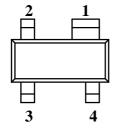
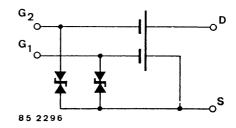


N-Channel Dual-Gate MOS-Fieldeffect Tetrode, Depletion Mode

Electrostatic sensitive device.
Observe precautions for handling.



Applications


Input- and mixer stages in low voltage UHF- and VHFtuner with only 5 V supply voltage and in cordless phones.

Features

- Integrated gate protection diodes
- Low noise figure
- High gain

- Only 5 V supply voltage
- Low input capacitance
- High AGC-range

94 9279

S888T Marking: 888 Plastic case (SOT 143)

1 = Source; 2 = Drain; 3 = Gate 2; 4 = Gate 1

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Drain source voltage	V_{DS}	10	V
Drain current	I_D	20	mA
Gate 1/gate 2-source peak current	±I _{G1/G2SM}	10	mA
Gate 1/gate 2-source voltage	±V _{G1S/G2S}	6	V
Total power dissipation $T_{amb} \le 78^{\circ}C$	P_{tot}	160	mW
Channel temperature	T_{Ch}	150	°C
Storage temperature range	T _{stg}	-55 to +150	°C

Maximum Thermal Resistance

Parameters	Symbol	Value	Unit
Channel ambient on glass fibre printed board			
$(25 \times 20 \times 1.5) \text{ mm}^3 \text{ plated with } 35 \mu\text{m} \text{ Cu}$	R _{thChA}	450	K/W

1 (5)

Electrical DC Characteristics

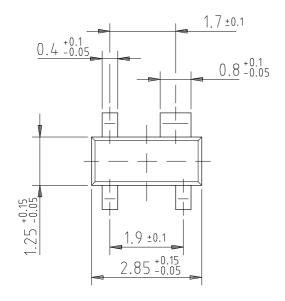
 $T_{amb}=25\,^{\circ}C$

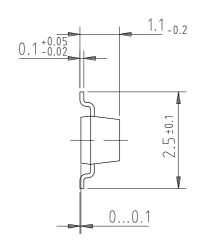
Parameters /Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Drain-source breakdown voltage $I_D = 10 \; \mu A, -V_{G1S} = -V_{G2S} = 2 \; V$	V _{(BR)DS}	10			V
Gate 1-source breakdown voltage $\pm I_{G1S} = 10 \text{ mA}, V_{G2S} = V_{DS} = 0 \text{ V}$	±V _{(BR)G1SS}	7.5		12	V
Gate 2-source breakdown voltage $\pm I_{G2S} = 10 \text{ mA}, V_{G1S} = V_{DS} = 0 \text{ V}$	±V _{(BR)G2SS}	7.5		12	V
Gate 1-source leakage current $\pm V_{G1S} = 5 \text{ V}, V_{G2S} = V_{DS} = 0 \text{ V}$	±I _{G1SS}			50	nA
Gate 2-source leakage current $\pm V_{G2S} = 5 \text{ V}, V_{G1S} = V_{Ds} = 0 \text{ V}$	±I _{G2SS}			50	nA
Drain current $V_{DS} = 4 \text{ V}, V_{G1S} = 0 \text{ V}, V_{G2S} = 2 \text{ V}$	I _{DSS}	1		12	mA
Gate 1-source cut-off voltage $V_{DS} = 4$ V, $V_{G2S} = 2$ V, $I_D = 20$ μA	-V _{G1S(OFF)}			1.0	V
Gate 2-source cut-off voltage $V_{DS} = 4$ V, $V_{G1S} = 0$ V, $I_D = 20$ μA	-V _{G2S(OFF)}			0.8	V

Electrical AC Characteristics

 $V_{DS}=4$ V, $I_{D}=10$ mA, $V_{G2S}=2$ V, f=1 MHz, $T_{amb}=25^{\circ}C$

Parameters /Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Forward transadmittance	y _{21s}	20	24		mS
Gate 1 input capacitance	C _{issg1}		1.9		pF
Gate 2 input capacitance $V_{G1S} = 0 \text{ V}, V_{G2S} = 2 \text{ V}$	C _{issg2}		1.2		pF
Feedback capacitance	C_{rss}		20		fF
Output capacitance	C_{oss}		0.9		pF
$\begin{aligned} & \text{Power gain} \\ & g_G = 2 \text{ mS}, g_L = 0.5 \text{ mS}, f = 200 \text{ MHz} \\ & g_G = 3.3 \text{ mS}, g_L = 1 \text{ mS}, f = 800 \text{ MHz} \end{aligned}$	$\begin{array}{c} G_{ps} \\ G_{ps} \end{array}$	16.5	26 20		dB dB
AGC range $V_{DS} = 4 \text{ V}, V_{G2S} = 2 \text{ to } -1 \text{ V}, f = 800 \text{ MHz}$	$\Delta G_{ m ps}$	40			dB
Noise figure $g_G=2~\text{mS},~g_L=0.5~\text{mS},~f=200~\text{MHz} \\ g_G=3.3~\text{mS},~g_L=1~\text{mS},~f=800~\text{MHz}$	F F		0.9 1.3		dB dB


Common Source S-Parameters


 $V_{G2S} = 4 V$, $Z_0 = 50 \Omega$

	I _D /mA	f/MHz	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
V _{DS} /V			LOG MAG	ANG	LOG MAG	ANG	LOG MAG	ANG	LOG MAG	ANG
			dB	deg	dB	deg	dB	deg	dB	deg
		100	-0.04	-7.4	7.54	169.3	-57.68	84.3	-0.08	-3.4
		200	-0.15	-14.6	7.32	157.8	-52.06	78.8	-0.15	-6.8
		300	-0.35	-21.4	7.01	147.1	-49.12	73.9	-0.24	-10.0
		400	-0.58	-28.1	6.59	136.7	-47.51	69.8	-0.35	-13.1
		500	-0.83	-34.4	6.17	126.7	-46.85	65.8	-0.48	-16.2
		600	-1.10	-40.3	5.70	117.8	-46.64	67.6	-0.61	-18.7
	10	700	-1.36	-46.1	5.31	109.5	-46.80	69.3	-0.73	-21.4
		800	-1.62	-51.5	4.90	101.3	-47.07	76.0	-0.83	-24.1
		900	-1.86	-57.2	4.54	93.6	-47.06	85.6	-0.94	-26.9
		1000	-2.09	-62.3	4.14	85.8	-47.29	95.0	-1.09	-29.1
		1100	-2.34	-67.6	3.80	78.4	-46.88	110.8	-1.21	-31.8
		1200	-2.52	-72.7	3.60	71.7	-45.49	127.1	-1.22	-34.8
4		1300	-2.75	-77.6	3.33	64.5	-43.34	139.2	-1.26	-37.6
4	5	100	-0.04	-6.8	5.89	169.2	-58.18	84.4	-0.05	-3.3
		200	-0.14	-13.7	5.65	157.6	-52.56	78.7	-0.11	-6.6
		300	-0.33	-19.9	5.36	146.7	-49.71	73.5	-0.21	-9.7
		400	-0.54	-26.0	4.97	136.3	-48.01	69.5	-0.29	-12.5
		500	-0.78	-32.1	4.55	126.1	-47.44	65.4	-0.43	-15.7
		600	-1.03	-37.6	4.10	116.9	-47.33	66.7	-0.54	-18.2
		700	-1.26	-43.0	3.71	108.3	-47.59	68.5	-0.64	-21.0
		800	-1.51	-48.2	3.31	100.1	-48.16	75.6	-0.74	-23.5
		900	-1.74	-53.5	2.95	92.0	-48.25	86.7	-0.85	-26.2
		1000	-1.94	-58.3	2.54	84.0	-48.59	98.3	-1.01	-28.5
		1100	-2.18	-63.3	2.22	76.5	-48.17	117.8	-1.11	-31.2
		1200	-2.34	-68.4	2.01	69.6	-46.19	135.8	-1.12	-34.1
		1300	-2.57	-73.1	1.77	62.4	-43.65	147.4	-1.16	-36.8

Dimensions in mm

96 12240 technical drawings according to DIN specifications

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423