

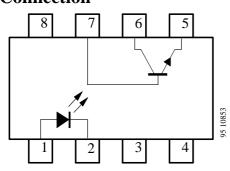
Surface Mount Optocoupler with Phototransistor Output

Order Nos. and Classification table is on sheet 2.

Description

The MOC series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in an 8-lead plastic dual inline packages (small outline).

Applications


- Computer peripheral interface
- Microprocessor system interface

Features

- Current Transfer Ratio (CTR) selected into 3 groups, specified at $I_F = 10 \text{ mA}$
- MOC211 minimum 20% MOC212 minimum 50% MOC213 minimum 100%
- Test isolation voltage between input and output V_{IO} (RMS): 2.5 kV
- 8-lead package, similar to SOIC-8
- Minimum V_{(BR)CEO} of 90 V guaranteed

- Low power DC/DC converter
- Hybride substrates that require high density mounting
- Soldering methods according to CECC 00802 in table 1, class B or C
- Low temperature coefficient of CTR
- Base connected
- Suitable for cleaning process without chemical solvent
- Underwriters Laboratory (UL) recognized-file No. E-76222 *

Pin Connection

* is applied

MOC211-213

Order Schematic

Part Numbers	CTR-Ranking
MOC211/ MOC211-GS12	<20%
MOC212/ MOC212-GS12	<50%
MOC213/ MOC213-GS12	>100%

Suffix: GS12 = Taped and reeled version

Absolute Maximum Ratings

Input (Emitter)

Parameters	Test Conditions	Symbol	Value	Unit
Reverse voltage		V_R	5	V
Forward current		I_{F}	60	mA
Forward surge current	$t_p \le 10 \ \mu s$	I _{FSM}	3	A
Power dissipation	$T_{amb} \le 25^{\circ}C$	P _{tot}	100	mW
Junction temperature		Ti	125	°C

Output (Detector)

Parameters	Test Conditions	Symbol	Value	Unit
Collector base voltage		V _{CBO}	90	V
Collector emitter voltage		V_{CEO}	90	V
Emitter collector voltage		V_{ECO}	7	V
Collector current		I _C	50	mA
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA
Power dissipation	$T_{amb} \le 25^{\circ}C$	P _{tot}	150	mW
Junction temperature		T _i	125	°C

Coupler

Parameters	Test Conditions	Symbol	Value	Unit
AC isolation test voltage (RMS)		V _{IO}	2.5	kV
Total power dissipation	$T_{amb} \le 25^{\circ}C$	P _{tot}	250	mW
Ambient temperature range		T _{amb}	-55 to +100	°C
Storage temperature range		T _{stg}	-55 to +125	°C
Soldering classification	single wave, $t \le 10 \text{ s}$	T _{sd}	260	°C

¹⁾ Related standard climate 23/50 DIN 50014

Electrical Characteristics

Input (Emitter)

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Forward voltage	$I_F = 50 \text{ mA}$	V_{F}		1.25	1.6	V
Breakdown voltage	$I_R = 100 \mu A$	V _(BR)	5			V
Junction capacitance	$V_R = 0$, $f = 1$ MHz	Ci		50		pF

Output (Detector)

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Collector base breakdown voltage	$I_C = 100 \mu A$	V _{(BR)C80}	90			V
Emitter collector breakdown voltage	$I_C = 1 \text{ mA}$	V _{(BR)CEO}	90			V
Emitter collector breakdown voltage	$I_E = 100 \mu A$	V _{(BR)ECO}	7			V
Collector emitter cut-off current	$V_{CE} = 10 \text{ V}, I_f = 0,$ E = 0	I _{CEO}			50	nA

Coupler

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
AC isolation test voltage (RMS)	f = 50 Hz, t = 1 s	V_{IO}	2.5			kV
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat}			0.3	V
Cut-off frequency	$\begin{aligned} I_F &= 10 \text{ mA}, \ V_{CE} = 5 \text{ V}, \\ R_L &= 100 \ \Omega \end{aligned}$	f_{C}		110		kHz
Coupling capacitance	f = 1 MHz	C_k		0.3		pF

Current Transfer Ratio (CTR)

Paramete	rs Test Conditions	Type	Symbol	Min.	Тур.	Max.	Unit
I _C /I _F	$V_{CE} = 10 \text{ V}, I_F = 10 \text{ mA}$	MOC211	CTR	0.2	0.5		
		MOC212	CTR	0.5	1		
		MOC213	CTR	1	2		

Switching Characteristics (Typical Values)

 $V_S = 10 \text{ V}$

Tymo	$R_L = 100 \Omega$ (see figure 1)						
Туре		t _r [µs]	ton[µs]	t _s [µs]	t _f [µs]	t _{off} [µs]	I _C [mA]
MOC211/ MOC211–GS12	0.90	1.10	2.00	0.10	1.80	1.90	2
MOC212/ MOC212–GS12	1.60	1.80	3.40	0.10	2.60	2.70	2
MOC213/MOC213-GS12	2.20	2.80	5.00	0.20	4.10	4.30	2

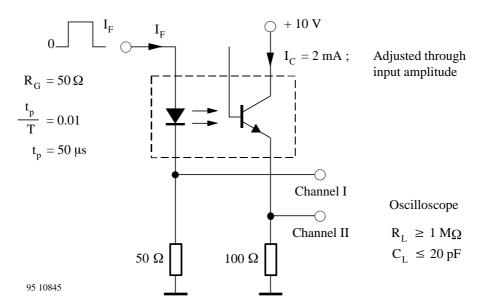


Figure 1. Test circuit, non-saturated operation

Typical Characteristics ($T_{amb} = 25$ °C, unless otherwise specified)

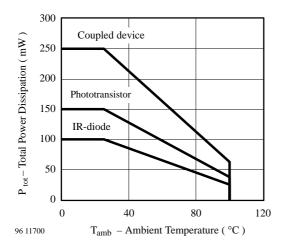
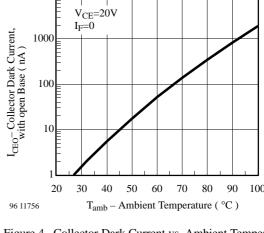



Figure 1. Total Power Dissipation vs. Ambient Temperature

10000

Figure 4. Collector Dark Current vs. Ambient Temperature

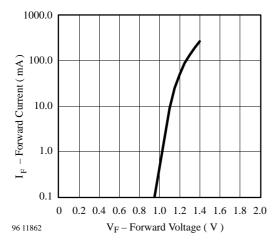


Figure 2. Forward Current vs. Forward Voltage

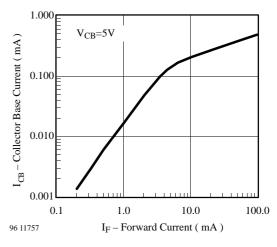


Figure 5. Collector Base Current vs. Forward Current

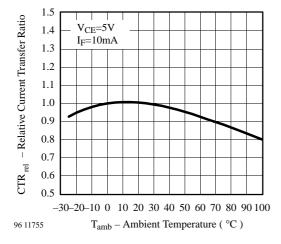


Figure 3. Rel. Current Transfer Ratio vs. Ambient Temp.

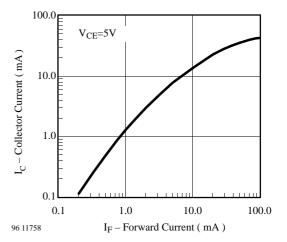


Figure 6. Collector Current vs. Forward Current

Typical Characteristics ($T_{amb} = 25$ °C, unless otherwise specified)

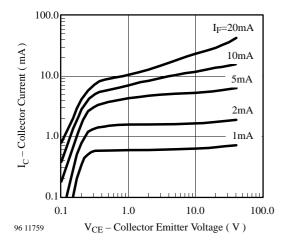


Figure 7. Collector Current vs. Collector Emitter Voltage

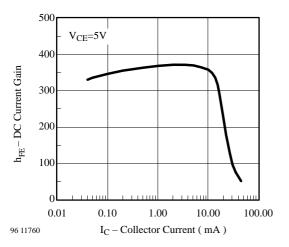


Figure 8. DC Current Gain vs. Collector Current

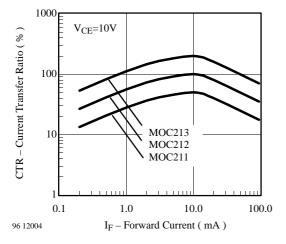


Figure 9. Current Transfer Ration vs. Forward Current

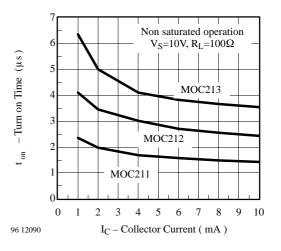


Figure 10. Turn on Time vs. Collector Current

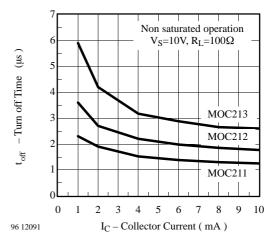
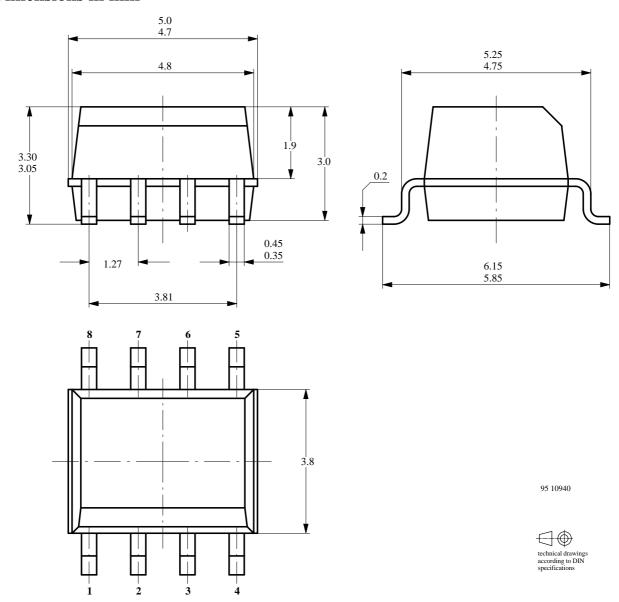



Figure 11. Turn off Time vs. Collector Current

Dimensions in mm

MOC211-213

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423