

QN100 QUALITY NOTE

MEMORY PRODUCTS QUALITY PROGRAM

The Corporate quality program of SGS-THOMSON is published as the SURE (Semiconductor Users Reliability Evaluation) Program. The quality program for memory products follows closely this Program. Described here are the particular controls that apply specifically to memories starting with the Lot Acceptance and AOQ assessment and followed by the program for memory product qualification, an indication of the the manufacturing SPC (Statistical Process Controls) and the Short and Long term reliability tests. On request, extra tests may be agreed with the customer at product qualification.

Lot Acceptance

The role of a final Lot Acceptance sampling has changed from that of lot acceptance - although this still applies - more to the collection of statistical data about the outgoing quality, and the monitoring of the quality to the target defectivity in Parts Per Milion (ppm).

The Average Outgoing Quality (AOQ) is estimated from the results of Lot Acceptance testing. The measure developed by and used by SGS-THOMSON for the AOQ is known as the Average Outgoing Quality Estimator and is given by:

Total Defective units in sample, with $d \le c + 1$ Total inspected units in samples of accepted lots

where d = number of defects in sample, c = acceptance number. The totals are those of ALL lots inspected (1st, 2nd, etc controls).

This AOQE converges towards the real AOQ as the number of sampled lots increases, even though an acceptance number of zero is used.

Subgroup	Parameters	Minimum Sample Size	Acceptance Number
A1	Visual and mechanical inspection	315	0
A2+A3+A4	Cumulative electrical and inoperative mechanical failures	315	0

Table 1. Finished Product Acceptance

Table 2. Qualification

1	Wafer Fabrication Major Changes	Tests selected to control the parameters that are affected by the change, varying from the design or mask set to the fabrication plant.
2	Assembly Major Changes	Tests selected to control the parameters that are affected by the change, varying from package material changes to the assembly plant.
3	Product Qualification	Tests selected to control the parameters depending on the type of package and whether the die is new or already qualified.

QN100 - QUALITY NOTE

Subgroup	Test Procedure	MIL-STD-883 Procedure	Test Conditions
1	Physical Dimensions	2016	Published Data
2	Bond Strength	2011	
3	Die Attach	2019 or 2027	
4	Fine Leak	1014	Test Condition A1
	Gross Leak	1014	Test Condition C1
5	Lid Torque	2024	
6	Internal Water Vapour	1018	5000 ppm (max)
7	Solderability:		
	– FDIP Package	2003	245°C, 5sec, Precondition Steam, 1hr
	– JLCC, LCCC Packages	CECC 90,000	215°C, 3sec, Precondition Steam, 1hr
8	Resistance to Solvents	2015	4 Solvent Solutions
9	Salt Atmosphere	1009	Test Condition A, 35°C, 24hrs
10	Lead Integrity	2004	Test Condition B2
11	Resistance to Soldering Heat		260°C, 10sec
12	Thermal Shock	1011	–55 to 125°C, 15 cycles
	Temperature Cycling	1010	–65 to 150°C, 100 cycles
	Moisture Resistance	1004	−10 to 65°C, RH = 90%
	Fine Leak	1014	Test Condition A1
	Gross Leak	1014	Test Condition C1
13	Mechanical Shock	2002	Test Condition B
	Vibration Variable Frequency	2007	Test Condition A
	Constant Acceleration	2001	Teat Condition E
	Fine Leak	1014	Test Condition A1
	Gross Leak	1014	Test Condition C1
14	Temperature Cycling	1010	–65 to 150°C, 10 cycles
	Constant Acceleration	2001	Test Condition E
	Fine Leak	1014	Test Condition A1
	Gross Leak	1014	Test Condition C1

T

Subgroup	Test Procedure	MIL-STD-883 Procedure	Test Conditions
1	Physical Dimansions	2016	Published Data
	Coplanarity PLCC, PSOJ, TSOP & JLCC Packages		Published Data
2	Bond Strength	2011	
3	Die Attach	2019 or 2027	
4	Solderability:		
	 PSO, PSOJ, PLCC & TSOP Packages 	CECC 90,000	215°C, 3sec, Precondition Steam, 8hrs
	– PDIP Package	2003	245°C, 5sec, Precondition Steam, 8hrs
5	Resitance to Solvents	2015	4 Solvent Solutions
6	Salt Atmosphere	1009	Test Condition A, 35°C, 24hrs
7	Lead Integrity	2004	Test Condition B2
8	Resistance to Soldering Heat:		
	– PDIP Package		260°C, 10sec
9	Moisture-induced stress sensitivity for surface mount devices	JEDEC JESD22-A112	

Table 4. Product Qualification, Plastic Package	s - Package Related Tests
---	---------------------------

QN100 - QUALITY NOTE

Subgroup	Test Procedure	MIL-STD-883 Procedure	Test Conditions
1	Operating Life Test	1005	140°C, V_{CC} = 6 to 7V, 500hrs
2	Retention Bake	1008	250°C, 500hrs
3	Temperature Cycling	1010	–65 to 150°C, 1000 cycles
4	Thermal Shock	1011	–55 to 125°C, 500 cycles
5	Electrostatic Discharge	3015	1500Ω, 100pF, 2000V (min)
6	Electrostatic Discharge	EIAJ IC-121	0Ω, 200pF, 200V (min)
7	Latch-up	JEDEC STD-17	Current Injection 200mA (min), Overvoltage 14V (min)

Table 5. Product Qualification, Ceramic Packages - Die Related Tests

Subgroup	Test Procedure	MIL-STD-883 Procedure	Test Conditions
1	Operating Life Test ⁽¹⁾	1005	140°C $^{(2)}$, V _{CC} = 6 to 7V, 500hrs
2	Retention Bake	1008	150°C, 1000hrs
3	Write/Erase Cycling (EEPROM, FLASH)		Published Data
4	Temperature, Humidity, Bias ⁽¹⁾	CECC 90,000	85°C, RH = 85%, V _{CC} = 5V, 1000hrs
5	Temperature Cycling ⁽¹⁾	1010	-65 to 150°C, 1000 cycles
6	Thermal Shock ⁽¹⁾	1011	–55 to 125°C, 500 cycles
7	Pressure Pot ⁽¹⁾		121°C, 2Atm, 240hrs
8	HAST	CECC 90,000	130°C, RH = 85%, 96hrs
9	Electrostatic Discharge	3015	1500Ω, 100pF, 2000V (min)
10	Electrostatic Discharge	EIAJ IC-121	0Ω, 200pF, 200V (min)
11	Latch-up	JEDEC STD-17	Current Injection 200mA (min), Overvoltage 14V (min)
12	Soft Error Testing (SRAM)		

57

Notes: 1. Apply preconditioning flow on SMD devices before tests as per JESD22-A113. 2. 125°C for SRAM.

4/8

Memory Product Qualification/Major Changes

Memory Product qualification is made on new memory products, new die designs and new packages and existing products when there are major changes to the design or manufacturing.

The tests performed depend on the parameters affected by a major change or the qualification of combinations of new die designs and new Plastic or Ceramic packages.

The tests performed are selected as appropriate from those listed in Tables 3 through 6.

Statistical Process Control

One of the most powerfull tools implemented throughout the production of memory products is SPC. The final goal of the SPC program is to bring each critical step of the process to "6 Sigma" capability (Cp \ge 2). Current controls are at Cp and Cpk 1.33. For example, in a typical wafer processing line more than 200 variables may be controlled for SPC. Data is gathered and analysed by on-line computers and provides up-to-the minute control charts (eg \overline{X} , R charts). The critical process steps are defined by FMEA (Failure Mode and Effects Analysis).

A selection of the most important SPC steps and the Cp and Cpk results is regularly available and can help customers to avoid the costly qualification of new products when the products come from a qualified design and a manufacturing process that is demonstrated to be under control.

The Table 7 and Table 8 show some typical SPC results from both wafer fabrication and assembly processes.

#	Parameter	Dependant Performance	СР	СРК
1	Field Oxide Thickness	Latch-up	1.73	1.71
2	Gate Oxide Hv Thickness	Write/Erase Cycling and ESD	1.68	1.61
3	Tunnel Oxide Thickness	Write/Erase Cycling and Data Retention	2.14	2.14
4	ONO Bottom Oxide Thickness	Data Retention	1.49	1.47
5	ONO Nitride Thickness	Data Retention	1.93	1.93
6	ONO Top Oxide Thickness	Data Retention	1.69	1.62

Table 7. Statistical Process Control, Wafer Fabrication, CMOS FLASH

Table 8. Statistical Process Control, Ceramic Package Assembly EPROM

#	Parameter	Dependant Performance	СР	СРК
1	Shear Test	Die Attach	(*)	5.52
2	Stud Pull	Die Attach	(*)	1.82
3	Bond Strength	Bond Weakness	(*)	2.60
4	SN Thickness	Thin Plating	1.68	1.55

Note: *. One side limit only (CPL).

57

QN100 - QUALITY NOTE

Short Term Reliability Testing

In order to provide a rapid feedback on product reliability to manufacturing, a series of Short Term Reliability tests are performed on a weekly basis. These are summarised in Table 9 and Table 10.

Subgroup	Test Procedure	MIL-STD-883 Procedure	Test Conditions
1	Thermal Shock	1011	–55 to 125°C, 60 cycles
2	Retention Bake		180°C, 72hrs
3	Solderability	2003	245°C, 5sec, Precondition Steam, 1hr
4	Resistance to Solvents	2015	4 Solvent Solutions
5	Physical Dimensions	2016	Published Data
6	Lead Integrity	2004	Test Condition B2
7	Hermeticity:	1014	
	– Fine Leak		Test Condition A1
	– Gross Leak		Test Condition C1
8	Lead Torque	2024	

Table 9. Short Term Reliability Tests, Ceramic Packages

Table 10. Short Term Reliability Tests, Plastic Packages

Subgroup	Test Procedure	MIL-STD-883 Procedure	Test Conditions
1	Temperature Cycling	1010	–65 to 150°C, 100 cycles
2	Write/Erase Cycles (EEPROM & FLASH)		Published Data
3	Solderability:		
	 PSO, PSOJ, PLCC & TSOP Packages 	CECC 90,000	215°C, 3sec, Precondition Steam, 8hrs
	– PDIP Package	2003	245°C, 5sec, Precondition Steam, 8hrs
4	Resistance to Solvents	2015	4 Solvent Solutions
5	Physical Dimensions	2016	Published Data
6	Lead Integrity	2004	Test Condition B2
7	Pressure Pot		121°C, 2Atm, 240hrs

57

6/8

Long Term Reliability Testing

Long Term Reliability tests are performed to provide evidence of the life time reliability of memory products. Sampling is made either monthly, 3 or 6 monthly depending on the tests performed. Table 11 and Table 12 summarise the tests.

Subgroup	Test Procedure	MIL-STD-883 Procedure	Test Conditions
1	Operating Life	1005	140°C, V_{CC} = 6V, 1000hrs
2	Retention Bake	1008	250°C, 500hrs
3	Electrostatic Discharge	3015	1500Ω, 100pF, 2000V (min)
4	Internal Water Vapour	1018	5000 ppm (max)
5	Temperature Cycling	1010	–65 to 150 °C, 500 cycles

Table 11. Long Term Reliability Tests, Ceramic Packages

Subgroup	Test Procedure	MIL-STD-883 Procedure	Test Conditions
1	Operating Life	1005	$140^{\circ}C^{(1)}, V_{CC} = 6V, 1000hrs$
2	Retention Bake	1008	150°C, 1000hrs
3	Temperature, Humidity, Bias	CECC 90,000	85° C, RH = 85%, V _{CC} = 5V, 1000hrs
4	Electrostatic Discharge	3015	1500Ω, 100pF, 2000V (min)
5	HAST	CECC 90,000	130°C, RH = 85%, 96hrs
6	Temperature Cycling	1010	–65 to 150 °C, 500 cycles

Note: 1. 125°C for SRAM.

Conclusion

SGS-THOMSON believes that the extensive attention given to process control and product evaluation, combined with clear design rules and a well designed technology base, give the Company a world class overall quality rating.

57

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

5