

Single Chip Electronic Volume and Tone Control System

Overview

The LC75397 is an electronic volume control system providing control over volume, balance, 4-band equalizer, bass, and input switching based on serial inputs.

Functions

• Volume control:

The chip provides 81 levels of volume attenuation: in 1-dB step between 0 dB and -79 dB and $-\infty$.

This circuit can control a total of 5 independent channels.

• Equalizer:

The chip provides control in 2-dB steps over the range between +10 dB and -10 dB. Three of the four bands have peaking equalization; the remaining one, shelving equalization.

· Selector:

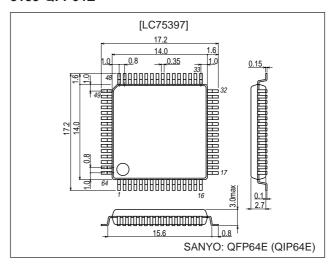
The left and right channels each offer a choice of six inputs. The L6 and R6 inputs can be turned on and off independently. An external constant determines the amplification for the input signal.

• Input gain:

The input signal can be amplified by 0 to +30 dB in 2-dB steps.

· Bass control:

The bass can be controlled over a ± 10 dB range in 2-dB steps.


Features

- Built-in buffer amplifiers reduce the number of external parts required.
- Silicon gate CMOS process reduces the noise of built-in switch.
- Built-in analog ground reference voltage generator circuit
- All functions are controlled by serial input data. This IC supports the CCB standard.

Package Dimensions

unit: mm

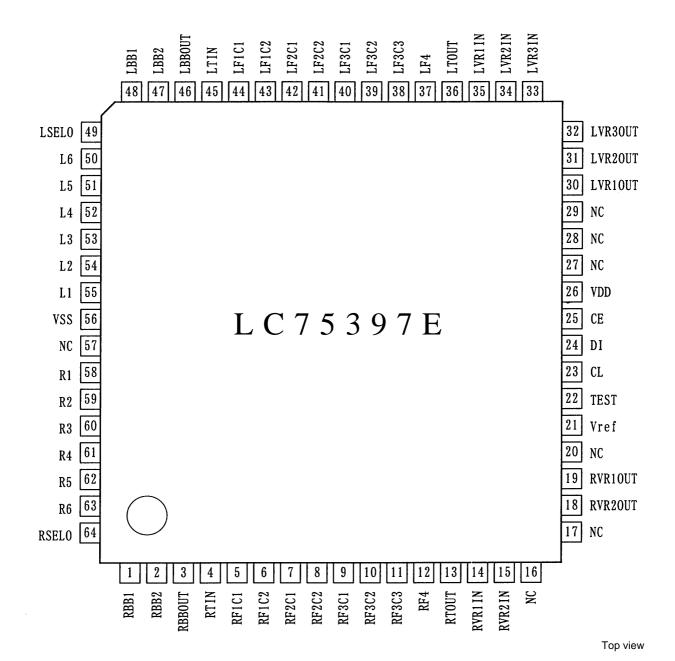
3159-QFP64E

- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained berain

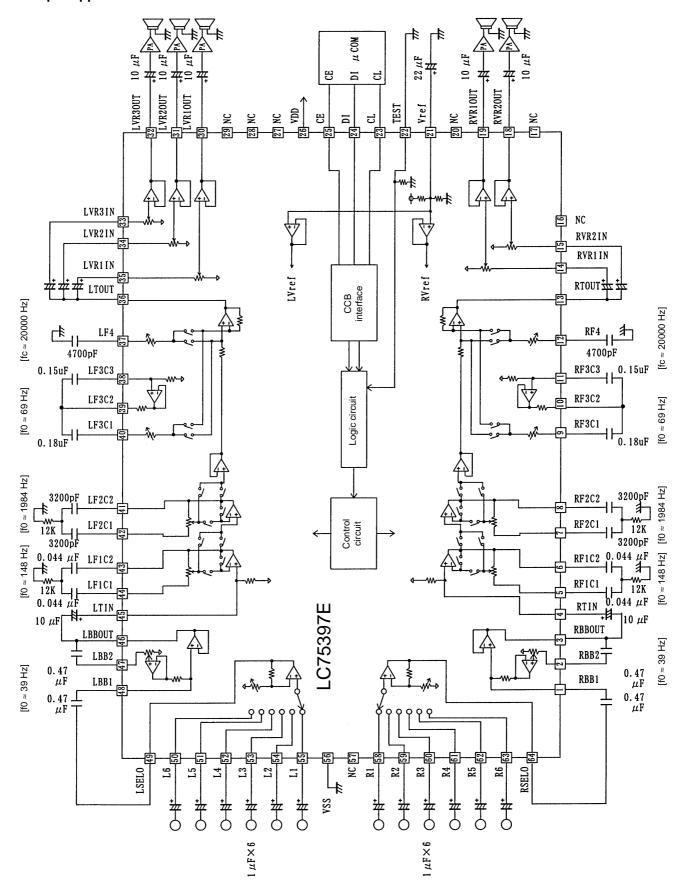
Specifications Absolute Maximum Ratings at $Ta=25^{\circ}C,\,V_{SS}=0~V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	11	V
Maximum input voltage	V _{IN} max	CL, DI, CE, L1 to L6, R1 to R6, LTIN, RTIN, LVR1IN, RVR1IN, LVR2IN, RVR2IN, LVR3IN	$V_{SS} - 0.3 \text{ to}$ $V_{DD} + 0.3$	V
Allowable power dissipation	Pd max	Ta ≤ 75°C, with PC board*	1000	mW
Operating temperature	Topr		-30 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

Note: * Printed circuit board size: 76.1 × 114.3 × 1.6 mm, printed circuit board material: glass/Epoxy resin

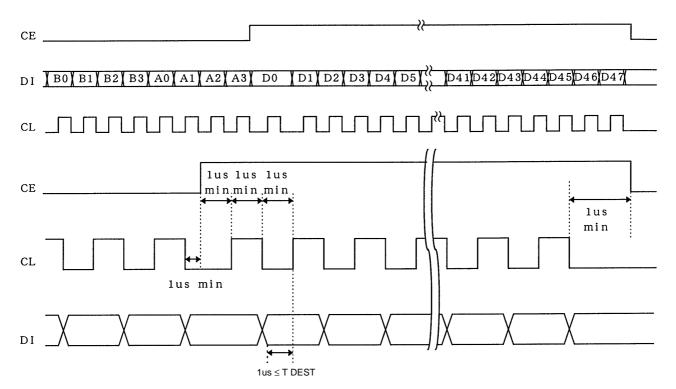

Allowable Operating Ranges at $Ta=-30\ to+75^{\circ}C,\,V_{SS}=0\ V$

Parameter	Symbol	Symbol Conditions		Ratings			
Falametei	Symbol	Conditions	min	typ	max	Unit	
Supply voltage	V_{DD}	V _{DD}	6.0		10.5	V	
Input high level voltage	V _{IH}	CL, DI, CE	4.0		V _{DD}	V	
Input low level voltage	V _{IL}	CL, DI, CE	V _{SS}		1.0	V	
Input voltage amplitude	V _{IN}	CL, DI, CE, L1 to L6, R1 to R6, LTIN, RTIN, LVR1IN, RVR1IN, LVR2IN, RVR2IN, LVR3IN	V _{SS}		V _{DD}	Vp-p	
Input pulse width	t _{øW}	CL	1.0			μs	
Setup time	t _{SETUP}	CL, DI, CE	1.0			μs	
Hold time	t _{HOLD}	CL, DI, CE	1.0			μs	
Operating frequency	fopg	CL			500	kHz	


Electrical Characteristics at $Ta=25^{\circ}C,\,V_{DD}=10~V,\,V_{SS}=0~V$

Da sa sa atau	0	Our distance		Ratings		Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
[Input block]			•			•
Input resistance	Rin	L1 to L6, R1 to R6		50		kΩ
Clipping level	Vcl	LSELO, RSELO: THD = 1.0%		3.00		Vrms
Output load resistance	R _L	LSELO, RSELO	10			kΩ
[Volume control block]						
Input resistance	Rin	LVR1IN, RVR1IN, LVR2IN, RVR2IN, LVR3IN		50		kΩ
[Bass control block]						
Control range	Geq	Max, boost/cut	±8	±10	±12	dB
Step resolution	Estep		1	2	3	dB
	Rbb1			1.3		1.0
Internal feedback resistance	Rbb2			58		kΩ
[F1/F2 band equalizer control block]			•			•
Control range	Geq	Max. boost/cut	±8	±10	±12	dB
Step resolution	Estep		1	2	3	dB
Internal feedback resistor	Rfeed		31	51.8	73	kΩ
[F3/F4 band equalizer control block]			<u>'</u>			•
Control range	Geq	Max. boost/cut	±8	±10	±12	dB
Step resolution	Estep		1	2	3	dB
Internal feedback resistor	Rfeed		17	28	39	kΩ
[Overall characteristics]			<u>'</u>			
Total harmonic distortion	THD	V _{IN} = 1 Vrms, f = 1 kHz, with all controls flat overall			0.01	%
Crosstalk	СТ	$V_{\text{IN}} = 1 \text{ Vrms, } f = 1 \text{ kHz, with all controls flat overall,} \\ Rg = 1 \text{ k}\Omega$	80			dB
Output noise voltage	V _N 1	With all controls flat overall, 80 kHz, L.P.F		10.2		μV
Output hoise voltage	V _N 2	Bass band = +10dB, With all controls overall, 80 kHz, L.P.F		10.6		μV
Output at maximum attenuation	V _O min	With all controls flat overall		-90		dB
Current drain	I _{DD}	$V_{DD} - V_{SS} = 10.5 \text{ V}$		58		mA
Input high level current	I _{IH}	CL, DI, CE, V _{IN} = 10.5 V			10	μA
Input low level current	I _{IL}	CL, DI, CE, V _{IN} = 0 V	-10			μA

Pin Assignment



Sample Application Circuit

Control System Timing and Data Formats

To control the LC75397E, specified sequences are required to be input through the pins CE, CL, and DI. Each sequence consists of 48 bits: an 8-bit address followed by 56 bits of data.

1. Address Code (B0 to A3)

This product uses an 8-bit address code, and supports the same specifications as other Sanyo CCB serial bus products.

Address code (LSB)

	В0	B1	B2	В3	A0	A1	A2	A3	
į	0	1	0	0	0	0	0	1	(82HEX)

2. Control Code Allocations

Input switching control (L1, L2, L3, L4, L5, R1, R2, R3, R4, R5)

D0	D1	D2	Ор	eration
0	0	0	L1 (R1)	ON
1	0	0	L2 (R2)	ON
0	1	0	L3 (R3)	ON
1	1	0	L4 (R4)	ON
0	0	1	L5 (R5)	OFF
1	0	1	Switch all	OFF
0	1	1	Switch all	OFF
1	1	1	Switch all	OFF

Input switching control (L6, R6)

D3	Operation				
1	L6 (R6)	OFF			
0	L6 (R6)	ON			

Input gain control

D4	D5	D6	D7	Operation
0	0	0	0	0 dB
1	0	0	0	+2 dB
0	1	0	0	+4 dB
1	1	0	0	+6 dB
0	0	1	0	+8 dB
1	0	1	0	+10 dB
0	1	1	0	+12 dB
1	1	1	0	+14 dB
0	0	0	1	+16 dB
1	0	0	1	+18 dB
0	1	0	1	+20 dB
1	1	0	1	+22 dB
0	0	1	1	+24 dB
1	0	1	1	+26 dB
0	1	1	1	+28 dB
1	1	1	1	+30 dB

Bass and 4-band equalizer control

D8	D9	D10	D11	Bus
D12	D13	D14	D15	f1 band
D16	D17	D18	D19	f2 band
D20	D21	D22	D23	f3 band
D24	D25	D26	D27	f4 band
1	0	1	0	+10 dB
0	0	1	0	+8 dB
1	1	0	0	+6 dB
0	1	0	0	+4 dB
1	0	0	0	+2 dB
0	0	0	0	0 dB
1	0	0	1	−2 dB
0	1	0	1	−4 dB
1	1	0	1	−6 dB
0	0	1	1	–8 dB
1	0	1	1	-10 dB

Volume control

D28	D29	D30	D31	D32	D33	D34	D35	Operation
0	0		0		0			0 dB
		0		0		0	0	
1	0	0	0	0	0	0	0	−1 dB
0	1	0	0	0	0	0	0	−2 dB
1	1	0	0	0	0	0	0	-3 dB
0	0	1	0	0	0	0	0	-4 dB
1	0	1	0	0	0	0	0	−5 dB
0	1	1	0	0	0	0	0	−6 dB
1	1	1	0	0	0	0	0	-7 dB
0	0	0	1	0	0	0	0	-8 dB
1	0	0	1	0	0	0	0	−9 dB
0	1	0	1	0	0	0	0	-10 dB
1	1	0	1	0	0	0	0	-11 dB
0	0	1	1	0	0	0	0	-12 dB
1	0	1	1	0	0	0	0	-13 dB
0	1	1	1	0	0	0	0	-14 dB
1	1	1	1	0	0	0	0	-15 dB
0	0	0	0	1	0	0	0	-16 dB
1	0	0	0	1	0	0	0	–17 dB
0	1	0	0	1	0	0	0	–18 dB
1	1	0	0	1	0	0	0	–19 dB
0	0	1	0	1	0	0	0	–20 dB
1	0	1	0	1	0	0	0	–21 dB
0	1	1	0	1	0	0	0	–22 dB
1	1	1	0	1	0	0	0	–23 dB
0	0	0	1	1	0	0	0	–24 dB
1	0	0	1	1	0	0	0	–25 dB
0	1	0	1	1	0	0	0	–26 dB
1	1	0	1	1	0	0	0	–27 dB
0	0	1	1	1	0	0	0	–28 dB
1	0	1	1	1	0	0	0	–29 dB
0	1	1	1	1	0	0	0	–30 dB
1	1	1	1	1	0	0	0	–31 dB
0	0	0	0	0	1	0	0	–32 dB
1	0	0	0	0	1	0	0	–33 dB
0	1	0	0	0	1	0	0	–34 dB
1	1	0	0	0	1	0	0	–35 dB
0	0	1	0	0	1	0	0	–36 dB
1	0	1	0	0	1	0	0	–37 dB
0	1	1	0	0	1	0	0	–38 dB
1	1	1	0	0	1	0	0	-39 dB
0	0	0	1	0	1	0	0	–40 dB
1	0	0	1	0	1	0	0	–41 dB
0	1	0	1	0	1	0	0	–42 dB
1	1	0	1	0	1	0	0	–43 dB
0	0	1	1	0	1	0	0	–44 dB
1	0	1	1	0	1	0	0	–45 dB
0	1	1	1	0	1	0	0	–46 dB
1	1	1	1	0	1	0	0	–47 dB
0	0	0	0	1	1	0	0	–48 dB
1	0	0	0	1	1	0	0	–49 dB
0	1	0	0	1	1	0	0	–50 dB

Continued on next page.

Continued from preceding page.

D28	D29	D30	D31	D32	D33	D34	D35	Operation
1	1	0	0	1	1	0	0	–51 dB
0	0	1	0	1	1	0	0	–52 dB
1	0	1	0	1	1	0	0	–53 dB
0	1	1	0	1	1	0	0	–54 dB
1	1	1	0	1	1	0	0	–55 dB
0	0	0	1	1	1	0	0	–56 dB
1	0	0	1	1	1	0	0	–57 dB
0	1	0	1	1	1	0	0	–58 dB
1	1	0	1	1	1	0	0	–59 dB
0	0	1	1	1	1	0	0	-60 dB
1	0	1	1	1	1	0	0	−61 dB
0	1	1	1	1	1	0	0	−62 dB
1	1	1	1	1	1	0	0	-63 dB
0	0	0	0	0	0	1	0	-64 dB
1	0	0	0	0	0	1	0	−65 dB
0	1	0	0	0	0	1	0	-66 dB
1	1	0	0	0	0	1	0	–67 dB
0	0	1	0	0	0	1	0	-68 dB
1	0	1	0	0	0	1	0	-69 dB
0	1	1	0	0	0	1	0	–70 dB
1	1	1	0	0	0	1	0	–71 dB
0	0	0	1	0	0	1	0	–72 dB
1	0	0	1	0	0	1	0	-73 dB
0	1	0	1	0	0	1	0	-74 dB
1	1	0	1	0	0	1	0	–75 dB
0	0	1	1	0	0	1	0	–76 dB
1	0	1	1	0	0	1	0	–77 dB
0	1	1	1	0	0	1	0	–78 dB
1	1	1	1	0	0	1	0	-79 dB
0	0	0	0	1	0	1	0	

Channel selection control

D36	D37	Operation
0	0	Initial setting
1	0	Righ channel
0	1	Left channel
1	1	Simulataneous left and right

Volume 1 control

D38	Operation
0	Control off
1	Control enabled

Right channel control is enabled when D36 is set to 1. Left channel control is enabled when D37 is set to 1.

Volume 2 control

D39	Operation	
0	Control off	
1	Control enabled	

Right channel control is enabled when D36 is set to 1. Left channel control is enabled when D37 is set to 1.

Volume 3 control

D40	Operation	
0	Control off	
1	Control enabled	

Control of this function is enabled when D37 is set to 1.

Test mode control

D41	D42	D43	D44	D45	D46	D47
0	0	0	0	0	0	0
These hits are for chin testing and must all he set to 0 in application systems						

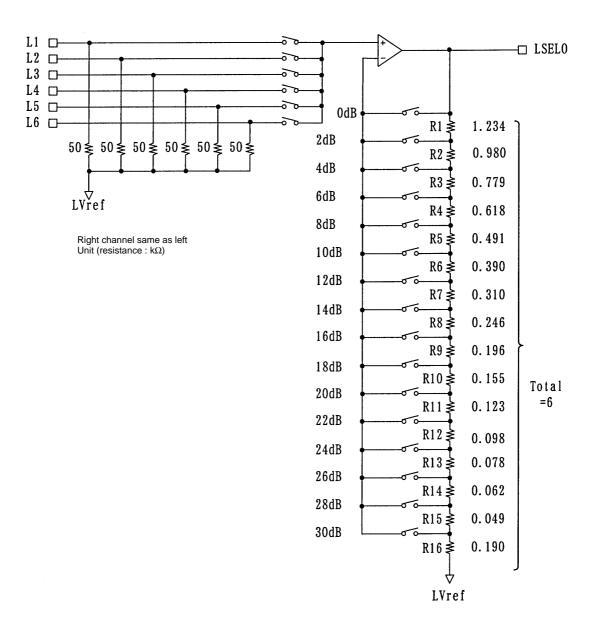
Pin Functions

Pin No.	Pin	Function	Equivalent circuit
55	L1		
54	L2		
53	L3		
52	L4		
51	L5		VDD 🙀
50	L6		
58	R1	Signal inputs	Ln SELO
59	R2		_ *
60	R3		
61	R4		Rn Svref 777
62	R5		
63	R6		777
03	110		
49	LSELO		
64	RSELO	Input selector outputs	
04	NOLLO		
			VDD
			VDD ★ BB2
			, T
48	LBB1		
47	LBB2		
1	RBB1		
2	RBB2	Bass circuit inputs and outputs	VDD Wref
46	LBBOUT		γ VDD
3	RBBOUT		BB1 BBOUT
			T
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			<i>""</i>
			VDD
45	LTIN	Equalizer inputs	γ VDD
4	RTIN		TIN A TIN
			│
			* *
14	LF1C1		
44			Vref ₩ / //
43	LF1C2	Connections for the resistors and capacitors that form the F1 band equalizer.	
5	RF1C1	paria equalizer.	<u> </u>
6	RF1C2		VDD VDD
			l l
42	LF2C1		FnC1
42	LF2C1 LF2C2	Constitution for the resistance of the state	▎
7	RF2C1	Connections for the resistors and capacitors that form the F2 band equalizer.	FnC2 ★
8	RF2C1 RF2C2		
0	RF2U2		,,,

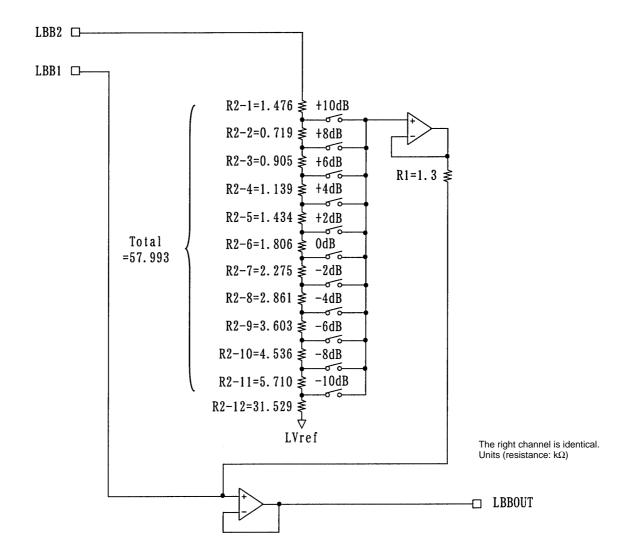
Continued on next page.

Continued from preceding page.

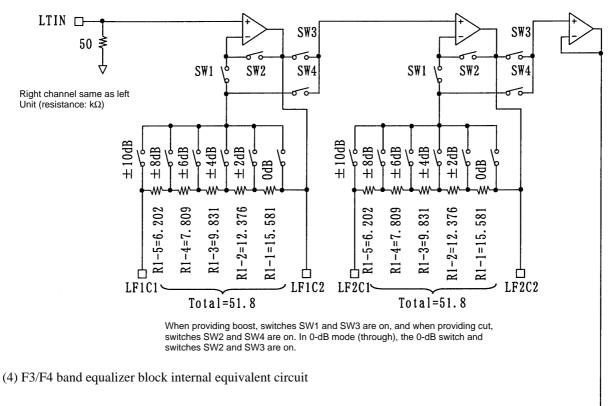
Pin No.	Pin	Function	Equivalent circuit
			VDD
37	LF4	Connections for the capacitors that form the equqlizer F4 band filters	<u> </u>
12	RF4	Connections for external capacitors	
		Connections for external capacitors	
			
40 39 38 9 10 11	LF3C1 LF3C2 LF3C3 RF3C1 RF3C2 RF3C3	Connections for the resistors and capacitors that form the F3 band equalizer.	VDD F3C1 VDD F3C2 VDD F3C3 VDD VDD VDD VDD VDD VDD VDD VDD VDD V
36 13	LTOUT RTOUT	Connections for the resistors and capacitors that form the F3 band equalizer.	VDUT
	11/5		o VDD
35 34	LVR1IN LVR2IN	Left channel volume input 1 Left channel volume input 2	1
33	LVR2IN LVR3IN	Left channel volume input 2 Left channel volume input 3	 _
14	RVR1IN	Right channel volume input 1	<u> </u>
15	RVR2IN	Right channel volume input 2	* //
		<u> </u>	"'
32	LVR3OUT	Left channel volume output 3	VDD
31	LVR2OUT	Left channel volume output 3 Left channel volume output 2	TAN OUT
30	LVR10UT	Left channel volume output 1	VRn0UT ▼
18	RVR2OUT	Right channel volume output 2	
19	RVR10UT	Right channel volume output 1	
			7/17

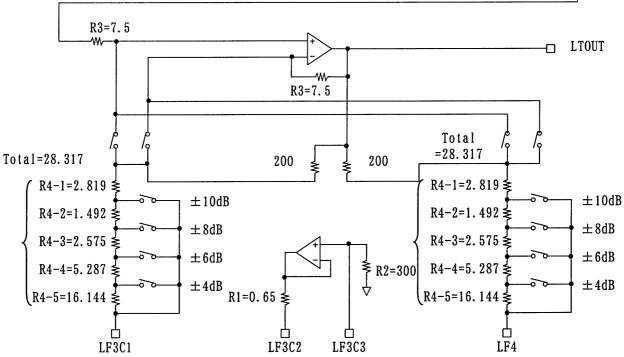

Continued on next page.

Continued from preceding page.

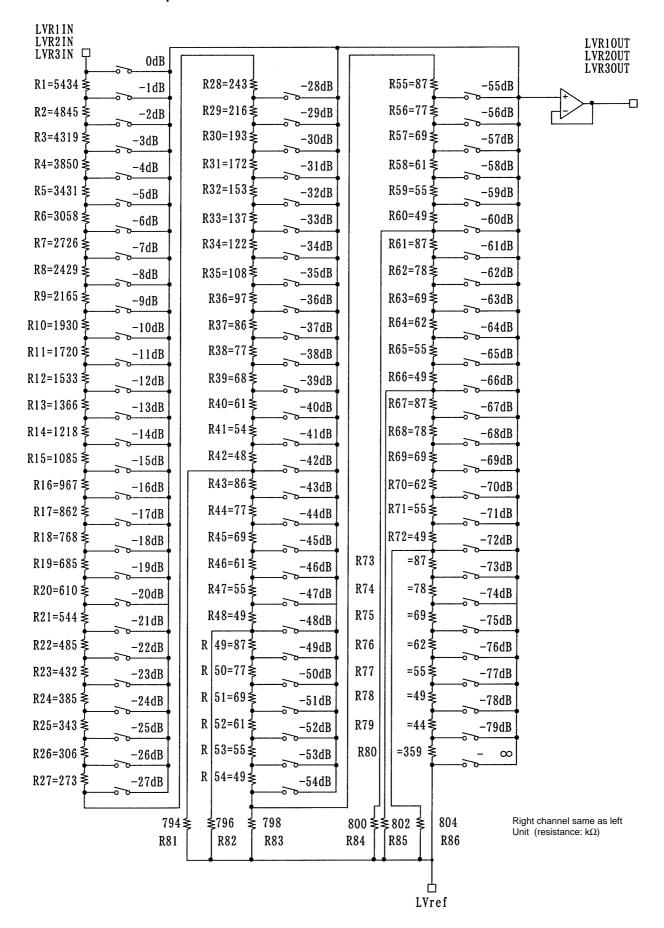

Pin No.	Pin	Function	Equivalent circuit
21	Vref	• A capacitor with a value of a few tens of μF must be inserted between Vref and AV _{SS} (V _{SS}) to reduce power supply ripple in the 0.5 \times V _{DD} voltage generator block used for analog ground.	Vref WDD
56	V _{SS}	Ground	
26	V _{DD}	Power supply	
25	CE	Chip enable When this pin goes from high to low, data is written to an internal latch and the analog switches operate. Data transfers are enables when this pin is at the high level.	VDD
24 23	DI CL	Serial data and clock inputs for chip control	1 /17
22	TEST	Electronic volume control test pin. This pin must be held at the V _{SS} potential.	VDD
16 17 20 27 28 29 57	NC	Unused pins. These pins must either be left open or connected to V _{SS} .	

Equivalent Circuit Diagram

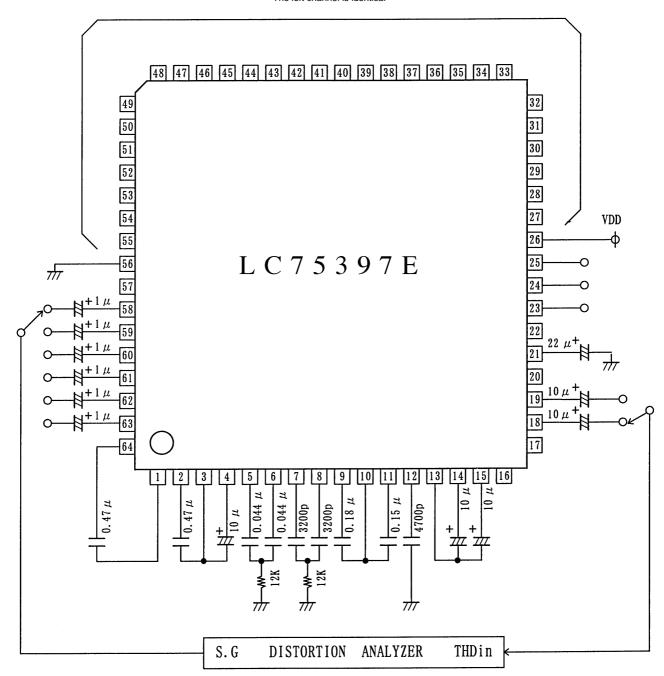

(1) Selector Control Block



(2) Bass control block internal equivalent circuit

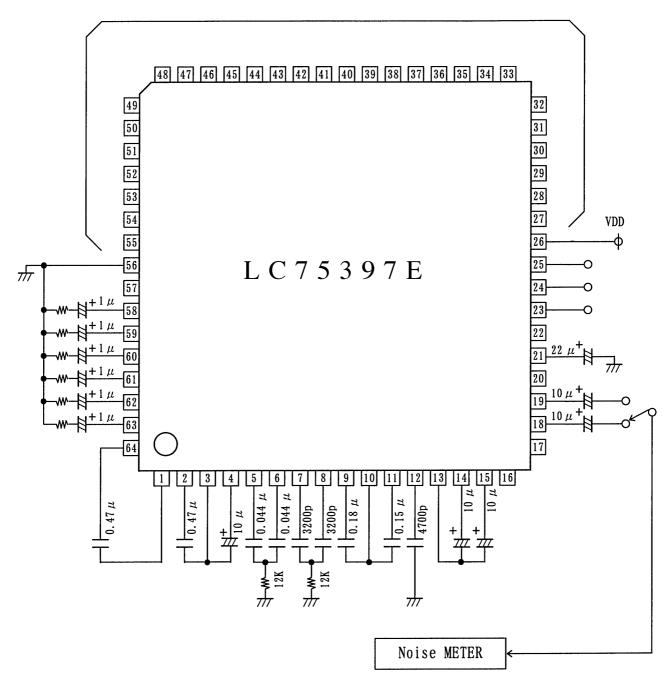

(3) F1/F2 band equalizer block internal equivalent circuit

Right channel same as left Unit (resistance: $k\Omega$)


Volume block internal equivalent circuit

Test Circuits

Total Harmonic Distortion


The left channel is identical

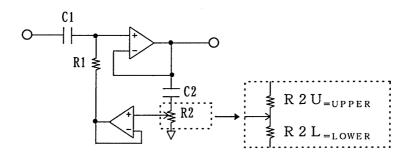
Unit (capacitance : F)

Output Noise Voltage

The left channel is identical

Unit (resistance : Ω , capacitance : F)

Crosstalk


The left channel is identical 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 30 29 28 27 VDD ф. LC75397E 0.044μ 0.15μ 0.18μ $0.47 \,\mu$ + 77 10 m 0.044 7/7 S.G Volt **METER**

Unit (resistance : Ω , capacitance : F)

External Capacitor Calculations

1. Bass circuit

The value of the external capacitor used by the LC75397E bass control can be calculated as shown in the example below.

Sample calculation: For a center frequency f0 of 39 Hz

Substitute the LC75397E internal resistors R1 and R2 shown below into the above formula.

This allows the value of the capacitor, C, to be calculated.

$$R1 = 1.3 \text{ k}\Omega$$

$$R2 = 57.993 \text{ k}\Omega$$

Assume C1 = C2 = C.

$$C = \frac{1}{2\pi f 0 \sqrt{R1R2}}$$

$$C = \frac{1}{2\pi \times 39 \times \sqrt{1300 \times 58000}} \neq 0.47 \ \mu F$$

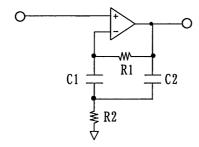
Formula for calculating the gain:

$$R1 = 1.3 \text{ k}\Omega$$

$$R2U = 1.476 \text{ k}\Omega$$

$$R2L = 56.517 \text{ k}\Omega$$

$$G = \sqrt{(\frac{R1}{R1 + R2U})^2 + (\frac{R1 (R2U + R2L)}{(R1 + R2U)\sqrt{R1 (R2U + R2L)}})^2} = 3.16 = 10 dB$$


Formula for calculating Q:

$$Q = \sqrt{\frac{R1 \left(R2U + R2L\right)}{\left(R1 + R2U\right)\sqrt{R1 \left(R2U + R2L\right)}}} \neq G$$

2. F1/F2 band circuits

This section presents the equivalent circuit and the formulas used to calculate the external resistor and capacitor values to provide a center frequency of 148 Hz.

• F1/F2 band equivalent circuit

• Sample calculation

Specifications: Center frequency: f0 = 148 Hz

Gain at maximum boost: $G_{+10dB} = 10 \text{ dB}$ Assume $R1 = 51.8 \text{ k}\Omega$ and C1 = C2 = C.

(1) Determine R2 from the specification that $G_{+10dB} = 10 \text{ dB}$.

$$G_{+10dB}=20\times LOG_{10}\left(1+\frac{R1}{2R2}\right)$$

$$R2 = \frac{R1}{2(10G + 10dB/20 - 1)} = \frac{51800}{2 \times (3.162 - 1)} = 11979.7 \neq 12 \text{ k}\Omega$$

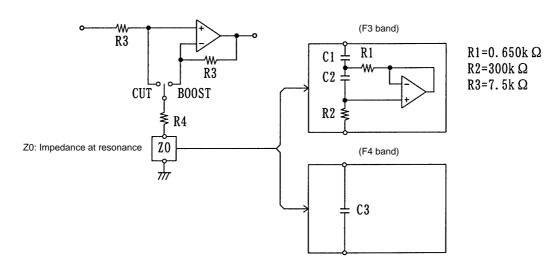
(2) Determine C from the specification that the center frequency f0 = 148 Hz.

$$f0 = \frac{1}{2\pi f \sqrt{R1R2C1C2}}$$

$$C = \frac{1}{2\pi f 0 \sqrt{R1R2}} = \frac{1}{2\pi \times 148 \sqrt{51800 \times 12000}} = 0.0431 \times 10^{-6} \neq 0.044 \ \mu F$$

(3) Determine Q.

$$Q = \frac{C \cdot C \cdot R1}{2C} \cdot \frac{1}{\sqrt{R1R2CC}} = \frac{51800}{2\sqrt{51800 \times 12000}} = 1.039$$


3. F3/F4 band circuits

The F3 band circuit supports peaking characteristics and the F4 band circuit supports shelving characteristics.

(1) Peaking characteristics (F3 band)

The external capacitor is used to construct a simulated inductor. This section presents the equivalent circuit and the formulas for determining the desired center frequency.

(a) Simulated inductor equivalent circuit

(b) Sample calculation

Specifications: 1) Center frequency: f0 = 107 Hz

2) Q at maximum boost: $Q_{+10dB} = 0.8$

(1) Determine the sharpness, Q0, of the simulated inductor itself.

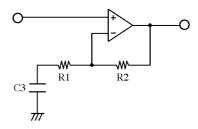
$$Q_0 = (R1 + R4) / R1 \times Q_{+10dB} \approx 4.270$$

(2) Determine C1.

$$C1 = 1/2\pi f 0R 1Q_0 \approx 0.536 \,(\mu F)$$

(3) Determine C2.

$$C2 = Q_0 / 2\pi f 0 R2 \approx 0.021 \; (\mu F)$$

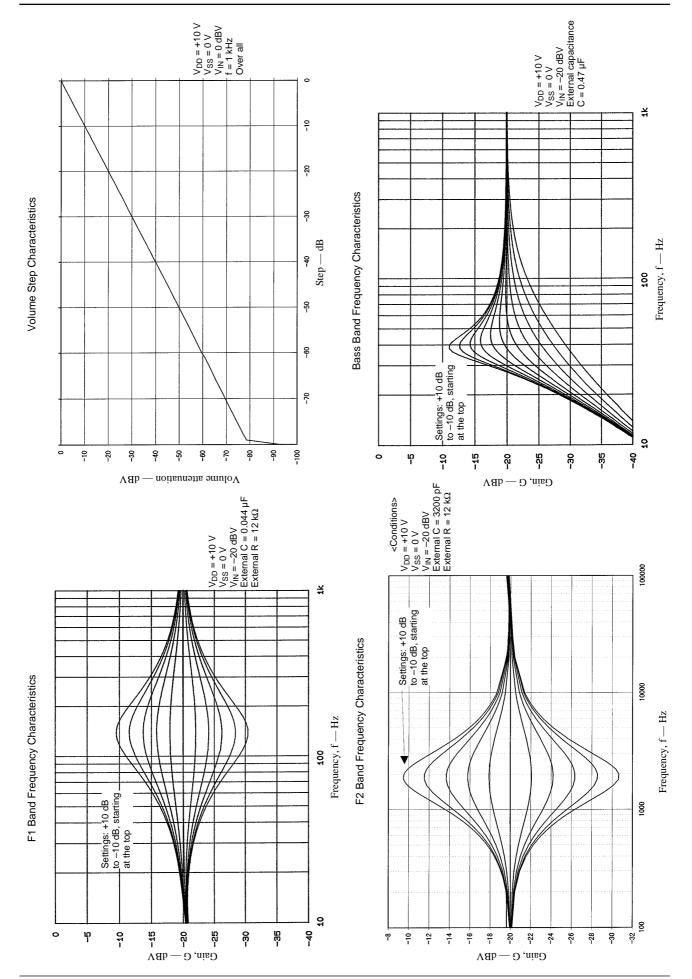

(c) Reference values for C1 and C2

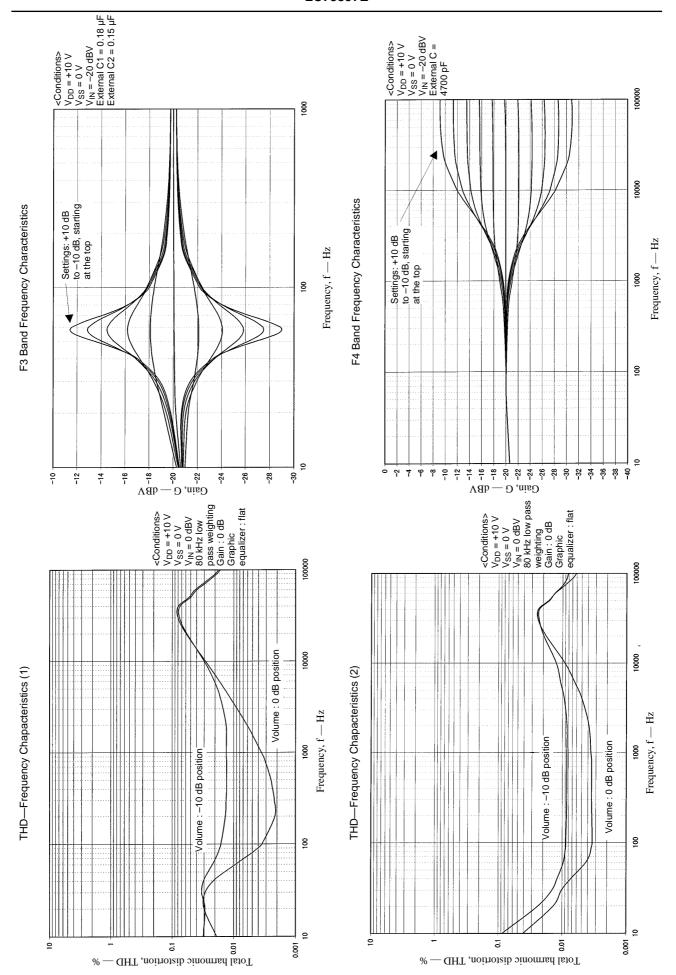
Center frequency f0 (Hz)	C1 (F)	C2 (F)
107	0.536 μ	0.021 µ
340	0.169 μ	6663P
1070	0.054 μ	2117P
3400	0.017 μ	666P

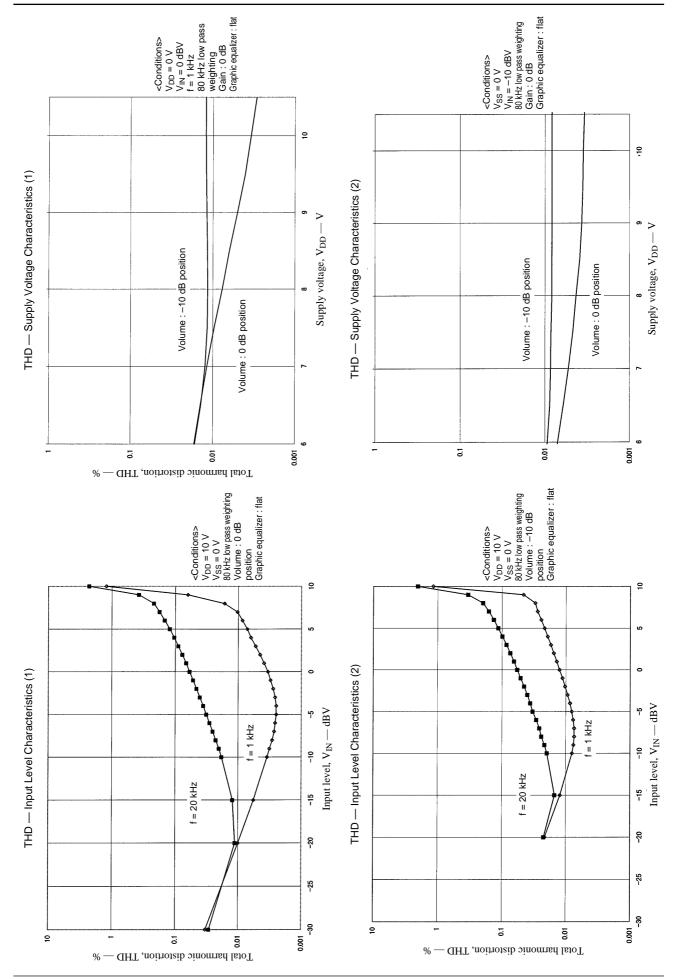
(2) Shelving characteristics (F4 band)

Gains of ± 10 dB (in 2-dB steps) with respect to a target frequency can be achieved by using an external capacitor C3 with a calculated according to the formula F shown below.

Equivalent circuit and formula when boosting.




Sample calculation


$$C = \frac{1}{2\pi f \sqrt{\left(\frac{R2}{10^{G/20} - 1}\right)^2 - R1^2}}$$

$$= \frac{1}{2\pi \times 17000 \sqrt{\left(\frac{7500}{3.16 - 1}\right)^2 - (2819)^2}}$$

$$\neq 4600 \text{ (pF)}$$

Usage Notes

- When the power is first applied, the internal analog switches are in indeterminate states. The chip therefore requires muting or other external measures until it has received the proper data.
- After power is first applied, applications must initialize this chip by sending the initial data (1) and (2) described below.
- Provide grounding patterns or shielding for the lines to the CL, DI, and CE pins so as to prevent their high-frequency digital signals from interfering with the operation of nearby analog circuits.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1999. Specifications and information herein are subject to change without notice.