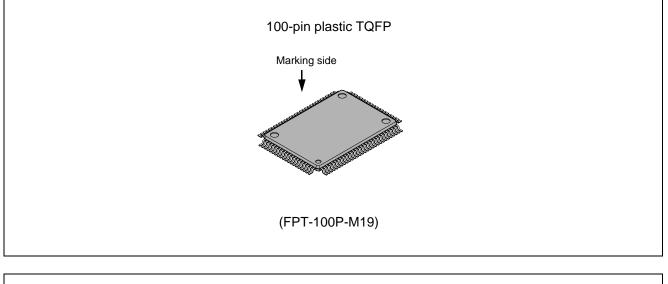
DS05-12102-4E

MEMORY cmos 2 × 256K × 32 BIT SYNCHRONOUS GRAPHIC RAM

MB81G163222-70/-80/-10

CMOS 2-Bank of 262,144-Word \times 32-Bit Synchronous Graphic Random Access Memory

DESCRIPTION

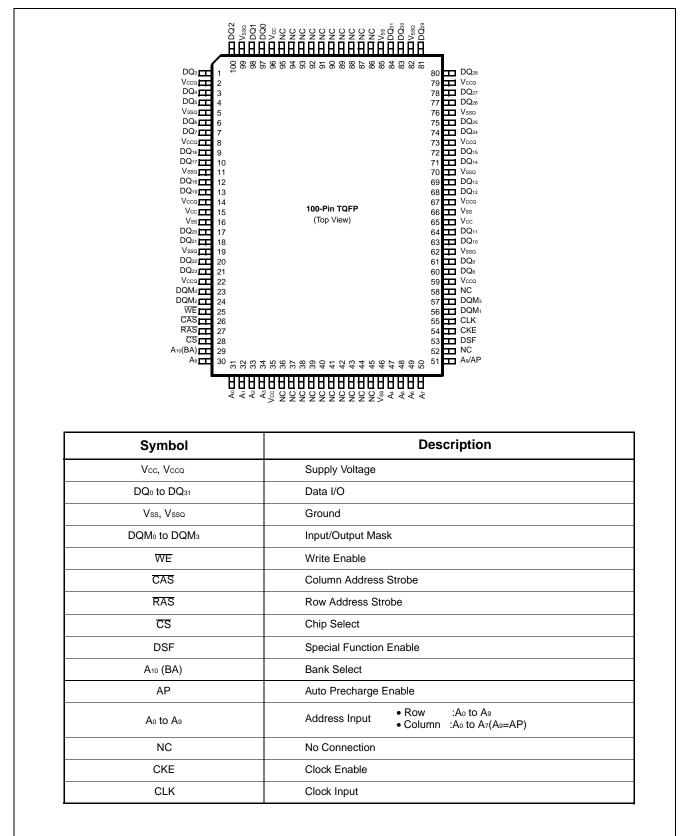

The Fujitsu MB81G163222 is a CMOS Synchronous Graphic Random Access Memory (SGRAM) containing 16,777,216 memory cells accessible in an 32-bit format. The MB81G163222 features a fully synchronous operation referenced to a positive edge clock whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence. The MB81G163222 SGRAM is designed to reduce the complexity of using a standard dynamic RAM (DRAM) which requires many control signal timing constraints, and may improve data bandwidth of memory as much as 5 times more than a standard DRAM. The MB81G163222 is ideally suited for Graphics workstations, laser printers, high resolution graphic adapters, accelerators and other applications where an extremely large memory and bandwidth are required and where a simple interface is needed.

■ PRODUCT LINE & FEATURES

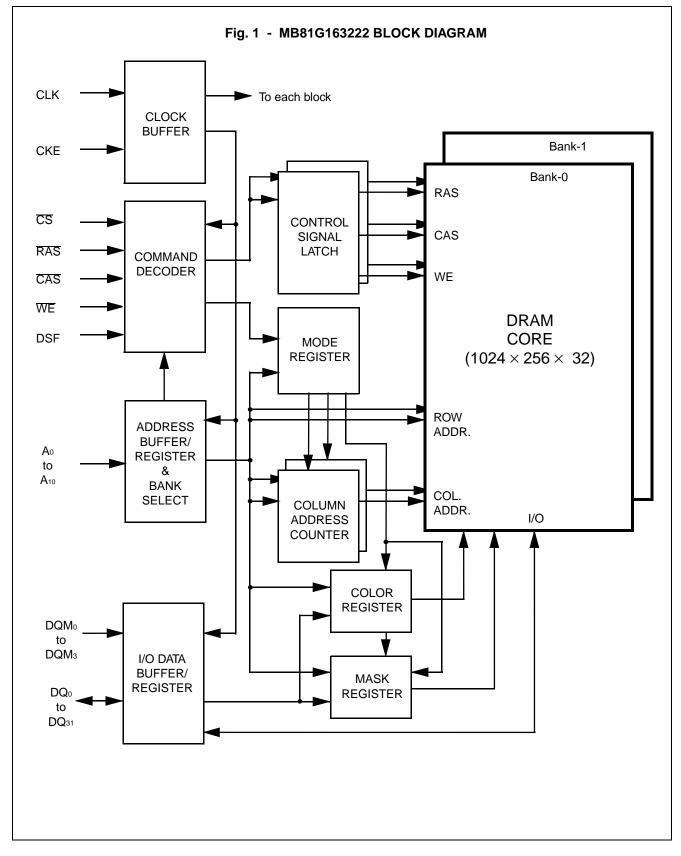
Parameter	MB81G163222-70	MB81G163222-80	MB81G163222-10
Clock Frequency	143 MHz max.	125 MHz max.	100 MHz max.
Burst Mode Cycle Time	7 ns min.	8 ns min.	10 ns min.
RAS Active Time	42 ns max.	48 ns max.	60 ns max.
RAS Cycle Time	63 ns max.	72 ns max.	90 ns max.
Access Time From Clock	6 ns min.	7 ns min.	7 ns min.
Operating Current (Two banks active)	380 mA max.	340 mA max.	280 mA max.
Power Down Mode Current		4 mA max.	

- Single +3.3V Supply ±10% tolerance
- LVTTL compatible I/O
- 2,048 refresh cycles every 32.8 ms
- Dual bank operation
- Byte control by DQM₀ to DQM₃
- Burst read/write operation and burst read/single write operation capability
- Programmable burst type, burst length, and CAS latency
- 8 column block write function
- Write per bit function (old mask)
- Auto-and Self-refresh
- CKE power down mode
- Output Enable and Input Data Mask

■ PACKAGE


Package and Ordering Information

- 100-pin plastic Thin QFP, order as MB81G163222-xxxTQ


To Top / Lineup / Index

MB81G163222-70/-80/-10

PIN ASSIGNMENTS AND DESCRIPTIONS

■ BLOCK DIAGRAM

■ FUNCTIONAL TRUTH TABLE COMMAND TRUTH TABLE

Function	Nataa	Querra ha a l	Cł	٢E	cs	510	~~~		DOF	A 10	A۹	
Function	Notes	Symbol	n-1	n	65	RAS	CAS	WE	DSF	(BA)	(AP)	A8-A0
Device Deselect	*5	DESL	Н	Х	Н	Х	Х	Х	Х	Х	Х	Х
No Operation	*5	NOP	Н	Х	L	Н	Н	Н	Х	Х	Х	Х
Burst Stop	*6	BST	Н	Х	L	Н	Н	L	L	Х	Х	Х
Read	*7	READ	Н	Х	L	Н	L	Н	L	V	L	V
Read With Auto-precharge	*7	READA	Н	Х	L	Н	L	Н	L	V	Н	V
Write	*7	WRIT	Н	Х	L	Н	L	L	L	V	L	V
Write With Auto-precharge	*7	WRITA	Н	Х	L	Н	L	L	L	V	Н	V
Block Write	*7	BWRIT	Н	Х	L	Н	L	L	Н	V	L	V
Block Write with Auto-precharge	*7	BWRITA	н	Х	L	н	L	L	н	V	Н	V
Bank Active (RAS) & WPB Disable	*7	ACTV	н	х	L	L	Н	Н	L	V	V	V
Bank Active (RAS) & WPB Enable	*8	ACTVM	н	х	L	L	Н	Н	н	V	V	V
Precharge Single Bank		PRE	Н	Х	L	L	Н	L	L	V	L	Х
Precharge All Banks		PALL	н	Х	L	L	Н	L	L	Х	Н	Х
Mode Register Set	*9, 10	MRS	н	Х	L	L	L	L	L	V	L	V
Special Mode Register Set		SMRS	н	Х	L	L	L	L	Н	L	L	V

Notes: *1. V = Valid, L = Logic Low, H = Logic High, X = either L or H.

- *2. All commands assumes no CSUS command on previous rising edge of clock.
- *3. All commands are assumed to be valid state transitions.
- *4. All inputs are latched on the rising edge of clock.
- *5. NOP and DESL commands have the same effect on the part.
- *6. BST command is effective only during full column burst read or write.
- *7. READ, READA, WRIT, WRITA, BWRIT, and BWRITA commands should only be issued after the corresponding bank has been activated (ACTV or ACTVM command). Refer to STATE DIAGRAM.
- *8. ACTV and ACTVM commands should only be issued after corresponding bank has been precharged (PRE or PALL command).
- *9. Required after power up.
- *10. MRS command should only be issued after all banks have been precharged (PRE or PALL command) and DQ has been in High-Z. Refer to STATE DIAGRAM.

■ FUNCTIONAL TRUTH TABLE (Continued) DQM TRUTH TABLE

Function	Symbol	Cł	DQMi	
T unction	Symbol	n-1	n	DQIVII
i-th Byte Write Enable / Output Enable	ENBi	Н	Х	L
i-th Byte Data Mask / Output Disable	MASKi	Н	Х	Н

Notes: *1. i=0, 1, 2, 3.

*2. DQM₀ for DQ₀ to 7, DQM₁ for DQ₈ to 15, DQM₂ for DQ₁₆ to 23, DQM₃ for DQ₂₄ to 31.

CKE TRUTH TABLE

Current State	Function	Notes	Sym-	CI	٢E	cs	RAS	CAS	WE	DSF	A 10	A۹	•
Current State	Function	notes	bol	n-1	n	63	RAS	CAS	VVE	DOF	(BA)	(AP)	A 8—0
Bank Active	Clock Suspend Mode Entry	*1	CSUS	Н	L	х	х	х	Х	Х	Х	х	х
Any	Clock Suspend continue	*1		L	L	Х	Х	Х	Х	Х	Х	Х	Х
Clock Suspend	Clock Suspend Mode Ex	it	_	L	Н	Х	Х	Х	Х	Х	Х	Х	Х
Idle	Auto-refresh Command	*2	REF	Н	Н	L	L	L	Н	L	Х	Х	Х
ldle	Self-refresh Entry	*2, 3	SELF	Н	L	L	L	L	Н	L	Х	Х	Х
Self Refresh	Self-refresh Exit	*4	SELFX	L	Н	L	Н	Н	Н	Х	Х	Х	Х
Sell Reliesh	Sell-reflesh Exit	4	SELFA	L	Н	Н	Х	Х	Х	Х	Х	Х	Х
Idle	Power Down Entry	*2, 3	PD	Н	L	L	Н	Н	Н	Х	Х	Х	Х
lale	Power Down Entry	2, 3	PD	Н	L	Н	Х	Х	Х	Х	Х	Х	Х
Power Down	Power Down Exit			L	Н	L	Н	Н	Н	Х	Х	Х	Х
Power Down Power Down Exit			L	Н	Н	Х	Х	Х	Х	Х	Х	Х	

Notes: *1. The CSUS command requires that at least one bank is active. Refer to STATE DIAGRAM.

*2. REF and SELF commands should only be issued after all banks have been precharged (PRE or PALL command). Refer to STATE DIAGRAM.

*3. SELF and PD commands should only be issued after the last read data have been appeared on DQ.

*4. CKE should be held high within tRC.

*5. NOP or DESL commands should only be issued after CSUS and PRE(or PALL) commands asserted at same time.

■ FUNCTIONAL TRUTH TABLE (Continued)

OPERATION COMMAND TABLE (Aplicable to single bank)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function Notes
Idle	Н	Х	Х	Х	Х	Х	DESL	NOP
	L	Н	Н	Н	Х	Х	NOP	NOP
	L	Н	н	L	L	Х	BST	NOP
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal
	L	L	Н	Н	L	BA, RA	ACTV	Bank Active after tRCD
	L	L	Н	L	L	BA, AP	PRE/PALL	NOP
	L	L	L	Н	L	Х	REF/SELF	Auto-refresh or Self-refresh *3
	L	L	L	L	L	MODE	MRS	Mode Register Set *3
	L	L	Н	Н	Н	BA, RA	ACTVM	Bank Active & Write Per Bit Enable
	L	н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal
	L	L	L	L	Н	SPECIAL MODE	SMRS	Special Mode Register Set
Bank Active	Н	Х	Х	Х	Х	Х	DESL	NOP
	L	Н	Н	Н	Х	Х	NOP	NOP
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Begin Read ; Determine AP
	L	Н	Н	L	L	Х	BST	NOP
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Begin Write ; Determine AP
	L	L	Н	Н	L	BA, RA	ACTV	Illegal *2
	L	L	Н	L	L	BA, AP	PRE/PALL	Precharge ; Determine Precharge Type
	L	L	L	Н	L	Х	REF/SELF	Illegal
	L	L	L	L	L	MODE	MRS	Illegal
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal
	L	н	L	L	н	BA, CA, AP	BWRIT/ BWRITA	Block Write ; Determine AP
	L	L	L	L	Н	SPECIAL MODE	SMRS	Special Mode Register Set

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function Notes
Read	Н	х	х	Х	х	Х	DESL	NOP (Continue Burst to End \rightarrow Bank Active)
	L	Н	н	Н	Х	Х	NOP	NOP (Continue Burst to End \rightarrow Bank Active)
	L	н	Н	L	L	х	BST	Burst Stop →Bank Active (BL=Full Column) NOP (BL=1, 2, 4, 8)
	L	н	L	Н	L	BA, CA, AP	READ/READA	Terminate Burst, New Read ; Determine AP
	L	н	L	L	L	BA, CA, AP	WRIT/WRITA	Terminate Burst, Start Write ; *4 Determine AP
	L	L	Н	Н	L	BA, RA	ACTV	Illegal *2
	L	L	н	L	L	BA, AP	PRE/PALL	Terminate Burst, Precharge ; Determine Precharge Type
	L	L	L	Н	L	Х	REF/SELF	Illegal
	L	L	L	L	х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal *2
	L	н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Terminate Burst, Start Block Write ; Determine AP
Write	Н	х	Х	Х	Х	Х	DESL	NOP (Continue Burst to End \rightarrow Write Recovering)
	L	Н	н	Н	Х	Х	NOP	NOP (Continue Burst to End \rightarrow Write Recovering)
	L	н	Н	L	L	х	BST	$\begin{array}{l} \text{Burst Stop} \rightarrow \text{Write Recovering} \\ \rightarrow \text{Bank Active (BL=Full Column)} \\ \text{NOP} \qquad (\text{BL=1, 2, 4, 8)} \end{array}$
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Terminate Burst, Start Read ; Determine AP
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Terminate Burst, New Write ; *4 Determine AP
	L	L	Н	Н	L	BA, RA	ACTV	Illegal *2
	L	L	н	L	L	BA, AP	PRE/PALL	Terminate Burst, Precharge ; *4 Determine Precharge Type
	L	L	L	Н	L	Х	REF/SELF	Illegal
	L	L	L	L	Х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal *2
	L	н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Terminate Burst, Start Block Write ; Determine AP

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function Note
Block Write	Н	х	х	Х	х	Х	DESL	NOP (Continue Burst to End \rightarrow Write Recovering)
	L	Н	Н	Н	Х	Х	NOP	NOP (Continue Burst to End \rightarrow Write Recovering)
	L	Н	Н	L	L	Х	BST	Illegal
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal
	L	L	Н	Н	L	BA, RA	ACTV	Illegal
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal
	L	L	L	Н	L	Х	REF/SELF	Illegal
	L	L	L	L	х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal
Read With Auto	Н	х	х	х	х	Х	DESL	NOP (Continue Burst to End \rightarrow Precharge)
Precharge	L	Н	Н	Н	х	Х	NOP	NOP (Continue Burst to End \rightarrow Precharge)
	L	Н	Н	L	L	Х	BST	Illegal
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Other Bank Read, *2 Illegal on same Bank
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Other Bank Write, *2 Illegal on same Bank
	L	L	н	Н	L	BA, RA	ACTV	Other Bank Active, *2 Illegal on same Bank
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal *2
	L	L	L	Н	L	Х	REF/SELF	Illegal
	L	L	L	L	х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal
	L	н	L	L	н	BA, CA, AP	BWRIT/ BWRITA	Illegal

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function No	otes
Write With Auto	Н	х	Х	Х	Х	Х	DESL	NOP (Continue Burst to End \rightarrow Write Recovering with Precha	rge)
Precharge /Block	L	Н	Н	Н	Х	Х	NOP	NOP (Continue Burst to End \rightarrow Write Recovering with Precha	rge)
Write With Auto	L	Н	Н	L	L	Х	BST	Illegal	
Precharge	L	н	L	Н	L	BA, CA, AP	READ/READA	Other Bank Read, Illegal on same Bank	*2
	L	н	L	L	L	BA, CA, AP	WRIT/WRITA	Other Bank Write, Illegal on same Bank	*2
	L	L	Н	Н	L	BA, RA	ACTV	Illegal	*2
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	*2
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	x	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	*2
	L	н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal	
Precharge	Н	Х	Х	Х	Х	Х	DESL	NOP (Idle after tRP)	
5	L	Н	Н	Н	Х	Х	NOP	NOP (Idle after trp)	
	L	Н	Н	L	L	Х	BST	Illegal	
	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal	*2
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal	*2
	L	L	Н	Н	L	BA, RA	ACTV	Illegal	*2
	L	L	Н	L	L	BA, AP	PRE/PALL	NOP (PALL may affect other bank)	*5
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	х	MODE/ SPECIAL MODE	MRS/ SMRS	lllegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	*2
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal	

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function N	lotes
Bank	Н	Х	Х	Х	Х	Х	DESL	NOP (Bank Active after tRCD)	
Activating	L	Н	Н	Н	Х	Х	NOP	NOP (Bank Active after tRCD)	
	L	н	Н	L	L	Х	BST	NOP (Bank Active after tRCD)	
	L	н	L	Н	L	BA, CA, AP	READ/READA	Illegal	*2
	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal	*2
	L	L	Н	Н	L	BA, RA	ACTV	Illegal	*6
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	*2
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	L	MODE	MRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	
	L	Н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	Illegal	
	L	L	L	L	Н	SPECIAL MODE	SMRS	Special Mode Registar Set	
Write	Н	Х	Х	Х	Х	Х	DESL	NOP (Bank Active after twr/tbwc)	
Recovering /Block Write	L	н	Н	Н	Х	Х	NOP	NOP (Bank Active after twr/tbwc)	
Recovering	L	н	Н	L	L	Х	BST	NOP (Bank Active after twr/tbwc)	
	L	н	L	Н	L	BA, CA, AP	READ/READA	Start Read ; Determine AP	*4
	L	н	L	L	L	BA, CA, AP	WRIT/WRITA	New Write ; Determine AP	
	L	L	Н	Н	L	BA, RA	ACTV	Illegal	*2
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	*2
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	
	L	н	L	L	Н	BA, CA, AP	BWRIT/ BWRITA	New Block Write ; Determine AP)

■ FUNCTIONAL TRUTH TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function N	lotes
Write	Н	Х	Х	Х	Х	Х	DESL	NOP (Precharge after tRWL/tBWL)	
Recovering	L	Н	Н	Н	Х	Х	NOP	NOP (Precharge after tRWL/tBWL)	
with Auto- precharge	L	Н	Н	L	L	Х	BST	Illegal	
Block Write	L	Н	L	Н	L	BA, CA, AP	READ/READA	Illegal	*2
Recovering with Auto-	L	Н	L	L	L	BA, CA, AP	WRIT/WRITA	Illegal	*2
precharge	L	L	Н	Н	L	BA, RA	ACTV	Illegal	*2
	L	L	Н	L	L	BA, AP	PRE/PALL	Illegal	*2
	L	L	L	Н	L	Х	REF/SELF	Illegal	
	L	L	L	L	х	MODE/ SPECIAL MODE	MRS/ SMRS	Illegal	
	L	L	Н	Н	Н	BA, RA	ACTVM	Illegal	*2
	L	н	L	L	н	BA, CA, AP	BWRIT/ BWRITA	Illegal	
Refreshing	Н	Х	Х	Х	Х	Х	DESL	NOP (Idle after tRc)	
	L	Н	Н	Х	Х	Х	NOP/BST	NOP (Idle after tRc)	
	L	н	L	x	x	х	READ/READA/ WRIT/WRITA/ BWRIT/ BWRITA	Illegal	
	L	L	н	Х	х	Х	ACTV/ACTVM/ PRE/PALL	Illegal	
	L	L	L	х	х	Х	REF/SELF/ MRS/SMRS	Illegal	*6
Mode	Н	Х	Х	Х	Х	Х	DESL	NOP (Idle after tRSC)	
Register Setting	L	Н	Н	Н	Х	Х	NOP	NOP (Idle after tRSC)	
5	L	Н	Н	L	L	Х	BST	Illegal	
	L	н	L	x	x	х	READ/READA/ WRIT/WRITA/ BWRIT/ BWRITA	Illegal	
	L	L	x	х	x	Х	ACTV/ACTVM/ PRE/PALL REF/SELF/ MRS/SMRS	Illegal	

■ FUNCTIONAL TRUTH TABLE (Continued)

OPERATION COMMAND TABLE (Continued)

Current State	CS	RAS	CAS	WE	DSF	Addr	Command	Function Notes
Special Mode	Н	Х	Х	Х	Х	Х	DESL	NOP (Return to original state after t _{RSC})
Register Setting	L	Н	Н	Н	Х	Х	NOP	NOP (Return to original state after t _{RSC})
	L	Н	Н	L	L	Х	BST	Illegal
	L	н	L	x	x	х	READ/READA/ WRIT/WRITA/ BWRIT/ BWRITA	Illegal
	L	L	х	х	х	Х	ACTV/ACTVM/ PRE/PALL REF/SELF/ MRS/SMRS	Illegal

ABBREVIATIONS :RA=Row AdressBA=Bank Address CA=Column AddressAP=Auto Precharge

■ FUNCTIONAL TRUTH TABLE (Continued)

COMMAND TRUTH TABLE FOR CKE

Current State	CKE n-1	CKE n	CS	RAS	CAS	WE	DSF	Addr	Function Notes
Self-	Н	Х	Х	Х	Х	Х	Х	Х	Invalid
refresh	L	Н	Н	Х	Х	Х	Х	Х	Exit Self-refresh, Idle after tRc
	L	Н	L	Н	Н	Н	Х	Х	Exit Self-refresh, Idle after tRC
	L	Н	L	Н	L	Х	Х	Х	Illegal
	L	Н	L	L	Х	Х	Х	Х	Illegal
	L	L	Х	Х	Х	Х	Х	Х	NOP (Maintain Self-refresh)
Self-	Н	Н	Н	Х	Х	Х	Х	Х	Idel after t _{RC}
refresh Recovery	Н	Н	L	Н	Н	Х	Х	Х	Idel after tRC
	Н	Н	L	Н	L	Х	Х	Х	Illegal
	Н	Н	L	L	Х	Х	Х	Х	Illegal
	Н	L	Н	Х	Х	Х	Х	Х	Begin Clock Suspend Next Cycle
	Н	L	L	Н	Н	Х	Х	Х	Begin Clock Suspend Next Cycle
	Н	L	L	Н	L	Х	Х	Х	Illegal
	Н	L	L	L	Х	Х	Х	Х	Illegal
	L	Н	Х	Х	Х	Х	Х	Х	Exit Clock Suspend Next Cycle
	L	L	Х	Х	Х	Х	Х	Х	Maintain Clock Suspend
Power	Н	Х	Х	Х	Х	Х	Х	—	Invalid
Down	L	Н	Х	Х	Х	Х	Х	Х	Exit Power Down Mode \rightarrow Idle
	L	L	Х	Х	Х	Х	Х	Х	NOP (Maintain Power Down Mode)
Both Banks	н	н	н	х	Х	Х	Х	_	Refer to the Operation Command Table.
Idle	н	н	L	н	Х	Х	х		Refer to the Operation Command Table.
	н	н	L	L	Н	Х	х	_	Refer to the Operation Command Table.
	Н	Н	L	L	L	Н	L	Х	Auto-refresh
	н	н	L	L	L	L	н	SPECIAL MODE	Refer to the Operation Command Table.
	н	н	L	L	L	L	L	MODE	Refer to the Operation Command Table.
	Н	L	Н	х	х	Х	х		Refer to the Operation Command Table.
	Н	L	L	н	Х	Х	Х		Refer to the Operation Command Table.
	Н	L	L	L	Н	Х	х	_	Refer to the Operation Command Table.
	Н	L	L	L	L	Н	L	Х	Self-refresh

■ FUNCTIONAL TRUTH TABLE (Continued)

COMMAND TRUTH TABLE FOR CKE (Continued)

Current State	CKE n-1	CKE n	CS	RAS	CAS	WE	DSF	Addr	Function Notes
Both Banks	Н	L	L	L	L	L	L	SPECIAL MODE	Refer to the Operation Command Table.
Idle	н	L	L	L	L	L	L	MODE	Refer to the Operation Command Table.
	L	Х	Х	Х	Х	Х	Х	Х	Power Down
Any State Other Than	Н	Н	Х	х	х	Х	Х	Х	Refer to the Operation Command Table.
Listed Above	Н	L	Х	Х	Х	Х	Х	Х	Begin Clock Suspend Next Cycle
	L	Н	Х	Х	Х	Х	Х	Х	Exit Clock Suspend Next Cycle
	L	L	Х	Х	Х	Х	Х	Х	Maintain Clock Suspend

Notes: *1. All entries assume the CKE was High during the proceeding clock cycle and the current clock cycle.
*2. Illegal to bank in specified state; entry may be legal in the bank specified by BA, depending on the state of that bank.

*3. Illegal if any bank is not idle.

*4. Must satisfy bus contention, bus turn around, and/or write recovery requirements.

- *5. NOP to bank precharging or in idle state. May precharge bank spesified by BA (and AP).
- *6. trrd must be satisfied for other bank.

■ FUNCTIONAL DESCRIPTION

SDRAM BASIC FUNCTION

Five major differences between this SGRAM and conventional DRAMs are: synchronized operation, burst mode, mode register, write per bit, and block write.

The **synchronized operation** is the fundamental difference. An SGRAM uses a clock input for the synchronization, where the DRAM is basically asynchronous memory even if it has been using two clocks, RAS and CAS. Each operation of DRAM is determined by their timing phase difference while each operation of SGRAM is determined by commands and all operations are referenced by a positive clock edge. Fig. 4 in page 25 show the basic timing diagram difference.

The **burst mode** is a very high speed access mode utilizing an internal column address generator. Once a column addresses for the first access is set, following addresses are automatically generated by the internal column address counter.

The **mode register** is to justify the SGRAM operation and function into desired system conditions. Referenced in MODE REGISTER TABLE, if a system requires interleave for burst type and two clocks for CAS latency, SDRAM can be configured to those conditions by mode register programming.

The **write per bit** function is to enable selective write operation for each 32 bit I/O. This function is activated by ACTVM command for each bank.

The **block write** function enables writing the same data (logic 0 or 1) into all of the memory cells for eight successive column (8×32 bit) within a selected Row.

CLOCK (CLK) and CLOCK ENABLE (CKE)

All input and output signals of SGRAM use register type buffers. A CLK is used as a trigger for the register and internal burst counter increment. All inputs are latched by a positive edge of CLK. All outputs are validated by the CLK. CKE is a high active clock enable signal. When CKE = Low is latched at a clock input during active cycle, the next clock will be internally masked. During idle state (all banks have been precharged), CKE = Low enters the Power Down mode(standby) and this will make extremely low standby current.

CHIP SELECT (CS)

CS enables all commands inputs, RAS, CAS, WE, DSF and address input. When CS is high level, command signals are negated but internal operation such as burst cycle will not be suspended. In the small system CS can be tied to ground level.

COMMAND INPUT (RAS, CAS WE, and DSF)

Unlike a conventional DRAM, RAS, CAS, WE, and DSF do not directly imply SGRAM operation, such as Row address strobe by RAS. Instead, each combination of RAS, CAS, WE, and DSF input in conjunction with CS input at a rising edge of the CLK determines SGRAM operation. Refer to FUNCTION TRUTH TABLE in page 5.

ADDRESS INPUT (Ao to A)

Address input selects an arbitrary location of a total of 262,144 words of each memory cell matrix. A total eighteen of address input signals are required to decode such a matrix with ten Row and eight Column address format. SDRAM adopts an address multiplexer in order to reduce the pin count of the address line. At a Bank Active command (ACTV or ACTVM), ten Row addresses are initially latched and the remainder of eight Column addresses are then latched by a Column address strobe command of either a Read command (READ or READA) or Write command (WRIT, WRITA, BWRIT, or BWRITA).

The A₉/AP pin determines precharge option. Refer to PRECHARGE AND PRECHARGE OPTION in page 22.

BANK SELECT (A10)

This SGRAM has two banks and each bank is organized as 256K-words by 32-bit.

Bank selection by A₁₀ occurs at Bank Active command (ACTV or ACTVM) followed by read (READ or READA), write (WRIT, WRITA, BWRIT, or BWRITA), and precharge command (PRE).

■ FUNCTIONAL DESCRIPTION (Continued)

DATA INPUT AND OUTPUT (DQ₀ to DQ₃₁)

Input data is latched and written into memory at the clock followed by a write command input. Data output is obtained by the following conditions followed by a read command input:

t_{Ac}; from the clock edge.

The polarity of the output data is identical to that of the input. Valid data time is between access time (determined by the three conditions above) and the next positive clock edge (toh).

DATA I/O MASK (DQM0 to DQM3)

 DQM_0 to DQM_3 are an active high enable input and have an output disable and input mask function. During burst cycle and when $DQM_0-3 =$ High is latched by a clock, input is masked at the same clock (Write&Block Write Operation) and output will be masked at the second clock later (Read operation) while internal burst counter will increment by one or will go to the next stage depending on burst type.

DQM₀, DQM₁, DQM₂, and DQM₃ controls DQ₀ to DQ₇, DQ₈ to DQ₁₅, DQ₁₆ to DQ₂₃, and DQ₂₄ to DQ₃₁, respectively.

BURST MODE OPERATION AND BURST TYPE

The burst mode provides faster memory access. The burst mode is implemented by keeping the same Row address and by automatic strobing column address. Access time and cycle time of Burst mode is specified as t_{AC} and t_{CK} , respectively. The internal column address counter operation is determined by a mode register which defines burst type and burst count length from 1 bits to full column of boundary. In order to terminate or to move from the current burst mode to the next stage while the remaining burst count is more than 1, the following combinations will be required:

Current Stage	Next Stage	Me	ethod (Assert the Following Command)		
Burst Read	Burst Read	F	Read command		
Burst Read	Burst Write	1st Step	Mask command (Normally 3 Clock Cycles)		
Buist Reau	Duist white	2nd Step	Write command after lowd		
Burst Write	Burst Write	Write command			
Burst Write	Burst Read	F	Read command		
Burst Read	Precharge	F	Precharge command		
Burst Write	Prochargo	1st Step Mask command			
Buist White	Precharge	2nd Step	Precharge command after tRWL		

FUNCTIONAL DESCRIPTION (Continued) BURST MODE OPERATION AND BURST TYPE (Continued)

When the full burst operation is executed at single write mode, auto-precharge command is valid only at write operation. The burst type can be selected either sequential or interleave mode. But only the sequential mode is usable to the full column burst. The sequential mode is an incremental decoding scheme within a boundary address to be determined by burst length, it assigns +1 to the previous (or initial) address until reaching the end of boundary address and then wraps round to least significant address(=0).

Burst Length	Starting Column Address A ₂ A ₁ A ₀	Sequential Mode	Interleave
2	X X 0	0 - 1	0 – 1
2	X X 1	1 – 0	1 – 0
	X 0 0	0-1-2-3	0-1-2-3
4	X 0 1	1-2-3-0	1-0-3-2
4	X 1 0	2-3-0-1	2 - 3 - 0 - 1
	X 1 1	3-0-1-2	3-2-1-0
	0 0 0	0 - 1 - 2 - 3 - 4 - 5 - 6 - 7	0 - 1 - 2 - 3 - 4 - 5 - 6 - 7
	0 0 1	1 - 2 - 3 - 4 - 5 - 6 - 7 - 0	1 - 0 - 3 - 2 - 5 - 4 - 7 - 6
	0 1 0	2 - 3 - 4 - 5 - 6 - 7 - 0 - 1	2 - 3 - 0 - 1 - 6 - 7 - 4 - 5
8	0 1 1	3 - 4 - 5 - 6 - 7 - 0 - 1 - 2	3 - 2 - 1 - 0 - 7 - 6 - 5 - 4
0	1 0 0	4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3
	1 0 1	5-6-7-0-1-2-3-4	5-4-7-6-1-0-3-2
	1 1 0	6 - 7 - 0 - 1 - 2 - 3 - 4 - 5	6-7-4-5-2-3-0-1
	1 1 1	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0

FULL COLUMN BURST AND BURST STOP COMMAND (BST)

The full column burst is an option of burst length and available only at sequential mode of burst type. This full column burst mode is repeatedly access to the same column. If burst mode reaches end of column address, then it wraps round to first column address (=0) and continues to count until interrupted by the news read (READ) /write (WRIT/ BWRIT), precharge (PRE), or burst stop (BST) command. The selection of auto-precharge option is illegal during the full column burst operation except write command at BURST READ & SINGLE WRITE mode.

The BST command is applicable to terminated the full column burst operation and illegal during the burst operation with length of 1, 2, 4, and 8. If the BST command is asserted during the full column burst mode, its operation is terminated immediately and the internal state moves to Bank Active.

When read mode is interrupted by BST command, the output will be in High-Z.

For the detail rule, please refer to Timing Diagram-8.

When write mode is interrupted by BST command, the data to be applied at the same time with BST command will be ignored.

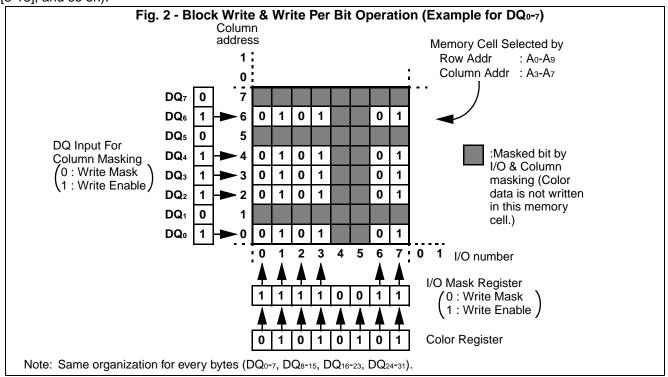
BURST READ & SINGLE WRITE

The burst read and single write mode provides single word write operation regardless of its burst length. In this mode, burst read operation does not be affected by this mode.

■ FUNCTIONAL DESCRIPTION (Continued)

PRECHARGE AND PRECHARGE OPTION (PRE, PALL)

SGRAM memory is the same as DRAM, requiring precharge and refresh operations. Precharge rewrites the bit line and to reset the internal Row address line and is executed by Precharge command (PRE). With the precharge command, SGRAM will automatically be in idle state after precharge time (t_{RP}).


The precharged bank is selected by combination of A_9 and A_{10} when Precharge command is asserted. If A_9 = High, both banks are precharged regardless of A_{10} (PALL). If A_9 = Low, a bank to be selected by A_{10} is precharged (PRE). The Auto Precharge enters precharge mode at the end of burst mode of read or write without Precharge command assertion. This Auto Precharge is entered by A_9 =High when a read or write command is asserted. Refer to FUNCTION TRUTH TABLE.

WRITE PER BIT OPERATION (ACTVM)

The write per bit (WPB) is a function to enable selective write operation for each DQ pin. Bank active & WPB enable command (ACTVM) enables WPB operation for the associated bank and ACTV command disables it. Selection of masking I/O should be stored in load mask register (DQi=High : write enable, DQi=Low : write mask) by SMRS command with A_5 =High. For example, if a mask register bit=Low, the associated data bit is masked when a write command is excused and WPB has been enabled for the bank being written. WPB is applicable to either burst writes, single writes, and block writes. DQM masking is applicable for WPB as well as non-write-per-bit. ACTVM is valid until the associated bank is precharged.

BLOCK WRITE OPERATION (BWRIT, BWRITA)

This command enables to write the same data (logic 0 or 1) in a selected block of eight successive columns (8 \times 32 bits) during a single access cycle. The column block is selected by A₃ to A₇ of column address input, and A₀, A₁, and A₂ are ignored and the data to be written is stored in color register by SMRS command with A₆=High. Column data masking is provided on an individual column basis for each byte of data. The column mask is driven on the DQ pins during block write command. The DQ column mask function is segmented on a per byte basis (i.e. DQ₀-7 provides the column mask for data byte 0-7, DQ₈₋₁₅, and so on.). A DQ column mask of H enables the particular column to be written while a value of L disables writing of the data. The relationship between DQ bits and column within the block is logically equivalent within each byte (i.e. DQ0 masks column"0" for data bits [0-7], DQ₈ masks column"0" for data bits [8-15], DQ₁ masks column"1" for data bits [0-7], DQ₉ masks column "1" for data bits [8-15], and so on).

■ FUNCTIONAL DESCRIPTION (Continued)

BLOCK WRITE OPERATION (BWRIT, BWRITA) (Continued)

The block write is always non-burst, independent of the burst length and burst type that has been programmed into the mode register. Back-to-back block write operation is allowed with the block write cycle time (tBWC) is satisfied. If WPB was enabled to the bank by ACTVM command, then write-per-bit masking of the color register data is enabled. If WPB was disabled, the write per bit masking of the color register data is disabled. When WPB is enabled, the data in the color register (accessed via special register access), is masked by the data in the mask register (accessed via special register bit=High enables the associated data bit to be written and mask bit=Low disables the associated data bit from being written.

DQM masking provides independent data byte masking during block write exactly the same as it dose during normal write operations, except that the control is extended to the 8 consecutive columns of the block.

AUTO-REFRESH (REF)

Auto-refresh uses the internal refresh address counter. The SGRAM Auto-refresh command (REF) generates Precharge command internally. All banks of SGRAM should be precharged prior to the Auto-refresh command. The Auto-refresh command should also be asserted every 16 μ s or a total 2,048 refresh commands within a 32.8 ms period.

SELF-REFRESH ENTRY (SELF)

Self-refresh function provides automatic refresh by an internal timer as well as Auto-refresh and will continue the refresh function until cancelled by Self-refresh Exit command (SELFX).

The Self-refresh is entered by applying an Auto-refresh command in conjunction with CKE = Low (SELF). Once SGRAM enters the self-refresh mode, all inputs except for CKE will be "DON'T CARE" (either logic high or low level state) and outputs will be in a High-Z state. During a self-refresh mode, CKE = Low should be maintained. Note that a total of 2,048 auto-refresh commands within 1 ms must be asserted prior to the self-refresh mode entry.

SELF-REFRESH EXIT (SELFX)

To exit self-refresh mode, apply minimum 4 clock cycle before CKE brought high, and then the NOP command (NOP) or Deselect command (DESL) should be asserted within one tRc period. Refer to Timing Diagram for the detail.

It is recommended to assert an Auto-refresh command just after the tRC period to avoid the violation of refresh period.

Note that a total of 2,048 auto-refresh commands within 1 ms must be asserted after the self-refresh exit.

MODE REGISTER SET (MRS)

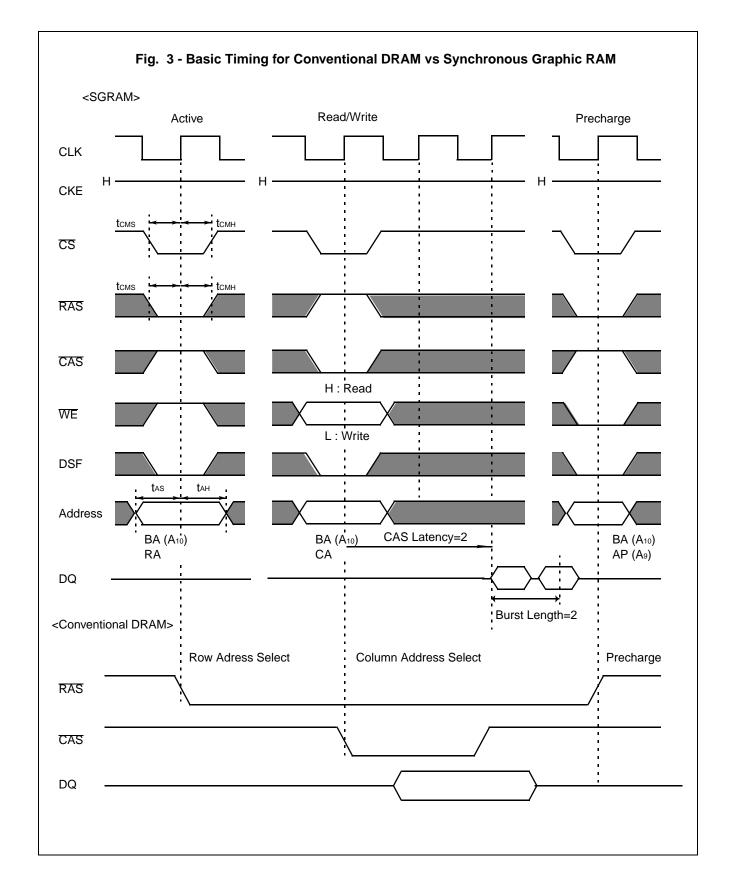
The mode register of SGRAM provides a variety of different operations. The register consists of five operation fields; Burst Length, Burst Type, CAS latency, Test Mode, and Operation Code. Refer to MODE REGISTER TABLE in page 35.

The mode register can be programmed by the Mode Register Set command (MRS). Each field is set by the address line. Once a mode register is programmed, the contents of the register will be held.

The condition of the mode register is undefined after the power-up stage. It is required to set each field after initialization of SGRAM. Refer to POWER-UP INITIALIZATION below.

SPECIAL MODE REGESTER SET (SMRS)

The Special Mode Register Set command (SMRS) is applicable to set the color register for block write operation or to set the mask register for write per bit operation. Color register and mask register is determined by the input level of A_6 and A_5 respectively, and it is illegal to determine both color register and mask register within one command ($A_6=A_5=H$ is illegal). The data to be stored in color register or mask register is input via DQ pins. The SMRS command can be valid during idle or bank active state. Both color register and mask register are not cleared or reset until changed by another SMRS cycle (or part loses power). Refer to the SPECIAL MODE REGISTER TABLE in page 35.


■ FUNCTIONAL DESCRIPTION (Continued)

POWER-UP INITIALIZATION

The SGRAM internal condition after power-up will be undefined. It is required to follow the following Power On Sequence to execute read or write operation.

- 1. Apply power and start clock. Attempt to maintain either NOP or DESL command at the input.
- 2. Maintain stable power, stable clock, and NOP condition for a minimum of 200 μ s.
- 3. Precharge all banks by Precharge (PRE) or Precharge All command (PALL).
- 4. Assert minimum of 8 Auto-refresh command(REF).
- 5. Program the mode register by Mode Register Set command(MRS).

In addition, it is recommended DQM₀₋₃ and CKE to track V_{CC} to insure that output is High-Z state. The Mode Register Set command (MRS) can be set before 8 Auto-refresh command (REF).

■ FUNCTIONAL DESCRIPTION (Continued)

 Table 1
 : Minimum Clock Latency Or Delay Time for 1 Bank Operation

Second command			(M)		7			_	A					
command (opposite bank) First	MRS	SMRS	ACTV (M)	READ	READA	WRIT	WRITA	BWRIT	BWRITA	BST	PRE	PALL	REF	SELF
command	2	S	4	~	~	5	5	-	8	8		<u> </u>	~	S
MRS	trsc	t RSC	t RSC										trsc	trsc
SMRS	trsc	trsc	trsc	trsc	trsc	trsc	trsc	trsc	trsc		trsc	trsc	trsc	trsc
ACTV (M)		1		t RCD		tras	tras							
READ		BL-1 + trsc		1	1	1 *1	1 *1	1	1	1	1	1		
READA	BL + t _{RP} *2	BL-1 + t _{RSC} *2	BL + t _{RP} *2										BL + t _{RP} *2	BL + t _{RP} *2
WRIT		BL-1 + t _{RSC}		1	1	1	1	1	1	1	t RWL	t RWL		
WRITA	BL-1 +t _{RWL} +t _{RP}	BL-1 + trsc	BL +t _{RWL} +t _{RP}										BL-1 +t _{RWL} +t _{RP}	BL-1 +t _{RWL} +t _{RP}
BWRIT		t BWC		t BWC	tвwc	t BWC	tвwc	tвwc	t BWC	N/A	t BWL	t BWL		
BWRITA	tbwl + tRP	t BWC	tbwl + tRP										tbwl + tRP	tbwl + tRP
BST *6		1		1	1	1	1	1	1	N/A	1	1		
PRE	t RP ^{*3}	t RP ^{*3}	t rp ^{*3}										t RP ^{*3}	trp *3
PALL *4	t RP ^{*3}	t RP ^{*1}	t rp *3								N/A	N/A	t rp *3	trp *3
REF	t RC	t RC	t RC										t RC	trc
SELFX	t _{PDE} + 1	t _{PDE} + 1	tPDE + tRC										tpde + trc	tPDE + tRC

Notes: *1. Assume no I/O conflict.

*2. If $t_{RP<} = t_{CK}$, minimum latency is a sum of BL + CL.

*3. Assume output is in High-Z state.

*4. Assume PALL command dose not affect any operation on opposite bank

*5. Not applicable after tRP.

*6. BST command should be issued only at BL=Full column.

■ FUNCTIONAL DESCRIPTION (Continued)

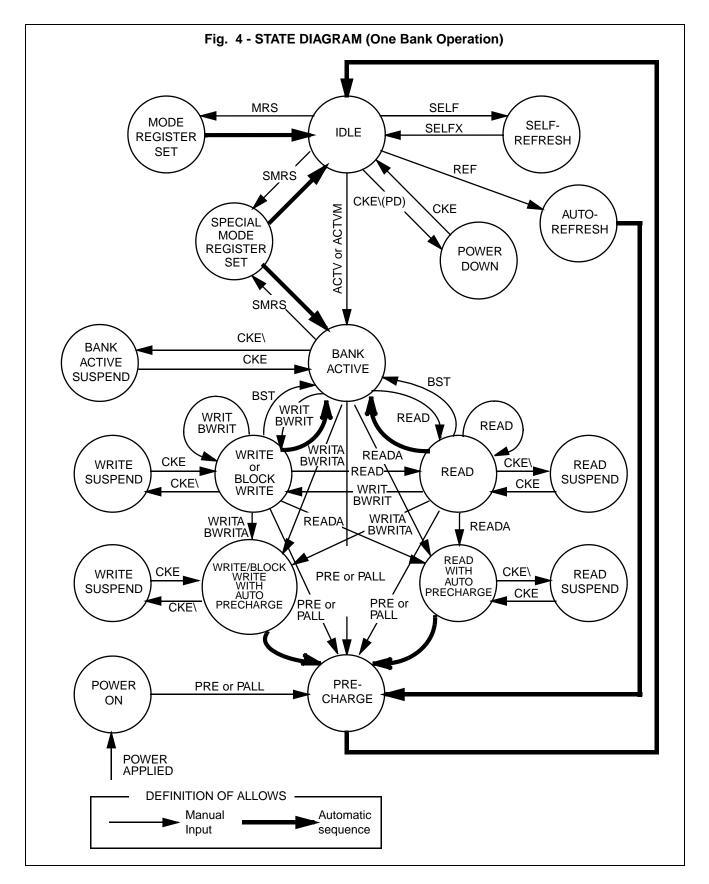
Table 2 : Minimum Clock Latency Or Delay Time for 2 Bank Operation

Second command (opposite bank) First command	MRS	SMRS	ACTV (M)	READ	READA	WRIT	WRITA	BWRIT	BWRITA	BST	PRE	PALL	REF	SELF
MRS	trsc	trsc	t RSC										trsc	trsc
SMRS	trsc	trsc	t RSC	t RSC	t RSC	trsc	t RSC	t RSC	t RSC		trsc	trsc	trsc	trsc
ACTV (M)		1	t rrd	1	1	1	1	1	1	1	1	tras		
READ		BL-1 + t _{RSC} *1	1	1	1	1 *1	1 *1	1 *1	1 *1	1	1	1		
READA	BL + t _{RP} *2	BL-1 + t _{RSC} *1	1	BL	BL	BL *1	BL *1	BL *1	BL *1		1	BL	BL + t _{RP} *2	BL + t _{RP} *2
WRIT		BL-1 + t _{RSC} *1	1	1	1	1	1	1	1	1	1	t RWL		
WRITA	BL-1 +t _{RWL} +t _{RP}	BL-1 + trsc	1	BL	BL	BL	BL	BL	BL		1	BL-1 +t _{RWL} +t _{RP}	BL-1 +t _{RWL} +t _{RP}	BL-1 +t _{RWL} +t _{RP}
BWRIT		tвwc	1	tвwc	tвwc	t вwc	tвwc	tвwc	tвwc	N/A	1	t BWL		
BWRITA	tbwl + tRP	tвwc	1	tвwc	tвwc	t BWC	tвwc	tвwc	tвwc	N/A	1	t BWL	tbwl + tRP	tbwl + tRP
BST *6		1	1	1		1	1 *7	1	1	N/A	1	1		
PRE	trp *3	t rp *1	1	1	1	1	1	1	1 *7	1	1	1	t rp ^{*3}	trp *3
PALL *4	t RP ^{*3}	t RP ^{*1}	t RP								N/A*5	N/A*5	t rp ^{*3}	t rp *3
REF	t RC	t RC	trc										t rrd	trc
SELFX	tPDE + trc	tpde + trc	tpde + trc										tpde + trc	tpde + trc

Notes: *1. Assume no I/O conflict.

*2. If $t_{RP<} = t_{CK}$, minimum latency is a sum of BL + CL.

*3. Assume output is in High-Z state.


*4. Assume PALL command dose not affect any operation on opposite bank.

*5. Not applicable after tRP.

*6. BST command should be issued only at BL=Full column.

*7. BST command should be issued at BL=Full column and single write mode operation.

Illegal Command

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameters	Symbol	Value	Unit
Voltage of Vcc Supply relative to Vss	Vcc, Vccq	-0.5 to +4.6	V
Voltage at any pin relative to Vss	Vin, Vout	-0.5 to +4.6	V
Short Circuit Output Current	Ιουτ	-50 to +50	mA
Power Dissipation	PD	1.3	W
Storage Temperature	Тѕтс	-55 to +125	٥C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

(Referenced to Vss)

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage		Vcc, Vccq	3.0	3.3	3.6	V
	Ī	Vss, Vssq	0	0	0	V
Input High Voltage	*1	Vін	2.0	—	Vcc + 0.3	V
Input Low Voltage	*2	VIL	-0.3	—	0.8	V
Ambient Temperature		TA	0	—	70	°C

Notes: *1. Overshoot limit: V_{H} (max)= Vcc + 1.5 V with a pulsewidth \leq 5 ns

*2. Undershoot limit: $V_{\mathbb{L}}(\min) = -1.5$ V with a pulsewidth ≤ 5 ns

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, Address	CIN1	—	5	pF
Input Capacitance, Except for address	CIN2	_	5	pF
I/O Capacitance	Cı/o		7	pF

■ DC CHARACTERISTICS

At recommended	a operating condit	ions unies	ss otherwise noted.)	Notes		
Para	meter	Symbol	Conditions	Va Min.	lue Max.	Unit
Output High Voltage	2	Voн(DC)	Iон = −2 mA	2.4		V
Output Low Voltage		VOH(DC)	$I_{OL} = 2 \text{ mA}$	2.4	0.4	V
Input Leakage Curr		ILI	$\begin{array}{l} 0 \ V \leq V_{\text{IN}} \leq V_{\text{CC}} \ ; \\ \text{All other pins not under} \\ \text{test} = 0 \ V \end{array}$	-10	10	μA
Output Leakage Cu	rrent	ILO	$0 V \le V_{IN} \le V_{CC}$; Data out disabled	-10	10	μA
	MB81G163222-70		Burst Length = 4		250	
	MB81G163222-80		tcк = min.		230	
Operating Current (Average Power	MB81G163222-10	Icc1s	trc = min. at each operation (*8) One bank active $0 V \le V_{IN} \le V_{CC}$ Outputs open addresses are changed up to 3 times during trc	_	190	mA
Supply Current)	MB81G163222-70		Burst Length = 4		380	
	MB81G163222-80		tcк = min.		340	
	MB81G163222-10	Ісстр	trc = min. at each operation (*8) 2 banks active 0 V \leq V _{IN} \leq V _{CC} Outputs open addresses are changed up to 3 times during trc	_	280	mA
		ICC2P	$\begin{array}{l} CKE = V_{IL}\\ All \text{ banks idle}\\ tCK = min.\\ Power down mode\\ 0 \ V \leq V_{IN} \leq V_{CC} \end{array}$	_	4	mA
		ICC2PS	$\begin{array}{l} CKE = V_{IL} \\ All \ banks \ idle \\ CLK = V_{IH} \ or \ V_{IL} \\ Power \ down \ mode \\ 0 \ V \leq V_{IN} \leq V_{CC} \end{array}$	_	3	mA
Precharge Standby (Power Supply Curr	Current ent)	Icc2n	CKE = V_{H} Nop commands only All banks idle tck = min. 0 V $\leq V_{IN} \leq V_{CC}$ Input signals are changed one time durling 3clock cycles	_	55	mA
		Icc2ns	$\begin{array}{l} CKE = V_{IH} \\ All \ banks \ idle \\ CLK = V_{IH} \ or \ V_{IL} \\ 0 \ V \leq V_{IN} \leq V_{CC} \\ Input \ signals \ are \ stable \end{array}$	_	20	mA
Active Standby Current (Power Supply Current)		Іссзр	$\begin{array}{l} CKE = V_{\text{IL}} \\ Any \text{ banks active} \\ t_{CK} = \min. \\ 0 \ V \leq V_{IN} \leq V_{CC} \end{array}$	_	20	mA
		Іссзря	$\begin{array}{l} CKE = V_{IL} \\ Any \text{ banks active} \\ CLK = V_{H} \text{ or } V_{IL} \\ 0 \ V \leq V_{IN} \leq V_{CC} \\ Input signals are stable \end{array}$	_	20	mA

■ DC CHARACTERISTICS (Continued) (At recommended operating conditions unless otherwise noted.)

(At recommended	l operating condit	ions unle	ss otherwise noted.)	Notes	s 1, 2	
Dere		Cumb ol	Conditions	Va	lue	11
Para	meter	Symbol	Conditions	Min.	Max.	Unit
Active Standby Curr (Power Supply Curre	ent ent)	Іссэм	$\begin{array}{l} CKE=\!V_{IH} \\ Nop \ commands \ only \ ; \\ Any \ banks \ active \\ t_{CK}=\min \\ 0 \ V \leq V_{IN} \leq V_{CC} \\ Input \ signals \ arechanged \\ one \ time \ during \ 3 \ clock \\ cycles \end{array}$	_	90	mA
		Іссэля	$\begin{array}{l} CKE = V_{IH} \\ Any \text{ banks active} \\ CLK = V_{IH} \text{ or } V_{IL} \\ 0 \ V \leq V_{IN} \leq V_{CC} \\ Input signals are stable \end{array}$	_	30	mA
	MB81G163222-70		tcк = min.		290	
Burst made	MB81G163222-80		Outputs open $0 V \le V_{IN} \le V_{CC}$		260	mA
Burst mode Current (Average Power Supply Current)	MB81G163222-10	Icc4	Any banks active gapless data, burst length = 4, Addresses are changed only one time during tcκ (min.)	_	220	
Refresh Current #1	MB81G163222-70		Auto-refresh;		240	
(Average Power	MB81G163222-80	Icc5	$t_{CK} = min.; t_{RC} = min.$		210	mA
Supply Current)	MB81G163222-10		$0 V \le V_{IN} \le V_{CC}.$		180	
Refresh Current #2 (Average Power Supply Current)		Icc6	$ \begin{array}{l} \text{Self-refresh} \ ; \\ \text{CKE} = V_{\text{IL}} \\ 0 \ V \leq V_{\text{IN}} \leq V_{\text{CC}} \end{array} $	_	4	mA
Block Write	MB81G163222-70		Block Write ;		270	
Current (Average	MB81G163222-80	Ісст	$t_{CK} = min.$; $t_{BWC} = min.$		240	mA
Current)	MB81G163222-10		$0 \ V \leq V_{\text{IN}} \leq V_{\text{CC}}$		210	

■ AC CHARACTERISTICS

(At recommended	- opoi a		1		,		Notes 2,		
Parameter Notes		Symbol		63222-70		63222-80		63222-10	Unit
		- ,	Min.	Max.	Min.	Max.	Min.	Max.	
Clock Period	CAS latency=2	- tcк	10		12		15		ns
CIUCK FEIIUU	CAS latency=3	LCK	7		8		10		ns
Clock High Time		tсн	2.5	—	3	—	3.5	—	ns
Clock Low Time		tc∟	2.5		3		3.5		ns
Data-in Setup Time		tos	2		2.5		3		ns
Data-in Hold Time		tон	1		1		1	—	ns
Address Setup Time		tas	2		2.5		3		ns
Address Hold Time		tан	1		1		1	_	ns
CKE Setup Time		t cкs	2		2.5		3		ns
CKE Hold Time		tскн	1		1		1	_	ns
Command Setup Ti (CS, RAS, CAS, WE		tсмs	2	_	2.5	_	3	_	ns
Command Hold Tim (CS, RAS, CAS, WE		tсмн	1	_	1	_	1	_	ns
Access	CAS latency=2			9		10		12	ns
Time from Clock (tcк=min.)	CAS latency=3	tac	_	6		7		7	ns
Output in Low-Z		t∟z	0		0		0	—	ns
Output in High-Z	CAS latency=2		2	10	2	10	2	12	ns
*5	CAS latency=3	tHz	2	7	2	7	2	7	ns
Output Hold Time		tон	2	—	2		2		ns
Time between Refre	esh	tref	—	32.8	—	32.8		32.8	ms
Transition Time		t⊤	0.5	2	0.5	2	0.5	2	ns
Power Down Exit Ti	me	t PDE	3		3.5		4		ns

■ AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.)

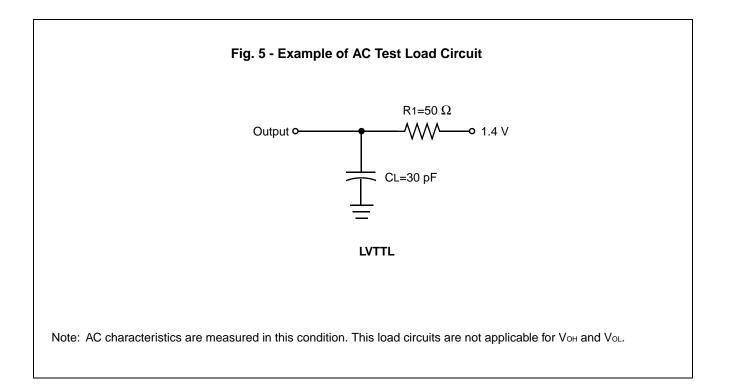
Notes 2, 3, 4

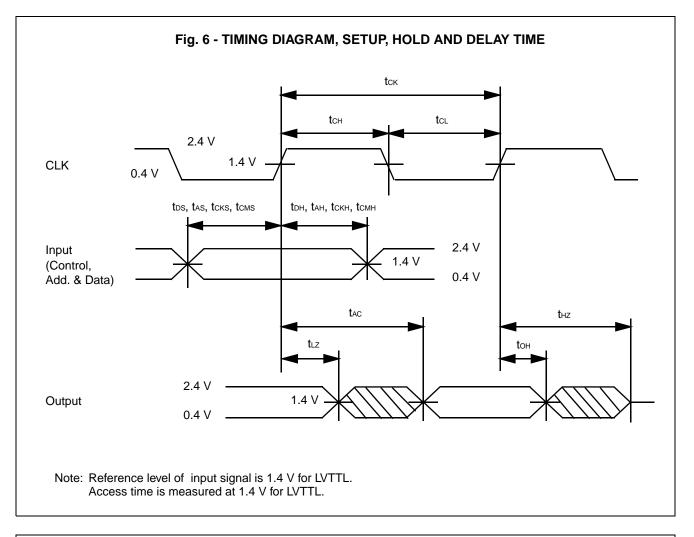
BASE VALUES FOR CLOCK COUNT/LATENCY

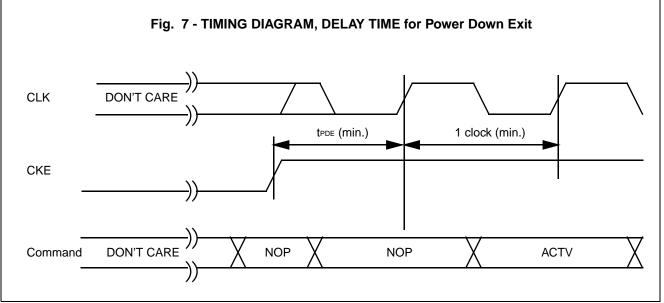
Parameter	lotes	Symbol	MB81G1	63222-70	MB81G1	63222-80	MB81G1	63222-10	Unit
Parameter	Notes	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
RAS Cycle Time	*6	t RC	63	—	72	_	90	—	ns
RAS Precharge Time		t RP	21	_	24		30	—	ns
RAS Active Time		t ras	42	100000	48	100000	60	100000	ns
RAS to CAS Delay Time		trcd	21		24		30	—	ns
Write Recovery Time		twr	7	_	8		10	—	ns
Write to Precharge Delay Time		trwL	7	_	8		10	—	ns
Block Write to Precharge Delay	' Time	t BWL	14	_	16		20	—	ns
RAS to RAS Bank Active Delay	Time	t RRD	14	—	16	—	20	—	ns
Block Write Cycle Time		t BWC	14	—	16	_	20		ns
Mode and Special Mode Regist Cycle Time	ter	trsc	14	_	16	_	20		ns

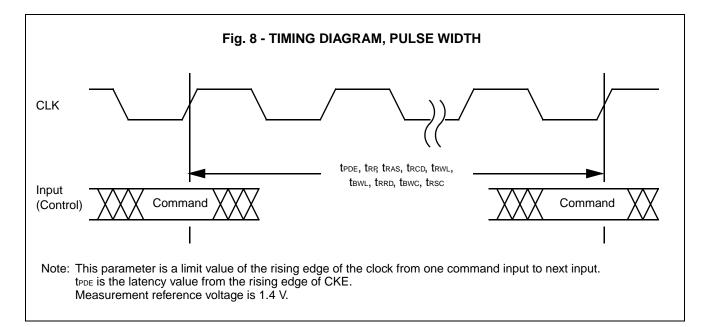
CLOCK COUNT FORMULA

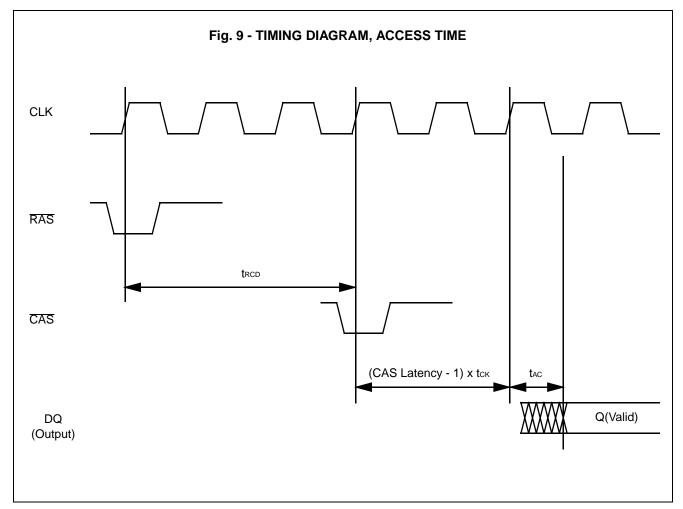
 $Clock \ge -$

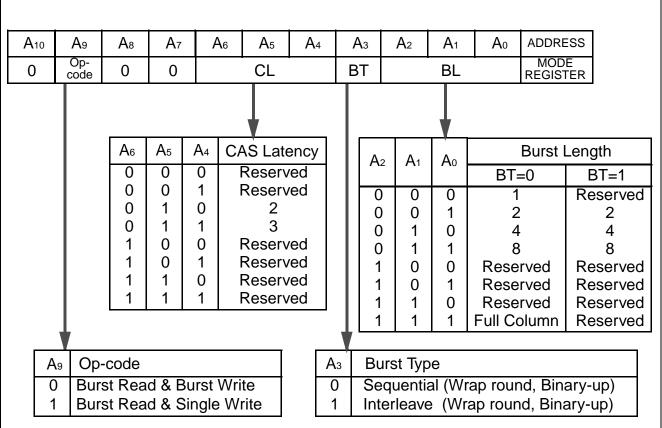

Base Value Clock Period (Round off a whole number)


LATENCY - FIXED VALUES

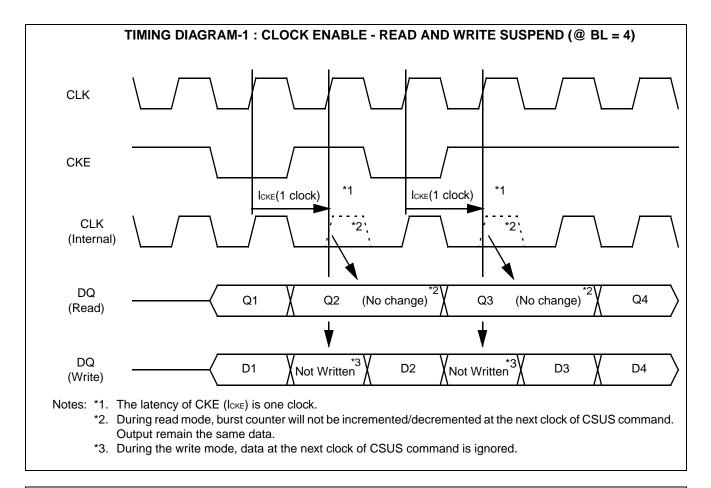

(The latency values on these parameters are fixed regardless of clock period.)

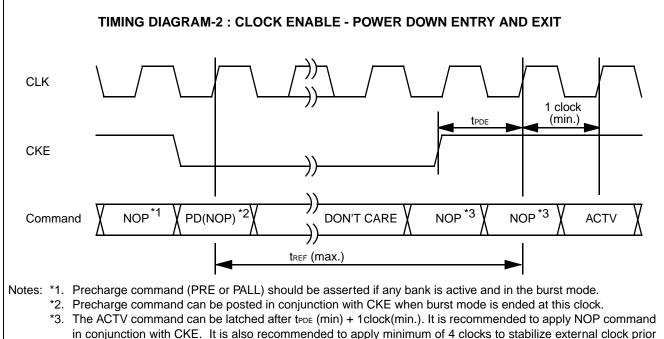

Parameter	Notes	Symbol	MB81G163222- 70	MB81G163222- 80	MB81G163222- 10	Unit
CKE to Clock Disable		Іске	1	1	1	cycle
DQM to Output in High-Z		Idqz	2	2	2	cycle
DQM to Input Data Delay			0	0	0	cycle
Last Output to Write Comma	and Delay	Iowd	2	2	2	cycle
Write Command to Input Da	ta Delay	lowd	0	0	0	cycle
Precharge to Output in	CL = 2	I	2	2	2	cycle
High-Z Delay	CL = 3	IROH	3	3	3	cycle
Burst Stop Command to	CL = 2	la e u	2	2	2	cycle
Output in High-Z Delay	CL = 3	вѕн	3	3	3	cycle
CAS to CAS Delay (min.)		Ісср	1	1	1	cycle
CAS Bank Delay (min.)		Ісвр	1	1	1	cycle


- Notes: *1. Icc depends on the output termination or load conditions, clock cycle rate, and signal clocking rate; the specified values are obtained with the output open and no termination register.
 - *2. An initial pause (DESL or NOP) of 200 μs is required after power-up followed by a minimum of eight Auto-refresh cycles.
 - *3. AC characteristics assume $t_T = 1$ ns and 30 pF of capacitive load.
 - *4. 1.4V is the reference level for measuring timing of input signals. Transition times are measured between V_{IH} (min.) and V_{IL} (max.).
 - *5. Specified where output buffer is no longer driven.
 - *6. Actual clock count of trc (Irc) will be sum of clock count of tras (Iras) and trp (Irp).
 - *7. All base values are measured from the clock edge at the command input to the clock edge for the next command input. All clock counts are calculated by a simple formula: clock count equals base value divided by clock period (round off to a whole number).
 - *8. The value of trc depends on CAS latency and speed version. In a case of CL = 2, trc= $8 \times tc\kappa$. In a case of CL = 3, trc= $10 \times tc\kappa$.

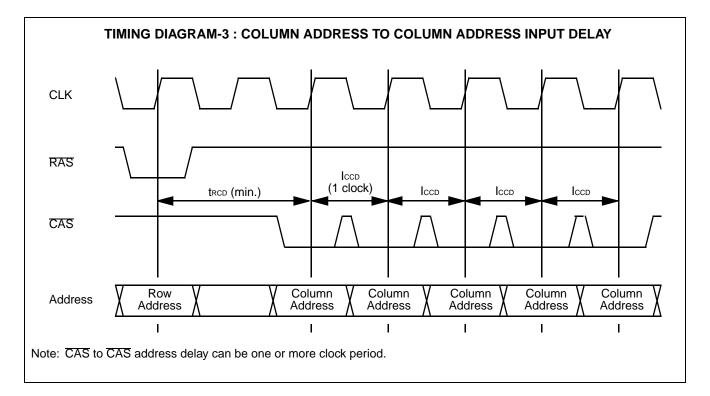


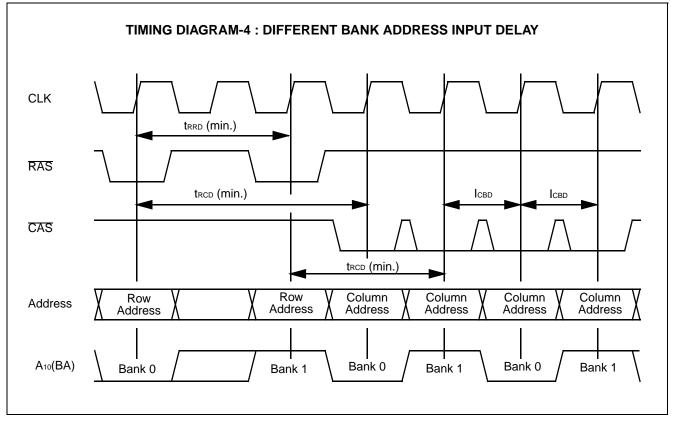
■ MODE REGISTER TABLE

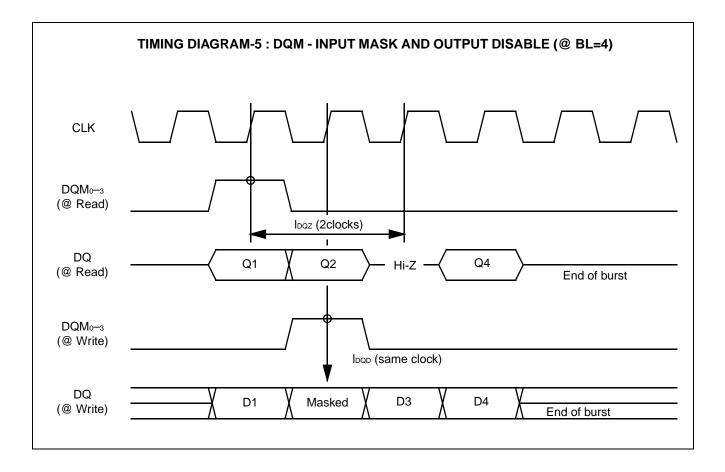

MODE REGISTER SET

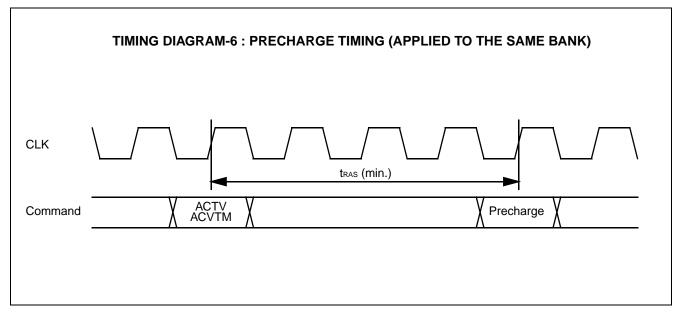


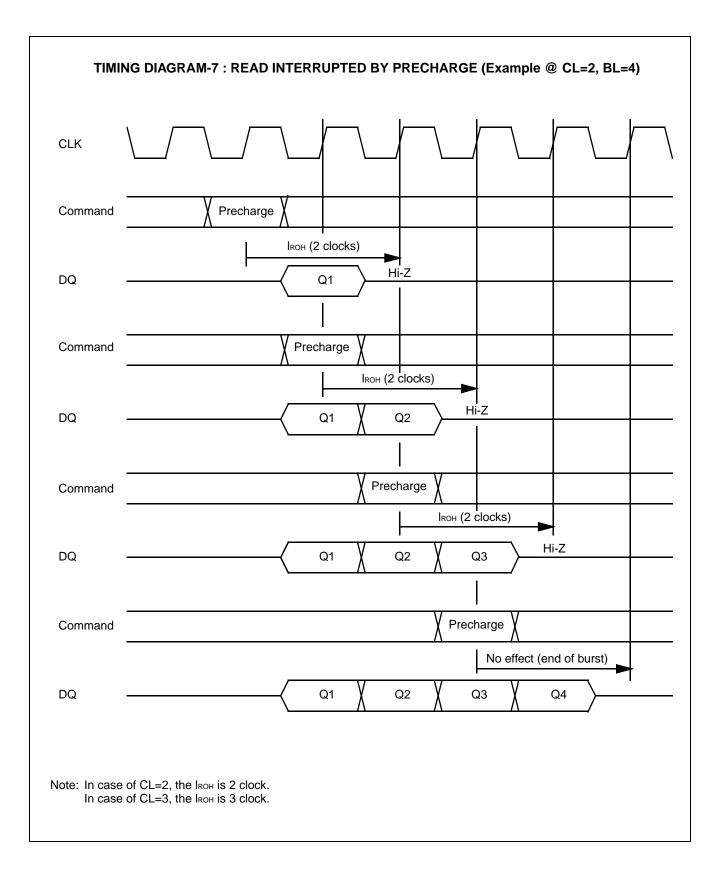
Note: When A₉=1, burst length at Write is always one regardless of BL value.

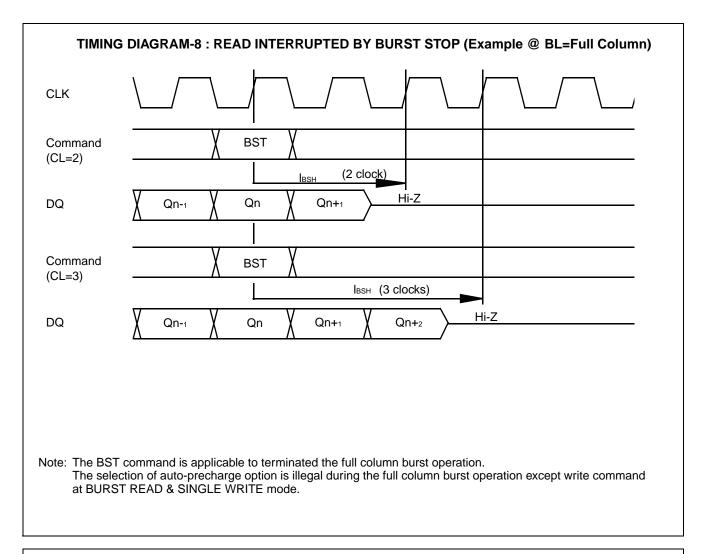

SPECIAL MODE REGISTER SET

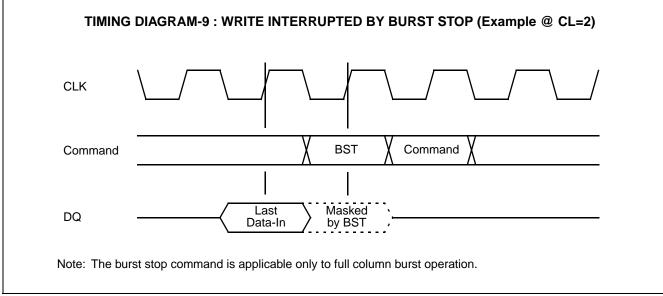

	A6 Load Color Register A5 Load Mask Register 0 Disable 0 Disable		A ₁₀	A ₉	A ₈	A7	A ₆	A5 A4 A3 A2				A1	Ao	ADDRES
0 Disable 0 Disable	0 Disable 0 Disable		0	0	0	0	LC	LM	0	0	0	0	0	
0 Disable 0 Disable	0 Disable 0 Disable													
0 Disable 0 Disable	0 Disable 0 Disable	ſ	•	Ι.			<u> </u>				• .	٦		
			A ₆	A ₆ Load Color Register					Load Mask Register					
1 Enable 1 Enable	1 Enable 1 Enable	Ī	0 Disable					0 C	Disable					
			1 Enable					1 E	Enable					

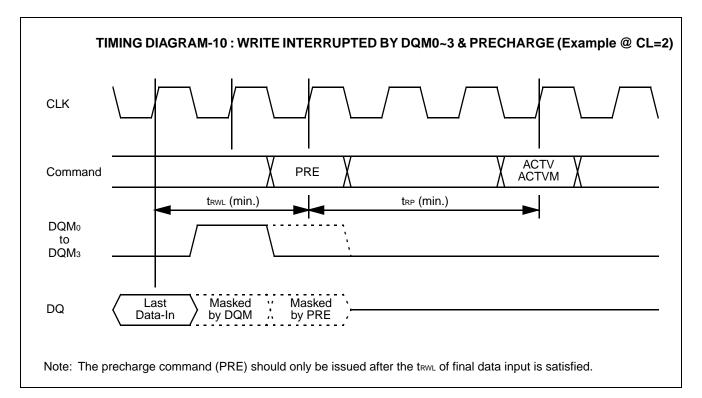


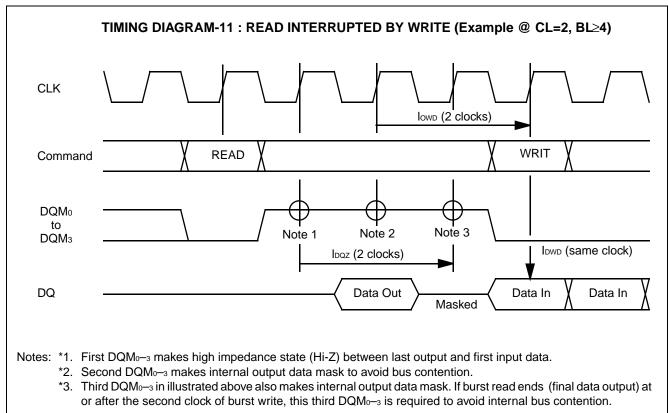


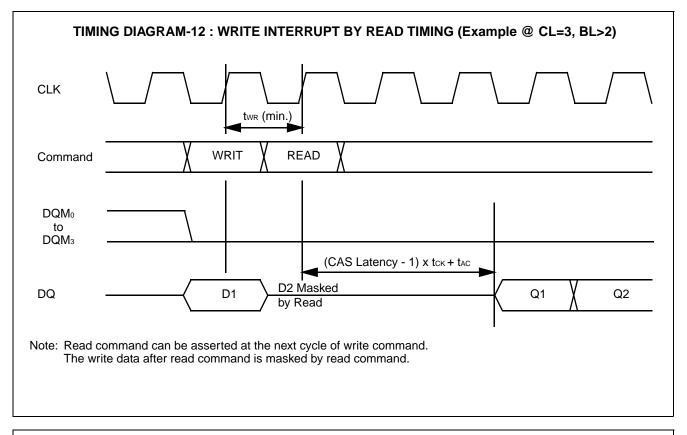

to ACTV command.

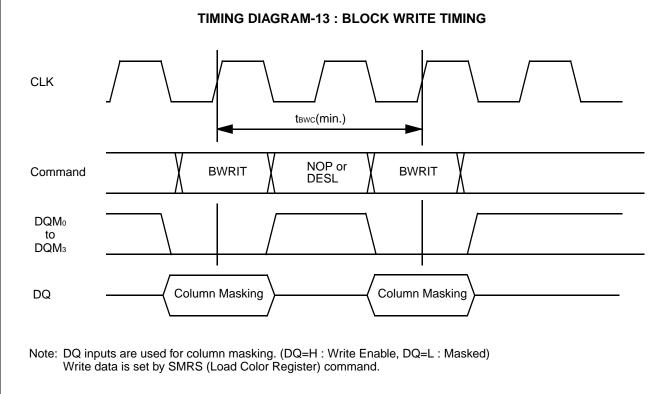


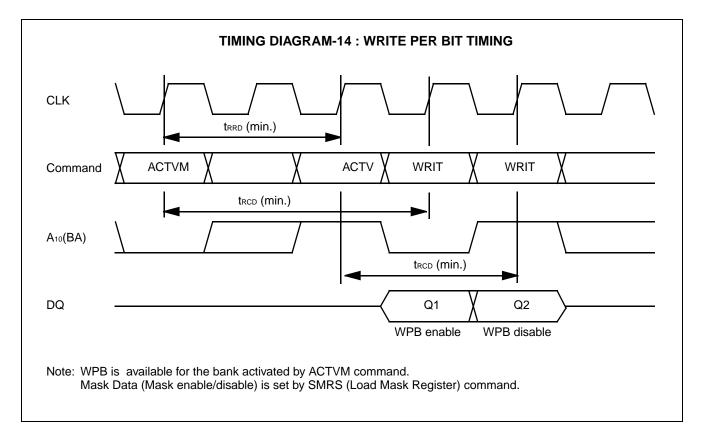


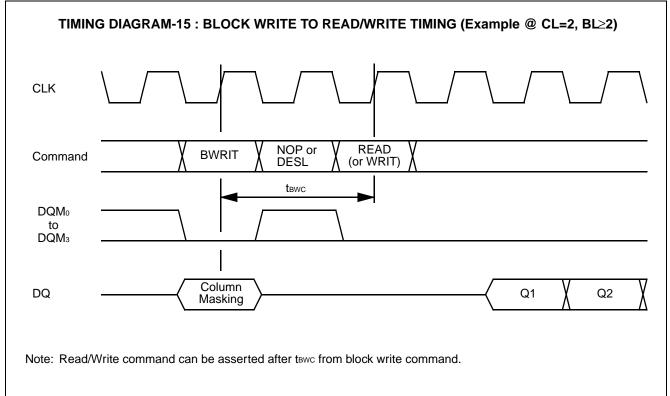


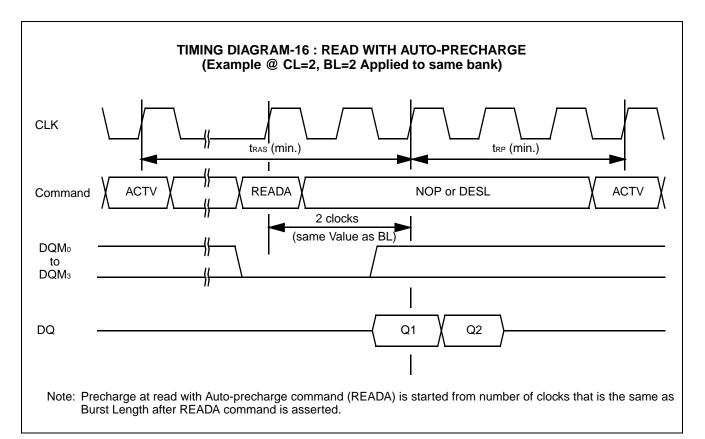


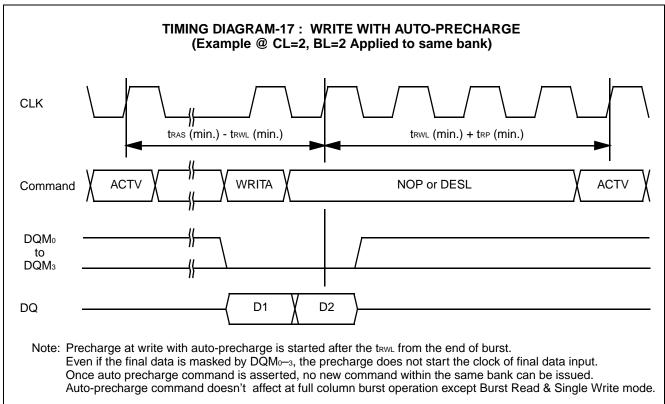


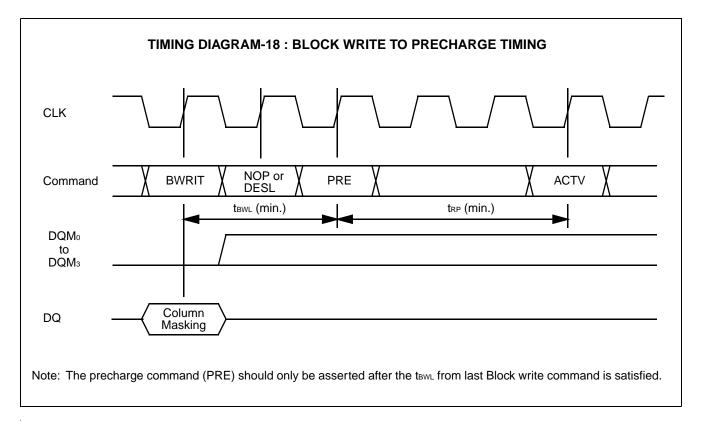


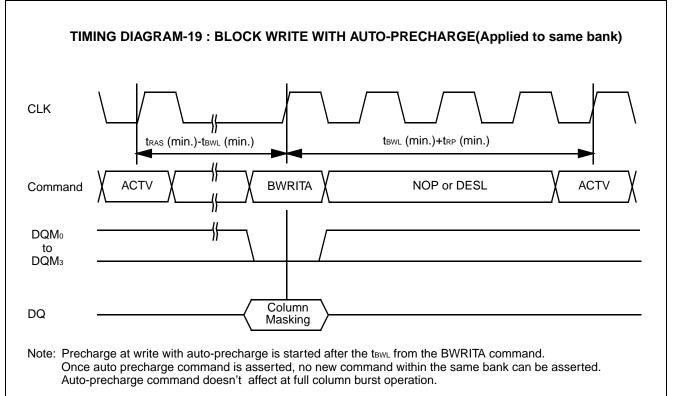


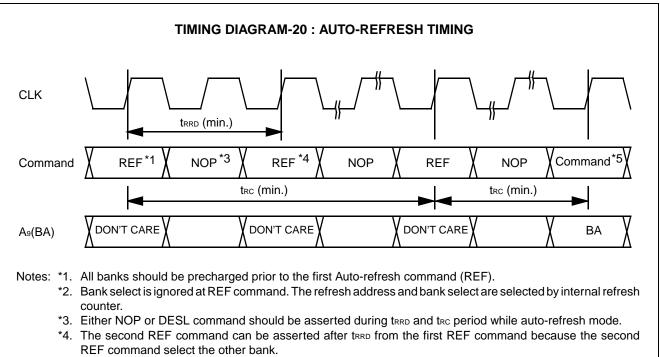


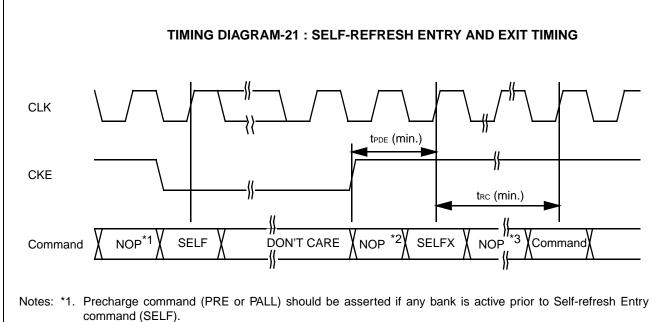


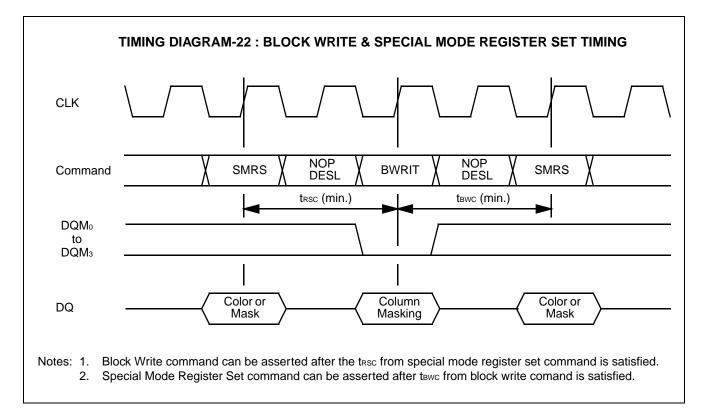


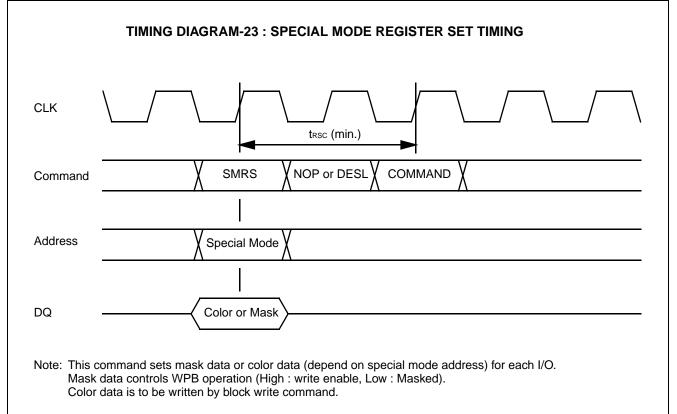


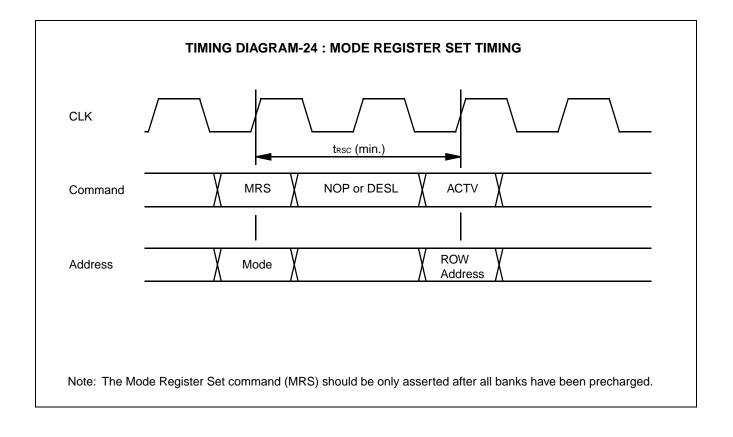




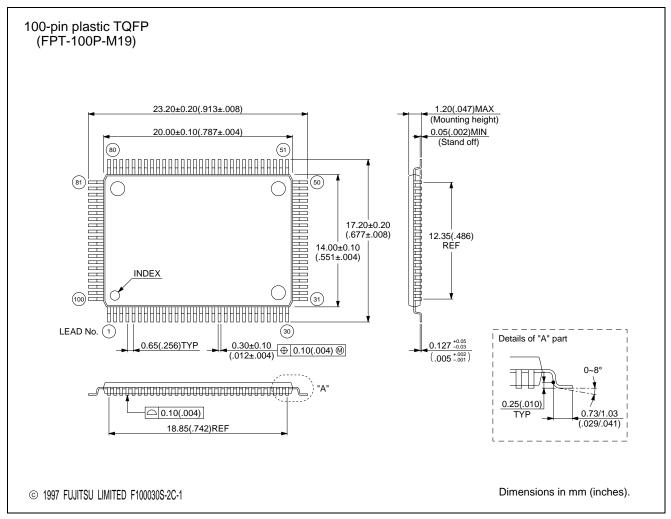







*5. Any activation command such as ACTV or MRS command other than REF command should be asserted after tRc from the last REF command.

- *2. The Self-refresh Exit command (SELFX) is latched after tPDE (min.). It is recommended to apply NOP command in conjunction with CKE. It is also recommended to apply minimum of 4 clocks to stabilize external clock prior to SELFX command.
- *3. Either NOP or DESL command can be used during tRc period.



■ PACKAGE DIMENSION

(Suffix: -TQ)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9805 © FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.