## 8-bit Proprietary Microcontroller

CMOS

## F²MC-8L MB89940 Series

## MB89943/P945/PV940

## OUTLINE

The MB89940 series is specially designed for automotive instrumentation applications. It features a combination of two PWM pulse generators and four high-drive-current outputs for controlling a stepping motor. It also contains two analog inputs, two PWM pulse generators and 10-digit LCD controller/driver for various sensor/indicator devices. The MB89940 series is manufactured with high performance CMOS technologies and packaged in a 48-pin QFP.

## ■ FEATURES

- 8-bit core CPU; 4 MHz system clock ( 8 MHz external, 500 ns instruction cycle)
- 21-bit watchdog timer
- Clock generator/controller
- 16-bit interval timer
- Two PWM pulse generators with four high-drive-current outputs
- Two-channel 8-bit A/D converter
- Three external interrupt
- Low supply voltage reset
- External voltage monitor interrupt
- Two more PWM pulse generators for controlling indicator devices
- 4-common 17-segment LCD driver/controller
- Package; 48-pin plastic QFP, 48-pin ceramic MQFP


## PACKAGE

48-pin Plastic QFP
(FPT-48P-M16)
(MQP-48C-P01)

## MB89940 Series

(Continued)

- 5.0 V single power supply (VPP required for MB89P945)
- $0.8 \mu \mathrm{~m}$ CMOS technology (MB89PV940 and MB89P945)
- $0.5 \mu \mathrm{~m}$ CMOS technology (MB89943)
- On-chip voltage regulator for internal 3.0 V power supply (MB89943)


## PRODUCT LINEUP

| Part number Item | MB89943 | MB89P945 | MB89PV940 |
| :---: | :---: | :---: | :---: |
| Classification | Mass-produced products (mask ROM products) | One-time PROM | Piggyback |
| ROM size | $8 \mathrm{~K} \times 8$ bits (internal mask ROM) | $\begin{gathered} 16 \mathrm{~K} \times 8 \text { bits } \\ \text { (internal PROM) } \end{gathered}$ | $32 \mathrm{~K} \times 8$ bits (external on piggyback) |
| RAM size | $512 \times 8$ bits |  | $1 \mathrm{~K} \times 8$ bits |
| CPU functions | The number of instructions: 136 <br> Instruction cycle: $\quad 0.5 \mu \mathrm{~s}^{\star 1} @ 8 \mathrm{MHz}$ <br> Interrupt response time: $\quad 4.0 \mu \mathrm{~s}^{* 1} @ 8 \mathrm{MHz}$ <br> Multiply instruction time: 19 instruction cycles <br> Divide instruction time: 21 instruction cycles <br> Direct addressing memory-to/from-register data transfer: <br> 7 instruction cycles |  |  |
| Ports | Output: 5-bit N-ch open-drain <br> Input/Output: Two 8-bit CMOS schmitt I/Os and 8-bit CMOS I/Os |  |  |
| Timebase timer | 21 bitsInterrupt interval: $1 \mathrm{~ms}, 4.1 \mathrm{~ms}, 32.8 \mathrm{~ms}$ or 524.3 ms |  |  |
| 8-bit/16-bit timer | Can be used as two 8 -bit timers or one 16 -bit timer Operation clock: $1 \mu \mathrm{~s}, 16 \mu \mathrm{~s}, 256 \mu \mathrm{~s}$ or external *1 |  |  |
| Watchdog Reset | Reset interval: Approx. 524 ms to 1049 ms |  |  |
| Stepping motor controller | Two 8-bit PWM pulse generators Synchronized 4-channel high current output Operation clock: $250 \mathrm{~ns}, 500 \mathrm{~ns}, 1 \mu \mathrm{~s}$ or $4 \mu \mathrm{~s}^{* 1}$ |  |  |
| 8-bit PWM timers | Two 8-bit PWM timers |  |  |
| External interrupt | 3 channels, selective positive edge or negative edge trigger |  |  |
| A/D converter | 8 -bit resolution, two-channel input |  |  |
| LCD controller | 4-common and 17-segment outputs Number of outputs programmable |  |  |
| Low supply voltage reset | Autonomous reset when low supply voltage Reset voltage: $3.3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.0 \mathrm{~V}$ |  |  |
| External voltage monitor interrupt | Interrupts when voltage at external pin is lower than the reference voltage |  |  |
| Standby modes | Stop mode and sleep mode |  |  |
| Operating voltage*2 | 3.5 V to 5.5 V |  |  |

（Continued）

| Part number | MB89943 | MB89P945 | MB89PV940 |
| :--- | :---: | :---: | :---: |
| Process | CMOS |  |  |
| External EPROM |  | MBM27C256A－20TVM |  |  |

＊1：Execution times and clock cycle times are dependent on the use of MCU．
＊2：Varies with conditions such as the operating frequency．（See section＂⿴囗玉 Electrical Characteristics．＂）In the case of the MB89PV940，the voltage varies with the vestrictions of the EPROM for use．

■ PACKAGE AND CORRESPONDING PRODUCTS

| Package | MB89943 <br> MB89P945 | MB89PV940 |
| :---: | :---: | :---: |
| FPT－48P－M16 | $\bigcirc$ | $\times$ |
| MQP－48C－P01 | $\times$ | $\bigcirc$ |

$O$ ：Available $\times$ ：Not available
Note：For more information about each package，see section＂■ Package Dimensions．＂

## DIFFERENCES AMONG PRODUCTS

## 1. Memory Size

Prior to evaluating/developing the software for the MB89940 series, please check the differences between the product types.

- RAM/ROM configurations are dependent on the product type.
- If the bottom address of the stack is set to the upper limit of the RAM address, it should be relocated when changing the product type.


## 2. Power Dissipation

- For the piggyback product, add the power dissipation of the EEPROM on the piggyback.
- The power dissipation differs between the product types.


## 3. Technology

The mask ROM product is fabricated with a $0.5 \mu \mathrm{~m}$ CMOS technology whereas the other products with $0.8 \mu \mathrm{~m}$ CMOS technology.

Also the mask ROM product contains the on-chip voltage regulator for the internal 3.0 power supply. For details, refer to MB89940 Series Hardware Manual.

## 4. Mask Option

Functions that can be selected as options and how to designate these options vary by the product. Before using options check section "■ Mask Options."

- No options are available for the piggyback product.
- The power-on reset and reset output options are always activated with the mask ROM product.
- Pull-up option must not be specified with the pins used as LCD outputs.

(FPT-48P-M16)

(MQP-48C-P01)
- Pin assignment on package top (MB89PV940 only)

| Pin no. | Pin name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | A15 | 57 | N.C. | 65 | O4 | 73 | OE |
| 50 | A12 | 58 | A2 | 66 | O5 | 74 | N.C. |
| 51 | A7 | 59 | A1 | 67 | O6 | 75 | A11 |
| 52 | A6 | 60 | A0 | 68 | O7 | 76 | A9 |
| 53 | A5 | 61 | O1 | 69 | O8 | 77 | A8 |
| 54 | A4 | 62 | O2 | 70 | CE | 78 | A13 |
| 55 | A3 | 63 | O3 | 71 | A10 | 79 | A14 |
| 56 | N.C. | 64 | Vss | 72 | N.C. | 80 | Vcc |

N.C.: Internally connected. Do not use.

## PIN DESCRIPTION

| Pin no. |  | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: | :---: |
| QFP* ${ }^{* 1}$ | MQFP*2 |  |  |  |
| 5 | 5 | X0 | A | These pins are used for crystal oscillation. X0 and X1 can be directly connected to a crystal oscillator. <br> When the oscillation clock is provided to X0 externally, X1 should be left open. |
| 6 | 6 | X1 |  |  |
| 48 | 48 | MODE | B | The mode input is used for entering the MPU into the test mode. <br> In user applications, MODE is connected to Vss. |
| 2 | 2 | $\overline{\mathrm{RST}}$ | C | Applying a reset pulse to this pin forces the MPU to enter the initial state. RST is active low and drives low state when an internal reset occurs. Reset pulses of the duration less than the minimum pulse width may cause the MCU to enter undefined states. |
| 34 to 27 | 34 to 27 | $\begin{aligned} & \text { P00/SEG00 to } \\ & \text { P07/SEG07 } \end{aligned}$ | H | These pins have two functions. <br> Their functions can be switched between Port 0 and LCD segment signal outputs by setting the internal registers of the LCD controller. |
| $\begin{gathered} 26 \text { to } 20, \\ 18 \end{gathered}$ | $\begin{aligned} & 26 \text { to } 20, \\ & 18 \end{aligned}$ | $\begin{aligned} & \text { P10/SEG08 to } \\ & \text { P17/SEG15 } \end{aligned}$ | J | These pins have two functions. Their functions can be switched between Port 1 and LCD segment signal outputs by setting the internal registers of the LCD controller. |
| 17 | 17 | P20/SEG15 | I | This pin can be used as the bit 0 of Port 2 or an LCD segment signal output by setting the internal register of the LCD controller. |
| 16 | 16 | P21/V0 | F | This pin is the bit 1 of Port 2. <br> This pin can also be used for an external LCD bias voltage input. |
| 15 | 15 | P22/EC/V1 | F | This pin can be used as the bit 2 of Port 2 or the external clock input for the interval timer. This pin can also be used for an external LCD bias voltage input. |
| 14 | 14 | P23/TO/V2 | F | This pin can be used as the bit 3 of Port 2 or the output for the interval timer. Its function can be switched by setting the internal register of the interval timer. <br> This pin can also be used for an external LCD bias voltage input. |
| 13 | 13 | P24/V3 | F | This pin can be used as the bit 4 of Port 2 or an external LCD bias voltage input. |
| 12, 11, 10 | 12, 11, 10 | P25/INT0 to P27/INT2 | E | These pins are used for Port 2. They can also be used for external interrupt inputs. |
| 35 | 35 | P30/FUELO | D | This pin can be used for the bit 0 of Port 3 or the output from PWM3. <br> The function of this pin can be switched by setting the internal register of PWM3. |

## MB89940 Series

(Continued)

| Pin no. |  | Pin name | Circuit type | Function |
| :---: | :---: | :---: | :---: | :---: |
| QFP** | MQFP*2 |  |  |  |
| 37 | 37 | P31/TEMPO | G | This pin can be used for the bit 1 of Port 3 or the output from PWM4. <br> The function of this pin can be switched by setting the internal register of PWM4. This output has a high drive-current capability. |
| $\begin{aligned} & 38, \\ & 39 \end{aligned}$ | $\begin{aligned} & 38, \\ & 39 \end{aligned}$ | P32/PWM1P, P33/PWM1M | G | These pins are the pair of high-current driver outputs for one of two motor coils. <br> They can be also used for the bits 2 and 3 of Port 3 by setting the internal register of the stepper motor controller. |
| $\begin{aligned} & 40, \\ & 41 \end{aligned}$ | $\begin{aligned} & 40, \\ & 41 \end{aligned}$ | P34/PWM2P, P35/PWM2M | G | These pins are the pair of high-current driver outputs for one of two motor coils. <br> They can be also used for the bits 4 and 5 of Port 3 by setting the internal register of the stepper motor controller. |
| 44 | 44 | P36/TEMPI | M | This analog input is connected to channel 1 of the A/D converter. It can also be used for the bit 6 of Port 3 when this $\mathrm{A} /$ D input enable register bit is set to ' 0 '. |
| 45 | 45 | P37/FUELI | M | This analog input is connected to channel 0 of the A/D converter. <br> It can also be used for the bit 7 of Port 3 when this $\mathrm{A} /$ $D$ input enable register bit is set to ' 0 '. |
| 46 | 46 | P40/PW | L | This pin has two functions. <br> When this pin is used as an open-drain output of Port 4, the external voltage monitor reset should be in the power down mode. <br> When it is used as the PW input of external voltage monitor reset, the corresponding bit of the port data register should be set to ' 1 '. |
| $\begin{aligned} & 3,4 \\ & 8,9 \end{aligned}$ | $\begin{aligned} & 3,4 \\ & 8,9 \end{aligned}$ | $\begin{aligned} & \text { P41/COM0 to } \\ & \text { P44/COM3 } \end{aligned}$ | K | These pins are the LCD common signal outputs. When LCD is not used, these pins can be also used for Port 4. |
| 47 | 47 | VINT | - | An external capacitor should be connected to this pin for stabilizing the internal 3.0 V power supply. For MB89PV940 and MB89P945, this pin should be left open. |
| 7 | 7 | Vcc | - | V cc |
| 19 | 19 | Vss | - | Vss |
| 1 | 1 | AV cc | - | The power supply pin for the analog circuit The same voltage should be applied as Vcc. |
| 43 | 43 | AVss | - | The power supply pin for the analog circuit The same voltage should be applied as Vss. |
| 36 | 36 | DVcc | - | The dedicated power supply pin for the high-current driver output <br> The same voltage should be applied as Vcc. |
| 42 | 42 | DVss | - | The dedicated power supply pin for the high-current driver output <br> The same voltage should be applied as Vss. |

*1: FPT-48P-M16
*2: MQP-48C-P01

## - External EPROM pins (MB89PV940 only)

| Pin no. | Pin name | I/O |  |
| :---: | :--- | :---: | :--- |
| 49 | A15 | O | Address output pins |
| 50 | A12 |  |  |
| 51 | A7 |  |  |
| 52 | A6 |  |  |
| 53 | A5 |  |  |
| 54 | A4 |  |  |
| 55 | A3 |  |  |
| 58 | A2 |  |  |
| 59 | A1 |  |  |
| 60 | A0 | O1 |  |
| 61 | O1 |  |  |
| 62 | O2 |  |  |
| 63 | O3 | O4 |  |
| 65 | O5 |  |  |
| 66 | O6 |  |  |
| 68 | O7 |  |  |
| 69 | O8 |  |  |
| 70 | CE |  | Outputs "H" during standby. |
| 71 | A10 | O | Address output pin |
| 73 | OE | O | ROM output enable pin |
| 75 | A11 | O | Address output pin |
| 76 | A9 |  |  |
| 77 | A8 |  |  |
| 78 | A13 | A14 |  |
| 80 | Vcc | O | EPROM power supply pin |
| 64 | Vss | O | Power supply (GND) pin |
| 56 | N.C. | - | Internally connected pins |
| 72 |  |  | Be sure to leave them open. |
| 74 |  |  |  |

## I/O CIRCUIT TYPE

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| A |  | - Oscillator I/O With feedback resistor of approx. $2 \mathrm{M} \Omega$. |
| B | $R \sum_{\pi}^{3}$ | - Schmitt-trigger input (Pull-down resistance only for MB89943) |
| C |  | - Open-drain output with pull-up resistor (Approx. $50 \mathrm{k} \Omega$ ). <br> - Schmitt-trigger input <br> - Hysteresis input |
| D |  | - CMOS I/O |
| E |  | - CMOS I/O (Schmitt trigger) <br> - Pull-up resistor optional |

(Continued)

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| F |  | - CMOS I/O (Schmitt trigger) <br> - External bias input <br> - Pull-up resistor optional |
| G |  | - CMOS I/O (High output current) |
| H |  | - CMOS I/O <br> - LCD controller/driver output |
| I |  | - CMOS I/O <br> - LCD controller/driver output <br> - Pull-up resistor optional <br> - Hysteresis input |

(Continued)

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| J |  | - CMOS I/O <br> - LCD controller/driver output <br> - Pull-up resistor optional (Except P11/SEG09, P10/SEG08) |
| K |  | - N-ch open-drain output <br> - LCD controller/driver output |
| L |  | - N-ch open-drain output <br> - Analog input |
| M |  | - CMOS I/O <br> - Analog input |

## HANDLING DEVICES

## 1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than $V_{c c}$ or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on " 1 . Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply ( $V_{c c}$ ) when the analog system power supply is turned on and off.

## 2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

The VINT pin of MB89PV940 and MB89P945 is the only exception.

## 3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be $A V \mathrm{cc}=\mathrm{DAVC}=\mathrm{V} c \mathrm{cc}$ and $\mathrm{AV} \mathrm{ss}=\mathrm{AVR}=\mathrm{V}_{\mathrm{ss}}$ even if the $\mathrm{A} / \mathrm{D}$ and $\mathrm{D} / \mathrm{A}$ converters are not in use.

## 4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

## 5. Power Supply Voltage Fluctuations

Although $V$ cc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations ( $\mathrm{P}-\mathrm{P}$ value) will be less than $10 \%$ of the standard Vcc value at the commercial frequency ( 50 to 60 Hz ) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

## PROGRAMMING TO THE EPROM ON THE MB89P945

## 1. Programming MB89P945

Using the EPROM adapter (provided by Fujitsu) and a standard EPROM programmer, user-defined data can be written into the OTPROM and option PROM. The EPROM programmer should be set to MB27C256A-20TVM and electro-signature mode should not be used. When programming the data, the internal addresses are mapped as follows.
2. Memory Space
$\square$

## 3. EPROM Programmer Socket Adapter

Please contact Fujitsu for socket adapters for the MB89P945 and the EPROM on the MB89PV940.

## 4. Screening MB89P945

It is recommended that high-temperature aging is performed on the MB89P945 prior to the assembly.


## 5. Setting OTPROM Options

For MB89P945, mask options are described in the internal option PROM area. The table below shows the bit map of the option PROM. The option data can be written by a standard EPROM programmer.

- OTPROM option bit map

| PROM Address | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3FFOH | Unused | Unused | Unused | Reserved | Reset output <br> 1: Active <br> 0 : Inactive | Power-on reset <br> 1: Active <br> 0 : Inactive | $\begin{aligned} & \text { Oscillation stabilization } \\ & \text { time } \\ & 11: 2^{18} \mathrm{Tosc} 10: 2^{17} \text { Tosc } \\ & 01: 2^{14} \text { Tosc } \end{aligned}$ |  |
| 3FF1H | P17 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P16 <br> Pull-up <br> 1: Inactive <br> 0: Active | P15 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P14 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P13 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P12 <br> Pull-up <br> 1: Inactive <br> 0 : Active | Unused | Unused |
| 3FF2н | P27 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P26 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P25 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P24 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P23 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P22 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P21 <br> Pull-up <br> 1: Inactive <br> 0 : Active | P20 <br> Pull-up <br> 1: Inactive <br> 0 : Active |
| 3FF3н | Unused | Unused | Unused | Low volt. PDX bit | Low volt. S1 bit | Low volt. SO bit | Low volt. LVE bit | Low volt. <br> 1: Register active <br> 0 : Option active |
| 3FF4H | Unused |
| 3FF5 ${ }_{\text {н }}$ | Unused |
| 3FF6н | Unused |

Notes: Default values are all ' 1 '.
Tosc: One oscillation clock cycle time
When the bit 0 of " $3 F F 3$ "" is " 0 ", it activates the option setting for the Low Voltage Reset Control register.
When this option is activated, software setting in the register has no effect.

# PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE 

1. EPROM for Use

MBM27C256A-20TVM
2. Programming Socket Adapter

Please consult Fujitsu.

## 3. Memory Space

The memory space of the piggyback EPROM is mapped onto the internal memory space as shown in the figure below.


For EPROM devices suitable for MB89PV940, please consult Fujitsu.

## 4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A-20TVM.
(2) Load program data into the EPROM programmer at 0000н to 7 FFF н.
(3) Program to 0000 to 7 FFFH with the EPROM programmer.

## BLOCK DIAGRAM



## CPU CORE

## 1. Memory Space

The MB89940 Series has a memory space of 64 Kbytes. All peripheral registers, RAM and ROM areas are mapped onto the 0000 н to FFFFH range. The peripheral registers address below 007Fн and the RAM addresses the range 0080 to 027 FH ( 0080 н to 047Fн for MB89PV940). A part of this RAM area is also assigned as the general-purpose registers. The ROM addresses above E000н. The One-Time PROM addresses the range above СО00н. The external ROM for the piggy sample addresses the range above 8000н. The reset vector, interrupt vectors and vectors for vector-call instructions are stored in the highest addresses of the memory space.

## Memory Space



## 2. Registers

The F${ }^{2}$ MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A):
A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Index register (IX):
A 16-bit register for index modification
Extra pointer (EP):
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS):
A 16-bit register for storing a register pointer, a condition code


The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register


The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

## Rule for Conversion of Actual Addresses of the General-purpose Register Area

|  |  |  |  |  |  |  |  |  |  |  |  | RP |  |  | Lower | OP | codes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | "0" | "0 | O" | "0" | "0" | "0" | "0" | "0" | "1" | R4 | R3 | R2 | R1 | R0 | b2 | b1 | b0 |
|  | $\downarrow$ |  | $\downarrow$ |
| Generated addresses | A15 | A1 | 14 | A13 | A12 | A11 | A10 | A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is enabled when this flag is set to ' 1 '. Interrupt is disabled when the flag is cleared to ' 0 '. Cleared to ' 0 ' at the reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

| IL1 | ILO | Interrupt level | High-low |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | High |
| 0 | 1 |  |  |
| 1 | 0 | 2 |  |
| 1 | 1 | 3 | Low |

$N$-flag: Set to ' 1 ' if the MSB becomes ' 1 ' as the result of an arithmetic operation. Cleared to ' 0 ' otherwise.
Z-flag: Set to '1' when an arithmetic operation results in 0 . Cleared to '0' otherwise.
V-flag: Set to ' 1 ' if the complement on ' 2 ' overflows as a result of an arithmetic operation. Cleared to ' 0 ' if the overflow does not occur.

C-flag: Set to ' 1 ' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to ' 0 ' otherwise. Set to ' 1 ' to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89943 (RAM $512 \times 8$ bits). The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size. Up to a total of 32 banks can be used on other than the MB89943.

## Register Bank Configuration



## MB89940 Series

## I/O MAP

| Address | Read/write | Register name | Register description |
| :---: | :---: | :---: | :---: |
| 00H | (R/W) | PDR0 | Port 0 data register |
| 01H | (W) | PDD0 | Port 0 data direction register |
| 02н | (R/W) | PDR1 | Port 1 data register |
| 03н | (W) | PDD1 | Port 1 data direction register |
| 04н to 06н |  |  | Vacancy |
| 07 ${ }^{\text {H}}$ | (R/W) | SCC | System clock control register |
| 08н | (R/W) | SMC | Standby mode control register |
| 09н | (R/W) | WDTC | Watchdog timer control register |
| 0 Ан $^{\text {¢ }}$ | (R/W) | TBTC | Timebase timer control register |
| OBH | (R/W) | LVRC | Low voltage reset control |
| ОСн | (R/W) | PDR2 | Port 2 data register |
| ODH | (W) | PDD2 | Port 2 data direction register |
| 0Ен | (R/W) | PDR3 | Port 3 data register |
| OFH | (W) | PDD3 | Port 3 data direction register |
| 10н | (R/W) | PDR4 | Port 4 data register |
| 11H | (R/W) | ADE | Port 3 A/D input enable register |
| 12нto 17 ${ }^{\text {H }}$ |  |  | Vacancy |
| 18H | (R/W) | T2CR | Timer 2 control register |
| 19н | (R/W) | T1CR | Timer 1 control register |
| 1 AH | (R/W) | T2DR | Timer 2 data register |
| 1BH | (R/W) | T1DR | Timer 1 data register |
|  |  |  | Vacancy |
| 20 H | (R/W) | ADC1 | A/D converter control register 1 |
| 21H | (R/W) | ADC2 | A/D converter control register 2 |
| 22н | (R/W) | ADCD | A/D converter data register |
| 23- | (R/W) | CNTR | PWM control register |
| 24 H | (W) | COMP1 | PWM1 compare register |
| 25 H |  |  | Vacancy |
| 26 ${ }^{\text {}}$ | (W) | COMP2 | PWM2 compare register |
| 27 H | (R/W) | SELR1 | PWM1 select register |
| 28H | (R/W) | SELR2 | PWM2 select register |
| 29н | (R/W) | CNTR3 | PWM3 control register |
| 2 2H $^{\text {}}$ | (W) | COMP3 | PWM3 compare register |
| 2 BH | (R/W) | CNTR4 | PWM4 control register |

(Continued)
(Continued)

| Address | Read/write | Register name | Register description |
| :---: | :---: | :---: | :---: |
| 2 CH | (W) | COMP4 | PWM4 compare register |
| 2D | (R/W) | SELT | Selector test register |
| 2 Ен $^{\text {¢ }}$ | (R/W) | PFC | Power fail control register |
| 2 F | (R/W) | EIR1 | External interrupt control 1 register |
| 30H | (R/W) | EIR2 | External interrupt control 2 register |
| 31-to 5Fн |  |  | Vacancy |
| 60н to 68н | (R/W) | VRAM | Display data RAM |
| 69 to $^{71}$ н |  |  | Vacancy |
| 72н | (R/W) | LCR1 | LCD controller/driver register |
| 73н | (R/W) | LCR2 | LCD controller/driver 2 register |
| 74, to 7Вн |  |  | Vacancy |
| 7С ${ }_{\text {H }}$ | (W) | ILR1 | Interrupt level setting register 1 |
| 7Dн | (W) | ILR2 | Interrupt level setting register 2 |
| 7Ен | (W) | ILR3 | Interrupt level setting register 3 |
| 7F |  |  | Vacancy |

## MB89940 Series

## ELECTRICAL CHARACTERISTICS

## 1. Absolute Maximum Ratings

| $(\mathrm{Vss}=0.0 \mathrm{~V})$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Value |  | Unit | Remarks |
|  |  | Min. | Max. |  |  |
| Power supply voltage | V cc | Vss-0.3 | Vss +6.5 | V |  |
|  | AV ${ }_{\text {cc }}$ | Vss-0.3 | Vss +6.5 | V | Should not exceed Vcc |
|  | DV ${ }_{\text {cc }}$ | Vss-0.3 | Vss +6.5 | V | Should not exceed Vcc |
| Input voltage | $\mathrm{V}_{11}$ | Vss-0.3 | $\mathrm{Vcc}+0.3$ | V | Except P31 to P35 and P41 to P44 |
|  | $\mathrm{V}_{12}$ | Vss-0.3 | DVcc +0.3 | V | P31 to P35 |
|  | $V_{13}$ | Vss-0.3 | Vss +6.5 | V | P41 to P44 MB89PV940/945 |
|  | $V_{14}$ | Vss-0.3 | $\mathrm{Vcc}+0.3$ | V | $\begin{aligned} & \text { P41 to P44 } \\ & \text { MB89943 } \end{aligned}$ |
| Output voltage | Vo1 | Vss-0.3 | $\mathrm{Vcc}+0.3$ | V | Except P31 to P35 and P41 to P44 |
|  | Vo2 | Vss-0.3 | DVcc +0.3 | V | P31 to P35 |
|  | Vоз | Vss-0.3 | Vss +6.5 | V | $\begin{aligned} & \text { P41 to P44 } \\ & \text { MB89PV940/945 } \end{aligned}$ |
|  | Vo4 | Vss-0.3 | $\mathrm{Vcc}+0.3$ | V | $\begin{aligned} & \text { P41 to P44 } \\ & \text { MB89943 } \end{aligned}$ |
| "L" level maximum output current | Voı | - | 20 | mA | Except P31 to P35 |
|  |  | - | 50 | mA | P31 to P35 |
| "L" level average output current | Volav | - | 4 | mA | Except P31 to P35 |
|  |  | - | 40 | mA | P31 to P35 |
| "L" level total maximum output current | Vottotalmax | - | 100 | mA | Except P31 to P35 |
|  |  | - | 200 | mA | P31 to P35 |
| "L" level total average output current | Vototalav | - | 40 | mA | Except P31 to P35 |
|  |  | - | 100 | mA | P31 to P35 |
| "H" level maximum output current | Vor | - | -20 | mA | Except P31 to P35 |
|  |  | - | -50 | mA | P31 to P35 |
| " H " level average output current | Vohav | - | -4 | mA | Except P31 to P35 |
|  |  | - | -40 | mA | P31 to P35 |
| " H " level total maximum output current | Vонtotalmax | - | -50 | mA | Except P31 to P35 |
|  |  | - | -200 | mA | P31 to P35 |
| " H " level total average output current | Vohtotalav | - | -20 | mA | Except P31 to P35 |
|  |  | - | -100 | mA | P31 to P35 |
| Power consumption | PD | - | 300 | mW |  |
| Operating temperature | TA | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage temperature | Tstg | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |  |

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

## 2. Recommended Operating Conditions

$(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=\mathrm{DV} \mathrm{cc}=5.0 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=\mathrm{DV} \mathrm{ss}=0.0 \mathrm{~V})$

| Parameter | Symbol | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |  |
| Operating supply voltage range | Vcc AVcc DVcc | 3.5 | - | 5.5 | V |  |
| RAM data retention supply voltage range | Vcc AV ${ }_{c c}$ DVcc | 3.0 | - | 5.5 | V |  |
| Operating temperature range | $\mathrm{T}_{\mathrm{A}}$ | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ |  |

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

## 3. DC Characteristics

| Parameter | Symbol | Pin name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| "H" level input voltage | $\mathrm{V}_{\text {IH }}$ | $\begin{aligned} & \text { P00 to P07, P10 to P17 } \\ & \text { P30 to P37, P40 to P47 } \end{aligned}$ | - | 0.7 Vcc | - | $\mathrm{Vcc}+0.3$ | V |  |
|  | $\mathrm{V}_{\text {H }}$ | $\overline{\text { RST, MODE, P20 to P27 }}$ | - | 0.8 Vcc | - | $\mathrm{Vcc}+0.3$ | V |  |
| "L" level input voltage | VIL | P00 to P07, P10 to P17 P30 to P37, P40 to P47 | - | Vss -0.3 | - | 0.3 Vcc | V |  |
|  | Vııs | $\overline{\text { RST, MODE, P20 to P27 }}$ | - | Vss -0.3 | - | 0.2 Vcc | V |  |
| Open-drain output pin application voltage | V | P40 | - | Vss - 0.3 | - | $\mathrm{Vcc}+0.3$ | V |  |
|  | V D 2 | P41 to P44 | - | Vss -0.3 | - | Vss + 5.5 | V | MB89PV940/ 945 |
|  | $V_{\text {D3 }}$ | P41 to P44 | - | Vss -0.3 | - | $\mathrm{V} c \mathrm{c}+0.3$ | V | MB89943 |
| " H " level output voltage | Vон | $\begin{aligned} & \text { P10 to P17, P20 to P27, } \\ & \text { P30, P36, P37 } \end{aligned}$ | I ¢ $=-2.0 \mathrm{~mA}$ | 4.0 | - | - | V |  |
|  | Vон2 | P31 to P36 | $\begin{aligned} & \text { } \begin{array}{l} \text { OH }=-30 \\ V_{c \mathrm{CC}}=\mathrm{DV} \end{array} \end{aligned}$ | Vcc-0.5 | - | - | V |  |
| "L" level output voltage | Vol | $\begin{aligned} & \text { P10 to P17, P20 to P27, } \\ & \text { P30, P36, P37, } \\ & \text { P40 to P44 } \end{aligned}$ | $\mathrm{loL}=4.0 \mathrm{~mA}$ | - | - | 0.4 | V |  |
|  | Vol2 | P31 to P36 | $\begin{aligned} & \mathrm{loL}=30 \mathrm{~mA} \\ & \mathrm{Vss}=\mathrm{DV}_{\mathrm{ss}} \end{aligned}$ | - | - | 0.5 | V |  |

(Continued)

## MB89940 Series

(Continued)

| Parameter | Symbol | Pin name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| Input leakage current | IL1 | MODE, P10 to P17, P20 to P27, P30 to P37, P40 to P44 | $\begin{aligned} & 0.0 V<V_{1}<V_{c c}, \\ & V_{c c}=D V_{c c} \end{aligned}$ | -5 | - | +5 | $\mu \mathrm{A}$ | Without pull-up option |
| Pull-up resistance | Rpull | $\begin{aligned} & \overline{\text { RST, P12 to P17, }} \\ & \text { P20 to P27 } \end{aligned}$ | - | 25 | 50 | 100 | $k \Omega$ | With pull-up option |
| LCD internal bias voltage resister | Rlcd | V0-V1, V1-V2, V2-V3 | - | 50 | 100 | 200 | $\mathrm{k} \Omega$ |  |
| Power supply current | Icc | Vco | $\begin{aligned} & \mathrm{Fc}=8 \mathrm{MHz}, \\ & \text { tinst }^{*}=0.5 \mu \mathrm{~s} \\ & \mathrm{Icc}^{\mathrm{Ic}\left(\mathrm{~V}_{\mathrm{cc}}\right)} \\ & +\mathrm{I}(\mathrm{DV} \mathrm{Cc}) \end{aligned}$ | - | 12 | 20 | mA | MB89PV940 |
|  |  |  |  | - | 12 | 20 | mA | MB89943, MB89P945 |
|  | Iccs |  | $\begin{aligned} & \text { Fc }=8 \mathrm{MHz} \\ & \text { tinst }=0.5 \mu \mathrm{~s} \\ & \mathrm{Iccs}=\mathrm{I}\left(\mathrm{~V}_{\mathrm{cc}}\right) \\ & +\mathrm{I}(\mathrm{DVcc}) \\ & \text { in Sleep mode } \end{aligned}$ | - | 3 | 7 | mA |  |
|  | Icch |  | In Stop mode $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{ccH}}=\mathrm{I}\left(\mathrm{~V}_{\mathrm{cc}}\right) \\ & +\mathrm{I}(\mathrm{DV} \mathrm{Cc}) \end{aligned}$ | - | 5 | 10 | $\mu \mathrm{A}$ |  |
|  | IA | AVcc | $\begin{aligned} & \mathrm{Fc}=8 \mathrm{MHz} \\ & \mathrm{I}_{\mathrm{A}}=\mathrm{I}(\mathrm{AV} \mathrm{cc}) \\ & \mathrm{A} / \mathrm{D} \text { in operation } \\ & \hline \end{aligned}$ | - | 6 | 8 | mA |  |
|  | Іан |  | $\begin{aligned} & \mathrm{F}_{\mathrm{c}}=8 \mathrm{MHz} \\ & \mathrm{I} A \mathrm{H}=1(\mathrm{AV} \mathrm{Cc}) \\ & \mathrm{A} / \mathrm{D} \text { stopped } \end{aligned}$ | - | 5 | 10 | $\mu \mathrm{A}$ |  |
| Input capacitance | CIN | - | $\mathrm{f}=1 \mathrm{MHz}$ | - | 10 | - | pF |  |
| External capacitor at VINT | Cvint | - | - | - | 0.1 | - | $\mu \mathrm{F}$ | MB89943 only |

* : For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."


## 4. AC Characteristics

(1) Reset Timing
$\left(\mathrm{AVss}=\mathrm{V}_{\mathrm{ss}}=\mathrm{DV} \mathrm{Vss}^{2}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Condition | Value |  | Unit | Remarks |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |  |
| $\overline{\text { RST "L" pulse width }}$ | tzlzH | - | 16 thcyl | - | ns |  |

thcyı: One oscillation clock cycle time


If power-on reset option is not activated, the external reset signal must be kept asserted until the oscillation is stabilized.
(2) Power-on Profile

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Condition | Value |  | Unit | Remarks |
|  |  |  | Min. | Max. |  |  |
| Power supply voltage rising time | tR | - | - | 50 | ms | MB89PV940, MB89P945 |
| Power supply voltage rising time | tR | - | - | $2{ }^{19}$ thcyl | ns | MB89943 |
| Power-off minimum period | toff | - | 1 | - | ms |  |

thcyı: One oscillation clock cycle time
Note: Power supply voltage should reach the minimum operation voltage within the specified default duration of the oscillation stabilization time.


## (3) Clock Timing

$\left(A V_{s s}=V_{s s}=D V_{s s}, T_{A}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |  |
| Clock frequency | Fc | - | 1 | 8 | MHz |  |
| Clock cycle time | toyc |  | 1000 | 125 | ns |  |
| Input clock pulse width | $\begin{aligned} & \text { twh } \\ & \text { tw } \end{aligned}$ |  | 20 | - | ns |  |
| Input clock rising/falling time | $\begin{aligned} & \hline \text { tcr } \\ & \text { tcF } \end{aligned}$ |  | - | 10 | ns |  |

## X0 and X1 Timing and Conditions



## Clock Conditions


(4) Instruction Cycle

| Parameter | Symbol | Value (typical) | Unit | Remarks |
| :--- | :--- | :---: | :---: | :---: |
| Instruction cycle <br> (minimum execution time) | tinst | $4 / \mathrm{F}_{\mathrm{c}}, 8 / \mathrm{F}_{\mathrm{c}}, 16 / \mathrm{F}_{\mathrm{c}}, 64 / \mathrm{Fc}_{\mathrm{c}}$ | $\mu \mathrm{s}$ | $\left(4 / \mathrm{F}_{\mathrm{c}}\right)$ tinst $^{2}=0.5 \mu \mathrm{~s}$ when operating at <br> $\mathrm{F}_{\mathrm{c}}=8 \mathrm{MHz}$ |

Note: When operating at 8 MHz , the cycle varies with the set execution time.
(5) Peripheral Input Timing

| $\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\text {ss }}=\mathrm{DV} \mathrm{Vss}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Pin name | Value |  | Unit | Remarks |
|  |  |  | Min. | Max. |  |  |
| Peripheral input "H" pulse width | twh | INT0, INT1, INT2, EC | 2 tins* | - | $\mu \mathrm{s}$ |  |
| Peripheral input "L" pulse width | twL | INT0, INT1, INT2, EC | 2 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |  |

*: For information on tinst, see "(4) Instruction Cycle."

INTO, INT1, INT2, EC


## 5. A/D Converter Electrical Characteristics

| Parameter | Symbol | $\begin{array}{\|c} \text { Pin } \\ \text { name } \end{array}$ | Condition | Value |  |  | Unit |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Remarks |
|  |  |  |  | Min. | Typ. | Max. |  |
| Resolution | - | - | - | - | - | 8 | bit |  |
| Total error |  |  |  | - | - | $\pm 1.5$ | LSB |  |
| Linearlity error |  |  |  | - | - | $\pm 1.0$ | LSB |  |
| Differential linearlity error |  |  |  | - | - | $\pm 0.9$ | LSB |  |
|  | Vот |  |  | AVss-1.0 LSB | AV ss +0.5 LSB | AVss + 2.0 LSB | V | MB89PV940/P945 |
|  |  |  |  | AVss + 5/8 LSB | $\mathrm{AVss}+7 / 8 \mathrm{LSB}$ | AVss + 11/8 LSB | V | MB89943 |
| Full-scale transition | Vfst |  |  | AVcc-3.0 LSB | AV cc -1.5 LSB | AV cc | V | MB89PV940/P945 |
| voltage |  |  |  | AVcc-13/8 LSB | AVcc-9/8 LSB | AVcc-7/8 LSB | V | MB89943 |
| Interchannel disparity | - |  |  | - | - | 0.5 | LSB |  |
| A/D mode conversion time |  |  |  | - | - | 44 tinst $^{*}$ | $\mu \mathrm{s}$ | MB89PV940/P945 |
|  |  |  |  | - | - | 52 tinst* | $\mu \mathrm{S}$ | MB89943 |
| Analog input current | IAIN |  |  | - | - | 10 | $\mu \mathrm{A}$ |  |
| Analog input voltage range | - |  |  | 0 | - | AVcc | V |  |

*: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

## 6. A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the $A / D$ converter
When the number of bits is 8 , analog voltage can be divided into $2^{8}=256$.

- Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("0000 0000" $\leftrightarrow$ "0000 0001") with the full-scale transition point ("1111 1111" $\leftrightarrow$ "1111 1110") from actual conversion characteristics

- Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values

## MB89940 Series



## 7. Notes on Using A/D Converter

- Input impedance of the analog input pins

The A/D converter used for the MB89940 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \mathrm{k} \Omega$ ).
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

## Analog Input Equivalent Circuit

If the analog input impedance is higher than $10 \mathrm{k} \Omega$, it is recommended to connect an external capacitor of approx. $0.1 \mu \mathrm{~F}$.


## - Error

The smaller the | $\mathrm{AV} \mathrm{cc}-\mathrm{AVss} \mid$, the greater the error would become relatively.

## 8. Low Supply Voltage Reset Electrical Characteristics

| Parameter | Symbol | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |  |
| Reset voltage | VDL1 | 3.0 | 3.6 | V | When the voltage is dropping. Refer to the register definition. |
|  | Vol2 | 3.3 | 3.9 | V |  |
|  | Vdı3 | 3.7 | 4.3 | V |  |
| Hysteresis of reset voltage | V HYS | 0.1 | - | V | When the voltage is recovering. |
| Delay time to reset | to | - | 2.0 | $\mu \mathrm{s}$ |  |
| Supply voltage slew rate | dV/dt | - | 0.1 | V/ $\mu \mathrm{s}$ |  |

9. External Voltage Monitor Interrupt Electrical Characteristics

| Parameter | Symbol | Value |  | Unit | Remarks |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |  |
| Reference voltage | $\mathrm{V}_{\text {REF }}$ | 1.18 | 1.38 | V |  |
| Delay time to interrupt | TD | - | 2.0 | $\mu \mathrm{~s}$ | Refer to the register <br> definition. |
| Input slew rate | $\mathrm{dV} / \mathrm{dt}$ | - | 0.1 | $\mathrm{~V} / \mu \mathrm{s}$ |  |

## MB89940 Series

## INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

| Symbol |  |
| :---: | :--- |
| dir | Direct address (8 bits) |
| off | Offset (8 bits) |
| ext | Extended address (16 bits) |
| \#vct | Vector table number (3 bits) |
| \#d8 | Immediate data (8 bits) |
| \#d16 | Immediate data (16 bits) |
| dir: b | Bit direct address (8:3 bits) |
| rel | Branch relative address (8 bits) |
| @ | Register indirect (Example: @A, @IX, @EP) |
| A | Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.) |
| AH | Upper 8 bits of accumulator A (8 bits) |
| AL | Lower 8 bits of accumulator A (8 bits) |
| T | Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the <br> instruction in use.) |
| TH | Upper 8 bits of temporary accumulator T (8 bits) |
| TL | Lower 8 bits of temporary accumulator T (8 bits) |
| IX | Index register IX (16 bits) |

(Continued)
(Continued)

| Symbol |  |
| :---: | :--- |
| EP | Extra pointer EP (16 bits) |
| PC | Program counter PC (16 bits) |
| SP | Stack pointer SP (16 bits) |
| PS | Program status PS (16 bits) |
| dr | Accumulator A or index register IX (16 bits) |
| CCR | Condition code register CCR (8 bits) |
| RP | Register bank pointer RP (5 bits) |
| Ri | General-purpose register Ri $(8$ bits, $\mathrm{i}=0$ to 7$)$ |
| $\times$ | Indicates that the very $\times$ is the immediate data. <br> (Whether its length is 8 or 16 bits is determined by the instruction in use.) |
| $(\times)$ | Indicates that the contents of $\times$ is the target of accessing. <br> (Whether its length is 8 or 16 bits is determined by the instruction in use.) |
| $((\times))$ | The address indicated by the contents of $\times$ is the target of accessing. <br> $($ Whether its length is 8 or 16 bits is determined by the instruction in use.) $)$ |

Columns indicate the following:

| Mnemonic: | Assembler notation of an instruction |
| :--- | :--- |
| $\sim$ | Number of instructions |
| \#: | Number of bytes |
| Operation: | Operation of an instruction |
| TL, TH, AH: | A content change when each of the TL, TH, and AH instructions is executed. Symbols in <br> the column indicate the following: |

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00 .
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:

Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

## MB89940 Series

Table 2 Transfer Instructions (48 instructions)

| Mnemonic | $\sim$ | \# | Operation | TL | TH | AH | NZVC | OP code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOV dir,A | 3 | 2 | $($ dir $) \leftarrow(\mathrm{A})$ | - | - | - | ---- | 45 |
| MOV @IX +off,A | 4 | 2 | $($ (IX) +off) $\leftarrow$ (A) | - | - | - | ---- | 46 |
| MOV ext,A | 4 | 3 | $($ ext $) \leftarrow$ (A) | - | - | - | ---- | 61 |
| MOV @EP,A | 3 | 1 | $((E P)) \leftarrow(A)$ | - | - | - | ---- | 47 |
| MOV Ri,A | 3 | 1 | $(\mathrm{Ri}) \leftarrow(\mathrm{A})$ | - | - | - | ---- | 48 to 4F |
| MOV A,\#d8 | 2 | 2 | $(A) \leftarrow d 8$ | AL | - | - | + + - - | 04 |
| MOV A,dir | 3 | 2 | $(\mathrm{A}) \leftarrow$ (dir) | AL | - | - | $+$ | 05 |
| MOV A,@IX +off | 4 | 2 | (A) $\leftarrow\left(\begin{array}{l}(\mathrm{IX})+\text { off })\end{array}\right.$ | AL | - | - | + + | 06 |
| MOV A,ext | 4 | 3 | (A) $\leftarrow($ ext) | AL | - | - | + | 60 |
| MOV A,@A | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{A})$ ) | AL | - | - | + | 92 |
| MOV A,@EP | 3 | 1 | $(\mathrm{A}) \leftarrow((\mathrm{EP}))$ | AL | - | - | + | 07 |
| MOV A,Ri | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{Ri})$ | AL | - | - | + + | 08 to 0F |
| MOV dir,\#d8 | 4 | 3 | ( dir$) \leftarrow \mathrm{d} 8$ | - | - | - | ---- | 85 |
| MOV @IX +off,\#d8 | 5 | 3 | ( (IX) +off ) $\leftarrow \mathrm{d} 8$ | - | - | - | ---- | 86 |
| MOV @EP,\#d8 | 4 | 2 | $($ (EP) ) $\leftarrow \mathrm{d} 8$ | - | - | - | ---- | 87 |
| MOV Ri,\#d8 | 4 | 2 | (Ri) $\leftarrow \mathrm{d} 8$ | - | - | - | ---- | 88 to 8F |
| MOVW dir,A | 4 | 2 | $($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$ | - | - | - | ---- | D5 |
| MOVW @IX +off,A | 5 | 2 | $\begin{aligned} & ((\mathrm{X})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$ | - | - | - | ---- | D6 |
| MOVW ext,A | 5 | 3 | $($ ext $) \leftarrow(\mathrm{AH}),($ ext +1$) \leftarrow(\mathrm{AL})$ | - | - | - | ---- | D4 |
| MOVW @EP,A | 4 | 1 | $((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$ | - | - | - | ---- | D7 |
| MOVW EP,A | 2 | 1 | $(E P) \leftarrow(A)$ | - | - | - | ---- | E3 |
| MOVW A,\#d16 | 3 | 3 | $(\mathrm{A}) \leftarrow \mathrm{d} 16$ | AL | AH | dH | + + - - | E4 |
| MOVW A,dir | 4 | 2 | $(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$ | AL | AH | dH | + + - - | C5 |
| MOVW A,@IX +off | 5 | 2 | $\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$ | AL | AH | dH | + | C6 |
| MOVW A,ext | 5 | 3 | $(\mathrm{AH}) \leftarrow(\mathrm{ext}),(\mathrm{AL}) \leftarrow(\mathrm{ext}+1)$ | AL | AH | dH | + | C4 |
| MOVW A,@A | 4 | 1 | $(\mathrm{AH}) \leftarrow((\mathrm{A})),(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{)}+1)$ | AL | AH | dH | + + | 93 |
| MOVW A,@EP | 4 | 1 | $(\mathrm{AH}) \leftarrow((\mathrm{EP}),(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$ | AL | AH | dH | + + - - | C7 |
| MOVW A,EP | 2 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{EP})$ | - | - | dH | ---- | F3 |
| MOVW EP,\#d16 | 3 | 3 | $(E P) \leftarrow d 16$ | - | - | - | ---- | E7 |
| MOVW IX,A | 2 | 1 | $(\mathrm{IX}) \leftarrow(\mathrm{A})$ | - | - | - | ---- | E2 |
| MOVW A,IX | 2 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{IX})$ | - | - | dH | ---- | F2 |
| MOVW SP,A | 2 | 1 | $(\mathrm{SP}) \leftarrow(\mathrm{A})$ | - | - | - | ---- | E1 |
| MOVW A,SP | 2 |  | $(\mathrm{A}) \leftarrow(\mathrm{SP})$ | - | - | dH | ---- | F1 |
| MOV @A,T | 3 | 1 | $($ (A) ) $\leftarrow$ (T) | - | - | - | ---- | 82 |
| MOVW @A,T | 4 | 1 | $((\mathrm{A})) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$ | - | - | - | ---- | 83 |
| MOVW IX,\#d16 | 3 | 3 | $(\mathrm{IX}) \leftarrow \mathrm{C} 16$ | - | - | - | --- | E6 |
| MOVW A,PS | 2 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{PS})$ | - | - | dH | ---- | 70 |
| MOVW PS,A | 2 | 1 | $(\mathrm{PS}) \leftarrow(\mathrm{A})$ | - | - | - | + + + | 71 |
| MOVW SP,\#d16 | 3 | 3 | $(\mathrm{SP}) \leftarrow \mathrm{d} 16$ | - | - | - | ---- | E5 |
| SWAP | 2 | 1 | $(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$ | - | - | AL | ---- | 10 |
| SETB dir: b | 4 | 2 | (dir) $\mathrm{b} \leftarrow 1$ | - | - | - | ---- | A8 to AF |
| CLRB dir: $b$ | 4 | 2 | (dir) $: \mathrm{b} \leftarrow 0$ | - | - | - | ---- | A0 to A7 |
| XCH A,T | 2 | 1 | $(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$ | AL | - | - | ---- | 42 |
| XCHW A,T | 3 | 1 | $(\mathrm{A}) \leftrightarrow(\mathrm{T})$ | AL | AH | dH | ---- | 43 |
| XCHW A,EP | 3 | 1 | $(\mathrm{A}) \leftrightarrow(\mathrm{EP})$ | - | - | dH | ---- | F7 |
| XCHW A,IX | 3 | 1 | (A) $\leftrightarrow(\mathrm{IX})$ | - | - | dH | ---- | F6 |
| XCHW A,SP | 3 | 1 | (A) $\leftrightarrow(\mathrm{SP})$ | - | - | dH | ---- | F5 |
| MOVW A,PC | 2 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{PC})$ | - | - | dH | ---- | F0 |

Notes: • During byte transfer to $A, T \leftarrow A$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

Table 3 Arithmetic Operation Instructions (62 instructions)

| Mnemonic | $\sim$ | \# | Operation | TL | TH | AH | NZVC | OP code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADDC A,Ri | 3 | 1 | $(A) \leftarrow(A)+(R i)+C$ | - | - | - | + + + + | 28 to 2F |
| ADDC A,\#d8 | 2 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{d} 8+\mathrm{C}$ | - | - | - | + + + + | 24 |
| ADDC A,dir | 3 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{A})+($ dir $)+\mathrm{C}$ | - | - | - | $++++$ | 25 |
| ADDC A,@IX+off | 4 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{A})+($ (IX) + off $)+\mathrm{C}$ | - | - | - | + + + + | 26 |
| ADDC A,@EP | 3 | 1 | $(A) \leftarrow(A)+((E P))+C$ | - | - | - | + + + + | 27 |
| ADDCW A | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$ | - | - | dH | + + + + | 23 |
| ADDC A | 2 | 1 | $(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$ | - | - | - | + + + + | 22 |
| SUBC A,Ri | 3 | 1 | $(A) \leftarrow(A)-(R i)-C$ | - | - | - | + + + + | 38 to 3F |
| SUBC A,\#d8 | 2 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$ | - | - | - | $++++$ | 34 |
| SUBC A,dir | 3 | 2 | $(A) \leftarrow(A)-($ dir $)-C$ | - | - | - | + + + + | 35 |
| SUBC A,@IX +off | 4 | 2 | $(A) \leftarrow(A)-($ (IX) +off $)-C$ | - | - | - | + + + + | 36 |
| SUBC A,@EP | 3 | 1 | $(A) \leftarrow(A)-((E P))-C$ | - | - | - | + + + + | 37 |
| SUBCW A | 3 | 1 | $(A) \leftarrow(T)-(A)-C$ | - | - | dH | + + + + | 33 |
| SUBC A | 2 | 1 | $(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$ | - | - | - | + + + + | 32 |
| INC Ri | 4 | 1 | $(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$ | - | - | - | + + + - | C8 to CF |
| INCW EP | 3 | 1 | $(E P) \leftarrow(E P)+1$ | - | - | - | ---- | C3 |
| INCW IX | 3 | 1 | $(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$ | - | - | - | ---- | C2 |
| INCW A | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{A})+1$ | - | - | dH | + + - - | C0 |
| DEC Ri | 4 | 1 | $(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$ | - | - | - | + + + - | D8 to DF |
| DECW EP | 3 | 1 | $(E P) \leftarrow(E P)-1$ | - | - | - | - | D3 |
| DECW IX | 3 | 1 | $(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$ | - | - | - | - - - - | D2 |
| DECW A | 3 | 1 | $(A) \leftarrow(A)-1$ | - | - | dH | + + - - | D0 |
| MULU A | 19 | 1 | $(A) \leftarrow(A L) \times(T L)$ | - | - | dH | ---- | 01 |
| DIVU A | 21 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$ | dL | 00 | 00 | ---- | 11 |
| ANDW A | 3 | 1 | $(A) \leftarrow(A) \wedge(T)$ | - | - | dH | + + R - | 63 |
| ORW A | 3 | 1 | $(A) \leftarrow(A) \vee(T)$ | - | - | dH | $++\mathrm{R}-$ | 73 |
| XORW A | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$ | - | - | dH | $++\mathrm{R}-$ | 53 |
| CMP A | 2 | 1 | (TL) - (AL) | - | - | - | $++++$ | 12 |
| CMPW A | 3 | 1 | $(\mathrm{T})-(\mathrm{A})$ | - | - | - | + + + + | 13 |
| RORC A | 2 | 1 | $\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$ | - | - | - | $++-+$ | 03 |
| ROLC A | 2 | 1 | $\square \mathrm{C} \leftarrow \mathrm{~A} \leftrightarrows$ | - | - | - | + + - + | 02 |
| CMP A, \#d8 | 2 | 2 | (A) - d8 | - | - | - | + + + + | 14 |
| CMP A,dir | 3 | 2 | (A) - (dir) | - | - | - | + + + + | 15 |
| CMP A,@EP | 3 | 1 | (A) $-($ (EP) $)$ | - | - | - | + + + + | 17 |
| CMP A,@IX +off | 4 | 2 | (A) - ( (IX) +off) | - | - | - | + + + + | 16 |
| CMP A,Ri | 3 | 1 | (A) - (Ri) | - | - | - | + + + + | 18 to 1F |
| DAA | 2 | 1 | Decimal adjust for addition | - | - | - | + + + + | 84 |
| DAS | 2 | 1 | Decimal adjust for subtraction | - | - | - | + + + + | 94 |
| XOR A | 2 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$ | - | - | - | $++\mathrm{R}-$ | 52 |
| XOR A,\#d8 | 2 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$ | - | - | - | + + R - | 54 |
| XOR A,dir | 3 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir) | - | - | - | $++\mathrm{R}-$ | 55 |
| XOR A,@EP | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$ | - | - | - | $++\mathrm{R}-$ | 57 |
| XOR A,@IX +off | 4 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$ | - | - | - | $++\mathrm{R}-$ | 56 |
| XOR A,Ri | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$ | - | - | - | $++\mathrm{R}-$ | 58 to 5F |
| AND A | 2 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$ | - | - | - | $++\mathrm{R}-$ | 62 |
| AND A,\#d8 | 2 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d} 8$ | - | - | - | $++\mathrm{R}-$ | 64 |
| AND A,dir | 3 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$ | - | - | - | $++\mathrm{R}-$ | 65 |

(Continued)

## MB89940 Series

(Continued)

| Mnemonic | $\sim$ | \# | Operation | TL | TH | AH | NZ V C | OP code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AND A,@EP | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$ ) | - | - | - | + + R - | 67 |
| AND A,@IX +off | 4 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+$ off $)$ | - | - | - | + + R - | 66 |
| AND A,Ri | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$ | - | - | - | $++\mathrm{R}-$ | 68 to 6F |
| OR A | 2 | 1 | $(A) \leftarrow(A L) \vee(T L)$ | - | - | - | + + R - | 72 |
| OR A,\#d8 | 2 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$ | - | - | - | + + R - | 74 |
| OR A,dir | 3 | 2 | $(A) \leftarrow(A L) \vee($ dir $)$ | - | - | - | + + R - | 75 |
| OR A, @EP | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{EP}))$ | - | - | - | + + R - | 77 |
| OR A,@IX +off | 4 | 2 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{X})+$ off $)$ | - | - | - | $++\mathrm{R}-$ | 76 |
| OR A,Ri | 3 | 1 | $(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$ | - | - | - | + + R - | 78 to 7F |
| CMP dir,\#d8 | 5 | 3 | (dir) - d8 | - | - | - | + + + + | 95 |
| CMP @EP,\#d8 | 4 | 2 | ( (EP) ) - d8 | - | - | - | + + + + | 97 |
| CMP @IX +off,\#d8 | 5 | 3 | ( (IX) + off) - d8 | - | - | - | + + + + | 96 |
| CMP Ri, \#d8 | 4 | 2 | (Ri) - d8 | - | - | - | + + + + | 98 to 9F |
| INCW SP | 3 | 1 | $(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$ | - | - | - | ---- | C1 |
| DECW SP | 3 | 1 | $(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$ | - | - | - | ---- | D1 |

Table 4 Branch Instructions (17 instructions)

| Mnemonic | $\sim$ | \# | Operation | TL | TH | AH | NZ V C | OP code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BZ/BEQ rel | 3 | 2 | If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel | - | - | - | ---- | FD |
| BNZ/BNE rel | 3 | 2 | If $\mathrm{Z}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel | - | - | - | ---- | FC |
| BC/BLO rel | 3 | 2 | If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel | - | - | - | ---- | F9 |
| BNC/BHS rel | 3 | 2 | If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel | - | - | _ | --- - | F8 |
| BN rel | 3 | 2 | If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}$ + rel | - | - | _ | ---- | FB |
| BP rel | 3 | 2 | If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel | - | - | - | ---- | FA |
| BLT rel | 3 | 2 | If $\mathrm{V} \forall \mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel | - | - | - | ---- | FF |
| BGE rel | 3 | 2 | If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel | - | - | - | ---- | FE |
| BBC dir: b,rel | 5 | 3 | If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel | - | - | - | -+-- | B0 to B7 |
| BBS dir: b, rel | 5 | 3 | If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel | - | - | - | -+-- | B8 to BF |
| JMP @A | 2 | 1 | $(\mathrm{PC}) \leftarrow(\mathrm{A})$ | - | - | - | --- - | E0 |
| JMP ext | 3 | 3 | $(\mathrm{PC}) \leftarrow \mathrm{ext}$ | - | - | - |  | 21 |
| CALLV \#vct | 6 | 1 | Vector call | - | - | - | ---- | E8 to EF |
| CALL ext | 6 | 3 | Subroutine call | - | - | - | ---- | 31 |
| XCHW A,PC | 3 | 1 | $(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$ | - | - | dH | ---- | F4 |
| RET | 4 | 1 | Return from subrountine | - | - | - | ---- | 20 |
| RETI | 6 | 1 | Return form interrupt | - | - | - | Restore | 30 |

Table 5 Other Instructions (9 instructions)

| Mnemonic | $\sim$ | $\#$ | Operation | TL | TH | AH | NZV C | OP code |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- | ---: |
| PUSHW A | 4 | 1 |  | - | - | - | ---- | 40 |
| POPW A | 4 | 1 |  | - | - | dH | ---- | 50 |
| PUSHW IX | 4 | 1 |  | - | - | - | ---- | 41 |
| POPW IX | 4 | 1 |  | - | - | - | ---- | 51 |
| NOP | 1 | 1 |  | - | - | - | ---- | 00 |
| CLRC | 1 | 1 |  | - | - | - | ---R | 81 |
| SETC | 1 | 1 |  | - | --- | 91 |  |  |
| CLRI | 1 |  | - | - | ---- | 80 |  |  |
| SETI | 1 |  |  | - | - | - | ---- | 90 |


| L ${ }^{\text {H}}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | NOP | SWAP | RET | RETI | PUSHW <br> A | POPW | MOV <br> A,ext | $\begin{gathered} \text { MOVW } \\ \text { A,PS } \end{gathered}$ | CLRI | SETI | CLRB <br> dir: 0 | BBC dir: 0, rel | $\left\lvert\, \begin{array}{ll} \text { INCW } & \\ & \text { A } \end{array}\right.$ | DECW <br> A | JMP <br> @A | MOVW A,PC |
| 1 | MULU <br> A | DIVU <br> A | JMP addr16 | CALL addr16 | PUSHW <br> IX | $\mathrm{POPW}_{\mathrm{IX}}$ | MOV <br> ext,A | MOVW PS,A | CLRC | SETC | CLRB <br> dir: 1 | BBC dir: 1,rel | INCW <br> SP | DECW | MOVW | MOVW A,SP |
| 2 | ROLC <br> A | CMP <br> A | ADDC <br> A | SUBC <br> A | $\mathrm{XCH}$ | XOR <br> A | AND <br> A | OR A | MOV @A,T | $\begin{aligned} & \mathrm{MOV} \\ & \mathrm{~A}, @ \mathrm{~A} \end{aligned}$ | CLRB <br> dir:2 | BBC dir: 2,rel | $\left\lvert\, \begin{array}{ll} \text { INCW } & \\ & \text { IX } \end{array}\right.$ | DECW | $\underset{\text { IX,A }}{\text { MOVW }}$ | MOVW A,IX |
| 3 | RORC A | CMPW <br> A | $\begin{array}{r} \text { ADDCW } \\ \text { A } \end{array}$ | SUBCW <br> A | XCHW A, T | XORW <br> A | ANDW <br> A | ORW <br> A | MOVW @A,T | MOVW A,@A | CLRB <br> dir: 3 | BBC dir: 3,rel | INCW <br> EP | DECW | MOVW EP,A | MOVW A,EP |
| 4 | $\begin{array}{\|c\|} \text { MOV } \\ \text { A,\#d8 } \end{array}$ | CMP <br> A,\#d8 | ADDC <br> A,\#d8 | SUBC <br> A,\#d8 |  | $\begin{array}{\|c} \text { XOR } \\ \text { A,\#d8 } \end{array}$ | AND <br> A,\#d8 | OR <br> A,\#d8 | DAA | DAS | CLRB <br> dir:4 | BBC dir: 4, rel | MOVW <br> A,ext | MOVW ext,A | MOVW A,\#d16 | XCHW A,PC |
| 5 | MOV | CMP <br> A,dir | $\begin{aligned} & \text { ADDC } \\ & \quad \text { A,dir } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \text { SUBC } \\ & \text { A,dir } \end{aligned}\right.$ | $\mathrm{MOV}^{\text {dir,A }}$ | $\mathrm{XOR}_{\text {A,dir }}$ | AND <br> A,dir | OR <br> A,dir | MOV dir,\#d8 | CMP dir,\#d8 | CLRB <br> dir: 5 | BBC dir: 5 ,rel | MOVW A,dir | MOVW dir,A | MOVW SP,\#d16 | XCHW A,SP |
| 6 | $\begin{aligned} & \mathrm{MOV} \\ & \mathrm{~A}, @ \mid \mathrm{X}+\mathrm{d} \end{aligned}$ | CMP <br> A,@lX+d | ADDC <br> A,@IX +d | SUBC <br> A,@IX+d | MOV <br> @IX+d,A | $\begin{aligned} & \text { XOR } \\ & \text { A,@IX+d } \end{aligned}$ | AND <br> A,@IX+d | $\begin{aligned} & \text { OR } \\ & \text { A,@IX +d } \end{aligned}$ | MOV <br> @\|X+d,\#d8 | CMP <br> @\|X+d,\#d8 | CLRB dir: 6 | BBC <br> dir: 6, rel | $\begin{aligned} & \text { MOVW } \\ & \text { A,@IX +d } \end{aligned}$ | MOVW @IX +d,A | MOVW IX,\#d16 | XCHW <br> A,IX |
| 7 | MOV A,@EP | CMP <br> A,@EP | ADDC A,@EP | SUBC A,@EP | MOV @EP,A | $\begin{aligned} & \text { XOR } \\ & \text { A,@EP } \end{aligned}$ | AND <br> A, @EP | OR A,@EP | MOV <br> @EP,\#d8 | CMP @EP,\#d8 | CLRB <br> dir: 7 | BBC dir: 7,rel | MOVW A,@EP | MOVW <br> @EP,A | MOVW EP,\#d16 | XCHW A,EP |
| 8 | $\begin{aligned} & \mathrm{MOV} \\ & \mathrm{~A}, \mathrm{RO} \end{aligned}$ | CMP <br> A,RO | $\begin{aligned} & \text { ADDC } \\ & \quad \mathrm{A}, \mathrm{RO} \end{aligned}$ | SUBC A,R0 | $\left\lvert\, \begin{aligned} & \mathrm{MOV} \\ & \mathrm{RO}, \mathrm{~A} \end{aligned}\right.$ | $\begin{array}{\|l\|l\|} \mathrm{XOR} \\ \mathrm{~A}, \mathrm{RO} \\ \hline \end{array}$ | AND A,R0 | OR <br> A,RO | MOV R0,\#d8 | $\begin{aligned} & \text { CMP } \\ & \text { R0,\#d8 } \end{aligned}$ | SETB <br> dir: 0 | BBS <br> dir: 0 ,rel | INC <br> R0 | DEC <br> R0 | CALLV <br> \# | BNC $\begin{aligned} & \text { rel } \\ & \\ & \\ & \end{aligned}$ |
| 9 | $\mathrm{MOV}_{\mathrm{A}, \mathrm{R} 1}$ | CMP <br> A,R1 | $\begin{aligned} & \text { ADDC } \\ & \quad \text { A,R1 } \end{aligned}$ | SUBC <br> A,R1 | MOV <br> R1,A | $\mathrm{XOR}_{\mathrm{A}, \mathrm{R} 1}$ | AND <br> A,R1 | OR <br> A,R1 | MOV <br> R1,\#d8 | CMP R1,\#d8 | SETB <br> dir: 1 | BBS <br> dir: 1,rel | INC <br> R1 | DEC <br> R1 | CALLV <br> \#1 | BC $\quad$ rel |
| A | $\begin{array}{\|r\|} \hline \text { MOV } \\ \\ \text { A,R2 } \end{array}$ | CMP <br> A,R2 | $\begin{aligned} & \text { ADDC } \\ & \quad \mathrm{A}, \mathrm{R} 2 \end{aligned}$ | SUBC <br> A,R2 | MOV <br> R2,A | $\begin{array}{\|r\|} \hline \mathrm{XOR} \\ \mathrm{~A}, \mathrm{R} 2 \end{array}$ | AND <br> A,R2 | OR <br> A,R2 | MOV R2,\#d8 | CMP R2,\#d8 | SETB dir:2 | BBS dir: 2,rel | INC <br> R2 | DEC <br> R2 | CALLV <br> \#2 | BP $\quad$ rel |
| B | $\begin{array}{\|r\|} \hline \mathrm{MOV} \\ \mathrm{~A}, \mathrm{R} 3 \\ \hline \end{array}$ | CMP <br> A,R3 | $\begin{aligned} & \text { ADDC } \\ & \quad \text { A,R3 } \end{aligned}$ | $\begin{array}{\|} \text { SUBC } \\ \text { A,R3 } \end{array}$ | $\begin{array}{\|r\|} \mathrm{MOV} \\ \mathrm{R} 3, \mathrm{~A} \end{array}$ | $\mathrm{XOR}_{\mathrm{A}, \mathrm{R} 3}$ | AND <br> A,R3 | OR <br> A,R3 | MOV R3,\#d8 | $\begin{aligned} & \text { CMP } \\ & \text { R3,\#d8 } \end{aligned}$ | SETB <br> dir:3 | BBS dir: 3, rel | INC <br> R3 | DEC <br> R3 | CALLV <br> \#3 | BN rel |
| C | $\begin{aligned} & \text { MOV } \\ & \text { A,R4 } \end{aligned}$ | $\mathrm{CMP}_{\mathrm{A}, \mathrm{R} 4}$ | $\begin{aligned} & \text { ADDC } \\ & \quad \mathrm{A}, \mathrm{R} 4 \end{aligned}$ | SUBC A,R4 | $\left\lvert\, \begin{aligned} & \mathrm{MOV} \\ & \mathrm{R4}, \mathrm{~A} \end{aligned}\right.$ | $\mathrm{XOR}_{\mathrm{A}, \mathrm{R} 4}$ | AND A,R4 | OR <br> A,R4 | MOV R4,\#d8 | $\begin{aligned} & \text { CMP } \\ & \text { R4,\#d8 } \end{aligned}$ | SETB dir:4 | BBS dir: 4, rel | INC R4 | DEC <br> R4 | CALLV <br> \#4 | BNZ $\begin{aligned} & \\ & \text { rel }\end{aligned}$ |
| D | $\begin{aligned} & \text { MOV } \\ & \text { A,R5 } \end{aligned}$ | $\mathrm{CMP}_{\mathrm{A}, \mathrm{R} 5}$ | $\begin{aligned} & \text { ADDC } \\ & \quad \mathrm{A}, \mathrm{R} 5 \end{aligned}$ | SUBC A,R5 | $\left\lvert\, \begin{aligned} \mathrm{MOV} & \\ & \text { R5,A } \end{aligned}\right.$ | $\mathrm{XOR}_{\mathrm{A}, \mathrm{R} 5}$ | AND A,R5 | OR <br> A,R5 | MOV R5,\#d8 | $\begin{aligned} & \text { CMP } \\ & \text { R5,\#d8 } \end{aligned}$ | SETB dir: 5 | BBS dir: 5 ,rel | INC <br> R5 | DEC | CALLV <br> \#5 | BZ $\quad$ rel |
| E | $\begin{array}{\|r\|} \hline \text { MOV } \\ \\ \text { A,R6 } \end{array}$ | CMP <br> A,R6 | $\begin{aligned} & \text { ADDC } \\ & \quad \mathrm{A}, \mathrm{R} 6 \end{aligned}$ | SUBC <br> A,R6 | MOV <br> R6,A | $\begin{array}{\|l\|} \mathrm{XOR} \\ \mathrm{~A}, \mathrm{R} 6 \end{array}$ | AND <br> A,R6 | OR <br> A,R6 | MOV R6,\#d8 | CMP <br> R6,\#d8 | SETB <br> dir: 6 | BBS <br> dir: 6 , rel | INC R6 | $\begin{array}{\|ll} \mathrm{DEC} & \\ & \mathrm{R} 6 \end{array}$ | CALLV <br> \#6 | BGE <br> rel |
| F | $\begin{array}{\|r\|} \hline \text { MOV } \\ \text { A,R7 } \\ \hline \end{array}$ | CMP <br> A,R7 | $\begin{aligned} & \text { ADDC } \\ & \text { A,R7 } \end{aligned}$ | SUBC A,R7 | MOV <br> R7,A | $\begin{array}{\|r\|} \hline \text { XOR } \\ \\ A, R 7 \end{array}$ | AND <br> A,R7 | OR <br> A,R7 | MOV R7,\#d8 | CMP <br> R7,\#d8 | SETB <br> dir: 7 | BBS <br> dir: 7,rel | INC R7 | DEC <br> R7 | CALLV <br> \#7 | $\begin{array}{lll} \text { BLT } & \\ & \text { rel } \end{array}$ |

## MASK OPTIONS

| No. | Part number | MB89943 | MB89P945 | MB89PV940 |
| :---: | :---: | :---: | :---: | :---: |
|  | Specifying procedure | Specify when ordering masking | Set with EPROM Programmer | Setting not possible |
| 1 | Pull-up resistors $\left[\begin{array}{c}\text { P12 to P17, } \\ \text { P20 to P27 }\end{array}\right.$ | Selectable per pin (P20 and P12 to P17 must be set to without pull-up resistor when they are used as LCD outputs.) | Can be set per pin | Fixed to without pull-up resistor |
| 2 | Power-on reset <br> With power-on reset Without power-on reset | Fixed to with power-on reset | Setting possible | Fixed to with power-on reset |
| 3 | Main clock oscillation stabilization time selection (when operating at 8 MHz ) <br> Approx. $2^{18 / F c}$ (Approx. 32.8 ms ) <br> Approx. $2^{17 / F c}$ (Approx. 16.4 ms ) <br> Approx. $2^{14} / \mathrm{Fc}$ (Approx. 2.0 ms ) | Selectable | Setting possible | Fixed to approx. $2^{18} / \mathrm{Fc}_{c}$ (Approx. 32.8 ms ) |
| 4 | Reset pin output With reset output Without reset output | Fixed to with reset output | Setting possible | Fixed to with reset output |

■ ORDERING INFORMATION

| Part number | Package | Remarks |
| :--- | :---: | :---: |
| MB89943PF | 48-pin Plastic QFP <br> (FPT-40P-M16) |  |
| MB89P945PF | 48-pin Ceramic MQFP <br> (MQP-48C-P01) |  |

## PACKAGE DIMENSIONS

## 48-pin Plastic QFP

(FPT-48P-M16)

© 1994 FUJITSU LIMITED F48026S-IC-1
Dimensions in mm (inches)

## 48-pin Ceramic MQFP <br> (MQP-48C-P01)


© 1994 FUJTSU LIMITED M48001SC-4-2

## FUJITSU LIMITED

## For further information please contact:

Japan<br>FUJITSU LIMITED<br>Corporate Global Business Support Division<br>Electronic Devices<br>KAWASAKI PLANT, 4-1-1, Kamikodanaka<br>Nakahara-ku, Kawasaki-shi<br>Kanagawa 211-88, Japan<br>Tel: (044) 754-3763<br>Fax: (044) 754-3329

## North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

## Europe

FUJITSU MIKROELEKTRONIK GmbH<br>Am Siebenstein 6-10<br>63303 Dreieich-Buchschlag<br>Germany<br>Tel: (06103) 690-0<br>Fax: (06103) 690-122<br>Asia Pacific<br>FUJITSU MICROELECTRONICS ASIA PTE. LIMITED \#05-08, 151 Lorong Chuan<br>New Tech Park<br>Singapore 556741<br>Tel: (65) 281-0770<br>Fax: (65) 281-0220

## All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

## CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

