cycle is $d=\frac{t_{d}}{T}=f t_{d}$

$$
\begin{equation*}
d_{\max }=\frac{k}{2}+\left(f\left[t_{1}+t_{f}\left(1-\frac{k}{2}\right)-t_{0}\right]\right)_{\min } \tag{4}
\end{equation*}
$$

For applications 1 and $2, \mathrm{t}_{1}=\mathrm{tr}_{\mathrm{r}}$ (T_{1} turn-off time), $\mathrm{t}_{0}=\mathrm{top}_{0}$ (T_{1} turn-on time)
Since for any transistor $t_{r}>t_{0}$ and since $k \leq 1$, the coefficient of f is always positive.
Therefore, the worst cas is :

$$
\begin{equation*}
d_{\max }=\frac{k}{2}+f_{\min }\left[t_{r 1} \min +t_{\min }\left(1-\frac{k}{2}\right)-t_{01} \max \right] \tag{5}
\end{equation*}
$$

for applications 1 and 2
For application 3, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{r} 1}+\mathrm{t}_{\mathrm{o}}$ (T_{1} turn-off time $+\mathrm{T}_{2}$ turn-on time) and $\mathrm{t}_{\mathrm{o}}=\mathrm{t}_{\mathrm{o} 1}+\mathrm{t}_{\mathrm{r} 2}$ (T_{1} turn-on time $+\mathrm{T}_{2}$ turn-off time)
$\underset{\underset{\sim}{4}}{\sim} \quad$ Normally T_{1} is a larger transistor working at a higher current than T_{2} so that $t_{r 1}+t_{02}>t_{01}+t_{\mathrm{r} 2}$ and the coefficient of f in (4) is positive.

In this case :

$$
\begin{equation*}
d_{\max }=\frac{\mathrm{k}}{2}+\mathrm{f}_{\min }\left[\mathrm{t}_{\mathrm{r} 1} \min +\mathrm{t}_{02} \min +\mathrm{t}_{\mathrm{m}} \min \left(1-\frac{\mathrm{k}}{2}\right)-\mathrm{t}_{01 \max }-\mathrm{t}_{\mathrm{r} 2} \max \right]_{\min } \tag{6}
\end{equation*}
$$

for application 3
However is T_{2} is a very cheap transistor versus T_{1}, the said coefficient may be negative ; in this case :

$$
\begin{align*}
& \mathrm{d}_{\max }=\frac{\mathrm{k}}{2}-\mathrm{f}_{\max }\left[\mathrm{t}_{01 \max }+\mathrm{t}_{\mathrm{r} 2 \max }-\mathrm{t}_{\mathrm{f} \min }\left(1-\frac{\mathrm{k}}{2}\right)-\mathrm{t}_{\mathrm{r} 1 \min }-\mathrm{t}_{\mathrm{o} 2} \min \right]_{\min } \tag{7}\\
& \\
& \text { for application } 3 \text { with } \mathrm{t}_{\mathrm{r} 1}+\mathrm{t}_{\mathrm{o} 2}+\mathrm{t}_{\mathrm{f}}\left(1-\frac{\mathrm{k}}{2}\right)-\mathrm{t}_{01}-\mathrm{t}_{\mathrm{r} 2}<0
\end{align*}
$$

Note that in the general case $d_{\text {max }}$ worst case is $\frac{k}{2}$.
This shows that for high frequency application, where equations (2) and (3) show that the duty cycle can not be too small, k needs to be as high as possible. This is why it can be interesting to derive the EHT power from a system independant from the deflection one, even for a single frequency terminal.

II.3. Typical Limits

Using (2) or (3) and (5) or (6), the allowable limits can be drawn as in Fig 2 :
Figure 2

Example :

using diagram 1 , with
$\mathrm{tr}_{\mathrm{r}}=2 \mu \mathrm{~s} \pm 0.5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{o} 1}=0.5 \mu \mathrm{~s}, \mathrm{f}_{\min }=31.5 \mathrm{kHz}, \mathrm{f}_{\max }=56 \mathrm{kH}, \mathrm{k}=0.95, \mathrm{t}_{\mathrm{f}}=2 \mu \mathrm{~s} \pm 0.2 \mu \mathrm{~s}$
yields to :
(2) : $\mathrm{d}_{\text {min }}=56 \times 10^{3} \times(2.5+2.2) \times 10^{-6}$
$=0.26$ ($26 \%)$
(5) : $d_{\max }=\frac{0.95}{2}+31.5 \times 10^{3}\left[2+1.8 \times\left(1-\frac{0.95}{2}\right)-0.5\right] \times 10^{-6}$
$=0.53(53 \%)$

In this case, TDA9102C (35 to 44 \%) can be used. At 78 kHz dmin would be 36.2%. Thus TDA9102C would still fit the application.
In such applications where it looks safer to center the selected device duty cycle in the allowable duty cycle range, paragraphs III and IV show a way to increase (resp. decrease) the duty cycle of a TDA9102C.

III. APPLICATION DIAGRAM FOR INCREASING THE DUTY CYCLE OF A TDA9102C

This application is needed when the minimum duty cycle of the selected TDA 9102C can be lower than the minimum allowable duty cycle of the application. The latter being proportionnal to f max, the calculations must be done at this max frequency.

III.1. Standard application

Figure 3

Figure 4

During rise time tr , a current I_{1}, is charging C_{2}. This current is the image of the current driven from Pin 1 by R_{1} :

$$
I_{1}=\frac{V_{R}}{2 R_{1}}
$$

When the voltage on pin 2 reaches a threshold V_{2}, a switch is activated so that the capacitor C_{2} is discharged by a current $4 I_{1}-I_{1}=3 I_{1}$. The fall time t_{f} ends when the threshold value V 1 is reached.
Thus:

$$
\begin{aligned}
& T_{r}=2 \frac{V_{2}-V_{1}}{V_{R}} R_{1} C_{2} \\
& T_{f}=2 \frac{V_{2}-V_{1}}{V_{R}} \frac{R_{1} C_{2}}{3}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{T}=\frac{8}{3} \frac{\mathrm{~V}_{2}-\mathrm{V}_{1}}{\mathrm{~V}_{\mathrm{R}}} \mathrm{R}_{1} \mathrm{C}_{2} \tag{8}
\end{equation*}
$$

The off time td is used to define the duty cycle as: duty cycle $=\frac{t_{d}}{T}$
The off time is the time during which Pin 7 is low.
$\Delta \mathrm{V}$ is a fixed voltage difference which determines td.

$$
\begin{equation*}
\mathrm{t}_{\mathrm{d}}=\frac{2 \Delta \mathrm{~V}}{\mathrm{~V}_{\mathrm{R}}} \mathrm{R}_{1} \mathrm{C}_{2} \tag{9}
\end{equation*}
$$

Mixing (8) and (9) yields to :

$$
\begin{equation*}
\Delta \mathrm{V}=\frac{\mathrm{t}_{\mathrm{d}}}{\mathrm{~T}} \frac{4}{3}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \tag{9'}
\end{equation*}
$$

III.1.1. Modified Application

Figure 5

Figure 6

During rise time, a constant voltage drop I' R_{0} is added to the voltage accross C_{2}. During fall time, $-3 r_{1} R_{0}$ is added.
Thus the voltage step is $4 r_{1} R_{0}=2 R_{0} \frac{V_{R}}{R_{1}}$
The new period can be derived from formula (8), provided the voltage threshold difference $\mathrm{V}_{2}-\mathrm{V}_{1}$ is decreased by $2 \mathrm{R}_{0} \frac{\mathrm{~V}_{\mathrm{R}}}{\mathrm{R}_{1}}$
Hence:

$$
\begin{equation*}
\mathrm{T}^{\prime}=\frac{8}{3} \frac{\mathrm{~V}_{2}-\mathrm{V}_{1}-2 \frac{\mathrm{R}_{0}}{\mathrm{R}_{1}^{\prime}} \mathrm{V}_{\mathrm{R}}}{\mathrm{~V}_{\mathrm{R}}} \mathrm{R}_{1} \mathrm{C}_{2} \tag{10}
\end{equation*}
$$

The off time t'd is straight foreward :

$$
\begin{equation*}
\mathrm{t}_{\mathrm{d}}=\frac{2 \Delta \mathrm{~V}}{\mathrm{~V}_{\mathrm{R}}} \mathrm{R}_{1} \mathrm{C}_{2} \tag{11}
\end{equation*}
$$

III.1.2. Components Calculation in Modified Application

III.1.2.1. R' ${ }_{1}$ CALCULATION

C_{2} is assumed to be constant.
Equation (II) shows that fixing a duty cycle, or an off time t_{d}^{\prime} yields to a mandatory R_{1}. Then equation (10) gives the adequate R_{0} value for the given frequency. However the datasheet does not provide $\Delta \mathrm{V}$ value, but provides $\frac{\mathrm{t}_{\mathrm{d}}}{\mathrm{T}}$ in standard application (see formula (9)).
Introducing these known parameters in equation (II) yields to :

$$
\begin{equation*}
\mathrm{t}_{\mathrm{d}}=\frac{8}{3} \frac{\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)}{\mathrm{V}_{\mathrm{R}}} \frac{\mathrm{t}_{\mathrm{d}}}{\mathrm{~T}} \mathrm{R}^{\prime}{ }_{1} \mathrm{C}_{2} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}_{1}^{\prime}=\frac{3}{8} \frac{\mathrm{t}^{\prime}{ }_{d}}{\mathrm{C}_{2}} \frac{\mathrm{~V}_{\mathrm{R}}}{\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)} \frac{\mathrm{T}}{\mathrm{t}_{\mathrm{d}}} \tag{13}
\end{equation*}
$$

$\frac{t_{d}}{T}$: device duty cycle, $t^{\prime} d$: needed off time

III.1.2.2. Ro CALCULATION

Using (10) :

$$
\begin{aligned}
& \frac{3}{8} T^{\prime} \frac{V_{R}}{R_{1} C_{2}}=V_{2}-V_{1}-2 \frac{R_{0}}{R_{1}^{\prime}} V_{R} \\
& 2 \frac{R_{0}}{R_{1}} V_{R}=V_{2}-V_{1}-\frac{3}{8} T^{\prime} \frac{V_{R}}{R_{1} C_{2}} \\
& R_{0}=\frac{V_{2}-V_{1}}{V_{R}} \frac{R_{1}^{\prime}}{2}-\frac{3 T^{\prime}}{16 C_{2}}
\end{aligned}
$$

(Replacing R_{1} by (13))

$$
\begin{equation*}
\mathrm{R}_{0}=\frac{3 \mathrm{~T}^{\prime}}{16 \mathrm{C}_{2}}\left(\frac{\mathrm{~d}^{\prime}}{\mathrm{d}}-1\right) \tag{14}
\end{equation*}
$$

III.1.3. Summury

When the minimum duty cycle $\frac{t^{\prime} \text { d }}{T}$ of your application is higher than the minimum duty cycle $\frac{t_{d}}{T}$ of the chosen device, use the modified application of Fig.5, calculating R_{1}^{\prime} from (13) and R_{0} from (14).
Chose the actual values for Ro and R', so that a safety margin is allowed for component tolerances.

IV. APPLICATION DIAGRAM FOR DECREASING THE DUTY CYCLE

This application is used when the max duty cycle of TDA9102C can be higher than the max allowable duty cycle of the application. The latter being proportional to $f_{\text {max }}$, the calculation is to be made at $f_{\text {min }}$.
IV.1. Standard Application : please refer to § III

$$
\begin{equation*}
\mathrm{T}=\frac{8}{3} \frac{\mathrm{~V}_{2}-\mathrm{V}_{1}}{\mathrm{~V}_{\mathrm{R}}} \mathrm{R}_{1} \mathrm{C}_{2} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{t}_{\mathrm{d}}=\frac{2 \Delta \mathrm{~V}}{\mathrm{~V}_{\mathrm{R}}} \mathrm{R}_{1} \mathrm{C}_{2} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \mathrm{V}=\frac{\mathrm{t}_{\mathrm{d}}}{\mathrm{~T}} \frac{4}{3}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \tag{9'}
\end{equation*}
$$

IV.1.1. Modified Application

Figure 7

Figure 8

When the off time t'd starts, pin 7 is low so that R_{0} drives an additional current from pin 1, thus increasing the slope on C_{2}.
If V_{D} is the sum of the saturation voltage on pin 7 and the voltage drop across the diode D , the additional current is: $\mathrm{l}_{0}=\frac{\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{D}}}{\mathrm{R}_{0}}$

Since the current charging C_{2} is half the current driven from pin 1 , the off time is :

$$
\begin{equation*}
\mathrm{f}_{\mathrm{d}}=\frac{2 \Delta V \mathrm{C}_{2}}{\frac{V_{R}}{R_{1}}+\frac{V_{R}-V_{D}}{R_{0}}} \tag{15}
\end{equation*}
$$

using (9') :

$$
\begin{equation*}
\mathrm{t}_{\mathrm{d}}=\frac{8}{3} \frac{\mathrm{t}_{\mathrm{d}}}{T} \frac{\left(V_{2}-V_{1}\right) \mathrm{C}_{2}}{\frac{V_{R}}{R_{1}}+\frac{V_{R}-V_{D}}{R_{0}}} \tag{16}
\end{equation*}
$$

IV.1.2 Component Calculation of the Modified Application (Fig.5)
definitions:
td
$d=\frac{t_{d}}{T} \quad:$ device duty cycle
t'd : needed off time (modified application)
T' : line period (modified application)
$d^{\prime}=\frac{t^{\prime} d}{T^{\prime}} \quad:$ needed duty cycle
$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{2}-\mathrm{V}_{1}$: voltage swing at pin $2(4 \mathrm{~V})$
$V_{R} \quad$: voltage at pin 1 (3.5V)
$V^{\prime} R=V_{R}-V_{D}$: voltage across Roduring off time ($\approx 2.5 \mathrm{~V}$)
(16) can be rewritten as :

$$
\begin{equation*}
\mathrm{t}_{\mathrm{d}}=\frac{8}{3} \frac{\mathrm{~d} \mathrm{~V}_{\mathrm{S}} \mathrm{C}_{2}}{\frac{\mathrm{~V}_{\mathrm{R}}}{\mathrm{R}_{1}^{\prime}}+\frac{\mathrm{V}_{\mathrm{R}}}{R_{0}}} \tag{17}
\end{equation*}
$$

and (9^{\prime}) as ($\left.9^{\prime \prime}\right) \Delta \mathrm{V}=\frac{4}{3} \mathrm{dV}$ s
a second equation is necessary to derive both R_{1} and R_{0}.

It is given by calculating the line period T^{\prime} :
Refering to Fig. 6 :

$$
\begin{aligned}
T^{\prime} & =\left(t_{r}-t^{\prime} d\right)+t^{\prime} d+t_{f} \\
& =\frac{V_{S}-\Delta V}{\frac{V_{R}}{2 R_{1}^{\prime}}} C_{2}+\frac{8}{3} \frac{d V_{S} C_{2}}{\frac{V_{R}}{R_{1}^{\prime}}+\frac{V^{\prime} R}{R_{0}}}+\frac{V_{S} C_{2}}{\frac{3 V_{R}}{2 R_{1}^{\prime}}}
\end{aligned}
$$

$\left(9^{\prime}\right) \Rightarrow T^{\prime}=\frac{2 R_{1}^{\prime}}{V_{R}}\left(C_{2} V_{S}-\frac{4}{3} d V_{S} C_{2}+\frac{4}{3} \frac{d V_{S} C_{2}}{1+\frac{V_{R}^{\prime}}{V_{R}} \frac{R^{\prime} 1}{R_{0}}}+\frac{\mathrm{C}_{2} \mathrm{~V}_{\mathrm{S}}}{3}\right)$

$$
\begin{aligned}
& =\frac{8}{3} \frac{V_{S}}{V_{R}} R_{1}^{\prime} C_{2}\left(1-d+\frac{d}{1+\frac{V_{R}^{\prime}}{V_{R}} \frac{R^{\prime}{ }_{1}}{R_{0}}}\right) \\
& =\frac{8}{3} \frac{V_{S} C_{2}}{\frac{V_{R}}{R_{1}^{\prime}}+\frac{V^{\prime} R}{R_{0}}}\left(1-d+(1-d) \frac{V^{\prime} R}{V_{R}} \frac{R_{1}^{\prime}}{R_{0}}+d\right)
\end{aligned}
$$

(17) $\Rightarrow T^{\prime}=\frac{\mathrm{t}^{\prime} \mathrm{d}}{\mathrm{d}}\left(1+(1-\mathrm{d}) \frac{\mathrm{V}_{\mathrm{R}}^{\prime}}{\mathrm{V}_{\mathrm{R}}} \frac{\mathrm{R}_{1}^{\prime}}{\mathrm{R}_{0}}\right)$
$\frac{T^{\prime} d}{t_{d}}=1+(1-d) \frac{V^{\prime}{ }_{R}}{V_{R}} \frac{R_{1}^{\prime}}{R_{0}}$
$\frac{d}{d^{\prime}}-1=(1-d) \frac{V^{\prime} R^{\prime}}{V_{R}} \frac{R_{1}^{\prime}}{R_{0}}$

$$
\begin{equation*}
\frac{V^{\prime} R}{R_{0}}=\frac{V_{R}}{R_{1}^{\prime}} \frac{d-d^{\prime}}{d^{\prime}(1-d)} \tag{18}
\end{equation*}
$$

replacing in (17) :
$t^{\prime}{ }_{d}=\frac{8}{3} \frac{d V_{S} C_{2}}{\frac{V_{R}}{R_{1}^{\prime}}\left(1+\frac{d-d^{\prime}}{d^{\prime}(1-d)}\right)}$
$=\frac{8}{3} \frac{\mathrm{~V}_{\mathrm{S}} \mathrm{C}_{2} \mathrm{R}^{\prime}{ }_{1} \mathrm{~d}^{\prime}(1-\mathrm{d})}{\mathrm{V}_{\mathrm{R}}\left(1-\mathrm{d}^{\prime}\right)}$

$$
\begin{equation*}
\mathrm{R}_{1}^{\prime}=\frac{3}{8} \frac{\mathrm{t}_{\mathrm{d}}\left(1-\mathrm{d}^{\prime}\right) \mathrm{V}_{\mathrm{R}}}{\mathrm{C}_{2} \mathrm{~d}^{\prime}(1-\mathrm{d}) \mathrm{V}_{\mathrm{S}}} \tag{19}
\end{equation*}
$$

as $d^{\prime}=\frac{t^{\prime} d}{T^{\prime}}$

$$
\begin{equation*}
\mathrm{R}_{1}^{\prime}=\frac{3}{8} \frac{\mathrm{~T}^{\prime}}{\mathrm{C}_{2}} \frac{\left(1-\mathrm{d}^{\prime}\right)}{(1-\mathrm{d})} \frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{~V}_{\mathrm{S}}} \tag{20}
\end{equation*}
$$

using (18) :
$R_{0}=R^{\prime}{ }_{1} \frac{d^{\prime}(1-d)}{\left(d-d^{\prime}\right)} \frac{V^{\prime} R}{V_{R}}$

$$
\begin{equation*}
R_{0}=\frac{3}{8} \frac{T^{\prime}}{C 2} \frac{\left(1-d^{\prime}\right) d^{\prime}}{\left(d-d^{\prime}\right)} \frac{V^{\prime} R}{V_{S}} \tag{21}
\end{equation*}
$$

V. CONCLUSION

If your maximum allowable duty cycle d' is lower than the max duty cycle d of the TDA9102C use application of Fig.5, calculating R'1 and Rofrom (20) and (21).

The TDA9102C can be used in virttually all monitor application even though the horizontal duty cycle is basically fixed.

This together with the very good jitter figure and all DC controll explains the great succes of this device.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

Purchase of $I^{2} C$ Components of SGS-THOMSON Microelectronics, conveys a license under the Philips $I^{2} C$ Patent. Rights to use these components in a $I^{2} C$ system, is granted provided that the system conforms to the $I^{2} C$ Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

