

LC5852N Four-Bit Single-Chip Microcontroller with On-Chip LCD Drivers for Small-Scale Control in Medium-Speed Applications

Overview

The LC5852N is a high-performance four-bit single-chip built-in LCD driver microprocessor that provides a variety of attractive features including low-voltage operation and low power dissipation. The LC5852N was developed as an upwardly compatible version of the LC5851N and provides a ROM capacity increased from 1024 to 2048 15bit words and a RAM capacity increased from 64×4 bits to 128×4 bits.

Applications

- System control and LCD display in cameras, radios and similar products
- System control and LCD display in miniature electronic test equipment and consumer health maintenance products
- The LC5852N is optimal for end products with LCD displays and, in particular, for battery operated products.

Features

The LC5852N is an upwardly compatible version of the LC5851N and, as such, has the following features.

• Extremely broad allowable operating ranges

Package Dimensions

unit: mm

3057-QIP64A

HALT mode (typical)

Power supply option	Cycle time	Power supply voltage range	Note
EXT-V	10 µs	$V_{SS}2 = -4.0$ to -5.5 V	When using an 800 kHz ceramic resonator
EXT-V	20 µs	$V_{SS}2 = -4.0$ to -5.5 V	When using a 400 kHz ceramic resonator
EXT-V	61 µs	$V_{SS}2 = -2.3 \text{ to } -5.5 \text{ V}$	When using a 65 kHz crystal oscillator
EXT-V	122 µs, 244 µs	$V_{SS}2 = -2.0$ to -5.5 V	When using a 32 kHz crystal oscillator
Li	122 µs, 244 µs	$V_{SS}2 = -2.6 \text{ to } -3.6 \text{ V}*$	When using a 32 kHz crystal oscillator
Ag	122 µs, 244 µs	V _{SS} 1 = -1.3 to -1.65 V	When using a 32 kHz crystal oscillator

Note: * When the backup flag is set, the BAK pin is shorted to V_{SS}2. (See the user's manual for details.)

• Low current drain

— Ceramic oscillator (CF):	400 kHz (5.0 V)	150 μΑ
— Crystal oscillator (Xtal):	32 kHz (1.5 V, Ag specifications)	$2.0 \mu\text{A}$ (for LCD biases other than 1/3)
		3.5 μ A (for an LCD bias of 1/3)
— Crystal oscillator (Xtal):	32 kHz (3.0 V, Li specifications)	$1.0 \mu\text{A}$ (for LCD biases other than $1/3$)
		5.0 μ A (for an LCD bias of 1/3)

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

- Timer functions
 - One six-bit programmable timer
 - Time base timer (for clock applications)
- Standby functions
 - Clock standby function (HALT mode) The LC5852N provides a halt function that reduces power dissipation. In halt mode, only the oscillator, divider and LCD driver circuits operate. All other internal operations are stopped. This mode allows the LC5852N to easily implement a low-power clock function.
 - Full standby function (HOLD mode)
 - HALT mode is cleared by two external factors and two internal factors.
- Improved I/O functions
 - External interrupt pins
 - Input pins that can clear HALT mode (up to 9 pins)
 - Input ports with software controllable input resistors:

up to 8 pins

- Input ports with built-in floating prevention circuits:

		up to 8 pins
 LCD drivers 	common:	4 pins,
	segment pins:	25 pins
— General-purp	ose I/O ports:	8 pins
— General-purp	ose inputs:	9 pins
— General-purp	oose outputs (1):	6 pins
(ALM pin, L	IGHT pin)	
— General-purp	oose outputs (2):	25 pins
(when all 25	LCD segment ports a	re used as general-

- purpose outputs) — Pseudo-serial output port: 1 set
- (Three pins: output, BUSY, clock)

Function Overview

- Program ROM: 2048×15 bits
- On-chip RAM: 128×4 bits
- All instructions execute in a single cycle
- HALT mode clear and interrupt functions (External factors)
 Changes in the S and M port input signals
 Changes in the INT pin input signal
 (Internal factors)
 Overflow from the clock divider circuit
 - Timer underflow
- Subroutines can be nested up to four levels (including interrupts)

- · Powerful hardware to improve processing capabilities
 - On-chip segment PLA circuit and segment decoder: The LCD driver outputs can handle LCD panel segment display without incurring software overhead.
 - All LCD driver output pins can be switched to be used as output ports.
 - One six-bit programmable timer
 - Part of the RAM area can be used as a working area.
 - Built-in clock oscillator and 15-stage divider (also used for LCD alternation signal generation)
- Highly flexible LCD panel drive output pins (25) Supported Maximum number Required drive types of segments common pins 1/3 bias—1/4 duty.....100 segments4 pins 1/3 bias—1/3 duty.....75 segments3 pins 1/2 bias—1/4 duty.....100 segments4 pins
 - 1/2 bias—1/3 duty......75 segments3 pins
 - 1/2 bias—1/2 duty......50 segments2 pins
 - Static1 pin
 - The LCD output pins can be converted to use as general-purpose output pins.
 - CMOS type: 25 pins (maximum) p-channel open drain type: 3 pins (maximum)
- An oscillator appropriate for the system specifications can be selected.
 - 32 or 65 kHz crystal oscillator, or
 - 400 or 800 kHz ceramic oscillator

Delivery formats

QIP-64A or chip product

Pin and Pad Assignment

Chip size: $4.19 \times 3.66 \text{ mm}$ Pad size: $120 \times 120 \mu \text{m}$ Chip thickness:480 μm (chip specification products)

Pin	Pad	Symbol	Coord	linates	Pin Pad Symbol		Coord	Coordinates		Pad	Symbol	Coord	dinates	
No.	No.	Symbol	Xμm	Yµm	No.	No.	Symbol	Xμm	Yµm	No.	No.	Symbol	Xμm	Yµm
40	1	V _{DD}	1899	138	63	24	M2	-1247	1630	17	47	Seg07	-1033	-1630
41	2	BĂK	1899	358	64	25	M3	-1427	1630	18	48	Seg08	-853	-1630
42	3	V _{SS} 1	1899	538	1	26	M4	-1899	1630	19	49	Seg09	-673	-1630
43	4	V _{SS} 2	1899	718	2	27	TESTA	-1899	1450	20	50	Seg10	-493	-1630
44	5	ALM	1899	898	3	28	TEST	-1899	1270	21	51	Seg11	-313	-1630
45	6	LIGHT	1899	1078	4	29	CUP1	-1899	1090	22	52	Seg12	-133	-1630
46	7	S4	1899	1258	5	30	CUP2	-1899	910	23	53	Seg13	46	-1630
47	8	S3	1899	1438	6	31	S2	-1899	730	24	54	COM4	226	-1630
48	9	I/O A1	1899	1630	7	32	S1	-1899	550	25	55	Seg14	459	-1630
49	10	I/O A2	1595	1630	-	33	(V _{DD})	-1899	370	26	56	Seg15	639	-1630
50	11	I/O A3	1415	1630	8	34	OSC-IN	-1899	190	27	57	Seg16	819	-1630
51	12	I/O A4	1235	1630	-	35	10P	-1899	10	28	58	Seg17	999	-1630
52	13	I/O B1	1055	1630	9	36	OSC-OUT	-1899	-169	29	59	Seg18	1179	-1630
53	14	I/O B2	875	1630	10	37	COM1	-1899	-349	30	60	Seg19	1359	-1630
54	15	I/O B3	695	1630	-	38	COM4	-1899	-529	31	61	Seg20	1539	-1630
55	16	I/O B4	515	1630	11	39	Seg01	-1899	-709	32	62	Seg21	1719	-1630
56	17	RES	253	1630	12	40	Seg02	-1899	-889	33	63	Seg22	1899	-1630
57	18	INT	73	1630	13	41	Seg03	-1899	-1069	34	64	Seg23	1899	-954
58	19	P1	-107	1630	14	42	Seg04	-1899	-1249	35	65	Seg24	1899	-774
59	20	P2	-287	1630	15	43	Seg05	-1899	-1429	36	66	Seg25	1899	-594
60	21	P3	-707	1630	16	44	Seg06	-1899	-1609	37	67	COM3	1899	-414
61	22	P4	-887	1630	-	45	TEST	-1553	-1630	38	68	COM2	1899	-234
62	23	M1	-1067	1630	-	46	TEST	-1373	-1630	39	69	V _{SS} 3	1899	-54

Note: 1. The pin numbers are those for the QIP-64A mass production package.

2. The pad coordinates given above take the center of the chip as the origin and specify the center of the pad.

3. TESTA pin (pin 2) in the QIP-64A product must be connected to the minus side of the power supply.

4. TEST pin (pin 3) in the QIP-64A product must be left open.

5. Pad 27 in the chip product must either be connected to the minus side of the power supply or left open.

6. Pads 28, 45 and 46 in the chip product must be left open.

7. If the chip product is used, the substrate must be connected to V_{DD} .

8. Do not use dip-soldering techniques to mount the QIP-64A package product.

System Block Diagram

LC5852N System Block Diagram

AC:	Accumulator	CF:	Carry flag
ALU:	Arithmetic and logic unit	BCF:	Backup flag
INT CTL:	Interrupt control circuit	SCF1:	M port flag
PC:	Program counter	SCF2:	STS3 flag
TM:	Preset timer (6 bits)	SCF3:	S port flag
IR:	Instruction register	SCF4:	INT signal change flag
HALT:	Intermittent control circuit	SCF5:	Timer overflow flag
SCG:	System clock generator	ø15:	Contents of the fifteenth stage of the divider
STS1:	Status register 1		circuit
STS2:	Status register 2	SCF7:	Divider circuit overflow flag
STS3:	Status register 3		

Pin Functions

Pin	I/O	QIP-64 Pin No.	Function	Option	At reset
V _{DD}	_	40	Power supply plus side		
ВАК	_	41	LSI internal logic block minus power supply In Li specification products, connect a capacitor between BAK and V _{DD} to prevent incorrect operation.		Backup flag set Backup flag cleared (depending on the power supply option)
V _{SS} 1 V _{SS} 2 V _{SS} 3		42 43 39	 Power supply minus side External component connections differ depending on mask options and other factors. In products for Ag use, connect V_{SS}1 to the power supply minus side. In other products, connect V_{SS}2 to the power supply minus side. The pins other than the minus pin are used for the LCD driver power supply. 	 Ag specifications Li specifications EXT-V specifications 	
CUP1 CUP2		4 5	Connections for the LCD drive voltage boost (cut) capacitor.		
OSC-IN	Input	8	Used for real-time clock and the system clock.	 Crystal oscillator use (XT option) Ceramic resonator use (CF option) The CF option can only be specified for 	
				EXT-V specification products.	
10P	_	-	Connected to OSC-IN or OSC-OUT and used for the oscillator phase compensation capacitor. Can only be used in the chip product.		
S1 S2 S3 S4	Input	7 6 47 46	 Dedicated input port Includes either a ø10 (32 ms), ø8 (8 ms), or ø2 (2 ms) chattering exclusion circuit (PLA mask option). These values are for the case where a 32.768 kHz crystal is used. Pull-down resistors are built in. 	Inclusion (or exclusion) of a low level hold transistor	The pull-down resistor transistor is on.
M1 M2 M3 M4	Input	62 63 64 1	Dedicated input port • Input connections for acquiring data to internal RAM • Pull-down resistors are built in.	Inclusion (or exclusion) of a low level hold transistor	The pull-down resistor transistor is on.
I/O A1 I/O A2 I/O A3 I/O A4	I/O	48 49 50 51	 I/O port Input connections for acquiring data to internal RAM Output connections for data output from internal RAM The input or output state can be switched by two instructions. 		Input mode
I/O B1 I/O B2 I/O B3 I/O B4	I/O	52 53 54 55	 I/O port Input connections for acquiring data to internal RAM Output connections for data output from internal RAM The input or output state can be switched by two instructions. 		Input mode
P1 P2 P3 P4	Output	58 59 60 61	Output port Output connections for data output from internal RAM 		Either a high- or low-level output. (Undefined)
ALM	Output	44	Dedicated output This pin can output a signal modulated either at 4 kHz or 2 kHz, or at 4 kHz or 1 kHz under program control. Alternatively, an unmodulated signal can be output. * These values are for the case where a 32.768 kHz crystal is used.	 Modulated signals (4 kHz, 2 kHz, or unmodulated) Modulated signals (4 kHz, 1 kHz, or unmodulated) 	Low-level output
LIGHT	Output	45	Dedicated output This pin can drive a power transistor.		Low-level output

Pin	I/O	QIP-64 Pin No.			Function			Option	At reset
RES	Input	56	LSI internal re • Reset can b • Built-in pull- Note: The app	set input e performed or up or pull-dowr lied signal mus	n either a high n resistor st be held for a	Pull-up or pull-down resistor selection			
INT	Input	57	External interr • Interrupt det • Built-in pull-	upt request inp ection can be p up or pull-dowr	out performed for e n resistor	 Pull-up or pull- down resistor selection Signal change type (rising or falling) selection 			
TESTA	Input	2	Test input • QIP-64 prod • Chip produc	ucts: connect t ts: Leave open	to the power su or connect to				
TEST	_	3	Test input This pin must	be left open. (I	t cannot be us	ed in user sys	tems.)		
Seg1 Seg2 to Seg25	Output	11 12 to36	 LCD drive/g LCD driv I STA[*] III 1/2 b IV 1/2 b V 1/2 b V 1/3 b Items I t General-pur LCD/ger disabled Arbitrary are poss 	eneral-purpose re FIC ias – 1/2 duty ias – 1/3 duty ias – 1/4 duty ias – 1/4 duty o V are specific pose output mo eral-purpose o by adoption of combinations ible.	e output pins ed as master o ode (CMOS ou output control u i the segment l of LCD drive a	 Switching between LCD drive outputs and general- purpose outputs LCD drive method switching STATIC 1/2 bias – 1/2 duty 1/2 bias – 1/3 duty 1/2 bias – 1/4 duty 1/3 bias – 1/4 duty General-purpose outputs CMOS 	 LCD drive All segments All segments All segments Set by a mask option General-purpose outputs High level Low level Set by a mask option 		
COM1 COM2 COM3 COM4	Output	10 38 37 24	LCD common These pins ar used. (Note that the used for the a COM1 COM2 COM3 COM4 Alternation frequency Note: An × ind with tha LCD dri product (The alt	polarity drive of e used as follow se are typical s Iternation freque Static O × × 32 Hz dicates that the t LCD drive me ve type. Do no s that use the I ernation freque	outputs ws depending pecifications for ency.) 1/2 duty O X X 32 Hz 32 Hz corrsponding ethod. t use hold moot _CD driver. ency signal is s	on the LCD dr or 32.768 kHz 1/3 duty 0 0 × 42.7 Hz common pin is de in CF speci stopped in hold	ive method when ø0 is 1/4 duty 0 0 32 Hz 32 Hz s not used fication d mode.)		

Application Circuit Examples

1. Representative application for Ag specification products (1/3 bias - 1/4 duty)

2. Representative application for lithium specification products (1/2 bias - 1/4 duty)

3. Representative application for EXT-V specification products (1/2 bias - 1/4 duty)

Oscillator Circuit Options

Crystal Oscillator Options

INT Pin Options

RES Pin Options

Input Port Options

The use of the low level hold transistor can be specified individually for each pin in the S1 to S4 and M1 to M4 ports.

- 1. The S port includes independent (in bit units) chattering exclusion circuits with periods of ø10, ø8, or ø6.
- 2. The M port includes chattering exclusion circuits that operate for halt mode clear request signals. These circuits exclude chattering for periods of ø10, ø8, or ø6 when three of the ports are at the low level and a signal change occurs on the remaining port.

LCD Output Options

Option	Circuit Form
LCD drive	 Used as LCD segment drive pins The LCD drive type is specified independently. The LCD drive type is common to all LCD drive pins and can be selected from the following set: static, 1/2 bias—1/2 duty, 1/2 bias—1/3 duty, 1/2 bias—1/4 duty, 1/3 bias—1/3 duty, or 1/3 bias—1/4 duty.
CMOS output port	General-purpose CMOS output ports
P-channel open-drain output port	 General-purpose p-channel open-drain output ports This option can be specified for three specific ports using PLA option specification. Available portsPads 64 to 66 (pins 34 to 36)

Mask Option Overview

- 1. Power supply specification selection
 - Ag (Silver battery/1.5 V) specifications
 - Li (Lithium battery/3.0 V) specifications
 - EXT-V specifications (the operating voltage range depends on the oscillator used)
- 2. Oscillator selection
 - Crystal oscillator (32.768 kHz)
 - Crystal oscillator (65.536 kHz)
 - Ceramic oscillator
- 3. LCD drive
 - Static
 - 1/2 bias—1/2 duty
 - 1/2 bias—1/3 duty
 - 1/2 bias—1/4 duty
 - 1/3 bias—1/3 duty
 - 1/3 bias—1/4 duty

Note: The LCD ports can all be used as general-purpose outputs. In this case, specify the "UNUSE" option.

- 6. LCD alternation frequency
 - SLOW (OSC/2048)
 - TYP (OSC/1024)
 - FAST (OSC/512)
 - STOP
- 5. S port low-level hold transistor
 - Level hold transistor present
 - No level hold transistor
- 6. M port low-level hold transistor
 - · Level hold transistor present
 - No level hold transistor
- 7. S and M port chattering exclusion frequency
 - SLOW (OSC/1024)
 - TYP (OSC/256)
 - FAST (OSC/64)
- 8. INT pin resistor selection and signal edge type selection
 - Pull-up resistor (negative)
 - Pull-down resistor (positive)
 - Open (negative)
 - Open (positive)
- 9. External reset
 - RES pin
 - Simultaneous input to S1 through S4
- 10. RES pin
 - Pull-up resistor (low-level reset)
 - Pull-down resistor (high-level reset)
 - Open (low-level reset)
 - Open (high-level reset)
- 11. Power-on reset function (internal reset)
 - USE
 - UNUSE
- 12. Timer input clock
- SLOW (OSC/512)
 - FAST (OSC/8)
- 13. Alarm modulation base frequency
 - SLOW (OSC/8, OSC/32)
 - TYP (OSC/8, OSC/16)
- 14. Cycle time
 - SLOW (OSC/8)
 - FAST (OSC/4)

Note: Specify "SLOW" for this option if a ceramic oscillator is used.

Internal Register Functions

Symbol	R/W		Function Initializ									Initialization value at reset		
		Program counter The PC is an 11-bit counter the be executed. Normally, the PC is incrementer branch or subroutine call is ex- value corresponding to the part operations.	at spec ed on e ecuted, rticular	cifies th each in , or wh operat	e prog structic en an i ion. Th	ram me on exec nterrup e table	emory (l ution, fr t or initi below :	ROM) a rom 000 alizing shows	address DH to 7 reset o how the	FFH. H ccurs, PC is	next in loweve the PC set for	structio r, when is set t these	on to a o a	
		PC	DO40	DOO	DOD	D07	DOG	DOF	DO 4	DOD	DOD	DOA	DOO	
		Operation	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCU	
		Initializing reset	0	0	0	0	0	0	0	0	0	0	0	
		S or M port external	0	0	0	0	0	0	1	0	1	0	0	
PC	_	Timer internal interrupt	0	0	0	0	0	0	1	1	0	0	0	
		Divider internal interrupt	0	0	0	0	0	0	1	1	1	0	0	
		Unconditional jump (JMP)	Page	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0	
		Conditional jump (BAB0, BAB1, BAB2, BAB3, BAZ, BANZ, BCH, BCNH)	Page	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0	
		Subroutine call instruction (CALL)	Page	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0	
		Return instruction (RTS, RTSR) CALL address + 1												
		Page: ROM paging perfor Pages are specified P0 – P9: Instruction code bits	rmed in d with th s (imme	1024 he SF ediate	word pa and RF data)	ages instruc	ctions.							
		Program memory	004041	- L.H										
ROM	R/O	000H 07FFI 0FFFI	H			15 bits								
RAM	R/W	 Data memory The on-chip RAM consists of 128 4-bit digits of static RAM in two pages with 64 4-bit digits per page. This RAM has the following features: RAM addresses can be specified directly (immediate addressing) as values in the range 00H to 3FH. Arithmetic operations can be performed between the AC and any RAM location. Due to the provision of the segment PLA circuit, RAM dedicated to display is not required. RAM locations 38H to 3FH have a function that allows direct arithmetic operations with other data without using the AC. The AC is used for RAM input, i.e., writing. 							Undefined					

Symbol	R/W	Function	Initialization value at reset
STS1	R/W	Status register 1 (STS1) Status register 1 is a four-bit register whose bits are used as shown below. MSB LSB Carry flag Test flag 2 Test flag 1 Test flag 0 (CF) (TESTF3) (TESTF2) (TESTF1) MAF instruction I MRA instruction A C R A M * The test flags cannot be used by application programs.	00H
STS2	R/O	Status register 2 (STS2) Status register 2 is a four-bit register whose bits are used as shown below. MSB LSB Start condition flag 3 (SCF3) Start condition flag 2 (SCF2) Backup flag (SCF1) MSB instruction MSB instruction MSB instruction MSB instruction MSB instruction MSB instruction SCF1: Set when there was a change in an M port signal (when enabled by an SSW instruction). SCF2: Set when any bit in STS3 is set. SCF3: Set when there was a change in an S port signal (when enabled with an SSW instruction).	Undefined
STS3	R/O	Status register 3 (STS3) Status register 3 is a four-bit register whose bits are used as shown below. MSB LSB Start condition Output of the fifteenth stage of the divider circuit Start condition flag 5 (SCF5) MSC instruction MSC instruction MSC iscF4) MSC instruction MSC instruction MSC iscF4: Set when there was a change in the INT pin signal (when enabled by an SIC instruction). SCF4: Set when there was a change in the INT pin signal (when enabled by an SIC instruction). SCF4: Divider overflow (when enabled by an SIC instruction)	Undefined

Specifications

These electrical specifications are provisional and subject to change.

EXT-V Specifications

Absolute Maximum Ratings at V_{DD} = 0 $\rm V$

Parameter	Symbol	Conditions/Pins	min	typ	max	Unit
	V _{SS} 1		-7.0		+0.3	V
Maximum supply voltage	V _{SS} 2		-7.0		+0.3	V
Waximum supply voltage	V _{SS} 3	LCD drive method (1/3 bias)	-8.5		+0.3	V
	V _{SS} 3	LCD drive method (Any method other than 1/3 bias)	-7.0		+0.3	V
Maximum input voltage	V _{IN} 1	S1 to 4, M1 to 4, I/OA1 to 4, I/OB1 to 4, INT, RES, OSCIN, 10P, TESTA (with I/OA1 to 4 and I/OB1 to 4 in input mode, 10P is for chip products)	V _{SS} 2 – 0.3		+0.3	V
Maximum output voltage	V _{OUT} 1	ALM, LIGHT, P1 to 4, CUP2, OSCOUT, TEST, I/OA1 to 4, I/OB1 to 4 (with I/OA and I/OB in output mode)	V _{SS} 2 - 0.3		+0.3	V
	V _{OUT} 2	SEGOUT, COM1 to 4, CUP1	V _{SS} 3			V
Operating temperature	Topr		-20		+70	°C
Storage temperature	Tstg		-30		+125	°C

Allowable Operating Ranges at Ta = –20 to +70°C, V_{DD} = 0 V

Parameter	Symbol	Cond	itions/Pins	min	typ	max	Unit
	V _{SS} 1			-5.5		-1.3	V
Supply voltage	V _{SS} 2	32 kHz crystal oscillator	specifications	-5.5		-2.0	V
	V _{SS} 3	$ \begin{array}{ c c c c c } \hline \mbox{mbol} & \mbox{Conditions/Pins} & \mbox{min} & \mbox{typ} & \mbox{max} & \mbox{figs1} & & \mbox{figs2} & \mbox{32 kHz crystal oscillator specifications} & \mbox{-5.5} & \mbox{-1.3} & \mbox{-6.5} & \mbox{-2.0} & \mbox{-8.25} & \mbox{-2.3} & \mbox{-8.25} & \mbox{-3.5} &$	V				
	V _{SS} 1			-5.5		-1.3	V
Supply voltage	V _{SS} 2	65 kHz crystal oscillator	specifications	-5.5		-2.3	V
	V _{SS} 3			-8.25		-2.3	V
	V _{SS} 1			-5.5		-1.7	V
Supply voltage	V _{SS} 2	External input used		-5.5		-3.5	V
	V _{SS} 3			-8.25		-3.5	V
	V _{SS} 1			-5.5		-2.0	V
Supply voltage	V _{SS} 2	400 kHz CF specification	IS	-5.5		-4.0	V
	V _{SS} 3			-8.25		-4.0	V
Input high level voltage	V _{IH} 1		SCIN	$0.3 \times V_{SS}^{2}$		0	V
Input low level voltage	V _{IL} 1			V _{SS} 2		$0.7 \times V_{SS}^{2}$	V
Input high level voltage	V _{IH} 2	OSCIN pin, when extern	al input used. Figure 8	$0.2 \times V_{SS}^2$		0	V
Input low level voltage	V _{IL} 2		al input used, r igure o	V _{SS} 2		$0.8 \times V_{SS}^{2}$	V
Operating frequency	fopg1	$V_{SS}^2 = -2.0 \text{ to } -5.5 \text{ V}$	OSCIN/OSCOUT, 32 kHz crystal oscillator, Figure 2	32		33	kHz
Operating frequency	fopg2	$V_{SS}^2 = -2.3 \text{ to } -5.5 \text{ V}$	OSCIN/OSCOUT, 65 kHz crystal oscillator, Figure 2	60		66	kHz
Operating frequency	fopg3	$V_{SS}^2 = -3.5 \text{ to } -5.5 \text{ V}$	OSCIN external input, Figure 8	32		220	kHz
Operating frequency	fopg4	$V_{SS}2 = -4.0 \text{ to } -5.5 \text{ V}$	OSCIN/OSCOUT, CF 400 kHz, Figure 1	360	400	440	kHz
Operating frequency	fopg5	$V_{SS}2 = -4.0$ to -5.5 V	OSCIN/OSCOUT, CF 800 kHz, Figure 1	720	800	880	kHz

Electrical Characteristics at Ta = –20 to +70°C, V_{DD} = 0 V

Parameter	Symbol	Cond	itions/Pins	min	typ	max	Unit
	R _{IN} 1A	$V_{SS}^2 = -2.9 V,$ $V_{IN}^2 = 0.8 \times V_{SS}^2$	Low-level hold transistor*, Figure 3	10		200	kΩ
Input resistance	R _{IN} 1B	$V_{SS}^2 = -2.9 V,$ $V_{IN} = V_{DD}$	Low-level pull-in transistor*, Figure 3	200	700	2000	kΩ
	R _{IN} 2A	$V_{SS}^2 = -2.9 V,$ $V_{IN} = V_{SS}^2$	INT pin pull-up resistor	200	700	2000	kΩ
	R _{IN} 2B	$V_{SS}^2 = -2.9 V,$ $V_{IN}^2 = V_{DD}^2$	INT pin pull-down resistor	200	700	2000	kΩ
	R _{IN} 3	$V_{SS}^2 = -2.9 V,$ $V_{IN} = V_{DD}^2 \text{ or } V_{SS}^2$	RES	5		50	kΩ
Output high level voltage	V _{OH} (1)	V _{SS} 2 = -2.4 V, I _{OH} = 1 mA	ALM	-1	-0.3		V
Output low level voltage	V _{OL} (1)	$V_{SS}^2 = -2.4 \text{ V},$ $I_{OL} = 1 \text{ mA}$	ALM		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V
Output high level voltage	V _{OH} (2)	$V_{SS}^2 = -2.4 \text{ V},$ $I_{OH}^2 = 0.3 \text{ mA}$	LIGHT, Port P	-1	-0.3		V
Output low level voltage	V _{OL} (2)	$V_{SS}^2 = -2.4 V,$ $I_{OL}^2 = 0.5 mA$	LIGHT, Port P		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V
Output high level voltage	V _{OH} (3)	$V_{SS}^2 = -2.4 \text{ V},$ $I_{OH}^2 = 0.1 \text{ mA}$	I/O ports	-1	-0.3		V
Output high level voltage	V _{OH} (4)	V _{SS} 2 = -2.4 V, I _{OH} = -50 μA	I/O ports	-0.6	-0.2		V
Output low level voltage	V _{OL} (4)	$V_{SS}^2 = -2.4 V,$ $I_{OL}^2 = 0.1 mA$	I/O ports		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V
Segment driver output impedances • When used as CMOS output por	s						
Output high level voltage	V _{OH} (5)	$V_{SS}^2 = -2.4 V,$	Segment	-1	-0.3		V
Output low level voltage	V _{OL} (5)	$V_{SS}^2 = -2.4 V,$	Pads 62 to 64, QIP64 pins 34 to 36		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V
Output high level voltage	V _{OH} (6)	$V_{SS}^2 = -2.4 V,$	Segment	-1	-0.3		V
Output low level voltage	V _{OL} (6)	$V_{SS}^2 = -2.4 V,$	Pads 38 to 41 and 44 to 61, QIP64 pins 11 to 23 and 25 to 33		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V
• When used as p-channel open-d	l rain output po	rts					
Output high level voltage	V _{OH} (5)	V _{SS} 2 = -2.4 V, I _{OH} = -10 μA	Segment	-1	-0.3		V
Output off leakage current	IOFF	$V_{SS}^{2} = -2.9 V,$ $V_{OL}^{2} = V_{SS}^{2}^{2}$	Pads 62 to 64, QIP64 pins 34 to 36			1	μA
Static drive			1				
Output high level voltage	V _{OH} (5)	$V_{SS}^2 = -2.4 V,$ $I_{OH}^2 = -0.4 \mu A,$	All segments	-0.2			V
Output low level voltage	V _{OL} (5)	$V_{SS}2 = -2.4 V,$ $I_{OL} = 0.4 \mu A$				V _{SS} 2 + 0.2	V
Output high level voltage	V _{OH} (7)	$V_{SS}2 = -2.4 V,$ $I_{OH} = -4 \mu A$	COM1	-0.2			V
Output low level voltage	V _{OL} (7)	V _{SS} 2 = -2.4 V, I _{OL} = 4 µA				V _{SS} 2 + 0.2	V
Duplex drive (1/2 bias—1/2 duty)			- -				
Output high level voltage	V _{OH} (5)	$V_{SS}^2 = -2.4 \text{ V},$ $I_{OH}^2 = -0.4 \mu\text{A}$	All segments	-0.2			V
Output low level voltage	V _{OL} (5)	$V_{SS}2 = -2.4 V,$ $I_{OL} = 0.4 \mu A$				V _{SS} 2 + 0.2	V
Output high level voltage	V _{OH} (7)	$V_{SS}^2 = -2.4 V,$ $I_{OH}^2 = -4 \mu A$		-0.2			V
Output middle level voltage	V _{OM}	$V_{SS}2 = -2.4 V,$ $I_{OH} = -4\mu A,$ $I_{OL} = 4 \mu A$	COM1, 2	V _{SS} 2/2 - 0.2		V _{SS} 2/2 + 0.2	V
Output low level voltage	V _{OL} (7)	$V_{SS}2 = -2.4 V,$ $I_{OL} = 4 \mu A$				V _{SS} 2 + 0.2	v

Note: * S1, S2, S3, S4, M1, M2, M3, M4

Parameter	Symbol	Co	nditions	min	typ	max	Unit		
• 1/2 bias—1/3 duty and 1/2 bias—	-1/4 duty met	nods							
Output high level voltage	V _{OH} (5)	$V_{SS}^{2} = -2.4 \text{ V},$ $I_{OH}^{2} = -0.4 \mu\text{A}$	All segments	-0.2			V		
Output low level voltage	V _{OL} (5)	$V_{SS}2 = -2.4 V,$ $I_{OL} = 0.4 \mu A$				V _{SS} 2 + 0.2	V		
Output high level voltage	V _{OH} (7)	$V_{SS}2 = -2.4 V,$ $I_{OH} = -4 \mu A$	00044	-0.2			V		
Output middle level voltage	V _{OM}	$V_{SS}2 = -2.4 \text{ V},$ $I_{OH} = -4 \ \mu\text{A},$ $I_{OL} = 4 \ \mu\text{A}$	COM1 to 3 (for 1/3 duty methods) COM1 to 4 (for 1/4 duty methods)	V _{SS} 2/2 - 0.2		V _{SS} 2/2 + 0.2	V		
Output low level voltage	V _{OL} (7)	$V_{SS}2 = -2.4 V,$ $I_{OL} = 4 \mu A$				V _{SS} 2 + 0.2	V		
• 1/3 bias—1/3 duty and 1/3 bias—	1/3 bias—1/3 duty and 1/3 bias—1/4 duty methods								
Output high level voltage	V _{OH} (5)	$V_{SS}2 = -2.4 V,$ $I_{OH} = -0.4 \mu A$		-0.2			V		
Output middle level voltage	V _{OM} 1-1	$V_{SS}^2 = -2.4 \text{ V},$ $I_{OH}^2 = -0.4 \mu\text{A}$	All segments	V _{SS} 2/2 - 0.2		V _{SS} 2/2 + 0.2	V		
	V _{OM} 1-2	I _{OL} = 0.4 μA	Ŭ	V _{SS} 2 - 0.2		$V_{SS}^{2} + 0.2$	V		
Output low level voltage	V _{OL} (5)	$V_{SS}^2 = -2.4 V,$ $I_{OL}^2 = 0.4 \mu A$				V _{SS} 3 + 0.2	V		
Output high level voltage	V _{OH} (7)	V _{SS} 2 = -2.4 V, I _{OH} = -4 μA		-0.2			V		
Output middle level voltage	V _{OM} 2-1	$V_{SS}^{2} = -2.4 \text{ V},$ $I_{OH}^{2} = -4 \mu \text{A}$	COM1 to 3 (for 1/3 duty methods)	V _{SS} 2/2 -0.2		V _{SS} 2/2 +0.2	V		
	V _{OM} 2-2	I _{OL} = 4 μA	(for 1/4 duty methods)	V _{SS} 2-0.2		$V_{SS}^{2} + 0.2$	V		
Output low level voltage	V _{OL} (7)	$V_{SS}2 = -2.4 V,$ $I_{OL} = 4 \mu A$				V _{SS} 3 + 0.2	V		

Electrical Characteristics at Ta = –20 to +70°C, V_{DD} = 0 V

Parameter	Symbol	Col	nditions	min	typ	max	Unit
	R _{IN} 1A	$V_{SS}2 = -5.0 V,$ $V_{IN} = 0.8 \cdot V_{SS}2$	Low-level hold transistor*, Figure 3	10	45	150	kΩ
	R _{IN} 1B	$V_{SS}2 = -5.0 V,$ $V_{IN} = V_{DD}$	Low-level pull-in transistor*, Figure 3	100	350	1000	kΩ
Input resistance	R _{IN} 2A	$V_{SS}2 = -5.0 V,$ $V_{IN} = V_{SS}2$	INT pin pull-up resistor	100	350	1000	kΩ
	R _{IN} 2B	$V_{SS}2 = -5.0 V,$ $V_{IN} = V_{DD}$	INT pin pull-down resistor	100	350	1000	kΩ
	R _{IN} 3	$V_{SS}2 = -5.0 \text{ V},$ $V_{IN} = V_{DD} \text{ or } V_{SS}2$	RES	10	20	50	kΩ
Output high level voltage	V _{OH} (1)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH}^2 = -1.5 \text{ mA}$	ALM	-1	-0.3		V
Output low level voltage	V _{OL} (1)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL}^2 = 1.5 \text{ mA}$	ALM		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V
Output high level voltage	V _{OH} (2)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH}^2 = -0.5 \text{ mA}$	LIGHT, Port P	-1	-0.3		V
Output low level voltage	V _{OL} (2)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL}^2 = 0.7 \text{ mA}$	LIGHT, Port P		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V
Output high level voltage	V _{OH} (3)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH}^2 = -0.13 \text{ mA}$	I/O ports	-1	-0.3		V
Output high level voltage	V _{OH} (4)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH}^2 = -50 \mu\text{A}$	I/O ports	-0.6	-0.2		V
Output low level voltage	V _{OL} (4)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL}^2 = 0.13 \text{ mA}$	I/O ports		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V

Note: * S1, S2, S3, S4, M1, M2, M3, M4

Segment diver couput impactances Unit Up Up<	Parameter	Symbol	Cor	nditions	min	typ	max	Unit
$\begin{split} & \text{Nimes used as GMOS output points} \\ & \text{Oright high level voltage} & V_{OH} (5) & V_{OH} - 56 V (5) V_{OH} & V_{OH} + 06 V (5) & V_{OH} + 06 V (5) V_{OH} + 00 V (5) & V_{OH} + 00 V (5) V_{OH} + 00 V (5) & V_{OH} + 00 V (5) V_{OH} + 00 V (5) & V_{OH} + 00 V (5) V_{OH} + 00 V (5) & V_{OH} + 00 V (5) V_{OH} + 00$	Segment driver output impedances	3				95	max	Onit
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	When used as CMOS output por	ts						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output high level voltage	V _{OH} (5)	$V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH} = -15 \mu\text{A}$	Segment	-1	-0.3		V
$ \begin{array}{ c c c c } \mbox{Durpt hybrel voltage} & V_{OH}(6) & V_{OH}^{-2,-3,5,0,-2,5,0,v} & Segment Area to 5, 1 and 44 to 5, 1 an$	Output low level voltage	V _{OL} (5)	$V_{SS}^{2} = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL}^{} = 150 \ \mu\text{A}$	Pads 62 to 64, QIP64 pins 34 to 36		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V
$ \begin{array}{ c c c c c } \mathcal{Durburbalic} \mat$	Output high level voltage	V _{OH} (6)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH}^2 = -10 \ \mu\text{A}$	Segment Pads 38 to 41 and 44 to 61,	-1	-0.3		V
	Output low level voltage	V _{OL} (6)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL} = 60 \ \mu\text{A}$	QIP64 pins 11 to 23 and 25 to 33		V _{SS} 2 + 0.3	V _{SS} 2 + 1	V
$ \begin{array}{ c c c c } \mbox{Durpt thigh level voltage} & V_{OH}(5) & V_{OH} = -525 V, V_{OH} = -5$	• When used as p-channel open-d	rain output po	rts	-				
$ \begin{array}{ $	Output high level voltage	V _{OH} (5)	$V_{SS}2$ = -3.5 to -5.25 V, I_{OH} = -15 μA	Segment Pads 62 to 64	-1	-0.3		V
	Output off leakage current	I _{OFF}	$V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ $V_{OL} = V_{SS}2$	QIP64 pins 34 to 36			1	μA
$ \begin{array}{ c c c c c c } \mbox{Output low level voltage} & V_{OH}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}(5) & V_{SS}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{OL}^{2} = -4.4 \ A \ A \ A \ A \ A \ A \ A \ A \ A \ $	Static drive		1	I				
$ \begin{array}{ c c c c c c } \mbox{Output low level voltage} & V_{0,C}(5) & V_{95}^{2} = -3.5 \ 1o - 5.25 \ V, & V_{0,H} = -4 \ \mu A & V_{0,F} = 4 \ \mu A & V$	Output high level voltage	V _{OH} (5)	$V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH} = -0.4 \mu\text{A}$	All segments	-0.2			V
$ \begin{array}{ c c c c c c } \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output low level voltage} & V_{OL}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(6) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(6) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(6) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output low level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output low level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline \text{Output high level voltage} & V_{OH}(7) & V_{SS}^{SS} = -3.5 \text{to} -5.25 \text{V}, \\ \hline O$	Output low level voltage	V _{OL} (5)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL} = 0.4 \mu\text{A}$				V _{SS} 2 + 0.2	V
$ \begin{array}{ c c c c c } \hline \text{Output low level voltage} & V_{OL}(7) & V_{SS}^{S} & V_{SS}^{$	Output high level voltage	V _{OH} (7)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH} = -4 \ \mu\text{A}$	COM1	-0.2			V
$ \begin{array}{ $	Output low level voltage	V _{OL} (7)	$V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL} = 4 \ \mu\text{A}$				V _{SS} 2 + 0.2	V
$ \begin{array}{ c c c c c } \hline \text{Output high level voltage} & V_{OH}(6) & V_{SS}^{2} = -3.5 \ 1o & -5.25 \ V, \\ I_{OH}(-0.4 \ \muA) & I_{OH$	Duplex drive (1/2 bias—1/2 duty)		1	I				
$ \begin{array}{ c c c c c } \hline Output low level voltage & V_{OL}(5) & V_{SS}^{2} = -3.5 \ to -5.25 \ V, \\ V_{OL}($	Output high level voltage	V _{OH} (5)	$V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH} = -0.4 \mu\text{A}$	All segments	-0.2			V
$ \begin{array}{ c c c c c } \hline Output high level voltage & V_{OH}(7) & V_{SS}^{2} = -3.5 \ to - 5.2 \ SV, \\ I_{OH}^{1} = -4 \ \muA & I_{OL}^{1} = 4 \ \muA & I_{OL}^{1} =$	Output low level voltage	V _{OL} (5)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL} = 0.4 \mu\text{A}$				V _{SS} 2 + 0.2	V
$ \begin{array}{ c c c c c } \hline Output middle level voltage & V_{OM}2.1 & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -4 \ \mu A, I_{OL} = 4 \ \mu A \\ V_{OL} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OL} = 4 \ \mu A \\ \hline V_{12} \ bias = -1/4 \ duty methods \\ \hline V_{OH} (5) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput high level voltage & V_{OL} (5) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput high level voltage & V_{OL} (5) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -4 \ \mu A \\ \hline Uutput high level voltage & V_{OL} (5) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -4 \ \mu A \\ \hline Uutput high level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -4 \ \mu A \\ I_{OL} = 4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -4 \ \mu A \\ I_{OL} = 4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -4 \ \mu A \\ I_{OL} = 4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OL} = 4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (5) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput middle level voltage & V_{OH} (7) & V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu A \\ \hline Uutput $	Output high level voltage	V _{OH} (7)	$V_{SS}2 = -3.5$ to -5.25 V, $I_{OH} = -4 \mu A$		-0.2			V
$ \begin{array}{ c c c c } Output low level voltage & V_{OL}(7) & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = 4 \ \mu A & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OH} = -0.4 \ \mu A & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OH} = -0.4 \ \mu A & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = 0.4 \ \mu A & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -0.4 \ \mu A & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -0.4 \ \mu A & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -4 \ \mu A & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OH} = -4 \ \mu A & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OH} = -4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = 4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = 4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = 4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = 4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = 4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & L_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & V_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & V_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & V_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & V_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & V_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & V_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & V_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & V_{OL}^{V2} & V_{SS}^{V2} = -3.5 \ to -5.25 \ V, \\ l_{OL} = -3.4 \ \mu A & V_{OL}^{V2} & V_{SS}^{V2} & V_{$	Output middle level voltage	V _{OM} 2-1	$V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH} = -4 \ \mu\text{A}, \ I_{OL} = 4 \ \mu\text{A}$	COM1, 2	V _{SS} 2/2 - 0.2		V _{SS} 2/2 +0.2	V
	Output low level voltage	V _{OL} (7)	Vss2 = -3.5 to -5.25 V, I _{OL} = 4 μ A				V _{SS} 2 +0.2	V
$ \begin{array}{ c c c c c } \hline \text{Output high level voltage} & V_{OH}(5) & V_{SS}^{2} = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \ \mu\text{A} & & & & & & & & & & & & & & & & & & &$	• 1/2 bias—1/3 duty and 1/2 bias—	-1/4 duty met	nods	1				
$ \begin{array}{ c c c c } \hline \text{Output low level voltage} & V_{\text{OL}}(5) & V_{\text{SS}}^{\text{V}} = -3.5 \text{ to} -5.25 \text{ V}, \\ \hline \text{I}_{\text{OL}} = 0.4 \ \mu\text{A} & \text{I}_{\text{OL}} = -4 \ \mu\text{A} & \text{I}_{\text{OL}} = 4 \ \mu\text{A} & \text{I}_{\text{I}} = -0.2 & \text{I}_{\text{V}} & \text{V}_{\text{SS}^{22} = 0.2 & \text{V} & \text{V}_{\text{SS}^{22} = 0.2 & \text{V} & \text{I}_{\text{O}} & $	Output high level voltage	V _{OH} (5)	$V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH} = -0.4 \mu\text{A}$	All segments	-0.2			V
$ \begin{array}{ c c c c c } \hline \mbox{Output high level voltage} & V_{OH}(7) & V_{SS}^{2} = -3.5 \ to -5.25 \ V, \\ I_{OH}^{1} = -4 \ \mu A \\ \hline \mbox{Output middle level voltage} & V_{OM}^{2}.1 & V_{SS}^{2} = -3.5 \ to -5.25 \ V, \\ I_{OH}^{1} = -4 \ \mu A \\ I_{OH$	Output low level voltage	V _{OL} (5)	$V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL} = 0.4 \mu\text{A}$	Air segments			V _{SS} 2 + 0.2	V
$ \begin{array}{ c c c c c } \hline Output middle level voltage \\ \hline Output middle level voltage \\ \hline Output low level voltage \\ \hline V_{OH}^{2-1} & V_{SS}^{2} = -3.5 \ \text{to} -5.25 \ \text{V}, \\ I_{OL}^{} = -4 \ \mu\text{A}, I_{OL}^{} = 4 \ \mu\text{A}, I_{OL}^{} = $	Output high level voltage	V _{OH} (7)	$V_{SS}^2 = -3.5$ to -5.25 V, $I_{OH}^2 = -4 \mu A$	COM1 to 3	-0.2			V
$ \begin{array}{ c c c c c c } \hline Output low level voltage & V_{OL}(7) & V_{SS}^{2} = -3.5 \ to & -5.25 \ V, \\ I_{OL} = 4 \ \mu A & & & & & & & & & & & & & & & & & &$	Output middle level voltage	V _{OM} 2-1	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH}^2 = -4 \ \mu\text{A}, \ I_{OL}^2 = 4 \ \mu\text{A}$	(for 1/3 duty methods) COM1 to 4	V _{SS} 2/2 - 0.2		V _{SS} 2/2 +0.2	V
	Output low level voltage	V _{OL} (7)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL} = 4 \mu\text{A}$	(for 1/4 duty methods)			V _{SS} 2 + 0.2	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• 1/3 bias—1/3 duty and 1/3 bias—	-1/4 duty meth	nods					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output high level voltage	V _{OH} (5)	$V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH} = -0.4 \mu\text{A}$		-0.2			V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output middle level voltage	V _{OM} 1-1	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH}^2 = -0.4 \mu\text{A},$	All segments	V _{SS} 2/2 - 0.2		V _{SS} 2/2 +0.2	V
Output high level voltage $V_{OH}(7)$ $V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -0.4 \text{ µA}$ COM1 to 3 -0.2 V V Output low level voltage $V_{OM}2-1$ $V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -4 \text{ µA}, I_{OL} = 4 \text{ µA}$ COM1 to 3 -0.2 $V_{SS}2/2 \\ -0.2$ $V_{SS}2/2 \\ +0.2$ V Output low level voltage $V_{OL}(7)$ $V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OH} = -4 \text{ µA}, I_{OL} = 4 \text{ µA}$ COM1 to 4 (for 1/3 duty methods) $V_{SS}2 - 0.2$ $V_{SS}2 + 0.2$ V Output low level voltage $V_{OL}(7)$ $V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V}, \\ I_{OL} = 4 \text{ µA}$ (for 1/4 duty methods) $V_{SS}2 - 0.2$ $V_{SS}3 + 0.2$ V		V _{OM} 1-2	$V_{SS}^{2} = -3.5 \text{ to } -5.25 \text{ V},$		V _{SS} 2 - 0.2		$V_{SS}^2 + 0.2$	V
$\frac{V_{OH}(1)}{V_{OH}^{2-2}} = \frac{V_{OH}^{2-1}}{V_{OH}^{2-2}} = \frac{V_{OH}^{2-1}}{V_{OH}^{2-2}} = \frac{V_{OH}^{2-2}}{V_{OH}^{2-2}} =$		Vol. (7)	$I_{OL} = 0.4 \ \mu A$ $V_{SS}^2 = -3.5 \ to -5.25 \ V,$		_0 2		- 330 - 0.2	v
Output low level voltage v_{OM}^{2-1} $v_{SS}^{2} = -3.5 \text{ to } -5.25 \text{ V},$ (ioi 1/3 duty methods) -0.2 $+0.2$ v_{OL} v_{OM}^{2-2} v_{OH}^{2-1} $v_{OH}^{2-1} = 4 \mu A,$ $v_{OH}^{2-1} = 4 \mu A,$ COM1 to 4 $v_{SS}^{2} = -0.2$ $v_{S}^{2} = -0.2$ <t< td=""><td>Calpar night level vollage</td><td>*OH (/)</td><td>$I_{OH} = -0.4 \mu A$</td><td>COM1 to 3</td><td>V_{SS}2/2</td><td></td><td>V_{SS}2/2</td><td>V </td></t<>	Calpar night level vollage	*OH (/)	$I_{OH} = -0.4 \mu A$	COM1 to 3	V _{SS} 2/2		V _{SS} 2/2	V
Output low level voltage $V_{OL}(7)$ $V_{SS}2 = -3.5 \text{ to } -5.25 \text{ V},$ (for 1/4 duty methods) $U_{SS}3 + 0.2$ $V_{SS}3 + 0.2$ $V_{SS}3 + 0.2$	Output low level voltage	V _{OM} 2-1	$v_{SS^2} = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OH} = -4 \mu\text{A}, I_{OL} = 4 \mu\text{A}$	COM1 to 4	-0.2 V _{SS} 2 - 0.2		+0.2 V _{SS} 2 + 0.2	V
	Output low level voltage	V _{OL} (7)	$V_{SS}^2 = -3.5 \text{ to } -5.25 \text{ V},$ $I_{OL}^2 = 4 \mu \text{A}$	1 (101 1/4 duty methods)			V _{SS} 3 + 0.2	V

Parameter	Symbol	Сог	nditions	min	typ	max	Unit
Power supply leakage current	ILEK	V _{SS} 2 = V _{SS} 3 = -4.5 V	Ta = 25°C			10	μA
Input leakage current	I _{IN}	$V_{SS}^2 = -2.0 \text{ to } +4.5 \text{ V}$	$V_{IN} = V_{SS}^2$ to V_{DD}	-1		+1	μA
	V _{SS} 1	V _{SS} 2 = -2.9 V	$C1 = C2 = C3 = 0.1 \ \mu F$,		-1.45	-1.35	V
	V _{SS} 3	V _{SS} 2 = -2.9 V	Ta = 25°C, Figure 7		-4.35	-4.1	V
Output voltage	V _{SS} 1	V _{SS} 2 = -4.5 V	$C1 = C2 = C3 = 0.1 \ \mu F$,		-2.25	-2.2	V
	V _{SS} 3	V _{SS} 2 = -4.5 V	Ta = 25° C, Figure 7		-6.70	-6.6	V
	I _{DD} 1	V _{SS} 2 = -2.9 V, Ta = 25°C, HALT mode			3.0	6.0	μΑ
Power supply current	I _{DD} 2	$\label{eq:VSS2} \begin{array}{l} V_{SS}2 = -4.5 \ V, \\ Ta = 25^{\circ}C, \ HALT \ mode, \\ Stack: \ Figure \ 9, \\ 1/3 \ bias \ -1/3 \ duty: \\ Figure \ 7, \\ other \ methods: \ Figure \ 4 \end{array}$	C1 = C2 = 0.1 μF, Cl = 25 kΩ, fopg = 32.768 kHz, Cg = 20 pF		7	13	μΑ
Power supply current	I _{DD} 3	$V_{SS}2 = -4.5 V,$ Ta = 25°C, HALT mode Stack: Figure 9, 1/3 bias—1/3 duty: Figure 7, other methods: Figure 4	C1 = C2 = 0.1 μ F, Cl = 25 kΩ, fopg = 65.536 kHz, Cg = 10 pF		10	20	μA
Power supply current	I _{DD} 4	V _{SS} 2 = -4.5 V, Ta = 25°C, HALT mode	$\begin{array}{l} C1 = C2 = 0.1 \ \mu\text{F}, \\ fopg = 400 \ \text{kHz}, \\ Cg = Cd = 100 \ \text{pF} \ \text{or} \ 330 \ \text{pF}, \\ \text{Rf} = 1 \ M\Omega, \ \text{Figure} \ 6 \end{array}$		90	150	μA
Power supply current	I _{DD} 5	V _{SS} 2 = -4.5 V, Ta = 25°C, HALT mode	$\begin{array}{l} C1 = C2 = 0.1 \ \mu\text{F}, \\ fopg = 800 \ \text{kHz}, \\ Cg = Cd = 100 \ \text{pF}, \\ \text{Rf} = 1 \ M\Omega, \ \text{Figure 6} \end{array}$		130	200	μA
Oscillator hold voltage	V _{HOLD} 1	Ta = 25°C, Stack: Figure 9, 1/3 bias—1/3 duty: Figure 7, other methods: Figure 4	C1 = C2 = 0.1 μ F, CI = 25 k Ω , fopg = 32.768 kHz, Cg = 20 pF	2.0		5.5	v
Oscillator hold voltage	V _{HOLD} 2	Ta = 25°C	$\begin{array}{l} C1 = C2 = 0.1 \ \mu\text{F}, \\ CI = 25 \ k\Omega, \\ fopg = 65.536 \ \text{kHz}, \\ Cg = 10 \ \text{pF} \end{array}$	2.3		5.5	v
Oscillator start voltage	VStt1	Stack: Figure 10, 1/3 bias—1/3 duty: Figure 7, other methods: Figure 4, Ta = 25°C	C1 = C2 = 0.1 μ F, Cl = 25 k Ω , Figure 5, fopg = 32.768 kHz, Cg = 20 pF			2.2	v
Oscillator start voltage	VStt2	Ta = 25°C	$\label{eq:c1} \begin{array}{l} C1=C2=0.1 \ \mu\text{F}, \ CI=25 \ k\Omega,\\ Figure \ 5, \ fopg=65.536 \ kHz,\\ Cg=10 \ p\text{F} \end{array}$			2.6	V
Oscillator start time	TStt1	$V_{SS}^2 = -2.9 V,$ Ta = 25°C, V_a = 25 \ = -4.5 V	C1 = C2 = 0.1 μF, Cl = 25 kΩ, Figure 5, fopg = 32.768 kHz,			10	S
		Ta = 25°C	Cg = 20 pF			10	S
Oscillator start time	TStt2	$V_{SS}^2 = -2.9 V,$ Ta = 25°C, $V_{SS}^2 = -4.5 V,$ Ta = 25°C	C1 = C2 = 0.1μ F, Cl = 25 kΩ, Figure 5, fopg = 65.536 kHz, Cg = 10 pF			10 10	S S
Oscillator start voltage	VStt4	Ta = 25°C	fopg = 400 kHz, Figure 6, Cg = Cd = 100 pF or 330 pF, Rf = 1 MΩ			4.0	V
Oscillator hold voltage	V _{HOLD} 4	Ta = 25°C	$\label{eq:constraint} \begin{array}{l} \mbox{fopg} = 400 \mbox{ kHz}, \mbox{Figure 6}, \\ \mbox{Cg} = \mbox{Cd} = 100 \mbox{ pF} \mbox{ or } 330 \mbox{ pF}, \\ \mbox{Rf} = 1 M\Omega \end{array}$	3.5		5.5	V
Oscillator start time	TStt4	V _{SS} 2 = -4.5 V, Ta = 25°C	$\label{eq:constraint} \begin{array}{l} \mbox{fopg} = 400 \mbox{ kHz}, \mbox{ Figure 6}, \\ \mbox{Cg} = \mbox{Cd} = 100 \mbox{ pF or } 330 \mbox{ pF}, \\ \mbox{Rf} = 1 M\Omega \end{array}$	_		30	ms

Parameter	Symbol	Co	nditions	min	typ	max	Unit
Oscillator start voltage	VStt5	Ta = 25°C	fopg = 800 kHz, Figure 6, Cg = Cd = 100 pF, Rf = 1 M Ω			4.0	V
Oscillator hold voltage	V _{HOLD} 5	Ta = 25°C	fopg = 800 kHz, Figure 6, Cg = Cd = 100 pF, Rf = 1 M Ω	3.5		5.5	V
Oscillator start time	TStt5	V _{SS} 2 = −4.5 V, Ta = 25°C	fopg = 800 kHz, Figure 6, Cg = Cd = 100 pF, Rf = 1 M Ω			30	ms
	10P	V _{SS} 2 = -2.9 V	10P pin (chip products only)		10		pF
	10P	$V_{SS}2 = -4.5 V$	10P pin (chip products only)		10		pF
	20P	$V_{SS}2 = -2.9 V$	OSCOUT pin		20		pF
	20P	$V_{SS}2 = -4.5 V$	OSCOUT pin		20		pF

Figure 1 Ceramic Oscillator Specifications

Recommended Ceramic Oscillators

Figure 2 Crystal Oscillator Specifications (32 kHz or 65 kHz)

Manufacturer		Kyocera						
Item frequency	Type number	Cg (pF)	Cd (pF)	Rf (MΩ)	Type number	Cg (pF)	Cd (pF)	Rf (MΩ)
400 kHz	CSB400P	100	100	1	KBR-400B	330	330	1
800 kHz	CSB800J	100	100	1	KBR-800H	100	100	1

Figure 3 S1 to S4 and M1 to M4 Input Circuits

Figure 5 Oscillator Start Voltage, Oscillator Start Time and Frequency Stability Test Circuit

Figure 4 Power Supply Current and Oscillator Hold Voltage Test Circuit

Figure 6 Oscillator Start Voltage, Oscillator Start Time, Power Supply Current and Oscillator Hold Voltage Test Circuit

Figure 7 Power Supply Current and Oscillator Hold Voltage Test Circuit

Figure 9 Power Supply Current and Oscillator Hold Time Test Circuit

Figure 8 External Input Specifications

These electrical specifications are provisional and subject to change.

Ag Specifications

Absolute Maximum Ratings at Ta = 25°C, V_{DD} = 0 V

Parameter	Symbol	Conditions/Pins	min	typ	max	Unit
	V _{SS} 1		-4.0		+0.3	V
Maximum supply voltage	V _{SS} 2		-4.0		+0.3	V
	V _{SS} 3	LCD drive method (1/3 bias)	-5.5		+0.3	V
	V _{SS} 3	LCD drive method (methods other than 1/3 bias)	-4.0		+0.3	V
Maximum input voltage	V _{IN} 1	S1 to 4, M1 to 4, I/OA1 to 4, I/OB1 to 4, INT, TESTA (with I/OA1 to 4 and I/OB1 to 4 in input mode), 1OP, OSCIN, RES, BAK	V _{SS} 1 – 0.3		+0.3	V
Maximum output voltage	V _{OUT} 1	ALM, LIGHT, P1 to 4, I/OA1 to 4, I/OB1 to 4, CUP2 (with I/OA1 to 4 and I/OB1 to 4 in output mode), TESTA, OSCOUT	V _{SS} 1 – 0.3		+0.3	V
	V _{OUT} 3	SEGOUT, COM1 to 4, CUP1	V _{SS} 1 – 0.3		+0.3	V
Operating temperature	Topr		-20		+65	°C
Storage temperature	Tstg		-30		+125	°C

Allowable Operating Ranges at $Ta=25\pm2^\circ C,\,V_{DD}=0~V$

Parameter	Symbol	Conditions/Pins	min	typ	max	Unit
	V _{SS} 1	$V_{BAK} = V_{SS}1$	-1.65		-1.3	V
Supply voltage	V _{SS} 2		-3.3		-2.4	V
	V _{SS} 3	LCD drive method (1/3 bias)	-4.95		-3.7	V
	V _{SS} 3	LCD drive method (methods other than 1/3 bias)		$V_{SS}3 = V_{SS}2$		
Input high level voltage	V _{IH}	S1 to 4, M1 to 4, I/OA1 to 4, I/OB1 to 4, RES, INT (with I/OA1 to 4 and I/OB1 to 4 in input mode)	-0.2		0	V
Input low level voltage	V _{IL}	S1 to 4, M1 to 4, I/OA1 to 4, I/OB1 to 4, INT (with I/OA1 to 4 and I/OB1 to 4 in input mode)	V _{SS} 1		V _{SS} 1 + 0.2	V
Operating frequency	fopg	Ta = -20 to +65°C	32		33	kHz

Electrical Characteristics at Ta = 25 \pm 2°C, V_{DD} = 0 V

Parameter	Symbol	Condi	itions/Pins	min	typ	max	Unit
	R _{IN} 1A	V _{SS} 1 = -1.55 V, V _{IL} = V _{SS} 1 + 0.2 V	Low-level hold transistor*, Figure 1	10	50	200	kΩ
	R _{IN} 1B	V _{SS} 1 = -1.55 V	Low-level pull-down resistor*, Figure 1	200	550	2000	kΩ
Input resistance	R _{IN} 2A	VSS1 = -1.55 V, V _{IL} = V _{SS} 1	INT pull-up resistor	200	400	2000	kΩ
	R _{IN} 2B	$V_{SS}1 = -1.55 V,$ $V_{IH} = V_{DD}$	INT pull-down resistor	200	550	2000	kΩ
	R _{IN} 3	$V_{SS}1 = -1.55 V,$ $V_{IH} = V_{DD}$	$V_{SS}1 = -1.55 \text{ V},$ $V_{IH} = V_{DD}$ RES pull-down resistor			50	kΩ
Output high level voltage	V _{OH} (1)	V _{SS} = -1.35 V, I _{OH} = -250 μA	ALM, LIGHT	-0.65			V
Output low level voltage	V _{OL} (1)	V _{SS} 1 = −1.35 V, I _{OL} = 250 μA	ALM, LIGHT			V _{SS} 1 + 0.65	V
Output high level voltage	V _{OH} (2)	$V_{SS} = -1.55$ V, I/OA1 to I _{OH} = -20 µA, P1 to 4 (with I/OA1 to 4 and I/OE	4, I/OB1 to 4, 31 to 4 in output mode)	-0.2			V
Output low level voltage	V _{OL} (2)	V_{SS} 1 = -1.55 V, I/OA1 to I _{OL} = 20 µA, P1 to 4 (with I/OA1 to 4 and I/OE	o 4, I/OB1 to 4, 81 to 4 in output mode)			V _{SS} 1 + 0.2	

Note: * S1, S2, S3, S4, M1, M2, M3, M4

Parameter	Symbol	Condi	tions/Pins	min	typ	max	Unit
Segment driver output impedances	5	I					
When used as CMOS output port	s						
Output high level voltage	V _{OH} (3)	V _{SS} 1 = –1.55 V, I _{OH} = –3 µA	Segment Pads 38 to 41 and 44 to 61,		-0.3		V
Output low level voltage	V _{OL} (3)	V _{SS} 1 = -1.55 V, I _{OL} = 3 μA	QIP64 pins 11 to 23 and 25 to 33		V _{SS} 2 + 0.3		V
• When used as p-channel open dr	ain outputs						
Output high level voltage	V _{OH} (3)	V _{SS} 1 = -1.55 V, I _{OH} = -3 μA	Segment	-1	-0.3		V
Output off leakage current	I _{OFF}	V _{SS} 1 = -1.55 V, V _{OL} = V _{SS} 1	QIP64 pins 34 to 36			1	μΑ
Static drive							
Output high level voltage	V _{OH} (3)	V _{SS} 1 = -1.55 V, I _{OH} = -0.4 μA	SECOLIT	-0.2			V
Output low level voltage	V _{OL} (3)	V _{SS} 1 = −1.55 V, I _{OL} = 0.4 μA	SEGOUT			V _{SS} 2 + 0.2	V
Output high level voltage	V _{OH} (4)	V _{SS} 1 = −1.55 V, I _{OH} = −4 μA	00044	-0.2			V
Output low level voltage	V _{OL} (4)	V _{SS} 1 = −1.55 V, I _{OL} = 4 μA				V _{SS} 2 + 0.2	V
• Duplex drive (1/2 bias—1/2 duty)							
Output high level voltage	V _{OH} (3)	V _{SS} 1 = -1.55 V, I _{OH} = -0.4 µA	0500117	-0.2			V
Output low level voltage	V _{OL} (3)	V _{SS} 1 = -1.55 V, I _{OL} = 0.4 µA	SEGOUT			V _{SS} 2 + 0.2	V
Output high level voltage	V _{OH} (4)	V _{SS} 1 = −1.55 V, I _{OH} = −4 μA		-0.2			V
Output middle level voltage	V _{OM}	V _{SS} 1 = −1.55 V, I _{OH} = −4 μA, I _{OL} = 4 μA	COM1, 2	V _{SS} 1 – 0.2		V _{SS} 1 + 0.2	V
Output low level voltage	V _{OL} (4)	V _{SS} 2 = −1.55 V, I _{OL} = 4 μA				V _{SS} 2 + 0.2	V
• 1/2 bias—1/3 duty and 1/2 bias—	-1/4 duty meth	nods	-				
Output high level voltage	V _{OH} (3)	V _{SS} 1 = -1.55 V, I _{OH} = -0.4 μA	SECOLIT	-0.2			V
Output low level voltage	V _{OL} (3)	V _{SS} 1 = −1.55 V, I _{OL} = 0.4 μA				V _{SS} 2 + 0.2	V
Output high level voltage	V _{OH} (4)	V _{SS} 1 = −1.55 V, I _{OH} = −4 μA	COM1 to 3	-0.2			
Output middle level voltage	V _{OM}	V _{SS} 1 = -1.55 V, I _{OH} = -4 μA, I _{OL} = 4 μA	(for 1/3 duty methods) COM 1 to 4	V _{SS} 1 – 0.2		V _{SS} 1 + 0.2	V
Output low level voltage	V _{OL} (4)	V _{SS} 2 = −1.55 V, I _{OL} = 4 μA	(for 1/4 duty methods)			$V_{SS}^{2} + 0.2$	V
• 1/3 bias—1/3 duty and 1/3 bias—	-1/4 duty meth	nods					
Output high level voltage	V _{OH} (3)	V _{SS} 1 = -1.55 V, I _{OH} = -0.4 μA		-0.2			V
Output M1 level voltage	V _{OM} 1-3	$V_{SS}1 = -1.55 V,$ $I_{OH} = -0.4 \mu A,$ $I_{OL} = 0.4 \mu A$	SECOLIT	V _{SS} 1 – 0.2		V _{SS} 1 + 0.2	V
Output M2 level voltage	V _{OM} 2-3	$V_{SS}1 = -1.55 \text{ V},$ $I_{OH} = -0.4 \ \mu\text{A},$ $I_{OL} = 0.4 \ \mu\text{A}$	320001	V _{SS} 2 – 0.2		V _{SS} 2 + 0.2	V
Output low level voltage	V _{OL} (3)	V _{SS} 1 = −1.55 V, I _{OL} = 0.4 μA				V _{SS} 3 + 0.2	V
Output high level voltage	V _{OH} (4)	V _{SS} 1 = −1.55 V, I _{OH} = −4 μA		-0.2			
Output M1 level voltage	V _{OM} 1-4	V _{SS} 1 = -1.55 V, I _{OH} = -4 µA, I _{OL} = 4 µA	COM1 to 3 (for 1/3 duty methods)	V _{SS} 1 – 0.2		V _{SS} 1 + 0.2	V
Output M2 level voltage	V _{OM} 2-4	V _{SS} 1 = -1.55 V, I _{OH} = -4 μA, I _{OL} = 4 μA	COM 1 to 4 (for 1/4 duty methods)	V _{SS} 2 - 0.2		V _{SS} 2 + 0.2	V
Output low level voltage	V _{OL} (4)	V _{SS} 2 = -1.55 V, I _{OL} = 4 µA				V _{SS} 3 + 0.2	V

Parameter	Symbol	Condi	itions/Pins	min	typ	max	Unit
Output voltage							
LCD drive: 1/3 bias methods (doubler)	V _{SS} 2	V _{SS} 1 = -1.35 V, C1 to 4 = 0.1 µF	fopg = 32.768 kHz, Figure 7			-2.5	V
(tripler)	V _{SS} 3	V _{SS} 1 = −1.35 V, C1 to 4 = 0.1 µF	fopg = 32.768 kHz, Figure 7			-3.75	V
LCD drive: 1/2 bias methods (doubler)	V _{SS} 2	V _{SS} 1 = −1.35 V, C1 = C2 = 0.1 µF	fopg = 32.768 kHz, Figure 2			-2.5	V
Supply current (when the backup	flag is cleare	d to zero)	•				
LCD drive: 1/3 bias methods	I _{DD}	$V_{SS}1 = -1.55 V$, C1 to 4 = 0.1 µF Cd = Cg = 20 pF	In HALT mode, CI = 25 k Ω , Figure 7, 32.768 kHz, X'tal		1.3	4.5	μA
LCD drive: methods other than 1/3 bias	I _{DD}	$V_{SS}1 = -1.55 V,$ C1 = C2 = 0.1 µF Cd = Cg = 20 pF	In HALT mode, CI = 25 k Ω , Figure 2, 32.768 kHz, X'tal		1.1	4.5	μA
Oscillator start voltage V _{SS} 1	Vstt	Cd = Cg = 20 pF	Cl = 25 kΩ, Figure 3, 32.768 kHz, X'tal			1.35	V
Oscillator hold voltage V_{SS} 1	V _{HOLD}	Cd = Cg = 20 pF	CI = 25 k Ω , Figure 2, 32.768 kHz, X'tal	1.3		1.6	V
Oscillator start time	Tstt	V _{SS} 1 = -1.35 V, Cd = Cg = 20 pF	Cl = 25 kΩ, Figure 3, 32.768 kHz, X'tal			10	s
	10P	External connection (for	chip products)	8	10	12	pF
	20P	OSCOUT		16	20	24	pF

These electrical specifications are provisional and subject to change.

Li Specifications

Absolute Maximum Ratings at Ta = $25 \pm 2^{\circ}$ C, V_{DD} = 0 V

Parameter	Symbol	Conditions/Pins	min	typ	max	Unit
Maximum supply voltage	V _{SS} 1	$V_{BAK} = V_{SS}1$ or $V_{SS}2$	-4.0		+0.3	V
	V _{SS} 2		-4.0		+0.3	V
	V _{SS} 3	LCD drive: 1/3 bias methods	-5.5		+0.3	V
	V _{SS} 3	LCD drive: methods other than 1/3 bias	-4.0		+0.3	V
Maximum input voltage	V _{IN} 1	10P, OSCIN	V _{BAK} - 0.3		+0.3	V
	V _{IN} 2	S1 to 4, M1 to 4, I/IA1 to 4, I/OB1 to 4, RES, INT, TESTA, (with I/OA1 to 4 and I/OB1 to 4 in input mode)	V _{SS} 2 - 0.3		+0.3	V
Maximum output voltage	V _{OUT} 1	TEST, OSCOUT	V _{BAK} - 0.3		+0.3	V
	V _{OUT} 2	ALM, LIGHT, P1 to 4, I/OA1 to 4, I/OB1 to 4, CUP2 (with I/OA1 to 4 and I/OB1 to 4 in output mode)	V _{SS} 2 - 0.3		+0.3	V
	V _{OUT} 3	SEGOUT, COM1 to 4, CUP1	V _{SS} 3-0.3		+0.3	V
Operating temperature	Topr		-20		+65	°C
Storage temperature	Tstg		-30		+125	°C

Allowable Operating Ranges at Ta = 25 \pm 2°C, V_{DD} = 0 V

Parameter	Symbol	Conditions/Pins	min	typ	max	Unit
Supply voltage	V _{BAK}		-3.6		-1.3	V
	V _{SS} 2	$V_{BAK} = V_{SS}^2/2$ (with the backup flag cleared to zero)	-3.6		-2.6	V
	V _{SS} 2	$V_{BAK} = V_{SS}^2$ (with the backup flag cleared to zero)	-3.6		-1.3	V
	V _{SS} 3	LCD drive: 1/3 bias methods	-4.95		-3.7	
	V _{SS} 3	LCD drive: methods other than 1/3 bias	$V_{SS}3 = V_{SS}2$			
Input high level voltage	V _{IH}	S1 to 4, M1 to 4, I/OA1 to 4, I/OB1 to 4, INT (with I/OA1 to 4 and I/OB1 to 4 in input mode)	-0.4		0	V
Input low level voltage	V _{IL}	S1 to 4, M1 to 4, I/OA1 to 4, I/OB1 to 4, INT (with I/OA1 to 4 and I/OB1 to 4 in input mode)	V _{SS} 2		$V_{SS}^{2} + 0.4$	V
Operating frequency	fopg	Ta = -20 to +65°C	32		33	kHz

Electrical Characteristics at Ta = 25 \pm 2°C, V_{DD} = 0 V

Parameter	Symbol	Conditions/Pins		min	typ	max	Unit
Input resistance	R _{IN} 1A	$V_{SS}2 = -2.9 V,$ $V_{IL} = V_{SS}2 + 0.4 V$	Low-level hold transistor*, Figure 1	10		200	kΩ
	R _{IN} 1B	V _{SS} 2 = -2.9 V,	Pull-down resistor*, Figure 4	200		2000	kΩ
	R _{IN} 2A	$V_{SS}2 = -2.9 V,$ $V_{IL} = V_{SS}2$	INT pull-up resistor	200		2000	kΩ
	R _{IN} 2B	$V_{SS}2 = -2.9 V,$ $V_{IH} = V_{DD}$	INT pull-down resistor	200		2000	kΩ
	R _{IN} 3	$V_{SS}2 = -2.9 V,$ $V_{IH} = V_{DD}$	RES pull-down resistor	5		50	kΩ

Note: * S1, S2, S3, S4, M1, M2, M3, M4

Parameter	Symbol	Conditions/Pins		min	typ	max	Unit		
Output high level voltage	V _{OH} (1)	V _{SS} 2 = -2.4 V, I _{OH} = -250 μA	ALM	-0.65			V		
Output low level voltage	V _{OL} (1)	V _{SS} 2 = -2.4 V, I _{OH} = 250 μA	ALM			V _{SS} 2 + 0.65	V		
Output high level voltage	V _{OH} (2)	$V_{SS}^2 = -2.9$ V, I/OA1 to 4, I/OB1 to 4, I _{OH} = -40 µA, P1 to 4 (with I/OA1 to 4 and I/OB1 to 4 in output mode)		-0.4			V		
Output low level voltage	V _{OL} (2)	$ \begin{array}{l} V_{SS}2 = -2.9 \ \text{V}, \ \text{I/OA1 to } 4, \ \text{I/OB1 to } 4, \\ I_{OL} = 40 \ \mu\text{A}, \ \text{P1 to } 4 \\ (\text{with I/OA1 to } 4 \ \text{and I/OB1 to } 4 \ \text{in output mode}) \end{array} $				V _{SS} 2 + 0.4	V		
Output high level voltage	V _{OH} (3)	V _{SS} 2 = -2.9 V, I _{OH} = -150 μA	LIGHT	-1.5			V		
Output low level voltage	V _{OL} (3)	V _{SS} 2 = -2.9 V, I _{OL} = 150 μA	LIGHT			V _{SS} 2 + 1.5	V		
Segment driver output impedances	5	·							
When used as CMOS output port	ts								
Output high level voltage	V _{OH} (4)	$V_{SS}^{2} = -2.9 V,$ $I_{OH}^{2} = -5 \mu A$	Segment Pads 38 to 41 and 44 to 61,		-0.3		V		
Output low level voltage	V _{OL} (4)	V _{SS} 2 = -2.9 V, I _{OL} = 5 μA	QIP64 pins 11 to 23 and 25 to 33		V _{SS} 2 + 0.3		V		
• When used as p-channel open-de	rain output po	rts							
Output high level voltage	V _{OH} (4)	$V_{SS}^2 = -2.4 V,$ $I_{OH}^2 = -10 \mu A$	Segment	-1	-0.3		V		
Output off leakage current	I _{OFF}	$V_{SS}^2 = -2.9 V,$ $V_{OL} = V_{SS}^2$	QIP64 pins 34 to 36			1	μA		
Static drive		02 00							
Output high level voltage	V _{OH} (4)	V _{SS} 2 = -2.9 V, I _{OH} = -0.4 µA	- All SEGOUT pins	-0.2			V		
Output low level voltage	V _{OL} (4)	V _{SS} 2 = -2.9 V, I _{OL} = 0.4 μA				V _{SS} 2 + 0.2	V		
Output high level voltage	V _{OH} (5)	$V_{SS}^2 = -2.9 V,$ $I_{OH}^2 = -4 \mu A$	0000	-0.2			V		
Output low level voltage	V _{OL} (5)	V _{SS} 2 = -2.9 V, I _{OL} = 4 μA				V _{SS} 2 + 0.2	V		
• Duplex drive (1/2 bias—1/2 duty)									
Output high level voltage	V _{OH} (4)	$V_{SS}^{2} = -2.9 V,$ $I_{OH}^{2} = -0.4 \mu A$		-0.2			V		
Output low level voltage	V _{OL} (4)	V _{SS} 2 = -2.9 V, I _{OL} = 0.4 μA				V _{SS} 2 + 0.2	V		
Output high level voltage	V _{OH} (5)	V _{SS} 2 = -2.9 V, I _{OH} = -4 μA		-0.2			V		
Output middle level voltage	V _{OM}	V _{SS} 2 = -2.9 V, I _{OH} = -4 μA, I _{OL} = 4 μA	COM1 to 4	V _{SS} 2/2 - 0.2		V _{SS} 2/2 +0.2	V		
Output low level voltage	V _{OL} (5)	V _{SS} 2 = -2.9 V, I _{OL} = 4 µA	-			V _{SS} 2 + 0.2	V		
1/2 bias—1/3 duty and 1/2 bias—1/4 duty methods									
Output high level voltage	V _{OH} (4)	V _{SS} 2 = -2.9 V, I _{OH} = -0.4 µA		-0.2			V		
Output low level voltage	V _{OL} (4)	V _{SS} 2 = -2.9 V, I _{OL} = 0.4 μA				V _{SS} 2 + 0.2	V		
Output high level voltage	V _{OH} (5)	V _{SS} 2 = -2.9 V, I _{OH} = -4 µA	COM1 to 3	-0.2			V		
Output middle level voltage	V _{OM}	V _{SS} 2 = -2.9 V, I _{OH} = -4 µA, I _{OL} = 4 µA	(for 1/3 duty methods) COM1 to 4	V _{SS} 2/2 - 0.2		V _{SS} 2/2 +0.2	V		
Output low level voltage	V _{OL} (5)	$V_{SS}^{2} = -2.9 V,$ $I_{OL}^{2} = 4 \mu A$	(for 1/4 duty methods)			V _{SS} 2 + 0.2	V		

Parameter	Symbol	Conditions/Pins		min	typ	max	Unit
1/3 bias—1/3 duty and 1/3 bias—1/4 duty methods							
Output high level voltage	V _{OH} (4)	V _{SS} 2 = -2.9 V, I _{OH} = -0.4 μA	- All SEGOUT pins	-0.2			V
Output M1 level voltage	V _{OM} 1-4	$V_{SS}2 = -2.9 V,$ $I_{OH} = -0.4 \mu A,$ $I_{OL} = 0.4 \mu A$		V _{SS} 2/2 - 0.2		V _{SS} 2/2 +0.2	V
Output M2 level voltage	V _{OM} 2-4	$V_{SS}2 = -2.9 V,$ $I_{OH} = -0.4 \mu A,$ $I_{OL} = 0.4 \mu A$		V _{SS} 2 – 0.2		V _{SS} 2 + 0.2	V
Output low level voltage	V _{OL} (4)	$V_{SS}^{2} = -2.9 V,$ $I_{OL}^{2} = 0.4 \mu A$				V _{SS} 3 + 0.2	V
Output high level voltage	V _{OH} (5)	$V_{SS}^2 = -2.9 V,$ $I_{OH}^2 = -4 \mu A$		-0.2			V
Output M1 level voltage	V _{OM} 1-5	$V_{SS}2 = -2.9 \text{ V},$ $I_{OH} = -4 \mu\text{A}, I_{OL} = 4 \mu\text{A}$	COM1 to 3 (for 1/3 duty methods)	V _{SS} 2/2 - 0.2		V _{SS} 2/2 +0.2	V
Output M2 level voltage	V _{OM} 2-5	V _{SS} 2 = -2.9 V, I _{OH} = -4 μA, I _{OL} = 4 μA	COM1 to 4 (for 1/4 duty methods)	V _{SS} 2 – 0.2		V _{SS} 2 + 0.2	V
Output low level voltage	V _{OL} (5)	V _{SS} 2 = -2.9 V, I _{OL} = 4 μA				V _{SS} 3 + 0.2	V
Output voltage							
LCD drive: 1/3 bias methods (halver)	V _{SS} 1	V _{SS} 2 = -2.9 V, C1 to 3 = 0.1 µF	fopg = 32.768 kHz, Figure 7			-1.35	V
(tripler)	V _{SS} 3	V _{SS} 2 = -2.9 V, C1 to 3 = 0.1 μF	fopg = 32.768 kHz, Figure 7			-4.1	V
LCD drive: 1/2 bias methods (halver)	V _{SS} 1	V _{SS} 2 = -2.9 V, C1 = C2 = 0.1 μF	fopg = 32.768 kHz, Figure 4			-1.35	V
Supply current (when the backup	flag is cleare	d to zero)					
LCD drive: 1/3 bias methods	I _{DD}	$V_{SS}^2 = -2.9 V$, C1 to 3 = 0.1 µF, Cd = Cg = 20 pF	In HALT mode, CI = 25 k Ω , Figure 7, 32.768 kHz Xtal		0.8	3.0	μA
LCD drive: methods other than 1/3 bias	I _{DD}	$V_{SS}^2 = -2.9 V,$ C1 = C2 = 0.1 µF, Cd = Cg = 20 pF	In HALT mode, CI = 25k Ω , Figure 4, 32.768 kHz Xtal		0.7	3.0	μA
Oscillator start voltage V _{SS} 2	Vstt	V _{BAK} = V _{SS} 2, Cd = Cg = 20 pF	Cl = 25 kΩ, Figure 5, 32.768 kHz Xtal			1.35	V
Oscillator hold voltage V _{SS} 2 (when the backup flag is cleared to zero)	V _{HOLD} (1)	V _{BAK} = V _{SS} 2/2, Cd = Cg = 20 pF	Cl = 25kΩ, Figure 4, 32.768 kHz Xtal	2.6		3.6	V
(when the backup flag is cleared to zero)	V _{HOLD} (2)	$V_{BAK} = V_{SS}^2$, Cd = Cg = 20 pF	Cl = 25kΩ, Figure 4, 32.768 kHz Xtal	1.3		3.6	V
Oscillator start time	Tstt	$V_{BAK} = V_{SS}^2 = -2.9 V,$ Cd = Cg = 20 pF	Cl = $25k\Omega$, Figure 5, 32.768 kHz Xtal			10	s
	10P	External connection		8	10	12	pF
	20P	OSCOUT	16	20	24	pF	

Figure 1 Ceramic Oscillator Specifications

Figure 2 Crystal Oscillator Specifications (32 kHz or 65 kHz)

Figure 3 S1 to S4 and M1 to M4 Input Circuits

Figure 5 Oscillator Start Voltage, Oscillator Start Time and Frequency Stability Test Circuit

C1=C2=C3=0.1 µ F

Figure 7 Power Supply Current and Oscillator Hold Voltage Test Circuit

Figure 9 Power Supply Current and Oscillator Hold Time Test Circuit

C1=C2=0.1 μ F

Figure 4 Power Supply Current and Oscillator Hold Voltage Test Circuit

Note: Include the capacitor C3 when 1/3 bias LCD drive is used.

Figure 6 Oscillator Start Voltage, Oscillator Start Time, Power Supply Current and Oscillator Hold Voltage Test Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1997. Specifications and information herein are subject to change without notice.