
# 2N5415S

## HIGH-VOLTAGE AMPLIFIER

#### DESCRIPTION

The 2N5415S is a silicon planar epitaxial PNP transistor in Jedec TO-39 metal case, intended for high vol-tage switching and linear amplifier applications.





#### **ABSOLUTE MAXIMUM RATINGS**

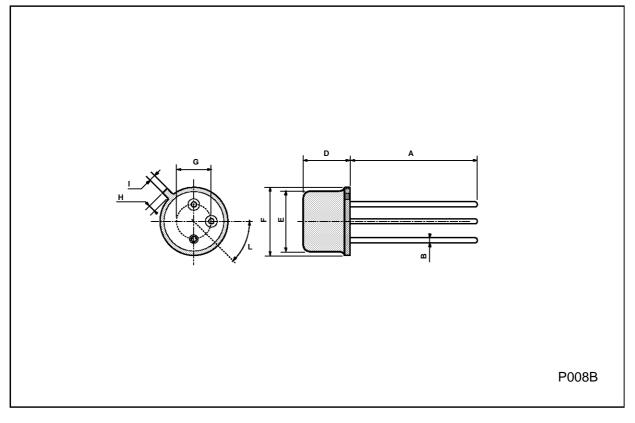
| Symbol                            | Parameter                                                              | Value       | Unit   |
|-----------------------------------|------------------------------------------------------------------------|-------------|--------|
| V <sub>CBO</sub>                  | Collector-base Voltage ( $I_E = 0$ )                                   | - 200       | V      |
| V <sub>CEO</sub>                  | Collector-emitter Voltage ( $I_B = 0$ )                                | - 200       | V      |
| V <sub>EBO</sub>                  | Emitter-base Voltage (I <sub>C</sub> = 0)                              | - 4         | V      |
| I <sub>CM</sub>                   | Collector Peak Current                                                 | – 1         | A      |
| P <sub>tot</sub>                  | Total Power Dissipation at $T_{amb} \le 25$ °C at $T_{case} \le 25$ °C | 1<br>10     | W<br>W |
| T <sub>stg</sub> , T <sub>j</sub> | Storage and Junction Temperature                                       | – 55 to 200 | °C     |

October 1988

#### THERMAL DATA

| R <sub>th j-case</sub> | Thermal Resistance Junction-case    | Max | 17.5 | °C/W |
|------------------------|-------------------------------------|-----|------|------|
| R <sub>th j-amb</sub>  | Thermal Resistance Junction-ambient | Max | 175  | °C/W |

### **ELECTRICAL CHARACTERISTICS** (T<sub>amb</sub> = 25 $^{\circ}$ C unless otherwise specified)


| Symbol                 | Parameter                                                      | Test Conditions                                                | Min.  | Тур. | Max.  | Unit |
|------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------|------|-------|------|
| I <sub>CBO</sub>       | Collector Cutoff Current $(I_E = 0)$                           | V <sub>CB</sub> = - 175 V                                      |       |      | - 50  | μA   |
| I <sub>CEO</sub>       | Collector Cutoff Current $(I_B = 0)$                           | V <sub>CE</sub> = - 150 V                                      |       |      | - 50  | μA   |
| I <sub>EBO</sub>       | Emitter Cutoff Current $(I_{C} = 0)$                           | $V_{EB} = -4 V$                                                |       |      | - 20  | μA   |
| V( <sub>BR)CEO</sub> * | Collector-emitter<br>Breakdown Voltage<br>(I <sub>B</sub> = 0) | I <sub>C</sub> = - 2 mA                                        | - 200 |      |       | V    |
| V <sub>CE(sat)</sub> * | Collector-emitter<br>Saturation Voltage                        | $I_{\rm C} = -50  \rm{mA}$ $I_{\rm B} = -5  \rm{mA}$           |       |      | - 2.5 | V    |
| V <sub>BE</sub> *      | Base-Emitter Voltage                                           | $I_{C} = -50 \text{ mA}$ $V_{CE} = -10 \text{ V}$              |       |      | - 1.5 | V    |
| h <sub>FE</sub> *      | DC Current Gain                                                | $I_{C} = -50 \text{ A}$ $V_{CE} = -10 \text{ V}$               | 30    |      | 150   |      |
| f <sub>T</sub>         | Transition Frequency                                           | $I_{C} = -10 \text{ mA}$ $V_{CE} = -10 \text{ V}$<br>f = 5 MHz | 15    |      |       | MHz  |
| C <sub>CBO</sub>       | Collector-base<br>Capacitance                                  | I <sub>E</sub> = 0 V <sub>CB</sub> = - 10 V<br>f = 1 MHz       |       |      | 15    | pF   |

\* Pulsed : pulse duration = 300  $\mu s,$  duty cycle = 1 %.



| DIM. | mm         |      | inch |       |      |       |
|------|------------|------|------|-------|------|-------|
|      | MIN.       | TYP. | MAX. | MIN.  | TYP. | MAX.  |
| А    | 12.7       |      |      | 0.500 |      |       |
| В    |            |      | 0.49 |       |      | 0.019 |
| D    |            |      | 6.6  |       |      | 0.260 |
| E    |            |      | 8.5  |       |      | 0.334 |
| F    |            |      | 9.4  |       |      | 0.370 |
| G    | 5.08       |      |      | 0.200 |      |       |
| н    |            |      | 1.2  |       |      | 0.047 |
| I    |            |      | 0.9  |       |      | 0.035 |
| L    | 45° (typ.) |      |      |       |      |       |





Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

