

SD1456 (TCC3100)

RF & MICROWAVE TRANSISTORS TV/LINEAR APPLICATIONS

- 170 230 MHz
- 28 VOLTS
- CLASS AB PUSH PULL
- DESIGNED FOR HIGH POWER LINEAR OPERATION
- HIGH SATURATED POWER CAPABILITY
- GOLD METALLIZATION
- DIFFUSED EMITTER BALLAST RESISTORS
- COMMON EMITTER CONFIGURATION
- Pout = 100 W MIN. WITH 11.0 dB GAIN

DESCRIPTION

The SD1456 is a gold metallized epitaxial silicon NPN planar transistor using diffused emitter ballast resistors for high linearity Class AB operation in VHF and Band III television transmitters and transposers.

ABSOLUTE MAXIMUM RATINGS $(T_{case} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	65	V
V _{CEO}	Collector-Emitter Voltage	33	V
V _{EBO}	Emitter-Base Voltage	3.5	V
Ic	Device Current	16	А
Poiss	Power Dissipation	150	W
TJ	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	- 65 to +150	°C

THERMAL DATA

R _{TH(j-c)} Junction-Case Thermal Resistance	1.2	°C/W
---	-----	------

November 1992 1/5

ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

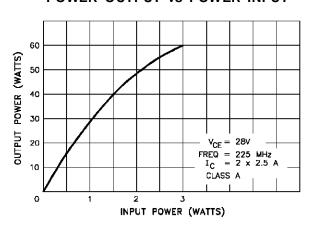
STATIC

Symbol	mbol Test Conditions		Value			Unit	
Symbol			Min.	Тур.	Max.	Oiiit	
ВУсво	I _C = 50mA	$I_E = 0mA$		65	_	_	V
BVcer	I _C = 50mA	$R_{BE} = 15\Omega$		60	_		V
BV _{CEO}	I _C = 50mA	$I_B = 0mA$		33	_		V
BV _{EBO}	I _E = 5mA	$I_C = 0mA$		3.5	_	_	V
hFE	V _{CE} = 5V	I _C = 500mA		20	_	150	_

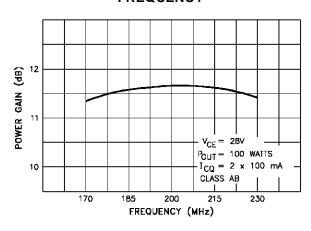
DYNAMIC (Class AB)

Symbol Test Cond				Value			Unit
Symbol	Test Conditions			Min.	Тур.	Max.	Oilit
Pout	f = 225 MHz	$V_{CE} = 28 \text{ V}$	$I_C = 2 \times 100 \text{ mA}$	100	_		W
G _P	P _{OUT} = 100 W	$V_{CE} = 28 \text{ V}$	$I_C = 2 \times 100 \text{ mA}$	11	_	_	dB
ης	Pout = 100 W	$V_{CE} = 28 V$	$I_C = 2 \times 100 \text{ mA}$	70	_		%
СОВ	f = 1 MHz	$V_{CB} = 28 \text{ V}$		_	60		pF

DYNAMIC (Class A)

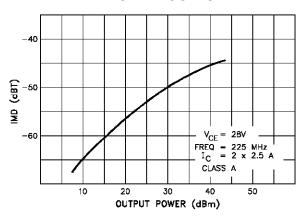

Symbol	Test Conditions			Value		Unit	
Symbol		rest conditions		Min.	Тур.	Max.	Oiiit
Pour*	f = 225 MHz	$V_{CE} = 28 V$	$I_C = 2 \times 2.5 A$	28	32	_	W
G _P *	P _{IN} = 1.1 W	V _{CE} = 28 V	I _C = 2 x 2.5 A	14	15	_	dB
IMD ₃ *	P _{IN} = 1.1 W	V _{CE} = 28 V	P _{REF} = 28 W	_	-51	_	dB

Note: * Class A Performance Characteristics Indicate Capability but are not Tested.

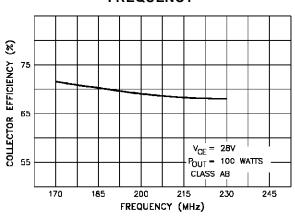

IMD3 - 3 Tone Meaurement; -8, -7, -16dB relative to $P_{\mbox{\scriptsize REF}}$

TYPICAL PERFORMANCE

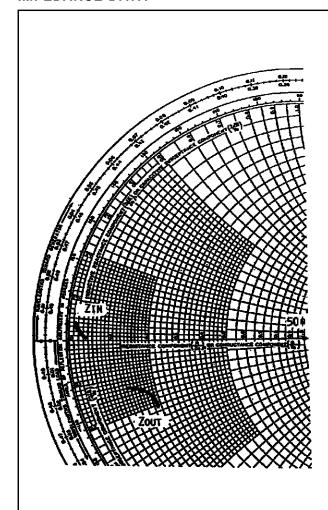
POWER OUTPUT vs POWER INPUT



BROADBAND POWER GAIN vs FREQUENCY

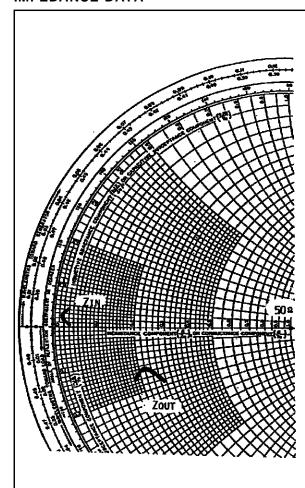


TYPICAL PERFORMANCE (cont'd)


INTERMODULATION DISTORTION vs POWER OUTPUT

COLLECTOR EFFICIENCY vs FREQUENCY

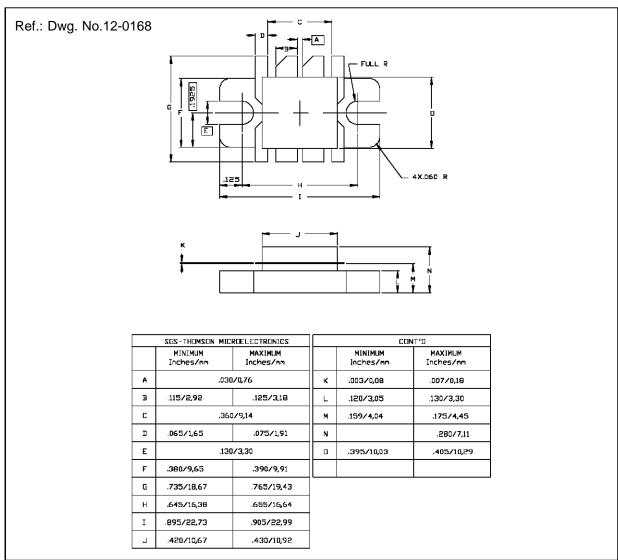
IMPEDANCE DATA



FREQ.	Z _{IN} (Ω)	Ζουτ (Ω)		
170 MHz	1.3 + j 0.6	9.5 – j 10.0		
200 MHz	1.0 + j 1.0	9.0 - j 8.0		
230 MHz	0.9 + j 1.8	6.3 – j 6.5		

 $\begin{aligned} P_{OUT} &= 100 \text{ W} \\ V_{CE} &= 28 \text{ V} \\ I_{CQ} &= 2 \text{ x } 100 \text{ mA} \end{aligned}$

Class AB


IMPEDANCE DATA

FREQ.	Z _{IN} (Ω)	Z _{OUT} (Ω)		
170 MHz	1.05 + j 0.65	13.5 – j 9.0		
200 MHz	0.9 + j 1.1	11.0 – j 6.5		
230 MHz	1.25 + j 1.8	9.5 – j 7.7		

 $V_{CE} = 28 \text{ V}$ $I_{CQ} = 2 \text{ x } 2.5 \text{ A}$ Class A

PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

