

Optical Sensor Switch IC

Overview

The LV9005M is an optical sensor switch IC that is fabricated in a medium breakdown voltage BiCMOS process. The LV9005M circuit structure includes a highgain optical sensor amplifier, a comparator, an oscillator circuit, output drivers, LED drivers, and a synchronous detection and delay circuit. The use of this IC and a minimal number of external components allows the implementations of multifunction high-sensitivity applications that previously would have only been possible with a custom optical-switch IC.

Applications

- Factory automation (detectors for many types of parts and products)
- Home security (doorway and window sensors)
- Office automation equipment

Functions and Features

- Can be used with a wide range of supply voltages; from 5 to 30 V .
- Low power
- Outputs can be selected as PNP or NPN circuit types.
- Built-in high-gain amplifier
- Built-in stability and output display functions

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

- Supports both reflection and through type applications, and supports both sense on light and sense on dark applications.
- Built-in OCP and power on reset functions
- Built-in three-level comparator
- Synchronous detection scheme adopted for robust performance in the presence of ambient and scattered light.
- External photodiode detection scheme allows the LV9005M to support a wide range of application areas.
- Miniature flat package supports high density printed circuit board mounting.

Package Dimensions

unit: mm
3112-MFP24S
[LV9005M]

SANYO: MFP24S

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{CC}} \mathrm{max}$		33	V
LD pin voltage	V_{LD}		33	V
Allowable power dissipation	Pd max		mW	
Operating temperature	Topr		-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V_{CC}		4.5 to 30	V
LD pin voltage	V_{LD}	High breakdown voltage input pins	V_{CC} to 0	V

LV9005M

Electrical Characteristics at $\mathbf{T a}=\mathbf{2 5}^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{1 2} \mathrm{V}$ (unless otherwise specified)

Parameter	Symbol	Conditions	min	typ	max	Unit
Preamplifier gain	$\mathrm{V}_{\mathrm{G} 1}$	With a $20 \mathrm{k} \Omega$ input series resistance, $\mathrm{f}=200 \mathrm{kHz}$ (sine wave)	15	18	21	dB
Main amplifier gain	$\mathrm{V}_{\mathrm{G} 2}$	$\mathrm{f}=200 \mathrm{kHz}$ (sine wave)	45	48	51	dB
Regulated power supply	$\mathrm{V}_{\text {REG }}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 5 \mathrm{~mA} \mathrm{DC} \mathrm{load}$	3.72	4.0	4.28	V
Current drain	I_{CC}	Measured in the specified circuit*		3.0	4.5	mA
Input resistance	$\mathrm{Z}_{\text {IN }}$		8.5	10	11.5	k Ω
[LED Output Block]						
Pulse level	$\mathrm{V}_{\text {LEH }}$	With a $1 \mathrm{k} \Omega$ external resistor	2.9	3.2	3.6	V
Pulse period	TLE	$\mathrm{C}_{\text {OSC }}=4700 \mathrm{pF}$	300	380	460	$\mu \mathrm{s}$
Pulse width	$\mathrm{T}_{\text {PW }}$		4.2	5.2	6.2	$\mu \mathrm{s}$
[Overcurrent Detection Voltage]						
PNP output (source)	OCP (P)	External transistor = PNP	$\mathrm{V}_{\mathrm{CC}}-1.1$	$\mathrm{V}_{C C}-1.35$	$\mathrm{V}_{C C}-1.6$	V
NPN output (sink)	OCP (N)	External transistor $=$ NPN	1.10	1.35	1.75	V
Comparator detection level (low)	$\mathrm{COMP}_{\mathrm{L}}$		0.33	0.44	0.55	V
Comparator detection level (middle)	$\mathrm{COMP}_{\mathrm{M}}$		0.60	0.74	0.88	V
Comparator detection level (high)	$\mathrm{COMP}_{\mathrm{H}}$		1.03	1.16	1.30	V
LG current	$\mathrm{I}_{\text {LG }}$		2.05	2.65	3.25	mA
LR current	l LR		1.12	1.72	2.32	mA
PNP drive current (source)	ISRC		1.80	2.85	3.80	mA
NPN drive current (sink)	ISNK		1.90	2.95	3.90	mA
Main amplifier output DC voltage	$\mathrm{V}_{\text {OUT2 }}$		1.20	1.40	1.56	V
RT input high voltage	$\mathrm{V}_{\text {IH }}{ }^{1}$		4.0			V
RT input low voltage	$\mathrm{V}_{\text {IL }} 1$				1.0	V
LD input high voltage	$\mathrm{V}_{\mathrm{H}}{ }^{2}$	High breakdown voltage input pins	4.0			V
LD input low voltage	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	High breakdown voltage input pins			1.3	V
P/N input high voltage	$\mathrm{V}_{\text {PNH3 }}$		4.0			V
P/N input low voltage	$\mathrm{V}_{\text {PNL3 }}$				1.0	V

Design Specifications

Parameter	Symbol	Conditions	Ratings	Unit
Synchronization pull-in range	PIR	T_{EL} = LED pulse period, transmission mode	$0.55 \mathrm{~T}_{\text {LE }}$ to $1.45 \mathrm{~T}_{\text {LE }}$	$\mu \mathrm{s}$
Power on reset	$\mathrm{T}_{\text {POR }}$		13.5	ms
Response time	T_{D}	Oscillator external capacitor $\mathrm{C}_{\mathrm{OCP}}=4700 \mathrm{pF}$	$2 \mathrm{~T}_{\text {LE }}$	$\mu \mathrm{s}$
Oscillator period	Tosc	Oscillator external capacitor $\mathrm{C}_{\text {OCP }}=4700 \mathrm{pF}$	380	$\mu \mathrm{s}$
Hysteresis	V_{H}		$0.7{ }_{-0.15}^{+0.2}$	Vp-p
[OCP Pulse]				
Pulse period	TOCP (N)	$\mathrm{C}_{\text {OCP }}=22000 \mathrm{pF}$	7.0	ms
Pulse width	TOCPW (N)		55	$\mu \mathrm{s}$
Pulse period	$\mathrm{T}_{\mathrm{OCP}(\mathrm{P})}$		7.0	ms
Pulse width	TOCPW (P)		55	$\mu \mathrm{s}$

Functional Description

Item	Symbol	Description
R/T SW	R/T	Reflection/through switching. *: A separate illumination oscillator is used in transmission mode.
Reflect	R	Input voltage $=$ high ($\mathrm{V}_{\mathrm{REG}}$) or open
Through	T	Input voltage = low (GND)
L/D SW	L/D	Light/dark switching
Light	L	Input voltage $=$ high $\left(\mathrm{V}_{\mathrm{CC}}\right)$ or open
Dark	D	Input voltage = low (GND)
P/N SW	P/N	Output PNP/NPN switching
PNP mode	PNP	Input voltage = high ($\mathrm{V}_{\mathrm{REG}}$) or open
NPN mode	NPN	Input voltage = low (GND)
Output protection		Built-in overcurrent (load short) protection circuit
Comparator and display ranges		
Output type		NPN, PNP, two outputs
Mode relationship		Light on mode \rightarrow Light detected: output on, dark detected: output off
		Dark on mode \rightarrow Light detected: output off, dark detected: output on

Pin Assignment

Top view

Note: The NC pin must not be used.
A0263B

Pin Functions

Pin No.	Symbol	I/O circuit type	Notes
3	IN1	A02639	Amplifier first stage input (Capacitor coupled to the external circuit.)
4	$\mathrm{Z}_{\text {IN }}$	A02640	Photodiode series (load) resistance (Used when not used with an external resistor.)
5	OUT1	A02541	Amplifier first stage output
6	IN2		Output amplifier input
8	OUT2		Output amplifier output
9	M ${ }_{\text {IN }}$	A02644	Comparator middle input (This pin sets the hysteresis. The hysteresis is maximum when this pin is open, and minimum when this pin is shorted to pin 8.)
10	L/D	Light on mode $\rightarrow \mathrm{V}_{\mathrm{CC}}$ Dark on mode $\rightarrow 0 \mathrm{~V}$	Light/dark mode switching This pin has a built-in noise filter (delay time: $2 \mathrm{~T}_{\mathrm{LE}}$)
11	R/T	Reflect mode $\rightarrow 4 \mathrm{~V}$ ($\mathrm{V}_{\text {REG }}$) or open Through mode $\rightarrow 0 \mathrm{~V}$	Reflect/through mode switching

Continued from preceding page.

Pin No.	Function	I/O circuit type	Notes
12	P/N	PNP mode $\rightarrow 4 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{REG}}\right)$ or open NPN mode $\rightarrow 0 \mathrm{~V}$	PNP/NPN switching
14	LED OUT		Light source LED drive output
15	LR	 A02546	Red LED (display) connection
16	LG	A02647	Green LED (display) connection
18	$\mathrm{C}_{\text {OSC }}$		Oscillator capacitor connection
19	PW	A0264B	Light source LED pulse width adjustment (Connect pins 18 and 19 through an external resistor to narrow the pulse width from the illumination LED.)
20	$\mathrm{V}_{\text {REG }}$	$\mathrm{V}_{\mathrm{REG}}=\mathrm{V}_{\mathrm{RP}}($ Pin 2$)=4 \mathrm{~V}$	Regulator output
21	$\mathrm{C}_{\text {OCP }}$		OCP pulse oscillator capacitor connection
22	NPN	A02649	NPN transistor connection output
23	PNP	A02650	PNP transistor connection output

Equivalent Circuit Block Diagram

Application Circuit

Note: 1. $A_{G N D}$ and $D_{G N D}$ are connected within the IC.
2. The photodiode and LEDs specified here are examples only. The devices actually used should be chosen based on the particular application.
3. The OCP detection level is determined by the voltage across RL plus the Tr2 (or TR1) VBE voltage.

LV9005M

Sample Printed Circuit Board Pattern (copper side)

Sample LV9005M Applications

Through type optoelectronic switch

Reflection type optoelectronic switch

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.

