RF \& MICROWAVE TRANSISTORS 800-960 MHz CELLULAR BASE STATION

- GOLD METALLIZATION
- DIFFUSED EMITTER BALLASTING
- INTERNAL INPUT/OUTPUT MATCHING
- COMMON EMITTER CONFIGURATION
- DESIGNED FOR LINEAR OPERATION
- HIGH SATURATED POWER CAPABILITY
- 26 VOLT, 900 MHz PERFORMANCE

Pout $=150 \mathrm{~W}$ MIN.
GAIN $=8.5 \mathrm{~dB}$ MIN.
IMD 3 = -28dB MAX. @ Pout = 150W PEP

- INHERENT RUGGEDNESS:

LOAD MISMATCH TOLERANCE OF 5:1 MIN. VSWR
3 dB OVERDRIVE CAPABILITY

DESCRIPTION

The SD4590 is designed for both analog and digital cellular base stations over the 800 to 960 MHz frequency range, specifically those systems requiring the high linearity and efficiency afforded by class AB operation. Integrated input/output prematching simplifies amplifier design. Ruggedness, MTTF, and linearity are enhanced using diffused emitter resistors and refractory/gold metallization.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Value	Unit
V $_{\text {CBO }}$	Collector-Emitter Voltage	65	V
VCEO	Collector-Emitter Voltage	28	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage	3.5	V
I_{C}	Device Current	25	A
$\mathrm{P}_{\text {DISS }}$	Power Dissipation	300	W
$\mathrm{~T}_{J}$	Junction Temperature	+200	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$R_{T H(j-c)}$	Junction-Case Thermal Resistance	0.60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

SD4590
ELECTRICAL SPECIFICATIONS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$)
STATIC

Symbol	Test Conditions		Value			Unit
			Min.	Typ.	Max.	
BV $\mathrm{V}_{\text {co }}$	$\mathrm{IC}_{\mathrm{C}}=50 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{BE}}=0 \mathrm{~V}$	65	80	-	V
BV'eo	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B}}=0 \mathrm{~mA}$	28	30	-	V
BVCER	$\mathrm{IC}=100 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{BE}}=75 \Omega$	33	40	-	V
BV $\mathrm{EbBo}^{\text {a }}$	$\mathrm{IE}=10 \mathrm{~mA}$	$\mathrm{lc}=0 \mathrm{~mA}$	3.5	4.0	-	V
Iceo	$\mathrm{V}_{\text {CE }}=30 \mathrm{~V}$	$\mathrm{V}_{\text {BE }}=0 \mathrm{~V}$	-	-	10	mA
$\mathrm{h}_{\text {FE }}$	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$	$\mathrm{IC}=6 \mathrm{~A}$	25	45	120	-

Tested per side

DYNAMIC

Symbol	Test Conditions	Value			Unit
		Min.	Typ.	Max.	
Сов	$\mathrm{f}=1.0 \mathrm{MHz} \quad \mathrm{~V}_{\mathrm{CB}}=26 \mathrm{~V}$ for information only - this part is collector matched	-	75	-	pF

Tested per side

DYNAMIC (CW)

DYNAMIC (Two-Tone)

	Test Conditions				Value		Unit
Symbol				Min.	Typ.	Max.	
*Gp	$\mathrm{V}_{\text {CE }}=26 \mathrm{~V}$	$\mathrm{ICQ}=2 \times 200 \mathrm{~mA}$	Pout $=150 \mathrm{~W}$ PEP	8.5	9.5	-	dB
${ }^{*} \eta_{c}$	$V_{\text {CE }}=26 \mathrm{~V}$	$\mathrm{ICQ}=2 \times 200 \mathrm{~mA}$	Pout $=150 \mathrm{~W}$ PEP	30	35	-	\%
* MD_{3}	$V_{\text {CE }}=26 \mathrm{~V}$	$\mathrm{ICQ}=2 \times 200 \mathrm{~mA}$	Pout $=150 \mathrm{~W}$ PEP	-	-32	-28	dBT
*Load Mismatch	VSWR = 5:1 MIN @ All phase angles			No Degradation in Device Performance			
*OVD	$\begin{aligned} & \hline V_{\text {CE }}=26 \mathrm{~V} \quad \mathrm{I}_{\mathrm{CQ}}=2 \times 200 \mathrm{~mA} \\ & \text { Set Pout }=150 \mathrm{~W} \text { PEP; Increase PIN } 3 \mathrm{~dB} \\ & \hline \end{aligned}$			No Degradation in Device Performance			

*Note: $\mathrm{f}_{1}=900.00 \mathrm{MHz}$
$\mathrm{f}_{2}=900.10 \mathrm{MHz}$

TYPICAL PERFORMANCE

POWER OUTPUT vs SUPPLY VOLTAGE

POWER GAIN vs POWER OUTPUT

INTERMODULATION DISTORTION vs POWER OUTPUT

BROADBAND PERFORMANCE

SERIES EQUIVALENT INPUT/OUTPUT IMPEDANCES

TEST CIRCUIT

Balun 1, 2 : 50Ω Coaxial Cable Length 2.2"
C1, C2,
C23, C25
75pF Ceramic Chip, ATC B
C3, C4,
$2 \times 47 \mathrm{pF}$ Ceramic Chip, ATC B
C5, C16 : 0.8-8pF Variable, JOHANSON Giga-Trim
C6, C9 : 750pF Ceramic Chip, ATC B
C7, C10 : 39nF Ceramic Chip, ATC B
C8, C11
C24, C26 : $47 \mu \mathrm{~F}, 50 \mathrm{~V}$ Electrolytic
C13, C17 : $100 \mu \mathrm{~F}, 50 \mathrm{~V}$ Electrolytic
C12 : 9.1pF, Ceramic Chip, ATC A
C14, C18 : 39nF Ceramic Chip (OPTIONAL)
C15, C19 : 750pF Ceramic Chip (OPTIONAL)

C20 : 1.3pF Ceramic Chip, ATC B
C27: 0.7pF Ceramic Chip, ATC B
L1, L4,
L5, L8: : 12 Turns, \#20 AWG, 0.15" I.D. (Tight)
L2, L3, : 4 Turns, \#20 AWG, 0.13" I.D. (1:1)
R1, R2,
R3, R4 : $5 \times 50 \Omega$ Chip Resistor
Board
Material : ROGERS, $\mathrm{Er}=2.55$, Height $=31.25$ mil 1 oz . Cu.
See Photomaster for Microstrip Lines.

PHOTOMASTER OF TEST CIRCUIT

PACKAGE MECHANICAL DATA

Ref.: Dwg. No.12-0208
UDCS No. 1011409 rev C

SGS-THIMSUN MICRDELECTRDNJCS		
	MINTMLA Inches/mm	MAXIMNM Inches/min
A	.220/5,59	.230/5,84
\%	.210/5.33	
c	120/3,05	.130/3.30
D	.300/9,65	. 39019,91
E	.780/19,81	. $020 / 20.83$
F	.435/11,05	
5	$1.100 / 27.94$	
H	1.335/33,91	1.345/34,16
I	.003/0,08	.007/0,18
」	.060/1,5E	.070/1,78

CONT ${ }^{\text {D }}$		
	MINIMUM Inches/mm	MAXIMUM Inches/ma
K	.09E/2.09	.100/2.54
L		.205/5.21
M	. $395 / 10.03$.407/10.34
N	.850/21.59	.970/22.10

PIN1 1. COLLECTGR
e. COLLECTIR
3. BASE
4. BASE
5. EMITTER

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
©1997 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea
Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland Taiwan - Thailand - United Kingdom - U.S.A.

