HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- HIGH VOLTAGE CAPABILITY
- NPN TRANSISTOR
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- FULLY CHARACTERIZED AT $125^{\circ} \mathrm{C}$
- LARGE RBSOA

APPLICATIONS

- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING
- SWITCH MODE POWER SUPPLIES

DESCRIPTION

The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability. They use a Cellular Emitter structure to enhance switching speeds.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CEV}}$	Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}\right)$	700	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	400	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	9	V
I_{C}	Collector Current	8	A
I_{CM}	Collector Peak Current	16	A
I_{B}	Base Current	4	A
I_{BM}	Base Peak Current	8	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$	36	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

R $_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	3.47	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ICEV	Collector Cut-off Current (V BE $=-1.5 \mathrm{~V}$)	$\begin{aligned} & V_{C E}=\text { rated } V_{C E V} \\ & V_{C E}=\text { rated } V_{C E V} \\ & T_{C}=100^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {ebo }}$	Emitter Cut-off Current ($\mathrm{IC}=0$)	$\mathrm{V}_{\mathrm{EB}}=9 \mathrm{~V}$			1	mA
$\mathrm{V}_{\text {ceo (sus)* }}$	Collector-Emitter Sustaining Voltage	$\mathrm{IC}=10 \mathrm{~mA}$	400			V
$V_{\text {CE(sat)* }}$	Collector-Emitter Saturation Voltage	$\begin{array}{lll} \mathrm{I} \mathrm{I}=2 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=8 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=2 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$			$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {bE(sat)* }}$	Base-Emitter Saturation Voltage	$\begin{array}{lll} \hline \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$			$\begin{aligned} & 1.2 \\ & 1.6 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{h}_{\text {FE* }}$	DC Current Gain	$\begin{array}{ll} \mathrm{IC}=2 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \text { Group A } & \\ \text { Group B } & \\ \mathrm{IC}_{\mathrm{C}}=5 \mathrm{~A} & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{array}$	$\begin{gathered} 15 \\ 26 \\ 5 \end{gathered}$		$\begin{aligned} & 28 \\ & 40 \\ & 30 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{ll} I_{C}=5 \mathrm{~A} & \mathrm{~V}_{\mathrm{CL}}=250 \mathrm{~V} \\ \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~A} & \mathrm{I}_{\mathrm{B} 2}=-2 \mathrm{~A} \\ \mathrm{~L}=200 \mu \mathrm{H} & \end{array}$		$\begin{aligned} & 1.6 \\ & 60 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 110 \end{aligned}$	ms ns
t_{s}	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{ll} I_{C}=5 \mathrm{~A} & V_{C L}=250 \mathrm{~V} \\ I_{\mathrm{B} 1}=1 \mathrm{~A} & \mathrm{I}_{\mathrm{B} 2}=-2 \mathrm{~A} \\ \mathrm{~L}=200 \mu \mathrm{H} & \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{array}$		$\begin{aligned} & 2.3 \\ & 110 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$

* Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 2%

Note : Product is pre-selected in DC current gain (GROUP A and GROUP B). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery details.

Safe Operating Areas

DC Current Gain

Collector Emitter Saturation Voltage

Derating Curve

DC Current Gain

Base Emitter Saturation Voltage

Inductive Fall Time

Inductive Storage Time

Reverse Biased SOA

TO-220FP MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
H	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
\varnothing	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland- Taiwan - Thailand - United Kingdom - U.S.A.

