ASSP Magnetic Disk

BIPOLAR

Read/Write Amplifier

(For HDD MR and Thin Film Composite Heads, 6 Channels)

MB4138

DESCRIPTION

The MB4138 is a 6-channel read/write amplifier IC for magneto-resistive (MR) and inductive thin film composite heads used in hard disk drives.

■ FEATURES

- Drives six MR and thin film composite heads.
- The bias current for the MR head can be set in the range of 5 to 12 mA (DC).
- The read signal from the MR head is directly connected to the internal differential amplifier.
- High gain (×150), low noise (0.51 nV/ \sqrt{Hz}) read amplifier
- Read amplifier output buffer type: open collector.
- Voltage output function pin for MR heads (VHR)
- VHR pin ground fault protection function
- Read output voltage stabilization at mode switching
- Psuedo-ECL level differential input for write data
- The write current can be set in the range from 10 to 40 mA (DC).
- Internal write-unsafe detect circuit. Detects write head faults.
- TTL level control inputs
- · Internal voltage monitor detects low supply voltage
- Operates on a single +5.0V power supply.

PACKAGE

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.	Symbol	Description
1	CS	Chip select pin. Control signal input pin. Sets the IC to the operating or idle state. An "L" level input sets the IC to "operating".
2	R/W	Read/write mode selection pin
3	VHR	Output pin for the MR head voltage function. Outputs the same voltage as the bias voltage for the MR heads.
4 to 11, 14 to 17, 20 to 23, 26 to 33	W0X, W0Y R0X, R0Y W1X, W1Y R1X, R1Y to W5X, W5Y R5X, R5Y	Head connection pins for channels 0 to 5. Pins W0X, W0Y, etc. are for the thin film write heads for each channel. Pins R0X, R0Y, etc. are for the MR read heads for each channel. The MR head bias current flows from the R0X pin to the R0Y pin. The read signals are input to a differential amplifier.
12	C3X	Capacitor connection pins. A 0.033 μ F capacitor is typically connected between
13	C3Y	current flows through an MR head.
19	GND	Ground pin. Connect to ground.
24	C4X	Capacitor connection pins. Connect a 0.033 μ F capacitor between these pins.
25	C4Y	The capacitor cuts the DC component due to the bias current flowing through the MR heads.
34	C1	Capacitor connection pin. Connect a 0.1 μF capacitor between this pin and ground. The capacitor stabilizes the current source circuit and reduces noise.
35	RS	ON/OFF switching pin for the MR head bias current in write mode. Normally fix this pin at the "L" level (bias current ON) to reduce the duration of the transient when switching from write mode to read mode.
36	WC	Resistor connection pin for setting the write current.
37	RC	Resistor connection pin for setting the MR head bias current.
38	RDX	Differential amplifier output pins for the read data. As the output is an open-
39	RDY	collector type, connect 100W resistors between each of these pins and Vcc.
40	WUS	Write fault detect pin. Outputs an "H" level when a write fault occurs. As the output is an open-collector type, connect a pull-up resistor.
41	WDX	Write data differential input pins. The input level is pseudo-ECL.
42	WDY	Input the differential signals to these pins.
43	GND	Ground pin. Connect to ground.
44	Vcc	Power supply pin. Connect to a +5.0V supply.
45	C2	Capacitor connection pin. Connect a 0.1 mF capacitor between this pin and VCC. The capacitor stabilizes the current source circuit and reduces noise.
46 to 48	HS0, HS1, HS2	Channel 0 to 5 head select pins. See the "n Functions" section for the decoding logic. The input level is TTL.

BLOCK DIAGRAM

Paramotor	Symbol	Ra	ting	Unit	Bomorko	
Falailletei	Symbol	Min.	Max.		Reindiks	
Power supply voltage	Vcc	-0.3	+7.0	V		
Digital input voltage	Vin	-0.3	Vcc+0.3	V	WDX/Y, HS0 to 2, \overline{CS} , R/ \overline{W} , \overline{RS}	
Head input voltage	Vhead	-0.3	Vcc+0.3	V		
RDX, RDY output voltage	Vrdx, Vrdy	-0.3	Vcc+0.3	V		
WUS output voltage	Vwus	-0.3	Vcc+0.3	V		
WUS output current	Iwus	_	10	mA		
Write current	Iw		45	mA		
MR head bias current	Ir	—	15	mA		
Storage temperature	Tstg	-55	+125	°C		

■ ABSOLUTE MAXIMUM RATINGS

■ RECOMMENDED OPERATING CONDITIONS

Paramotor	Symbol Valu		ues	Unit	Pomarke	
Farameter	Symbol	Min.	Max.	Unit	itemarks	
Power supply voltage	Vcc	4.50	5.50	V	5.0V±10%	
Write current	l w	10	40	mA		
Write current setting resistor	RWC	24	91	Ω		
MR head bias current	l r	5	12	mA		
MR head resistor	RMR	20	53	Ω		
MR head current setting resistor	RRC	3k	7.5k	Ω		
Voltage between MR headpins	VMR	0	0.5	V	VMR=I R × RMR	
Operating temperature range	Тор	0	+75	°C		

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

-								
Parameter	Symbol	Condition	Mode	Min.	Тур.	Max.	Unit	Remarks
	Іссі	RRC=4.3 k	I		5.5	7.5	mA	
Devereventy	Iccr	RRC=4.3 k	R		34	55	mA	
current	Iccw1	RS=H, RWC=32	W1		58	80	mA	
	Iccw2	RS=L, RWC=32 RRC=4.3 k	W2	—	67	90	mA	
	PDI	RRC=4.3 k	I		27.5	37.5	mW	
Power	Pdr	RRC=4.3 k	R	_	220	325	mW	
consumption	Pdw1	RWC=32	W1	_	260	420	mW	
	Pdw2	RWC=32, RRC=4.3k	W2		355	470	mW	
Operating voltages	VTHL	Vcc falling	R/W	3.45	3.90	4.30	V	
for supply voltage monitoring	VTHH	Vcc rising	R/W	3.45	4.10	4.46	V	
Hysteresis width	ΔVTH	VTHH – VTHL	R/W		200		mV	
WDX, WDY input	VWDX, YH	High level	_	Vcc-1.02	_	Vcc-0.5	V	
voltage range	VWDX, YL	Low level	_	Vcc-1.9	_	VWDX, YH–0.25	V	
WDX, WDY input voltage difference	ΔVWDX, Y	VWDX, YH – VWDX, YL	_	250	_	_	mV	
HS0 to 2, CS, R/	Vін	High level	_	2.0		Vcc	V	
W, RS input voltage range	Vı∟	Low level	_	-0.3	_	0.8	V	
WDX, WDY input	IWDX	VWDX, Y=Vcc/-0.3V	I/R	-50	0	50	μA	
current	IWDY	VWDX, Y=Vcc	W		2	50	μA	
	1	VHS0 to 2=Vcc	_	-50	0	50	μA	
HS input current	IHS	VHS0 to 2=-0.3V	_	-250	-120	_	μA	
	ICS	VCS, R/W, RS=Vcc	—	-50	0	50	μA	
input current	IR/W IRS	VCS, R/W, RS=-0.3V	_	-130	-60	_	μΑ	
Read head input current	IHR	_	I/W	-50	0	50	μA	
Read head current for non- selected heads	IHRF	_	R	-50	0	50	μA	
MR head current constant	KR	RRC=4.3 k	R	34.3	36.5	38.7	V	KR = IR × RRC
RC pin voltage	VRC	_	I/R/W	0.88	1.00	1.12	V	

(Unless otherwise specified, Vcc=5.0V \pm 10%, Ta=+25°C, MR head resistance RMR=36\Omega,

(Continued)

Deremeter	Cumb ol	Condition	Mede		Values	11	Domorka	
Parameter	Symbol	Condition	woae	Min.	Тур.	Max.	Unit	Remarks
RDX, RDY output current	IRDX, Y	_	R/W	2.0	4.2	6.0	mA	
RDX, RDY output offset	∆VOFF	$\Delta VOFF = V RDX - V RDY$	R/W	-300	0	300	mV	
Selected read head voltage	VRSH	RRC=4.3 k	R/W2	_	Vcc-1.5	_	V	High potential side
Non-selected read head voltage	VRUS	RRC=4.3 k	I/R/W	_	Vcc-3.0	_	V	
VHR pin voltage	VVHR	RRC=4.3 k	I/R/W	—	Vcc-1.5	_	V	
Read head - VHR voltage difference	ΔVHR	$\Delta VHR = V VHR - VRSH $	R/W2	_	0	180	mV	
C3X, C3Y read current	IC3X, Y	VC3X, Y=3V	W	_	0	3	μA	
Write head input current	IHW	_	l/R	-50	0	50	μA	
Write head current for non- selected heads	IHWF	_	W	-50	0	50	μΑ	
Write current constant	KW	RWC=32	W	0.93	0.98	1.05	V	KW = Ih × RWC
	VWC1	—	I/R	—	0	100	mV	
we pin voltage	VWC2	_	W	0.93	1.05	1.17	V	
Head clip voltage	VCL1, 2	RWC=32	W	—	2.0	_	V	
Head clip voltage difference	ΔVCL	∆VHR= VCL1-VCL2	W		0	250	mV	
WUS output current	IWUS	RWUS=1 k	I/R	_	0	50	μA	

2. AC Characteristics

(Unless otherwise specified, Vcc=5.0V±10%, Ta=+25 °C, MR head resistance RMR=36 Ω , thin film head Lh=240 nH, Rh=15 Ω , C1=0.1 μ F, C2=0.1 μ F, C3=0.033 μ F, C4=0.033 μ F)

Baramotor	Symbol	Condition	Modo		Values		Unit	Remarks
Falameter	Symbol	Condition	Mode	Min.	Тур.	Max.		
Differential voltage gain	Gр	Vin=1mVpp, fin=5 MHz	R	100	150	220	V/V	RL=100Ω
Frequency bandwidth	Вw	Vin=1mVpp, G D=- 3 dB	R	55	75		MHz	RL=100Ω
Input capacitance	Ст	_	R		18		pF	
Input conversion noise voltage	Vn	BW=1 to 30MHz, pin short	R	_	0.51	0.69	nV/√Hz	
Input dynamic range	DR	fin=5 MHz, 3fin=– 30 dB	R	5	_		mVpp	
Common mode rejection ratio	CMRR	Vin=100 mVpp, fin=5 MHz	R	40	_		dB	
Power supply rejection ratio	PSRR	Vin=100 mVpp, fin=5 MHz	R	40	_		dB	
Channel separation	CSP	Vin=100 mVpp, fin=5 MHz	R	40	_	_	dB	
	tdIR	RRC=4.3 k	IR	_		20	μs	
	tdRI	RRC=4.3 k	RI	_		1	μs	
CS delay	tdIW	RWC=24	IW		250	500	μs	
	tdWI	RWC=24	WI		100	500	μs	
		RRC=4.3 k, RMR=36, RS=H	W1R	_		3.0	μs	
	tdWRR	RRC=4.3 k, RMR=36, RS=L	W2R	_		3.0	μs	tWG=1ms
		RRC=3.0 k, RMR=53, RS=L	W2R	_	_	3.5	μs	write time
N/W delay	tdRWR	RRC=4.3 k	RW		_	1	μs	
	tdRWW	RWC=24	RW	_	250	500	ns	
	tdWRW	RWC=24	RW		100	500	ns	
PS delay	tdW12	RRC=4.3 k	W1W2		_	1	μs	
KS delay	tdW21	RRC=4.3 k	W2W1	_		3	μs	
HS delay	tdHSR	$RMR=30 \leftrightarrow 41$ (at head switching)	R		_	40	μs	
	tdHSW	RWC=24	W	_		500	ns	
	tdSF	fWDX, Y=0 \rightarrow 2 MHz	W			1	μs	
WUS delay	tdUS	fWDX, Y=20 \rightarrow 0 MHz	W	0.6	1.2	3.6	μs	
Write current transition time	tr1/tf1	RWC=24, Lh=240 nH, Rh=15	W		9	_	ns	
Transition time difference	∆tpd	tr1 – tf1	W			1	ns	

(Continued)

(Continued)

Paramotor	Symbol	Condition	Mode	Values			Unit	Pomarka
Falameter	Symbol	Condition	Mode	Min.	Тур.	Max.		Rellial KS
Write current delay	tpd1, 2	RWC=24, Lh=240 nH, Rh=15	W	_	4.5	_	ns	
Delay time difference	∆trf	tpd1 – tpd2	W	_	_	1	ns	
Write data input frequency	fWDX, Y	RWC=24, Lh=240nH, Rh=15	W	1.6	_	31.5	MHz	
WUS output voltage	VUSL	fWDX, Y=2MHz, IWUS=5mA	W	_	0.1	0.5	V	
		fWDX, Y=0MHz, Rh=15	W		0	50	μs	
current	IUSH	fWDX, Y=9MHz, Write head open	W	_	0	50	μs	IW=40mA

■ FUNCTIONS

1. Mode Selection

Operation Mode	MR Bias Current	CS Pin Voltage	R/W Pin Voltage	RS Pin Voltage
Idle (I)	OFF	Н	_	—
Read (R)	ON	L	Н	_
Write 1 (W1)	OFF	L	L	Н
Write 2 (W2)	ON	L	L	L

2. Head Selection

Head	HS0	HS1	HS2
0	L	L	L
1	Н	L	L
2	L	Н	L
3	Н	Н	L
4	L	L	Н
5	Н	L	Н

3. WUS (Write Unsafe) Output Truth Table

Operation mode	Conditions	WUS
Idle (I)	_	Н
Read (R)	_	Н
	Normal	L
Write (W)	 When one or more of the following faults is present: Write data frequency too low. Write head pin is open (fWD< 9MHz). No write current, or current is too low. 	н

OPERATION

1. Read Mode

In read mode, the MB4138 operates as a low noise differential amplifier. A bias current (sense current) flows through the MR head from the RiX pin to the RiY pin.

The MR head bias current (IR) is determined by the MR head current constant (KR) and the resistance (RRC) connected between the RC pin and GND pin. The current is calculated as follows.

IR=KR/RRC

The RiX and RiY pins are connected directly to the bias current circuit and to the bases of the two opposite transistors of the differential amplifier circuit (read amp). Therefore, differential amplification of the read signal from the MR head is performed directly. The emitters of the two opposite transistors of the differential amplifier circuit require capacitive coupling to cut the DC component generated by the MR head resistance and bias current. (Connect 0.033 μ F capacitors across C3X - C3Y and C4X - C4Y).

RDX and RDY are open-collector output pins for the read buffer circuit. RiX and RDX, and RiY and RDY have the same phase.

The output voltages (DC) of RDX and RDY are almost the same for write and read modes. This reduces the transient time when switching from write to read mode.

Connect 0.1 µF capacitors across C1 - GND and C2 - Vcc to stabilize the current source circuit for the MR head bias current.

In all modes, the VHR pin outputs the same voltage as the RiX pin of the channel selected for read mode. The potential difference between the MR head and disk can be eliminated by biasing the disk with this voltage.

2. Write Mode

In write mode, the MB4138 switches the current through the thin film head (Ih) at high speed. The write current (IW) is determined by the write current constant (KW) and the resistance connected between the WC pin and ground (RWC). The currents are calculated as follows.

Iw = VWC/RWC $Ih = \frac{Iw \times 0.99}{1 + Rh/Rd} = KW/RWC$

Rh: Thin film head resistance Rd: IC internal damping resistance

The write fault detection circuit detects abnormalities in the thin film head and its connection pins (WiX and WiY). The circuit generates an alarm on detecting a fault.

Normally, no bias current flows in the MR head during write mode. However, to reduce the transient time when switching from write to read mode, a bias current can be flowed by setting the RS pin at the "L" level.

3. Idle Mode

Neither the read nor write circuits operate in idle mode.

However, the VHR pin continues to operate and output a voltage in idle mode.

MB4138

■ TIMING CHART

1. CS Delay

2. R/W Delay

3. RS Delay

4. HS Delay

5. WUS Delay

6. Write Current Transition Time, Write Current Delay

■ APPLICATION CIRCUIT EXAMPLE

■ ORDERING INFORMATION

Part Number	Package	Remarks
MB4138PFQ	48-pin, Plastic QFP (FPT-48P-M13)	

PACKAGE DIMENSION

MB4138

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281 0770 Fax: (65) 281 0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.