DISCRETE SEMICONDUCTORS

DATA SHEET

PN4391 to 4393 N-channel silicon field-effect transistors

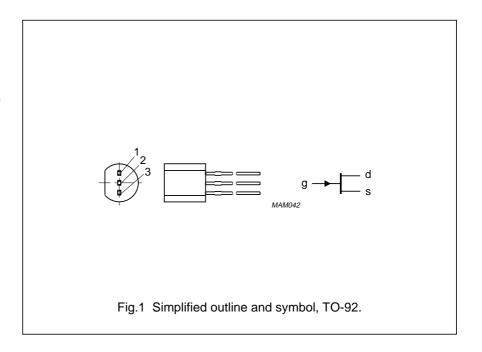
Product specification File under Discrete Semiconductors, SC07 **April 1989**

N-channel silicon field-effect transistors

PN4391 to 4393

DESCRIPTION

Symmetrical silicon n-channel junction FETs in plastic TO-92 envelopes. They are intended for applications such as analog switches, choppers, commutators etc.


PINNING

1 = gate

2 = source

3 = drain

Note: Drain and source are interchangeable.

QUICK REFERENCE DATA

Drain-source voltage	± V _{DS}	max.		40		V
Total power dissipation						
up to T_{amb} = 25 °C	P_{tot}	max.		360		mW
			PN4391	PN4392	PN4393	
Drain current						-
$V_{DS} = 20 \text{ V}; V_{GS} = 0$	I_{DSS}	min.	50	25	5	mΑ
Gate-source cut-off voltage						
V 20 V: 1 1 n A	V	min.	4	2	0.5	V
$V_{DS} = 20 \text{ V}; I_D = 1 \text{ nA}$	$-V_{GS off}$	max.	10	5	3	V
Drain-source on-resistance						
$I_D = 1 \text{ mA}; V_{GS} = 0$	$R_{DS on}$	max.	30	60	100	Ω

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	\pmV_{DS}	max.	40	V
Gate-source voltage	$-V_{GSO}$	max.	40	V
Gate-drain voltage	$-V_{GDO}$	max.	40	V
Forward gate current (DC)	I_{G}	max.	50	mA
Total power dissipation				
up to T _{amb} = 25 °C	P_{tot}	max.	360	mW
Storage temperature range	T_{stg}		-65 to+150	°C
Junction temperature	T _i	max.	150	°C

Philips Semiconductors Product specification

N-channel silicon field-effect transistors

PN4391 to 4393

THERMAL RESISTANCE

From junction to ambient in free air

R_{th j-a}

350

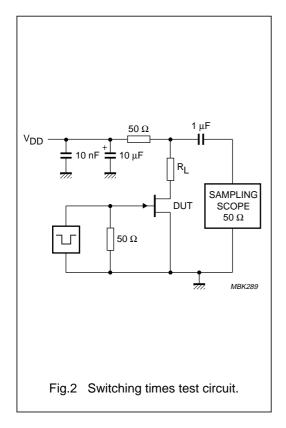
K/W

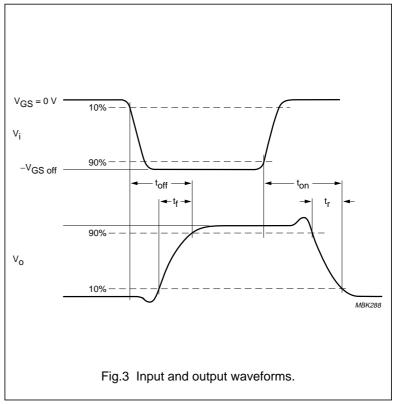
STATIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

			PN4391	PN4392	PN4393	
Reverse gate current						
$-V_{GS} = 20 \text{ V}; V_{DS} = 0$	-I _{GSS}	max.	1.0	1.0	1.0	nΑ
$-V_{GS} = 20 \text{ V}; V_{DS} = 0$						
T _{amb} = 100 °C	-I _{GSS}	max.	200	200	200	nΑ
Drain cut-off current						
-V _{GS} = 12 V	I_{DSX}	max.	1.0			nA
$-V_{GS} = 7 \text{ V}$ $V_{DS} = 20 \text{ V}$	I_{DSX}	max.		1.0		nA
-V _{GS} = 5 V	I_{DSX}	max.			1.0	nA
$-V_{GS} = 12 \text{ V}$ $-V_{GS} = 7 \text{ V}$ $-V_{GS} = 5 \text{ V}$ $V_{DS} = 20 \text{ V};$ $V_{amb} = 100 \text{ °C}$	I_{DSX}	max.	200			nΑ
$-V_{GS} = 7 \text{ V}$ $V_{DS} = 20 \text{ V};$ $V_{DS} = 100 \text{ °C}$	I_{DSX}	max.		200		nA
$-V_{GS} = 5 \text{ V}$	I_{DSX}	max.			200	nΑ
Drain saturation current						
$V_{DS} = 20 \text{ V}$: $V_{GS} = 0$	I _{DSS}	min.	50	25	5	mA
VDS - 20 V, VGS - 0	אטי	max.	150	100	60	mΑ
Gate-source breakdown voltage						
$-I_G = 1 \mu A; V_{DS} = 0$	$-V_{(BR)GSS}$	min.	40	40	40	V
Gate-source cut-off voltage						
$V_{DS} = 20 \text{ V; } I_{D} = 1 \text{ nA}$	–V _{GS off}	min.	4.0	2.0	0.5	V
VDS = 20 V, ID = 1 IIA	−VGS oπ	max.	10	5.0	3.0	V
Drain-source on-resistance						
$I_D = 1 \text{ mA}; V_{GS} = 0$	R _{DS on}	max.	30	60	100	Ω
Drain-source on-voltage						
$V_{GS} = 0$; $I_D = 12 \text{ mA}$	$V_{DS\ on}$	max.	0.4			V
$V_{GS} = 0$; $I_D = 6 \text{ mA}$	$V_{DS\ on}$	max.		0.4		V
$V_{GS} = 0$; $I_{D} = 3 \text{ mA}$	$V_{DS on}$	max.			0.4	V

Philips Semiconductors Product specification


N-channel silicon field-effect transistors

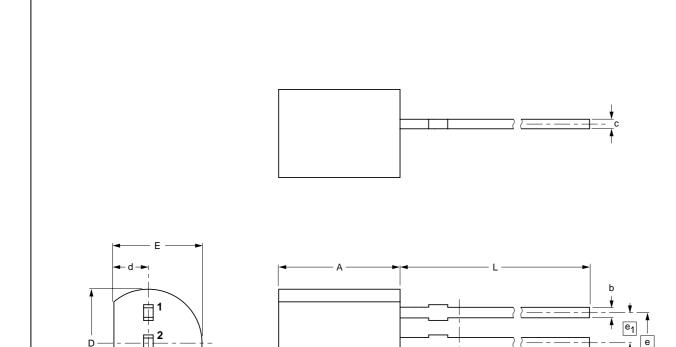

PN4391 to 4393

DYNAMIC CHARACTERISTICS

 T_i = 25 °C unless otherwise specified

			PN4391	PN4392	PN4393			
Drain-source on-resistance								
1 kHz; T _a = 25 °C	$R_{DS on}$	max.	30	60	100	Ω		
= 1 MHz; T _a = 25 °C	C_iss	max.	16	16	16	pF		
	C_{rss}	max.	5			pF		
f = 1 MHz	C_{rss}	max.		5		pF		
	C_{rss}	max.			5	pF		
•								
o V _{GS off}	I_{D}	=	12	6.0	3.0	mΑ		
	$-V_{GS off}$	=	12	7.0	5.0	V		
	R_L	=	750	1550	3150	Ω		
	t _r	max.	5	5	5	ns		
	t _{on}	max.	15	15	15	ns		
Fall time			15	20	30	ns		
Turn-off time			20	35	50	ns		
	1 kHz; T _a = 25 °C = 1 MHz; T _a = 25 °C f = 1 MHz	1 kHz; $T_a = 25 ^{\circ}\text{C}$ RDS on = 1 MHz; $T_a = 25 ^{\circ}\text{C}$ Crss C_{rss} C_{rss} C_{rss} C_{rss} C_{rss} C_{rss} C_{rss}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ce $1 \text{ kHz; } T_a = 25 ^{\circ}\text{C} \qquad \qquad R_{DS on} \qquad \text{max.} \qquad 30$ $= 1 \text{MHz; } T_a = 25 ^{\circ}\text{C} \qquad \qquad C_{iss} \qquad \text{max.} \qquad 16$ $f = 1 \text{MHz} \qquad \qquad C_{rss} \qquad \text{max.} \qquad 5$ $C_{rss} \qquad \text{max.} \qquad C_{rss} \qquad \text{max.}$ $C_{rss} \qquad \text{max.} \qquad 1$ $C_{rss} \qquad \text{max.} \qquad 5$ $C_{rss} \qquad \text{max.} \qquad 5$ $C_{rss} \qquad \text{max.} \qquad 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Philips Semiconductors Product specification


N-channel silicon field-effect transistors

PN4391 to 4393

PACKAGE OUTLINE

Plastic single-ended leaded (through hole) package; 3 leads

SOT54

DIMENSIONS (mm are the original dimensions)

	•										
UNIT	Α	b	b ₁	С	D	d	E	е	e ₁	L	L ₁ ⁽¹⁾
mm	5.2 5.0	0.48 0.40	0.66 0.56	0.45 0.40	4.8 4.4	1.7 1.4	4.2 3.6	2.54	1.27	14.5 12.7	2.5

Note

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE		REFER	ENCES		EUROPEAN ISSUE DATE			EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE			
SOT54		TO-92	SC-43			97-02-28			

Philips Semiconductors Product specification

N-channel silicon field-effect transistors

PN4391 to 4393

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Short-form specification	The data in this specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

April 1989 6