Bi-CMOS IC

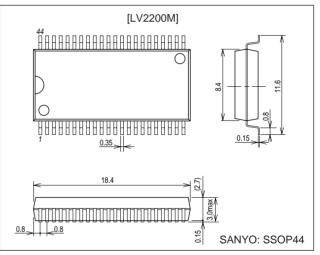
LV2200M

Cordless Telephone System IC

Overview

The LV2200M is a cordless telephone system IC that integrates a narrow-band FM IF system that includes an adjustment-free FM detection circuit, a dual-PLL frequency synthesizer, and audio signal-processing functions (compander) on a single chip. This IC is appropriate for compact design end products.

Functions


- IF system block
 - First mixer, first local oscillator, second mixer, second local oscillator
 - IF amplifier, limiter, RSSI
 - FM detector
 - Noise detection circuit (noise detection, Schmitt input, and noise filter operational amplifier)
- PLL system block (Supports all reception areas worldwide, except Japan.)
 - Two built-in PLL systems, one for reception and one for transmission
 - Programmable divider for the local oscillator
 - Programmable divider for the reference frequency
 - Built-in lock detection circuit (reception PLL)
 - Transmitter and receiver PLL charge pump output current control circuits (PLL loop gain and time constant switching)
- Audio signal-processing block
 - Compressor and expander
 - Transmission audio signal limiter circuit (IDC)
 - Splatter filter (SCF)
 - Microphone amplifier
 - Transmission and reception audio signal mute
 - Reception system audio signal output level switching (low/high)

- Other functions
 - Data input using serial data transmission (Controls all functions, including PLL circuits and muting.)
 - Reception data input system filter (SCF)
 - Reception data waveform shaper circuit (with hysteresis characteristics)
 - Reception VCO regulator
 - PLL regulator
 - Battery check function
 - Two standby modes

Package Dimensions

unit: mm

SSOP44

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Specifications Maximum Ratings at $Ta = 25^{\circ}C$

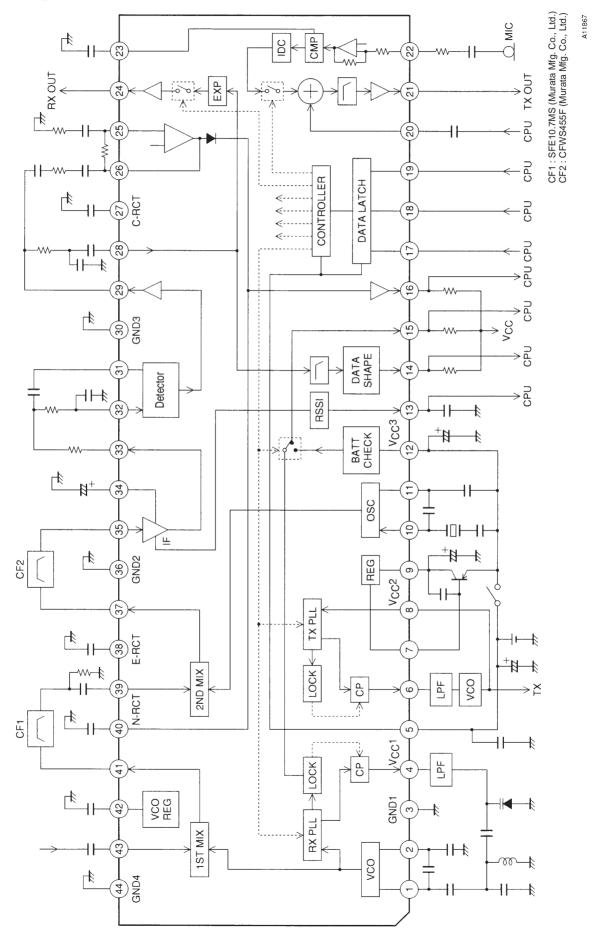
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7	V
Allowable power dissipation	Pd max	Ta ≤ 75°C	300	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		3	V
Operating supply voltage	V _{CC} op		2.4 to 5.5	V

Allowable Operating Ranges at Ta=-20 to $75^{\circ}C,\,V_{CC}$ = 2.4 to 5.5 V PLL block

Parameter	Symbol	Symbol Conditions Tatings min typ max			Unit	
Faranieler	Symbol			typ	max	Unit
High-level input voltage	VIH	CL, DI, CE	$V_{CC} imes 0.7$		5.5	V
Low-level input voltage	VIL	CL DI, CE	0		0.6	V
Output voltage	Vo	LD	0		5.5	V
Input frequency	f _{IN}	PI (TX)	1.0		60	MHz
Input amplitude	V _{IN}	PI (TX), f _{IN} = 10 M to 60 MHz	-12		10	dBm


Note : 50 Ω terminate (0 dBm = 0.224 mVrms)

Electrical Characteristics at Ta = 25°C, V_{CC} = 3 V

Parameter	Symbol	Conditions		Ratings		Unit	
Falameter	Cymbol Conditions		min	typ	max		
[Current Drain]							
Quiescent current	I _{CCOP}	No signal input, all circuits active		17.3	24	mA	
	Isb-1	No signal input, only latches active		0.01	10	μA	
Standby current	lsb-2	No signal input, reception PLL and oscillators active		6.5	9.5	mA	
	lsb-3	No signal input, RF system, reception PLL, and DTSH active		12.3	17.3	mA	
[IF Block] fc = 49.830 MHz, fm = 1 k	Hz, fdev = ±	:3.0 kHz, AMmod = 30%					
First mixer conversion gain	V _{CG} 1			20		dB	
Second mixer conversion gain	V _{CG} 2			22		dB	
Mixer third intercept point	I _P 3	First mixer		94		dBµ	
Demodulator output	Vo	V _{IN} = 80 dBµEMF	138	175	222	mVrms	
Total harmonic distortion	THD	V _{IN} = 80 dBµEMF		1.5	3	%	
Signal-to-noise ratio	S/N	V _{IN} = 80 dBµEMF	43	48		dB	
AM suppression ratio	AMR	V _{IN} = 80 dBµEMF	35	43		dB	
	V _{REFI} 1	V _{IN} = 0 dBµEMF	0.1	0.3	0.55	V	
RSSI output	V _{REFI} 2	V _{IN} = 20 dBµEMF	0.6	0.9	1.3	V	
	V _{REFI} 3	V _{IN} = 80 dBµEMF	1.6	2.0	2.4	V	
	V _{ND} 1	$f_{IN} = 40 \text{ kHz}, V_{IN} = -20 \text{ dBV}$	0.85	1.1	1.35	V	
Noise detector output	V _{ND} 2	$f_{IN} = 40 \text{ kHz}, V_{IN} = -10 \text{ dBV}$	1.4	1.7	2.0	V	
	V _{NTH} 1	Schmitt circuit on		0.85		V	
Noise detection	V _{NTH} 2	Schmitt circuit off		0.75		V	
	V _{SH} 1	V41 = 1.4 V			0.2		
Schmitt output	V _{SH} 2	V41 = 0.2 V	2.8			V	
[PLL Block]							
High-level output voltage	V _{OL}	LD, $I_0 = 2 \text{ mA}$			0.5	V	
Output off looks on the	I _{OFF} 1	LD, V _O = 3 V			3	μA	
Output off leakage current	I _{OFF} 2	PDR PDT, V _O = 1.5 V			0.1	μA	
High-level input current	I _H 1	CL, DI, CE, V _I = 3 V			5	μA	
Low-level input current	IL1	CL, DI, CE, V _I = 0 V			5	μA	

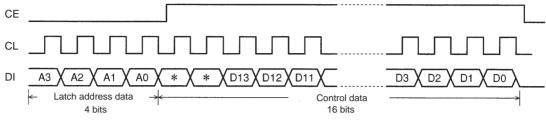
Parameter	Symbol	Conditions		Ratings		Unit
Falameter	Symbol			typ	max	
[Audio Signal-Processing Block]						
<transmission audio="" signa<="" system="" td=""><td>I Processin</td><td>g> V_{IN REFC} = –40 dBV = 0 dB, f_{IN} = 1 kHz, Pre-Amp Gain</td><td>= 20 dB, R_L =</td><td>15 kΩ</td><td></td><td></td></transmission>	I Processin	g> V _{IN REFC} = –40 dBV = 0 dB, f _{IN} = 1 kHz, Pre-Amp Gain	= 20 dB, R _L =	15 kΩ		
Output level	V _O tx	$V_{IN} = V_{IN REFC} = 0 dB$	-15.1	-13.1	-11.1	dBV
Gain error	Gec	$V_{IN} = -40 \text{ dB}$	-2	-0.6	+1.0	dB
Total harmonic distortion	THDtx	V _{IN} = 0 dB		0.45	1.0	%
Output noise voltage	VNtx	$Rg = 620\Omega$, f = 20 Hz to 20 kHz		2.7	5.4	mVrms
Limiting voltage	V_{LT}	V _{IN} = +20 dB, 1 kHz-BPF	1.16	1.4	1.64	Vp-p
Maximum preamplifier voltage gain	V _G max		30			dB
Splatter filter attenuation	Gfil	f _{IN} = 5 kHz	-13.5	-11.5	-9.5	dB
Muting attenuation	ATTtx	V _{IN} = 0 dB, 1 kHz-BPF		-76	-60	dBV
Crosstalk	CTtx	EXp-V _{IN} = -20 dBV, 1 kHz-BPF		-60	-50	dBV
[Reception System Audio Signal Pro	cessing] V _{IN}	$_{\rm NREFE}$ = -20 dBV = 0 dB, f _{IN} = 1 kHz, R _L = 15 k Ω				
Output level	V _O rx	V _{IN} = V _{IN REFE} = 0 dB	-22.2	-19.7	-17.2	dBV
Audio switching level difference	VLch	V _{IN} = 0 dB	6.5	7.4	8.4	dB
Gain error	Gee	$V_{IN} = -30 \text{ dB}$	-1.5	+0.3	+2.0	dB
Total harmonic distortion	THDrx	V _{IN} = 0 dB		0.3	1	%
Output noise voltage	V _N rx	Rg = 620Ω, f = 20 Hz to 20 kHz		27	55	μVrms
Muting attenuation	ATTrx	V _{IN} = 0 dB, 1 kHz-BPF		-92	-70	dBV
Crosstalk	CTrx	Cmp-V _{IN} = –20 dBV, 1 kHz-BPF		-92	-70	dBV
[Data Shaper] V _{IN} = -20 dBV, f _{IN} = 1	kHz, $R_L = 1$	100 kΩ (pin 14)				
Duty ratio	Duty		43	50	57	%
Hysteresis	Hys			50		mVp-p
High-level output voltage	V _{DT} H		V _{CC} – 0.2	V _{CC}		V
Low-level output voltage	V _{DT} L			0.03	0.3	V
[Battery Check Function] R _L = 100 ks	Ω (pin 15)	•				
	L _{BT} 1	BT1 = 0, BT0 = 1	3.08	3.3	3.52	V
Supply voltage detection level	L _{BT} 2	BT1 = 1, BT0 = 0	2.83	3.05	3.27	V
	L _{BT} 3	BT1= 1, BT0 = 1	2.63	2.85	3.03	V
High-level output voltage	V _{BC} H	$V_{CC} \le L_{BT}$	V _{CC} – 0.2	V _{CC}		V
Low-level output voltage	V _{BC} L	$V_{CC} \leq L_{BT}$		0.03	0.3	V

Block Diagram

Pin Functions

Pin No.	Pin	Function	Equivalent circuit
1 2	VCO1 VCO2	VCO input VCO output	42pin 22kΩ≶ 1 2 ↓ 300 μ Α 411868
3	GND1	MOS system ground	
10 11	OSC1 OSC2	Local oscillator input Local oscillator output	$22k \Omega $
25 26	NF _{IN} NF _{OUT}	Noise filter input Noise filter output	25 500 Ω 500 Ω 411870
29	AF _{OUT}	FM detector output	

Pin No.	Pin	Function	Equivalent circuit
30	GND3	Low-frequency system ground	· · · · · · · · · · · · · · · · · · ·
31 32	P.S. 1 P.S. 2	Phase shifter operational amplifier output Phase shifter operational amplifier input	32 40 μ A Ο 40 μ A π 411872
33	IF _{OUT}	IF output	40k Ω 40k Ω 40k Ω
34 35 36	V _{REG} IF IF IN GND2	IF reference voltage IF input IF system ground	2kΩ 35 35 36 A11874
37	2nd MIX OUT	Second mixer output	2kΩ 37) 40 μ A 411875


Pin No.	Pin	Function	Equivalent circuit
39	2nd MIX IN	Second mixer input	
40	N RCT	Noise detector	40 300kΩ 411877
41	1st MIX OUT	First mixer output	250 Ω 41 41 41 41 41 41878
42	VCO REG	VCO reference voltage	42) 14kΩ 24kΩ /// Α11879

Pin No.	Pin	Function	Equivalent circuit
43	1st MIX IN	First mixer input	43 43 43 43 43 43 43 43 43 43
44	GND4	VCO GND	
13	RSSI	RSSI output	13 590kΩ 777 A11881
16	NS OUT		(16)
4 6	RCP TCP	Receiver charge pump output Transmitter charge pump output	(4)6 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)
1 1			

Pin No.	Pin	Function	Equivalent circuit
7 9	P-REG V _{CC} 2	External transistor base input External transistor collector input (PLL power supply)	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & &$
8	PI	Transmitter comparison signal input	8 10kΩ 10kΩ 411885
12	VCC3	Power supply	
14 15	FSK OUT LD OUT	FSK signal output Receiver unlock detection output	(14)(15)
17 18 19	CL DI CE	Data input CMOS input. Not built in pull-down resistor.	
20	TX DT IN	Transmitter data input	20 1kΩ 50kΩ CNT VREF A11887
21	TX OUT	Transmitter output Operational amplifier output (class A)	IN 0 20kΩ VREF 60kΩ A11888

Pin No.	Pin	Function	Equivalent circuit
22	MIC IN	Microphone input	100kΩ VREF 22 500Ω 100kΩ A11889
23	CMP NF	Compressor noise filter connection	22.5kΩ VREF 45kΩ 22.5kΩ 22.5kΩ 23 A11890
24	RX OUT	Receiver output Operational amplifier output (class A)	IN 0 VREF 20kΩ 30kΩ A11891
27 38	C RCT E RCT	Full-wave rectifier output	rectifier
28	RX IN	EXP input VCA/full-wave rectifier input block	28 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ

Serial Data Format

A11894

	Latch address			Control data content	
A3	A2	A1	A0	D13 to D0	
1	0	0	0	12 bits: Reference divider counter value	
0	1	0	0	14 bits: Receiver programmable divider counter value	
1	1	0	0	14 bits: Transmitter programmable divider counter value	
0	0	1	0	Control settings 1	
1	0	1	0	Control settings 2	

	Latch address						Control data content										
A3	A2	A1	A0	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0
0	1	0	0	PR13	PR12	PR11	PR10	PR9	PR8	PR7	PR6	PR5	PR4	PR3	PR2	PR1	PR0
1	1	0	0	PT13	PT12	PT11	PT10	PT9	PT8	PT7	PT6	PT5	PT4	PT3	PT2	PT1	PT0
0	0	1	0	SB1	SB0	RMT	TMT	LVL	*	CR1	CR0	CT1	CT0	AR1	AR0	AT1	AT0
1	0	1	0	*	SCF2	SCF1	SCF0	SCFB	ULD	0	0	DZ	PE	ULT	CP	BT1	BT0

Control Data Function

• Reference divider counter value (R11 to R0)

Binary value in which R0 is the lsb. The divisor can be set to a value in the range 32 to 4095. However, since there is a divide-by-2 circuit in the preceding stage, the actual divisor will be twice the set value.

Example: With a 10.24 MHz crystal, to create a reference frequency fref of 5 kHz:

10.24 MHz/5 kHz/2 gives a divisor of: 1024

Set R11 to R0 to the value 1024 (0400 hexadecimal).

UK1	UK0	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0
0	0	0	1	0	0	0	0	0	0	0	0	0	0

• Receiver programmable divider counter value (PR13 to PR0) Binary value in which PR0 is the lsb. The divisor can be set to a value in the range 256 to 16383.

Example: To create the receiver VCO frequency of 38.975 MHz when fref is 5 kHz:

38.975/5 kHz gives a divisor of: 7795

Set PR11 to PR0 to the value 7795 (1E73 hexadecimal).

PR13	PR12	PR11	PR10	PR9	PR8	PR7	PR6	PR5	PR4	PR3	PR2	PR1	PR0
0	1	1	1	1	0	0	1	1	1	0	0	1	1

• Transmitter programmable divider counter value (PT13 to PT0) Binary value in which PT0 is the lsb. The divisor can be set to a value in the range 256 to 16383.

Example: To create the transmitter VCO frequency of 46.610 MHz when fref is 5 kHz: 46.610/5 kHz gives a divisor of: 9322

Set PT11 to PT0 to the value 9322 (246A hexadecimal).

PT13	PT12	PT11	PT10	PT9	PT8	PT7	PT6	PT5	PT4	PT3	PT2	PT1	PT0
1	0	0	1	0	0	0	1	1	0	1	0	1	0

· Power saving mode settings

SB1	SB0	Setting
0	0	1 st L0 VCO, 2 nd L0 OSC, RX-PLL blocks operate.
0	1	1 st L0 VCO, 2 nd L0 OSC, RX-PLL, 1 st mixer, 2 nd mixer, IF detect, Noise detect, Data shaper, SCF (data system) operate.
1	0	All blocks operate
1	1	All blocks operate

• Baseband muting control

Receiver audio signal

RMT	State
0	Receiver system audio signal muted
1	Receiver system audio signal mute released

Transmitter audio signal

TMT	State
0	Transmitter system audio signal muted
1	Transmitter system audio signal mute released

• Audio level control (receiver system output)

LVL	State
0	Standard level
1	Boosted level (boosted by about +7.4 dB)

• Charge pump output current control (manual switching) The charge pump circuit output current is controlled manually.

(Receiver charge pump output current) These control states are valid only when both AR0 and AR1 are set to 0.

CR1	CR0	State
0	0	CRA
0	1	CRB
1	0	CRC
1	1	CRD

Current level: CRA > CRB > CRC > CRD

(Transmitter charge pump output current) These control states are valid only when both AT0 and AT1 are set to 0.

CT1	CT0	State
0	0	CTA
0	1	СТВ
1	0	CTC
1	1	CTD

Current level: CTA > CTB > CTC > CTD

• Charge pump output current control (automatic switching) The charge pump circuit output current is controlled automatically. (Receiver charge pump output current)

AR0	State
0	Manual switching is enabled
1	The circuit operates in CRA mode until the receiver PLL locks, and then switches to CRC mode when the circuit locks
0	The circuit operates in CRB mode until the receiver PLL locks, and then switches to CRD mode when the circuit locks
1	Manual switching is enabled
	AR0 0 1 0 1

Current level: CRA > CRB > CRC > CRD

(Transmitter charge pump output current)

AT1	AT0	State
0	0	Manual switching is enabled
0	1	The circuit operates in CTA mode until the transmitter PLL locks, and then switches to CTC mode when the circuit locks
1	0	The circuit operates in CTB mode until the transmitter PLL locks, and then switches to CTD mode when the circuit locks
1	1	Manual switching is enabled

Current level: CTA > CTB > CTC > CTD

• SCF clock frequency switching

Low-pass filter 1 (splatter filter)

SCF2	SCF1	SCF0	SCF clock divisor	Cutoff frequency
0	0	0	60	3.313 kHz
0	1	0	62	3.206 kHz
1	0	0	58	3.427 kHz
0	0	1	66	3.106 kHz
0	1	1	68	3.011 kHz
1	0	1	64	2.923 kHz

Low-pass filter 2 (Receiver data input filter)

SCFB	SCF clock divisor	Cutoff frequency
0	60	3.313 kHz
1	120	1.656 kHz

• Unlock detection width control

This bit sets the phase error detection width for PLL locked/unlocked discrimination. The unlocked state is detected when the phase error listed in the table below occurs.

ULD	Phase error detection width	When the second crystal frequency is 10.24 MHz
0	±4/2nd Xtal	390 ns
1	±8/2nd Xtal	780 ns

Note: If this bit is changed while the PLL circuit is locked, lock will be lost temporarily.

• Phase error output control

Controls whether the unlock output pin (pin 15) output is set to the post-unlock detection output, or directly outputs phase detector phase error without modification.

PE	State
0	The unlock detector result is output
1	The phase detector phase error is output without modification

• Dead zone control

Controls the phase comparator dead zone.

DZ	State	
0	DZA	
1	DZB	
DZA < DZB		

• Transmitter unlock detector function

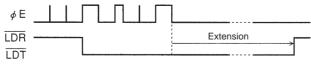
Pin 20 normally functions as the data addition amplifier input. However, it operates as the transmitter system unlock detector output if ULT is set to 1.

ULT	State
0	Data addition amplifier input function enabled
1	Transmitter unlock detector output function enabled

• Charge pump circuit on/off function

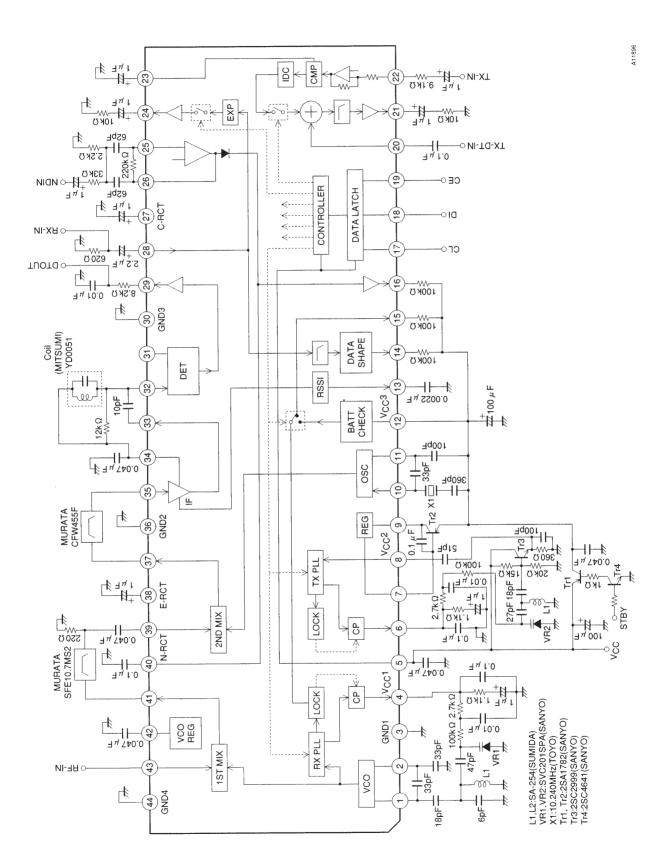
CP	State
0	Charge pump circuit turned on
1	Charge pump circuit turned off

· Battery check function

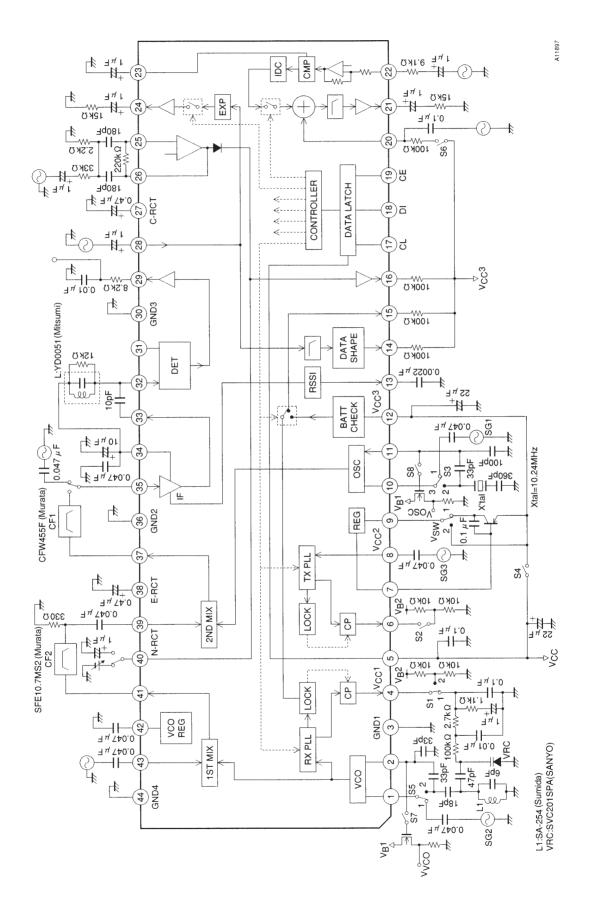

Pin 15 normally outputs the receiver unlock detector output. However, it can be set to function as the battery tester with the following mode settings.

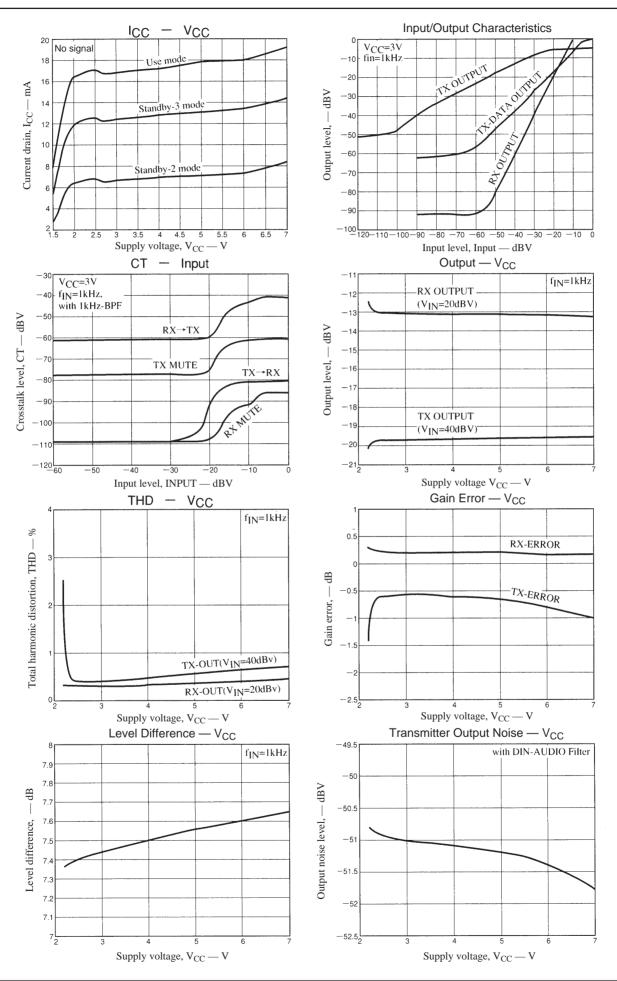
BT1	BT0	Mode
0	0	Receiver unlock detector output enabled
0	1	Supply voltage detection level 1 (V _{CC} \approx 3.3 V)
1	0	Supply voltage detection level 2 (V _{CC} \approx 3.05 V)
1	1	Supply voltage detection level 3 ($V_{CC} \approx 2.85$ V)

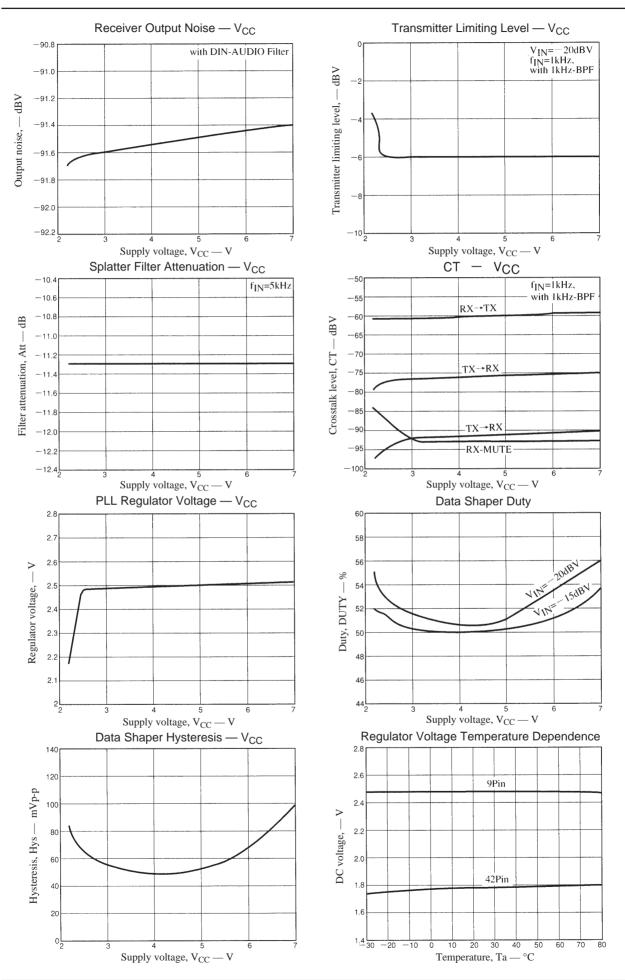
• Phase error extension time

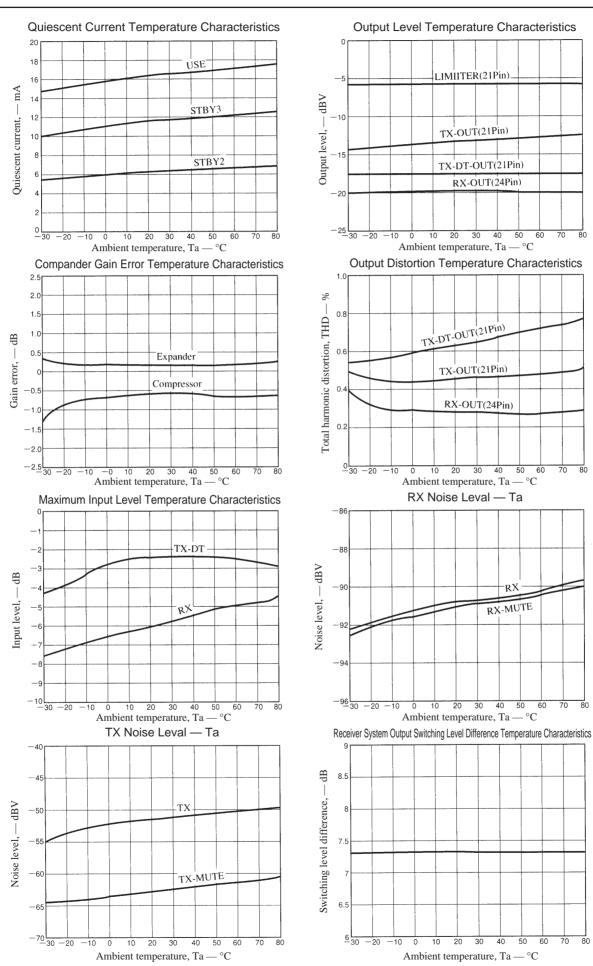

The time the detected phase error signal is extended. Extension time = $32 \times (1/\text{fref}) = 32/5 \text{ kHz} = 6.4 \text{ ms}$

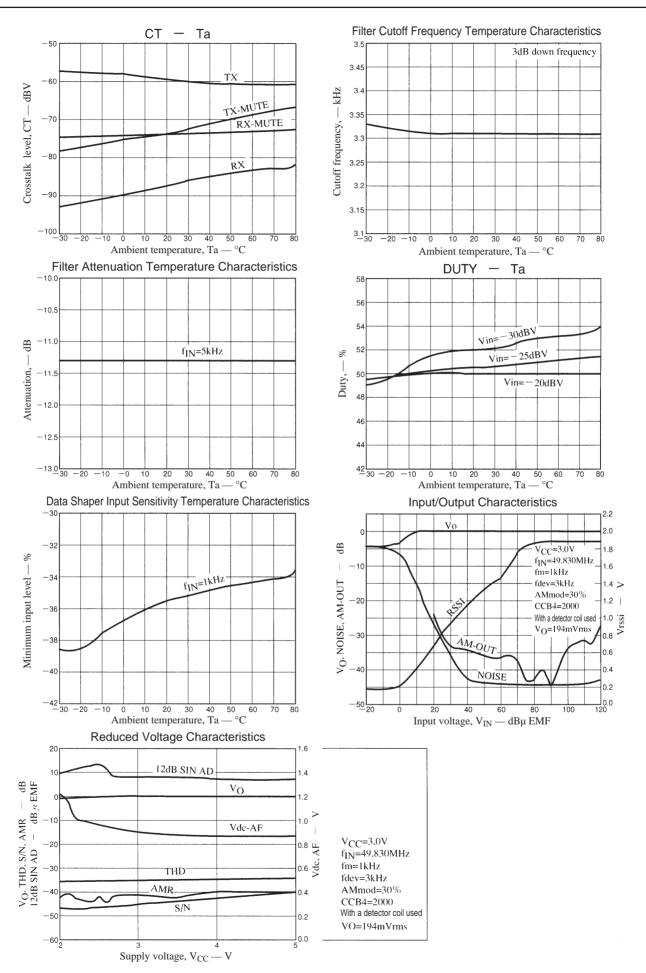
(fref = reference frequency)

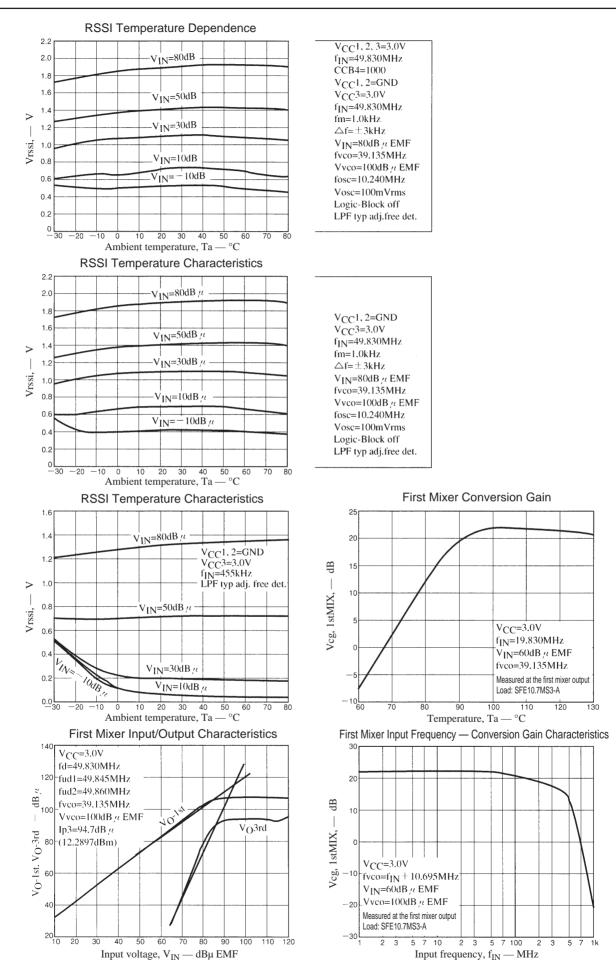


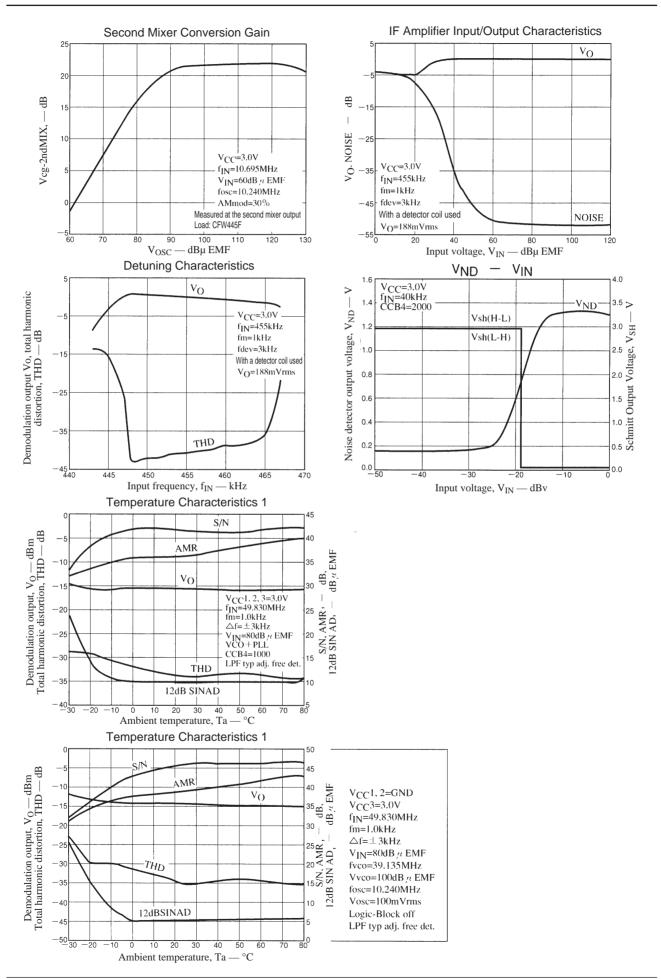


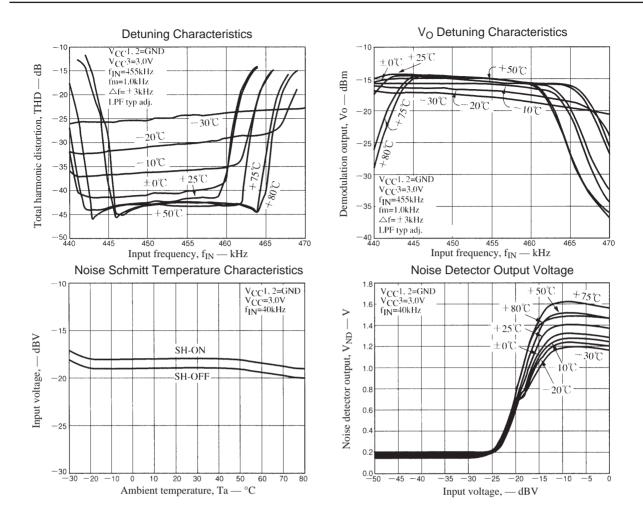

Sample Application Circuit




Test Circuit







- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1999. Specifications and information herein are subject to change without notice.