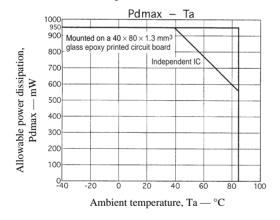
LA1780M

Single-Chip Tuner IC for Car Radios

Overview

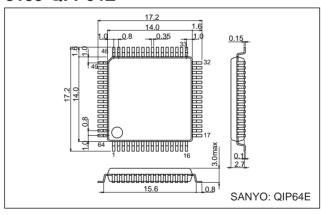

The LA1780M integrates all six blocks required in a car radio tuner on a single chip. The LA1780M is based on the LA1888NM, and features improvements to each of the blocks; improvements designed to provide improved noise characteristics, especially for noise related to multipath, three-signal intermodulation distortion, and two-signal suppression.

Functions

- FM front end
- FM IF
- Noise canceller
- Multiplex
- AM up-conversion
- FM/AM switch
- MRC

Features

- Improved noise reduction methods
 - The FM front end provides excellent 3-signal characteristics equivalent to those of the LA1193M.



- Superlative listenability due to improved medium and weak field noise canceller characteristics.
- Improved separation characteristics
- Anti-birdie filter
- Improved AM and FM thermal characteristics
- Excellent FM signal meter linearity
- Modified N.C. circuit for improved noise rejection
- Double conversion AM tuner (up conversion)
 Reduces the number of external components required as compared to earlier double conversion tuners, in particular, no crystal is required (when used in conjunction with the LC72144).
- Sample-to-sample variation reduction circuit built into the FM IF circuit.
 - (Fixed resistors are used for the SD, keyed AGC, mute on adjustment, ATT, SNC, and HCC functions.)
- Since the LA1780M retains the block structure of the LA1888NM, products using that IC can be easily converted, allowing further end product miniaturization.

Package Dimensions

Unit:mm

3159-QFP64E

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Marrian and the same	V _{CC} 1 max	Pins 6, 40, and 61	9	V
Maximum supply voltage	V _{CC} 2 max	Pins 7, 45, 54, 59, and 60	12	V
Allowable power dissipation	Pd max	Ta ≤ 55°C	950	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Becommended supply voltage	V _{CC}	Pins 6, 7, 40, 45, 54, 59, 60, and 61	8	V
Recommended supply voltage	V _{CC} ST IND	Pin 26	5	V
Operating supply voltage range	V _{CC} op		7.5 to 9.0	V

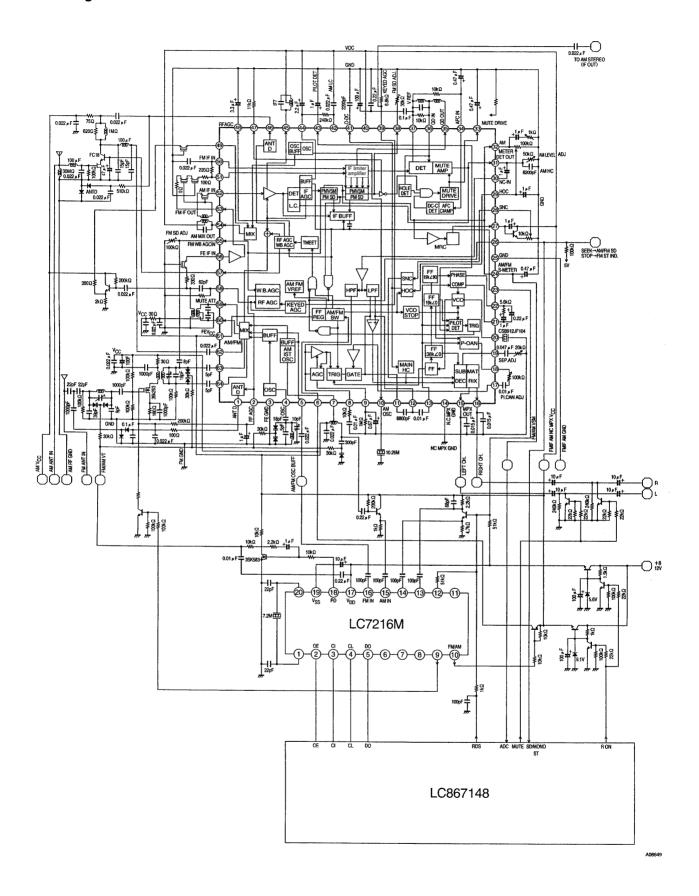
Operating Characteristics. at Ta = 25 $^{\circ}$ C, V_{CC} = 8.0V, in the specified test cricuit for the FM IF input.

5	0 1 1	O IV		Ratings		unit
Parameter	Symbol	Conditions	min	typ	max	unit
[FM Characteristics] At the FM	/ IF input					
Current drain	I _{CCO} -FM	No input, I40 + I45 + I54 + I59 + I60 + I61	60	94	110	mA
Demodulation output	V _O -FM	10.7 MHz, 100dBμ, 1 kHz, 100%mod, The pin 15 output	205	310	415	mVrms
Pin 31 demodulation output	V _O -FM31	10.7 MHz, 100dBμ, 1 kHz, 100%mod, The pin 31 output	190	295	380	mVrms
Channel balance	СВ	The ratio between pins 15 and 16 at 10.7 MHz, 100 dBµ, 1 kHz	-1	0	+1	dB
Total harmonic distortion	THD-FM mono	10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15		0.3	1	%
Signal-to-noise ratio: IF	S/N-FM IF	10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15	75	82		dB
AM suppression ratio: IF	AMR IF	10.7 MHz, 100 dBμ, 1 kHz, f _m = 1 kHz, 30% AM, pin 15	55	68		dB
	Att-1	10.7 MHz, 100 dBµ, 1 kHz. The pin 15 attenuation when V33 goes from 0 to 2 V	5	10	15	dB
Muting attenuation	Att-2	10.7 MHz, 100 dBµ, 1 kHz. The pin 15 attenuation when V33 goes from 0 to 2 V*1	15	20	25	dB
	Att-3	10.7 MHz, 100 dBµ, 1 kHz. The pin 15 attenuation when V33 goes from 0 to 2 V*2	28	33	38	dB
Separation	Separation	10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 output ratio	30	40		dB
Stereo on level	ST-ON	The pilot modulation such that V26 < 0.5 V	1.2	2.4	4.4	%
Stereo off level	ST-OFF	The pilot modulation such that V26 > 3.5 V	0.6	1.6		%
Main total harmonic distortion	THD-Main L	10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 signal		0.3	1.2	%
Pilot cancellation	PCAN	10.7 MHz, 100 dBµ, pilot = 10%. The pin 15 signal/the pilot level leakage. DIN audio	20	30		dB
SNC output attenuation	AttSNC	10.7 MHz, 100 dB μ , L-R = 90%, pilot = 10%. V28 = 3 V \rightarrow 0.6 V, pin 15	1	5	9	dB
	AttHCC-1	10.7 MHz, 100 dB μ , 10 kHz, L+R = 90%, pilot = 10%. V29 = 3 V \rightarrow 0.6 V, pin 15	0.5	4.5	8.5	dB
HCC output attenuation	AttHCC-2	10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. V29 = 3 V → 0.1 V, pin 15	6	10	14	dB
Input limiting voltage	Vi-lim	100 dBµ, 10.7 MHz, 30% modulation. The IF input such that the input reference output goes down by 3 dB	33	40	47	dΒμ
Muting sensitivity	Vi-mute	The IF input level (unmodulated) when V33 = 2 V	27	35	43	dΒμ
SD sensitivity	SD-sen1 FM	The IF input level (unmodulated) (over 100 mV rms) such that the IF counter buffer output goes on	54	62	70	dΒμ
,	SD-sen2 FM		54	62	70	dΒμ
IF counter buffer output	V _{IFBUFF-FM}	10.7 MHz, 100 dBµ, unmodulated. The pin 23 output	220	330	440	mVrms
	V _{SM} FM-1	No input. The pin 24 DC output, unmodulated	0.0	0.1	0.3	V
Cianal mater entent	V _{SM} FM-2	50 dBμ. The pin 24 DC output, unmodulated	0.4	1.0	1.5	V
Signal meter output	V _{SM} FM-3	70 dBµ. The pin 24 DC output, unmodulated	2.0	2.7	3.5	V
	V _{SM} FM-4	100 dBµ. The pin 24 DC output, unmodulated	4.7	5.5	6.2	V
Muting bandwidth	BW-mute	100 dBµ. The bandwidth when V33 = 2 V, unmodulated	100	150	200	kHz
Mute drive output	V _{MUTE-100}	100 dBμ, 0 dBμ. The pin 33 DC output, unmodulated	0.00	0.03	0.20	V

LA1780M

Continued from preceding page.

B	0 1 1	0 199		Ratings		unit
Parameter Symbol		Conditions		typ	max	T unit
[FM FE Mixer Input	•			•		•
N-AGC on input	V _N -AGC	83 MHz, unmodulated. The input such that the pin 2 voltage is 2.0 V or below	80	87	94	dΒμ
W-AGC on input	V _W AGC	83 MHz, unmodulated. The input such that the pin 2 voltage is 2.0 V or below. (When the keyed AGC is set to 4.0 V.)	100	106	112	dBµ
Conversion gain	A.V	83 MHz, 80 dBμ, unmodulated. The FE CF output	19	30	48	mVrms
Oscillator buffer output	Voscbufffm	No input	260	370	480	mVrms
[NC Block] NC input (pin 30)	•					
Gate time	τGATE1	f = 1 kHz, for a 1-µs, 100-mV p-o pulse		55		μs
Noise sensitivity	SN	The level of a 1 = kHz, 1-µs pulse input that starts noise canceller operation. Measured at pin 30.		40		mVp-o
NC effect	SN-NC	The pulse rejection effect provided by the noise canceller. For a repeated 1-µs wide pulse, frequency = 10 kHz, 150 mV p-o. The ratio of the FM mode pin 15 output referenced to the AM mode pin 15 output (effective value)	5			
[Multipath Rejection Circuit] N	MRC input (pin 27)			•		•
MRC output	VMRC	V24 = 5 V	2.2	2.3	2.4	V
MRC operating level	MRC-ON	The pin 32 input level at f = 70 kHz such that pin 24 goes to 5 V and pin 27 goes to 2 V	10	15	20	mVrms
[AM Characteristics] AM ANT	input			•	•	•
Practical sensitivity	S/N-30	1 MHz, 30 dBμ, f _m = 1 kHz, 30% modulation, pin 15	20			dB
Detector output	V _O -AM	1 MHz, 74 dBμ, f _m = 1 kHz, 30% modulation, pin 15	85	120	170	mVrms
Pin 31 detector output	V _O -AM31	1 MHz, 74 dBμ, f _m = 1 kHz, 30% modulation, pin 31	75	110	150	mVms
AGC F.O.M.	V _{AGC-FOM}	1 MHz, 74 dBµ, referenced to the output, the input amplitude such that the output falls by 10 dB. Pin 15	56	61	66	dB
Signal-to-noise ratio	S/N-AM	1 MHz, 74 dBμ, f _m = 1 kHz, 30% modulation	47	52		dB
Total harmonic distortion	THD-AM	1 MHz, 74 dBμ, f _m = 1 kHz, 80% modulation		0.3	1	%
Signal meter output	V _{SM} AM-1	No input	0.0	0.2	0.5	V
Olgilai meter output	V _{SM} AM-2	1 MHz, 130 dBµ, non mod	3.8	4.8	6.2	V
Oscillator buffer output	V _{OSCBUFF AM1}	No input, the pin 5 output	185	230		mVrms
Wide band AGC sensitivity	W-AGCsen1	1.4 MHz, the input when V46 = 0.7 V	83	89	95	dΒμ
Wide Dalid AGO Schishivity	W-AGCsen2	1.4 MHz, the input when V46 = 0.7 V (seek mode)	74	80	86	dΒμ
SD sensitivity	SD-sen1 AM	1 MHz, the ANT input level such that the IF counter output turns on.	26	32	38	dΒμ
OD SCHSILLVILY	SD-sen2 AM	1 MHz, the ANT input level such that the SD pin goes to the on state.	26	32	38	dΒμ
IF buffer output	V _{IFBUFF-AM}	1 MHz, 74 dBμ, unmodulated. The pin 23 output	200	290		mVrms


Note: These measurements must be made using the either the IC-51-0644-824 or KS8277 IC socket (manufactured by Yamaichi Electronics). * 1. When the resistor between pin 58 and ground is $200 \text{ k}\Omega$. * 2. When the resistor between pin 58 and ground is $30 \text{ k}\Omega$.

LA1780M

Test Conditions

						Switch	states				
Parameter	Symbol	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8	SW9	SW10
Current drain	I _{CCO} -FM	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Demodulation output	V _O -FM	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Pin 31 demodulation output	V _O -FM31	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Channel balance	СВ	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Total harmonic distortion	THD-FMmono	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Signal-to-noise ratio: IF	S/N-FM IF	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
AM suppression ratio: IF	AMR IF	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Muting attenuation 1	Att-1	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Muting attenuation 2	Att-2	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Muting attenuation 3	Att-3	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Separation	Separation	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Stereo on level	ST-ON	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Stereo off level	ST-OFF	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Main total harmonic distortion	THD-Main L	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Pilot cancellation	PCAN	ON	b	OFF	b	_	ON	OFF	OFF	OFF/ON	_
SNC output attenuation	AttSNC	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
HCC output attenuation 1	AttHCC-1	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
HCC output attenuation 2	AttHCC-2	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
Input limiting voltage	Vi-lim	ON	b	OFF	b	_	ON	OFF	OFF	ON	ON
Muting sensitivity	Vi-mute	ON	b	OFF	b	_	ON	OFF	OFF	ON	_
SD sensitivity 1	SD-sen1 FM	ON	b	OFF	b	OFF	OFF	OFF	OFF	ON	_
SD sensitivity 2	SD-sen2 FM	ON	b	OFF	b	ON	OFF	OFF	OFF	ON	_
IF counter buffer output	V _{IFBUFF-FM}	ON	b	OFF	b	OFF	OFF	OFF	OFF	ON	
Signal meter output 1	V _{SM} FM-1	ON	b	OFF	b	_	ON	OFF	OFF	ON	
Signal meter output 2	V _{SM} FM-2	ON	b	OFF	b		ON	OFF	OFF	ON	
Signal meter output 3	V _{SM} FM-3	ON	b	OFF	b		ON	OFF	OFF	ON	
Signal meter output 4	V _{SM} FM-4	ON	b	OFF	b		ON	OFF	OFF	ON	_
Muting bandwidth	BW-mute	ON	b	OFF	b		ON	OFF	OFF	ON	
Mute drive output		ON	b	OFF	b		ON	OFF	OFF	ON	
N-AGC on input	V _{MUTE-100}	ON	а	ON	b	_	ON	OFF	OFF		_
W-AGC on input	V _{NAGC}	ON	a	ON	b	_	ON	OFF	OFF		_
	V _{WAGC}	ON	a	ON	b	_	ON	OFF	OFF		_
Conversion gain		+				_					_
Oscillator buffer output	Voscbufffm	ON	а	ON	b	_	ON	OFF	OFF		_
Gate time 1	τGATE1	ON	_	OFF	a	_	ON	OFF	OFF	_	_
Noise sensitivity	SN	ON	_	OFF	а	_	ON	OFF	OFF	-	_
NC effect	SN-NC	ON/OFF		OFF	a	_	ON	OFF	OFF		_
MRC output	V _{MRC}	ON	_	OFF	b	_	ON	OFF	OFF	_	_
MRC operating level	MRC-ON	ON	_	OFF	b		ON	OFF	OFF		_
Practical sensitivity	S/N-30	OFF	_	OFF	b	ON	ON			-	
Detection output	V _O -AM	OFF	_	OFF	b	ON	ON	_	_	_	
Pin 31 detection output	V _O -AM31	OFF	_	OFF	b	ON	ON				
AGC F.O.M.	V _{AGC-FOM}	OFF	_	OFF	b	ON	ON	_		<u> </u>	
Signal-to-noise ratio	S/N-AM	OFF	_	OFF	b	ON	ON	_			
Total harmonic distortion	THD-AM	OFF	_	OFF	b	ON	ON	_			_
Signal meter output 1	V _{SM} AM-1	OFF		OFF	b	ON	ON				_
Signal meter output 2	V _{SM} AM-2	OFF	_	OFF	b	ON	ON	_			_
Oscillator buffer output	V _{OSCBUFF} AM-1	OFF	_	OFF	b	ON	ON	_	_	_	_
Wide band AGC sensitivity 1	W-AGCsen 1	OFF	_	OFF	b	ON	ON	_	_	_	_
Wide band AGC sensitivity 2	W-AGCsen 2	OFF	_	OFF	b	ON	ON	_			_
SD sensitivity 1	SD-sen1 AM	OFF	_	OFF	b	OFF	OFF		_		_
SD sensitivity 2	SD-sen2 AM	OFF	_	OFF	b	OFF	OFF	_	_	_	_
IF buffer output	V _{IFBUFF-AM}	OFF	_	OFF	b	OFF	OFF	_	_	_	_

Block Diagram

Function List

FM Front End (Equivalent to the Sanyo LA1193)

- Double input type double balanced mixer
- Pin diode drive AGC output
- MOSFET second gate drive AGC output
- Keyed AGC adjustment pin
- Differential IF amplifier
- Wide band AGC sensitivity setting pin, and narrow band AGC sensitivity setting pin
- · Local oscillator

FM IF

- IF limiter amplifier
- S-meter output (also used for AM) 6-stage pickup
- Multipath detection pin (shared FM signal meter)
- Quadrature detection
- AF preamplifier
- AGC output
- Band muting
- Weak input muting
- Soft muting adjustment pin
- Muting attenuation adjustment pin
- IF counter buffer output (also used for AM)
- SD (IF counter buffer on level) adjustment pin
- SD output (active high) (also used for AM)

Noise Canceller

- High-pass filter (first order)
- Delay circuit based low-pass filter (fourth order)
- Noise AGC
- Pilot signal compensation circuit
- Noise sensitivity setting pin
- Function for disabling the noise canceller in AM mode

Multiplex Functions

- Adjustment-free VCO circuit
- Level follower type pilot canceller circuit
- HCC (high cut control)
- Automatic stereo/mono switching
- VCO oscillation stop function (AM mode)
- Forced monaural
- SNC (stereo noise controller)
- Stereo display pin
- Anti-birdie filter

AM

- Double balanced mixer (1st, 2nd)
- IF amplifier
- Detection
- RF AGC (narrow/wide)
- Pin diode drive pin
- IF AGC
- Signal meter output (also used for FM)
- Local oscillator circuits (first and second)
- Local oscillator buffer output
- IF counter buffer output (also used by the FM IF)
- SD (IF counter buffer on level) adjustment pin
- SD output (active high) (also used for AM)
- Wide AGC
- Detection output frequency characteristics adjustment pin (low cut, high deemphasis)
- AM stereo buffer

MRC (multipath noise rejection circuit)

AM/FM switching output (linked to the FM V_{CC})

Pin Descriptions

Pin No.	scriptions Function	Description	Equivalent circuit
1	Antenna damping drive	An antenna damping current flows when the RF AGC voltage (pin 2) reaches V _{CC} -V _D .	ANT
2	RF AGC	Used to control the FET second gate.	VCC 12kΩ 2ND GATE 2ND
3	F.E.GND		
4	osc	Oscillator connection The transistor and capacitors required for the oscillator circuit are integrated on the chip.	18pF 25pF A08580
7	AM OSC	AM first oscillator This circuit can oscillator up to the SW band. An ALC circuit is included.	A L C

Pin No.	Function	Description	Equivalent circuit
8 9	Noise AGC sensitivity AGC adjustment	After setting up the medium field (about 50 dBµ) sensitivity with the noise sensitivity setting pin (pin 8), set the weak field (about 20 to 30 dBµ) sensitivity with the AGC adjustment pin (pin 9)	3kΩ 3kΩ 3kΩ 70.01 μF 1MΩ 200Ω 1MΩ 277 0.47 μF A08582
11 12	Memory circuit connection Memory circuit connection	Recording circuit used during noise canceller operation.	0.01 μ F 6800pF 3.9kΩ 13 12 VCC Differential amp Gate circuit A08583
13	Pilot input	Pin 13 is the PLL circuit input pin.	N.C 777 A08584
14	N.C, MPX, MRC, GND	Ground for the N.C., MPX, and MRC circuits.	

Pin No.	Function	Description	Equivalent circuit
15 16	MPX output (left) MPX output (right)	Deemphasis 50 μs: 0.015 μF 75 μs: 0.022 μF	3.3kΩ 3.3kΩ 3.3kΩ 4 0.015 μ F 0.015 μ F
17	Pilot canceller signal output	Adjustment is required since the pilot signal level varies with the sample-to-sample variations in the IF output level and other parameters.	20kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ
18	Pilot canceller signal output	Pin 18 is the output pin for the pilot canceller signal.	VCC 1.5kΩ 1.5kΩ 1.0kΩ Λ08587

Pin No.	Function	Description	Equivalent circuit
19	Separation adjustment pin	Use <u>a trimmer</u> to adjust the subdecoder input level. (The output level is not modified in mono and main modes.)	Composite $\frac{5k\Omega}{M}$ 19 $\frac{30k\Omega}{M}$ A08588
20	VCO	The oscillator frequency is 912 Hz.	CSB 912 JF104 VREF 10pF
21 22	PHASE COMP. PHASE COMP.		VREF 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ 15kΩ

LA1780M

Continued from preceding page.

Pin No.	rom preceding page. Function	Description	Equivalent circuit
23	IF counter buffer seek/stop switching	This pin functions both as the IF counter buffer (AC output) and as the seek/stop switch pin. The voltage V23 switches between the following three modes. During FM reception: 5 V: Seek mode 2.5 V: Forced SD mode 0 V: Reception mode AM reception (two modes: 0 and 5 V) 5 V: Seek mode 0 V: Reception mode	SD circuit 23 STOP Forced SEEK SD: 2.5 V 5V A08591
24 32	AM/FM signal meter Dedicated FM signal meter	Fixed-current drive signal meter output In AM mode, pin 32 outputs a 1-mA current. Thus the HCC circuit is turned off.	VCC AMM S-meter 10kΩ AM/FM SW Outputs a 1-mA current during AM reception AM/FM SW AM/FM SW AM/FM SW AM/FM SW AM/FM SW
26	Stereo indicator for the SD pin	FM reception: the voltage V23 switches between three modes as follows. 5 V: The SD pin operates linked to the IF counter buffer. 2.5 V: Forced SD mode: operates as the SD pin. 0 V: Reception mode: stereo indicator AM reception: (two modes: 0 and 5 V) 5 V: Operates as the seek SD pin. 0 V: Reception mode. Not used.	AM/FM Stereo indicator Seek/stop switching VDD A08593

Pin No.	Function	Description	Equivalent circuit
27	MRC control voltage time constant	The MRC detector time constant is determined by a 1-k Ω resistor and C2 when discharging and by the 7- μ A current and C2 when charging.	V_{CC} $7 \mu A$ V_{CC} $V_$
28	SNC control input	The sub-output is controlled by a 0 to 1-V input.	VREF 28 A08595
29	HCC control input	The high band frequency output is controlled by a 0 to 1-V input. It can also be controlled by the MRC output. Use a resistor of at least 100 k Ω when controlling with the pin 32 FM S-meter signal.	VCC 10kΩ 777 1 μ F 1kΩ MRC input

Pin No.	rom preceding page. Function	Description	Equivalent circuit
30	Noise canceller input AM/FM detector output	Pin 30 is the noise canceller input. The input impedance is 50 k Ω . Pin 31 is the AM and FM detector output In FM mode, this is a low-impedance output. In AM mode, the output impedance is 10 k Ω . To improve the low band separation, use a coupling capacitor of over 10 μ F.	VCC AM detector output AM AM AM AM AM AM AM AM
32	IF S-meter output and MRC DC input	FM S-meter output block MRC AC input block Adjust the external 1-kΩ resistor to attenuate the MRC AC input and control the circuit.	V _C C 10kΩ 777 1 μ F 11kΩ MRC input
33	Mute drive output	•The muting time constant is determined by an external RC circuit as described below. Attack time: $T_A = 10 \text{ k}\Omega \times \text{C1}$ Release time: $T_R = 50 \text{ k}\Omega \times \text{C1}$ •Noise convergence adjustment The noise convergence can be adjusted when there is no input signal by inserting a resistor between pin 33 and ground. •Muting off function Ground pin 33 through a 4-k Ω resistor.	C1 TZZZ 0.1 μ F SOFT HOLE Band muting SD circuit A08599

Pin No.	rom preceding page. Function	Description	Equivalent circuit
34 35 36 37	AGC QD output QD input V _{REF}	•The resistor R_1 determines the width of the band muting function. Increasing the value of R_1 narrows the band. Reducing the value of R_1 widens the band. •Null voltage When tuned, the voltage between pins 34 and 37, V_{34-37} , will be 0 V. The band muting function turns on when $ V_{34-37} \ge 0.7$ V. $V_{37} = 4.9$ V	O.1 μF VREF R1 VCC Quadrature detector HOLE DET A98603
38	FM SD Adj	A 130-µA current flows from pin 38 and, in conjunction with the external resistance R, determines the comparison voltage.	SD ADJ 130 μ A Comparator S-meter A08601
39	Keyed AGC AM stereo buffer	The keyed AGC operates when the voltage created by dividing the pin 24 S-meter output voltage by the 6.4 and 3.6 kΩ resistors becomes lower than the voltage determined by the resistor between pin 39 and ground. This pin also is used as the AM stereo IF buffer pin.	S-meter 6.4kΩ 3.6kΩ 1.3V VCC AM IF out 50pF 150Ω A08602

Pin No.	Function	Description	Equivalent circuit
41	HCC capacitor	The HCC frequency characteristics are determined by the external capacitor connected at this pin.	20kΩ 20kΩ 20kΩ 41 2200pF
42	AM L.C. pin	This pin is used to change the frequency characteristics of the unneeded audio band under 100 Hz in AM mode to produce a clear audio signal. Note: The LC capacitor must be connected between this pin and V_{CC} (pin 40). This is because the detector circuit operates referenced to V_{CC} . The cutoff frequency f_C is determined by the following formula. $f_C = 1/2\pi \times 50 \text{ k} \times C$	V_{CC} V
43	Pilot detector	Inserting a 1-M Ω resistor between pin 43 and V_{CC} will force the IC to mono mode.	19kHz ∠0° BIAS 30kΩ 30kΩ 1 μ F 777 A08605

Pin No.	Function	Description	Equivalent circuit
44	IF AGC	Q1: Used for time constant switching during seeks. $\tau = 2.2 \ \mu F \times 300 \ k$ • Seek $\tau = 2.2 \ \mu \times 10$ The external capacitors are connected to V _{CC} . This is because the IF amplifier operates referenced to V _{CC} .	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
45	IF output	The IF amplifier load	Pin 40 V _{CC} 45 Pin 40 V _{CC} DET A08607
46	AM antenna damping drive output Wide band AGC input	I46 = 6 mA (maximum) This is the antenna damping current.	VCC VCC WAGC AMP. ANT DAMPING DRIVER A08608

Pin No.	Function	Description	Equivalent circuit
47	FM muting on level adjustment	Modify the value of the external resistor to adjust the muting on level.	30kΩ R 77 VCC 140 μ A Inverter MUTE A08609
48 57	RF AGC bypass RF AGC	RF AGC rectification capacitor The low frequency distortion is determined as follows: Increasing C48 and C57 improves the distortion but makes the response slower. Reducing C48 and C57 aggravates the distortion but makes the response faster.	Solv TokΩ Antenna damping For AGC use 10kΩ Antenna damping For AGC 10kΩ Antenna damping A08610
50 51	IF bypass FM IF input	Due to the high gain of the limiter amplifer, care must be taken when choosing the grounding point for the limiter amplifer input capacitor to prevent oscillation.	2.6V 7 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ A08611
52	IF input	The input impedance is $2 \ k\Omega$.	2kΩ 100Ω 2kΩ 100Ω A08612

LA1780M

Continued from preceding page.

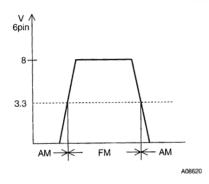
Pin No.	rom preceding page. Function	Description	Equivalent circuit
53 56	IF amplifier output IF amplifier input	• Input and output pin or the first IF amplifier • Inverting amplifier V56 = 2 V Input impedance: R_{IN} = 330 Ω V53 = 5.3 V Output impedance R_{OUT} = 330 Ω	VCC 300Ω 300Ω 300Ω 300Ω A08613
54 49	Mixer output: 130 μA Mixer input	The mixer coil connected to the pin 54 mixer output must be wired to V _{CC} (pin 40). The pin 49 mixer input impedance is 330 Ω	Pin 40 V _{CC} Pin 40 V _{CC} OSC A06614
55 58	W-AGC IN AM SD Adj N-AGC IN Muting attenuation adjustment pin	Pins 55 and 58 include built-in DC cut capacitors. The AGC on level is determined by the values of the capacitors C1 and C2. Pin 55 functions as the SD sensitivity adjustment pin in AM mode. The output current I55 is 50 µA, and V55 varies depending on the value of the external resistor. The SD function operates by comparing V55 with the S-meter voltage.	Pin 62 Vcc Vcc Vcc SopF Mix OUT Signal meter A08616

Pin No.	rom preceding page. Function	Description	Equivalent circuit
59 60 63 64	Mixer output Mixer input	Double balanced mixer Pins 60 and 61 are the mixer 10.7-MHz output Pins 63 and 64 are the mixer input. This is an emitter insertion type circuit, and the amount of insertion is determined by the capacitors C1 and C2. Note:The lines for pins 63 and 64 must be kept separated from the lines for pins 60 and 61.	1ST.IF
6	Front end V _{CC} AM/FM switching	Pin 62 functions both as the FM front end V_{CC} and the AM/FM switching circuit. V6 voltage Mode When 8 V \rightarrow FM OPEN \rightarrow AM	SD 6 VCC 510Ω AM/FM switching circuit FE.F.E AGC 100kΩ 3 GND A08617
62	1st MIX INPUT	First mixer input The input impedance is about 10 $k\Omega$.	To RF Amp. 62 2.1V AM 1st MIX AM6218
10	AM 2nd OSC	Crystal oscillator circuit The Kinseki, Ltd. HC-49/U-S and a C _L of 20 pF must be used.	10kΩ 75.6V 70 2nd MIX 10 X'tal

Usage Notes

1. Notes on V_{CC} and Ground

Pin 40	V _{CC} for the FM IF, AM, NC, MPX, and MRC blocks
Pin 25	Ground for the FM IF and AM blocks
Pin 14	Ground for the NC, MPX, and MRC blocks
Pin 61	V _{CC} for the FM front end, AM first mixer, and first oscillator blocks
* Pin 6	V _{CC} for the FM front end and AGC blocks, and the AM/FM switching pin
Pin 3	Ground for the FM front end, first mixer, and first oscillator blocks


2. Notes on AM Coil Connection

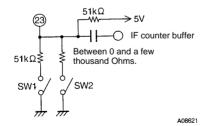
The V_{CC} used for the first oscillator coil connected to pin 7 must be at the same potential as pin 61.

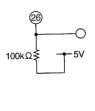
Connect to the IFT connected with pin 45, and to the MIX coil connected with pin 54. V_{CC} must be at the same potential as pin 40.

3. AM/FM Switching

Pin 6 is also used as the FM front end and RF AGC V_{CC}

Pin 6 voltage	Mode
8	FM
OPEN	AM

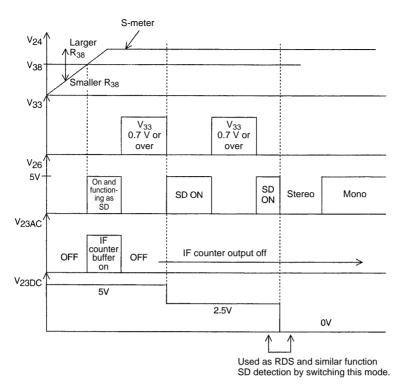

4. Relationship between Pin 23 and Pin 26


• FM mode

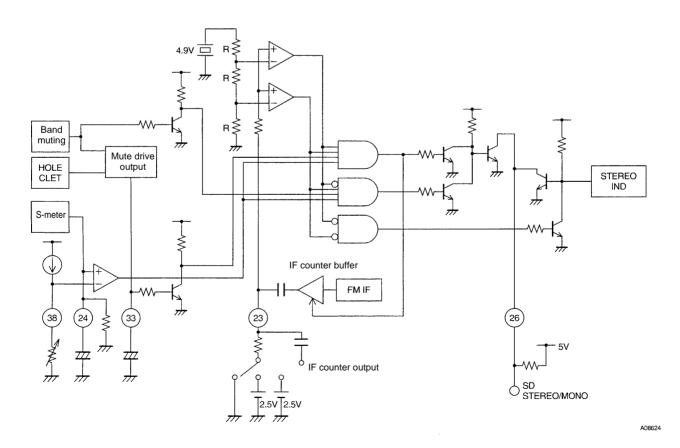
Pin 26 functions as both the stereo indicator and the SD pin.

Pin 23: DC-input seek/stop pin (control pin)

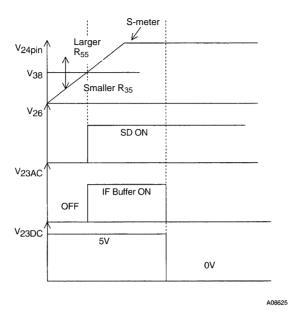
AC output IF counter buffer pin



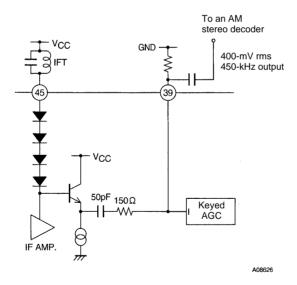
A08622


The Pin 23 Control Function and the Relationship between Pin 23 and Pin 26

SW1	SW2	Pin 23 voltage	Pin 26	Pin 26
OPEN OPEN 5 V		IF counter buffer on	SD	
ON	OPEN	2.5 V	OFF	High-speed SD
_	ON	Under 0.7 V	OFF	Stereo indicator


A08623

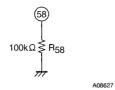
Notes on FM SD


No. 5724-21/34

• AM mode

Pin 55: AM SD Adjustment Pin

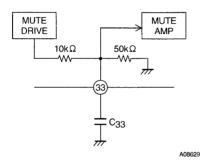
• Pins that support AM stereo

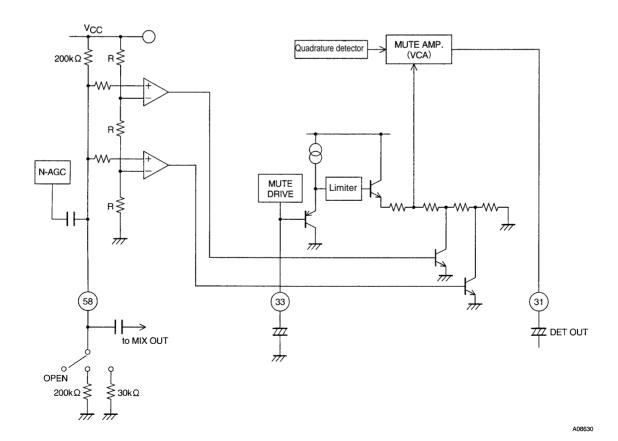

• To attenuate the pin 39 AC level:

Add a capacitor between pin 39 and ground.

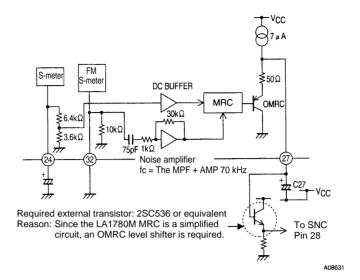
For example, if a capacitor is added between pin 39 and ground, and pin 51 is attached, the AM IF output will be reduced by about 6 dB.

• Notes on the muting attenuation


The resistor between pin 58 and ground switches the muting attenuation to one of three levels, -20, -30, and -40 dB. This is also related to the tuner's total gain.


R	Mute ATT	
OPEN	-20 dB	
200k	-30 dB	
30k	-40 dB	

If R33 is reduced, the attenuation will be reduced as listed in the table above.

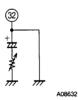


Muting time constants Attack: 10 k \times C33 Release: 50 k \times C33

No. 5724-23/34

• MRC circuit

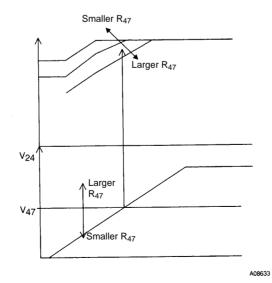
• If there is no AC noise on pin 32:


$$V24 = V27 - V_{BE}$$

$$\uparrow$$

$$Q_{MRC}$$

V27 will be about 2.5 V for an antenna input of 60 dB μ or higher.


• Since the MRC noise amplifier gain is fixed, the MRC circuit is adjusted by reducing the AC input level.

• The MRC circuit attack and release times are determined by the capacitor C27 on pin 27.

Attack: $7 \mu A \times C27$ Release: $500 \Omega \times C27$

5. FM Soft Muting

By comparing the pin 47 mute on adjustment voltage to the S-meter voltage (V24), the muting on point can be adjusted.

• Noise canceller notes

The characteristics of the noise canceller have been improved by implementing the circuit that determines the gate time in logic. In earlier noise canceller circuits, since the time constant was determined with an RC circuit such as the one shown in figure 5, the rise time was influenced by the RC circuit time constant as show in figure 6. This meant that the rise was delayed and the associated switching delay resulted in a reduction of the circuit's ability to exclude noise.

In the LA1780M, the rise time is made shorter by implementing the circuit that determines the gate time in logic. This allows the LA1780M to eliminate noise reliably.

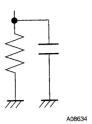


Figure 5

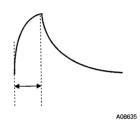


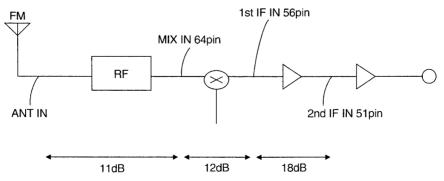
Figure 6

• Gain distribution (FM)

This section analyzes the gain in each of the blocks in the LA1780M when the Sanyo recommended circuit is used.

Test conditions

Ambient temperature: 26°C Antenna and mixer input frequency: 98.1 MHz


First and second IF input frequency: 10.7 MHz

Input levels when VSM = 2 V were measured to be:

Antenna input: $19 \text{ dB}\mu$ Mixer input: $30 \text{ dB}\mu$ First IF input: $42 \text{ dB}\mu$ Second IF input: $60 \text{ dB}\mu$

These values allow the gains in each block to be calculated as follows.

RF gain: 11 dB Mixer gain: 12 dB

A08636

AM

This section analyzes the gain in each of the blocks in the LA1780 when the Sanyo recommended circuit is used.

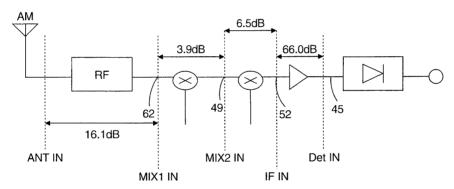
Test conditions

Ambient temperature: 26°C

Antenna and mixer 1 input frequency: 1 MHz

Mixer 2 input frequency: 10.71 MHz

IF and detector input frequencies: 450 kHz

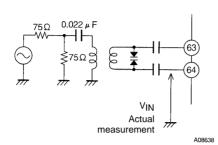

An AM dummy is attached.

When an input level such that the output becomes -35 dBm is determined, the I/O characteristics of each stage were determined to be as follows:

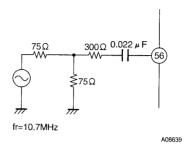
Antenna input: $9.5 \ dB\mu$ Mixer 1 input: $25.6 \ dB\mu$ Mixer 2 input: $29.5 \ dB\mu$ IF input: $36.0 \ dB\mu$ Detector input: $102.0 \ dB\mu$

These values allow the gains in each block to be calculated as follows.

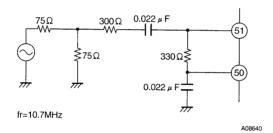
RF gain: 16.1 dB Mixer 1 gain: 3.9 dB Mixer 2 gain: 6.5 dB IF gain: 66.0 dB



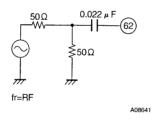
A08637


• Input circuits used at each stage

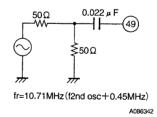
[FM]


Mixer input

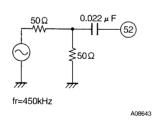
First IF input

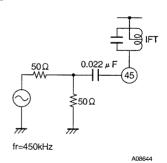


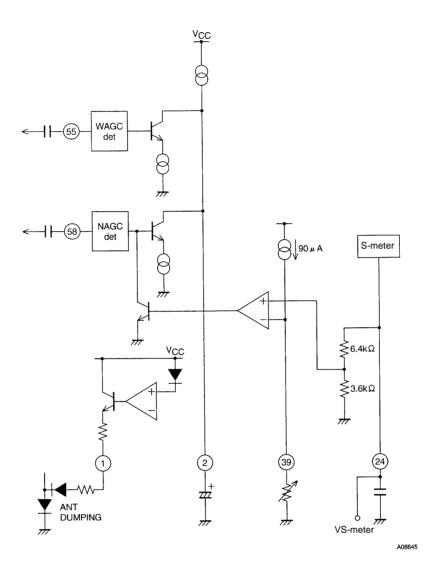
IF input



[AM]

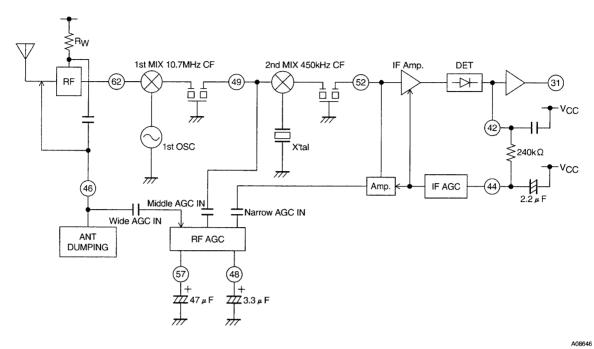

First mixer input


Second mixer input


IF input

Detector input

• 3D AGC (keyed AGC) settings

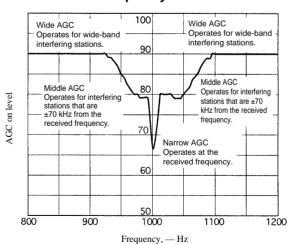


- \cdot The antenna damping function operates by providing the pin diode antenna damping current from the pin when the pin 2 voltage becomes equal to $V_{CC}-V_{BE}.$
- The noise AGC circuit operates as follows:

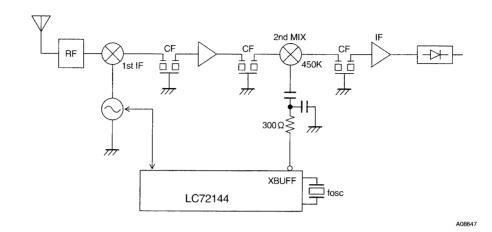
 When the pin 39 voltage is greater than (6.4/3.6) times the pin 24 voltage, the ACG circuit is off.

 When the pin 39 voltage is less than (6.4/3.6) times the pin 24 voltage, the ACG circuit is on.

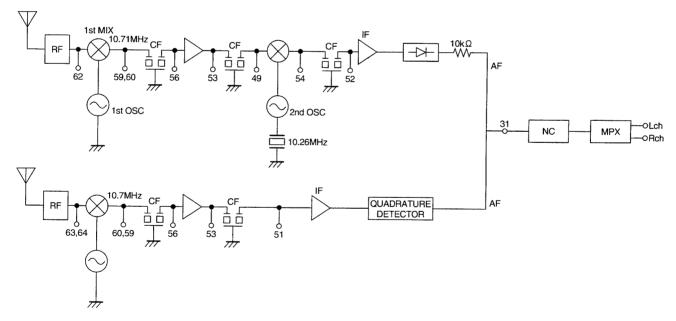
AM AGC System

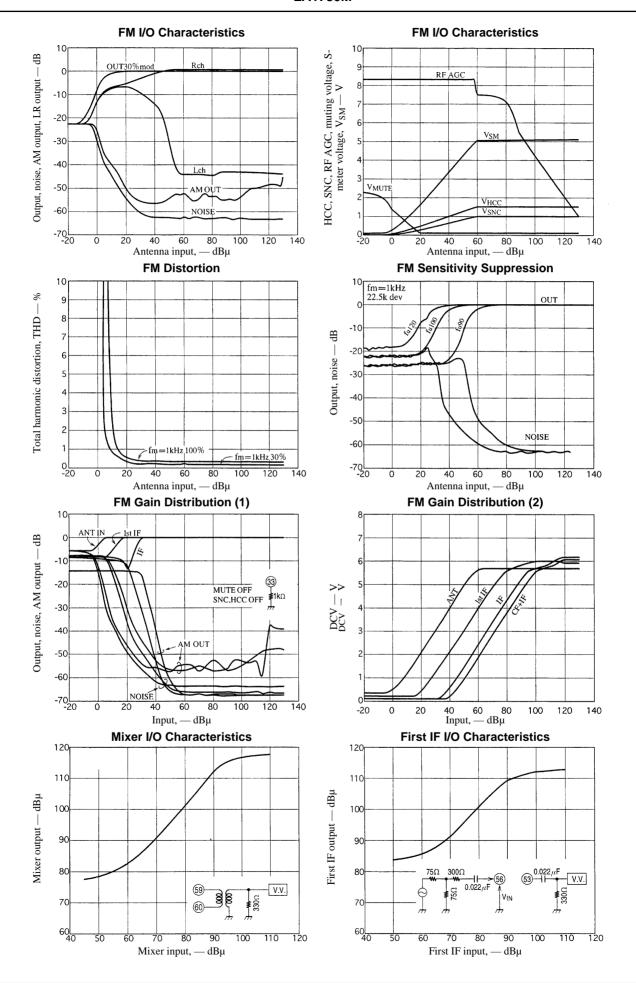


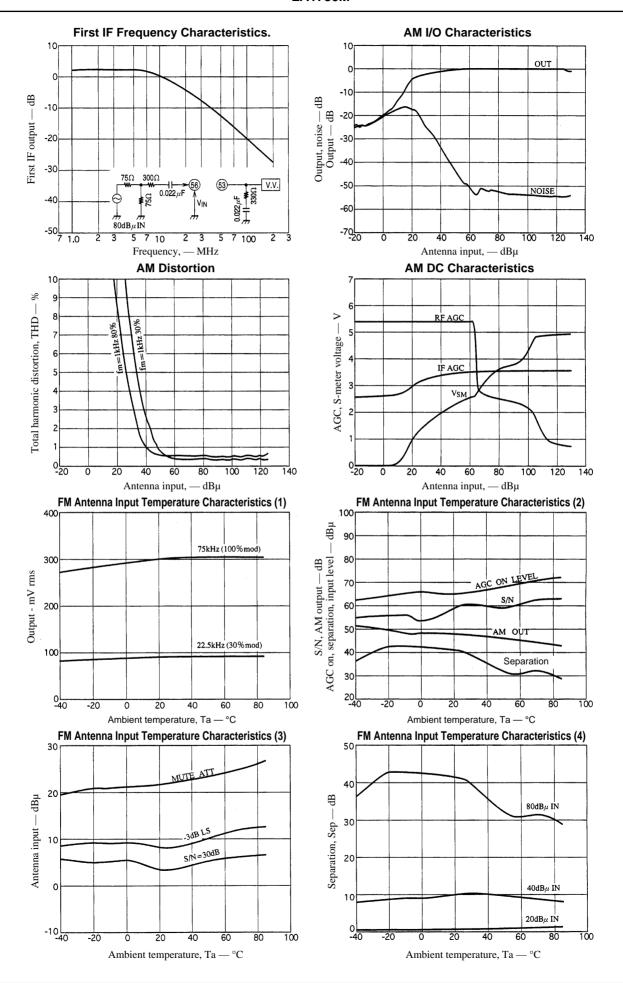
ALGONO

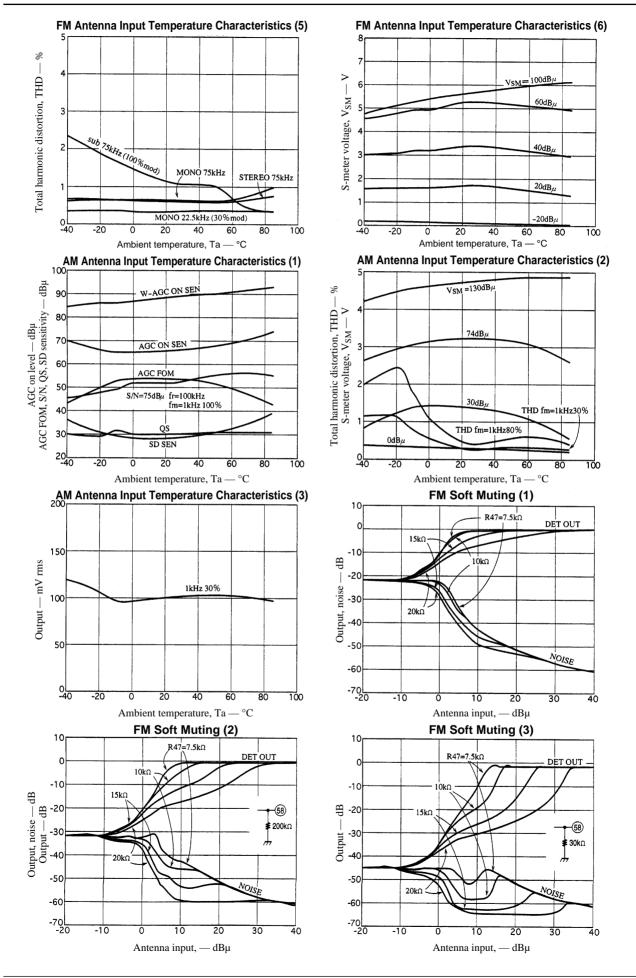

The LA1780M RF AGC is picked up from three locations.

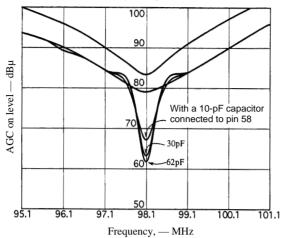
- · The wide AGC determined by Rw
- The middle AGC picked up from the pin 49 second mixer input
 The operating bandwidth is 150 kHz to 180 kHz (the bandwidth of the 10.7 MHz CF)
- The narrow AGC picked up from pin 52 The operating bandwidth is 7 kHz (the bandwidth of the 450 kHz CF)

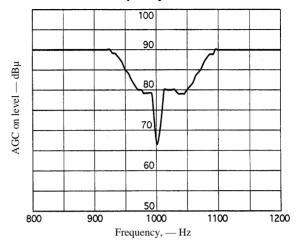

AM AGC Frequency Characteristics


• Sample AM application using the LC72144 and the LA1780M




		AM 1st IF	Step	FM IF
1	f _{OSC} 10.25 MHz	10.7 MHz	10 K, 11 K	10.7 MHz
2	f _{OSC} 10.35 MHz	10.8 MHz	9 K, 10 K	10.8 MHz


A08648



AM AGC Frequency Characteristics

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1998. Specifications and information herein are subject to change without notice.