FEATURES

- 'Trench' technology
- Very low on-state resistance
- Fast switching
- Low thermal resistance

SYMBOL

QUICK REFERENCE DATA

$$
\begin{gathered}
\mathrm{V}_{\mathrm{DSS}}=200 \mathrm{~V} \\
\mathrm{I}_{\mathrm{D}}=35 \mathrm{~A} \\
\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \leq 70 \mathrm{~m} \Omega
\end{gathered}
$$

GENERAL DESCRIPTION

SiliconMAX products use the latest Philips Trench technology to achieve the lowest possible on-state resistance in each package at each voltage rating.

Applications:-

- d.c. to d.c. converters
- switched mode power supplies

The PSMN070-200P is supplied in the SOT78 (TO220AB) conventional leaded package.
The PSMN070-200B is supplied in the SOT404 surface mounting package.

PINNING

PIN	DESCRIPTION
1	gate
2	drain 1
3	source
tab	drain

SOT78 (TO220AB)

SOT404 (D2PAK)

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {DSS }}$	Drain-source voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$		200	V
$V_{\text {dgr }}$	Drain-gate voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$	-	200	V
V GS	Gate-source voltage			± 20	V
I_{D}	Continuous drain current	$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$		35	A
		$\mathrm{T}_{\text {mb }}=100^{\circ} \mathrm{C}$	-	25	A
D_{DM}	Pulsed drain current	$\mathrm{T}_{\mathrm{mb}}=25{ }^{\circ} \mathrm{C}$	-	140	A
P_{D}	Total power dissipation	$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$		250	W
$\mathrm{T}_{\mathrm{j},}, \mathrm{T}_{\text {stg }}$	Operating junction and storage temperature		-55	175	${ }^{\circ} \mathrm{C}$

1 It is not possible to make connection to pin:2 of the SOT404 package

AVALANCHE ENERGY LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
E_{AS}	Non-repetitive avalanche energy	Unclamped inductive load, $\mathrm{I}_{\mathrm{AS}}=35 \mathrm{~A} ;$ $\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s} ; \mathrm{T}_{j}$ prior to avalanche $=25^{\circ} \mathrm{C} ;$ $\mathrm{V}_{\mathrm{DD}} \leq 50 \mathrm{~V} ; \mathrm{R}_{\mathrm{GS}}=50 \Omega ; \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ;$ refer to fig:15	-	462	mJ
Non-repetitive avalanche current		-	35	A	

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
$\mathrm{R}_{\mathrm{th} j-m b}$	Thermal resistance junction to mounting base		-	0.6	K/W
$\mathrm{R}_{\mathrm{th} j \text {-a }}$	Thermal resistance junction to ambient	SOT78 package, in free air SOT404 package, pcb mounted, minimum footprint	50	-	K/W
		-	K/W		

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{\text {(BR)DSS }}$ $\mathrm{V}_{\mathrm{GS}(\text { TO) }}$	Drain-source breakdown voltage Gate threshold voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{~mA}$;	200			V
		$\mathrm{T}_{\mathrm{j}}=-55^{\circ} \mathrm{C}$	178	-	-	V
		$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} ; \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	2.0	3.0	4.0	V
		$\mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$	1.0	-	-	V
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Drain-source on-state	$\mathrm{T}_{\mathrm{j}}=-55^{\circ} \mathrm{C}$	-	-	6	V
		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=17 \mathrm{~A}$	-	60	70	$\mathrm{m} \Omega$
	resistance	$\mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$	-	-	203	$\mathrm{m} \Omega$
$\begin{array}{\|l} \mathrm{I}_{\mathrm{GSS}} \\ \mathrm{I}_{\mathrm{DSS}} \end{array}$	Gate source leakage current Zero gate voltage drain current	$\mathrm{V}_{\mathrm{GS}}= \pm 10 \mathrm{~V} ; \mathrm{V}_{\text {DS }}=0 \mathrm{~V}$	-	2	100	nA
		$\mathrm{V}_{\mathrm{DS}}=200 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$;		0.05	10	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$	-	-	500	$\mu \mathrm{A}$
$\begin{array}{\|l\|} \hline Q_{g(t o t)} \\ Q_{g s} \\ Q_{g d} \\ \hline \end{array}$	Total gate charge Gate-source charge Gate-drain (Miller) charge	$\mathrm{I}_{\mathrm{D}}=35 \mathrm{~A} ; \mathrm{V}_{\mathrm{DD}}=160 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	77	-	nC
				16	-	nC
			-	28	-	nC
$\begin{aligned} & \mathrm{t}_{\text {d on }} \\ & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\text {d off }} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}^{2} \end{aligned}$	Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=100 \mathrm{~V} ; \mathrm{R}_{\mathrm{D}}=2.7 \Omega ; \\ & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=5.6 \Omega \\ & \text { Resistive load } \end{aligned}$	-	22	-	ns
			-	100	-	ns
			-	80	-	ns
			-	90	-	ns
$\begin{aligned} & L_{d} \\ & L_{d} \\ & L_{s} \end{aligned}$	Internal drain inductance Internal drain inductance Internal source inductance	Measured from tab to centre of die Measured from drain lead to centre of die (SOT78 package only) Measured from source lead to source bond pad	-	3.5	-	nH
			-	4.5	-	nH
			-	7.5	-	nH
$\mathrm{C}_{\text {iss }}$	Input capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	4570	-	pF
Coss	Output capacitance		-	370	-	pF
$\mathrm{C}_{\text {rss }}$	Feedback capacitance		-	160	-	pF

Silicon[ITIT

N-channel TrenchMOS ${ }^{\text {TM }}$ transistor

REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS
$\mathrm{T}_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I_{S}	Continuous source current I_{SM}	(body diode)	Pulsed source current (body		-	-
diode)	35	A				
$\mathrm{~V}_{\text {SD }}$	Diode forward voltage	$\mathrm{I}_{\mathrm{F}}=25 \mathrm{~A} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	140	A
t_{r}	Reverse recovery time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} ;-\mathrm{d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} ;$	-	0.85	1.2	V
Q_{r}	Reverse recovery charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$	-	160	-	ns

Fig.1. Normalised power dissipation. $P D \%=100 \cdot P_{D} / P_{D 25^{\circ} \mathrm{C}}=f\left(T_{m b}\right)$

Fig.2. Normalised continuous drain current. $I D \%=100 \cdot I_{D} / I_{D 25^{\circ} \mathrm{C}}=f\left(T_{m b}\right) ; V_{G S} \geq 10 \mathrm{~V}$

Fig.3. Safe operating area
$I_{D} \& I_{D M}=f\left(V_{D S}\right) ; I_{D M}$ single pulse; parameter t_{p}

Fig.4. Transient thermal impedance.
$Z_{t h j-m b}=f(t) ;$ parameter $D=t_{p} / T$

Fig.5. Typical output characteristics, $T_{j}=25^{\circ} \mathrm{C}$. $I_{D}=f\left(V_{D S}\right)$

Fig.6. Typical on-state resistance, $T_{j}=25^{\circ} \mathrm{C}$. $R_{D S(O N)}=f\left(I_{D}\right)$

Silicon[WIT]

N-channel TrenchMOS ${ }^{\text {TM }}$ transistor
PSMN070-200B, PSMN070-200P

Fig.7. Typical transfer characteristics.

$$
I_{D}=f\left(V_{G S}\right)
$$

Fig.8. Typical transconductance, $T_{j}=25^{\circ} \mathrm{C}$. $g_{t s}=f\left(l_{D}\right)$

Fig.9. Normalised drain-source on-state resistance. $R_{D S(O N)} / R_{D S(O N) 25^{\circ} \mathrm{C}}=f\left(T_{j}\right)$

Fig.10. Gate threshold voltage.
$V_{G S(T 0)}=f\left(T_{j}\right)$; conditions: $I_{D}=1 \mathrm{~mA} ; V_{D S}=V_{G S}$

Fig.11. Sub-threshold drain current. $I_{D}=f\left(V_{G S}\right)$; conditions: $T_{j}=25^{\circ} \mathrm{C}$

Silicon[WITX

Fig.13. Typical turn-on gate-charge characteristics.

$$
V_{G S}=f\left(Q_{G}\right)
$$

Fig.14. Typical reverse diode current. $I_{F}=f\left(V_{S D S}\right)$; conditions: $V_{G S}=0 \quad V$; parameter T_{j}

Fig.15. Maximum permissible non-repetitive avalanche current ($l_{A S}$) versus avalanche time ($t_{A v}$); unclamped inductive load

MECHANICAL DATA

Fig.16. SOT78 (TO22OAB); pin 2 connected to mounting base (Net mass:2g)

Notes

1. This product is supplied in anti-static packaging. The gate-source input must be protected against static discharge during transport or handling.
2. Refer to mounting instructions for SOT78 (TO220AB) package.
3. Epoxy meets UL94 V0 at 1/8".

MECHANICAL DATA

Plastic single-ended surface mounted package (Philips version of D2-PAK); 3 leads
(one lead cropped)

SOT404

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT404					-	

Fig.17. SOT404 surface mounting package. Centre pin connected to mounting base.

Notes

1. This product is supplied in anti-static packaging. The gate-source input must be protected against static discharge during transport or handling.
2. Refer to SMD Footprint Design and Soldering Guidelines, Data Handbook SC18.
3. Epoxy meets UL94 V0 at 1/8".

MOUNTING INSTRUCTIONS

Fig.18. SOT404 : soldering pattern for surface mounting.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	Where application information is given, it is advisory and does not form part of the specification. © Philips Electronics N.V. 1999 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

