Fundamentals of Power Electronics
R. W. Erickson
Table of Contents
Back
1. Introduction
1.1. Introduction to power processing
1.2. Several applications of power electronics
1.3. Elements of power electronics
Part I. Converters in Equilibrium
2. Principles of steady state converter analysis
2.1. Introduction
2.2. Inductor volt-second balance, capacitor charge balance, and the small-ripple approximation
2.3. Boost converter example
2.4. Cuk converter example
2.5. Estimating the output voltage ripple in converters containing two-pole low-pass filters
2.6. Summary of key points
3. Steady-state equivalent circuit modeling, losses, and efficiency
3.1. The dc transformer model
3.2. Inclusion of inductor copper loss
3.3. Construction of equivalent circuit model
3.4. How to obtain the input port of the model
3.5. Example: Inclusion of semiconductor conduction losses in the boost converter model
3.6. Summary of key points
4. Switch realization
4.1. Switch applications
4.1.1. Single quadrant switches
4.1.2. Current-bidirectional two-quadrant switches
4.1.3. Voltage-bidirectional two-quadrant switch
4.1.4. Four-quadrant switches
4.1.5. Synchronous rectifiers
4.2. A brief survey of power semiconductor devices
4.2.1. Power diodes
4.2.2. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)
4.2.3. Bipolar Junction Transistor (BJT)
4.2.4. Insulated Gate Bipolar Transistor (IGBT)
4.2.5. Thyristors (SCR, GTO, MCT)
4.3. Switching loss
4.3.1. Transistor switching with clamped inductive load
4.3.2. Diode recovered charge
4.3.3. Device capacitances, and leakage, package, and stray inductances
4.3.4. Efficiency vs. switching frequency
4.4. Summary of key points
5. The discontinuous conduction mode
5.1. Origin of the discontinuous conduction mode, and mode boundary
5.2. Analysis of the conversion ratio M(D,K)
5.3. Boost converter example
5.4. Summary of results and key points
6. Converter circuits
Part II. Converter Dynamics and Control
7. AC modeling
7.1. Introduction
7.2. The basic ac modeling approach
7.2.1. Averaging the inductor waveforms
7.2.2. Discussion of the averaging approximation
7.2.3. Averaging the capacitor waveforms
7.2.4. The average input current
7.2.5. Perturbation and linearization
7.2.6. Construction of the small-signal equivalent circuit model
7.2.7. Results for several basic converters
7.3. Example: A nonideal flyback converter
7.4. State-space averaging
7.4.1. The state equations of a network
7.4.2. The basic state-space averaged model
7.4.3. Discussion of the state-space averaging result
7.4.4. Example: State-space averaging of a nonideal buck-boost converter
7.5. Circuit averaging and averaged switch modeling
7.5.1. Obtaining a time-invariant circuit
7.5.2. Circuit averaging
7.5.3. Perturbation and linearization
7.5.4. Averaged switch modeling
7.6. The canonical circuit model
7.6.1. Development of the canonical circuit model
7.6.2. Example: Manipulation of the buck-boost converter model into canonical form
7.6.3. Canonical circuit parameter values for some common converters
7.7. Modeling the pulse-width modulator
7.8. Summary of key points
8. Converter transfer functions
9. Controller design
9.1. Introduction
9.2. Effect of negative feedback on the network transfer functions
9.2.1. Feedback reduces the transfer functions from disturbances to the output
9.2.2. Feedback causes the transfer function from the reference input to the output to be insensitive to variations in the gains in the forward path of the loop
9.3. Construction of the important quantities 1/(1+T) and T/(1+T) and the closed-loop transfer functions
9.4. Stability
9.4.1. The phase margin test
9.4.2. The relation between phase margin and closed-loop damping factor
9.4.3. Transient response vs. damping factor
9.5. Regulator design
9.5.1. Lead (PD) compensator
9.5.2. Lag (PI) compensator
9.5.3. Combined (PID) compensator
9.5.4. Design example
9.6. Measurement of loop gains
9.6.1. Voltage injection
9.6.2. Current injection
9.6.3. Measurement of unstable systems
9.7. Summary of key points
10. Ac and dc equivalent circuit modeling of the discontinuous conduction mode
10.1. DCM averaged switch model
10.2. Small-signal ac modeling of the DCM switch network
10.3. Generalized switch averaging
10.3.1. DCM buck converter example
10.3.2. Proof of generalized averaged switch modeling
10.4. Summary of key points
11. Current programmed control
11.1. Oscillation for D > 0.5
11.2. A simple first-order model
11.2.1. Simple model via algebraic approach: buck-boost example
11.2.2. Averaged switch modeling
11.3. A more accurate model
11.3.1. Current programmed controller model
11.3.2. Example: analysis of CPM buck converter
11.4. Discontinuous conduction mode
11.5. Summary of key points
Part III. Magnetics
12. Basic magnetics theory
13. Filter inductor design
13.1. Several types of magnetic devices, their B-H loops, and core vs. copper loss
13.2. Filter inductor design constraints
13.2.1. Maximum flux density
13.2.2. Inductance
13.2.3. Winding area
13.2.4. Winding resistance
13.3. The core geometrical constant Kg
13.4. A step-by-step procedure
13.5. Summary of key points
14. Transformer design
14.1. Winding area optimization
14.2. Transformer design: basic constraints
14.2.1. Core loss
14.2.2. Flux density
14.2.3. Copper loss
14.2.4. Total power loss vs. Bmax
14.2.5. Optimum flux density
14.3. A step-by-step transformer design procedure
14.4. Examples
14.4.1. Example 1: single-output isolated Cuk converter
14.4.2. Example 2: multiple-output full-bridge buck converter
14.5. Ac inductor design
14.5.1. Outline of derivation
14.5.2. Step-by-step ac inductor design procedure
14.6. Summary
Part IV. Modern Rectifiers, and Power System Harmonics
15. Power and harmonics in nonsinusoidal systems
15.1. Average power
15.2. Root-mean-square (rms) value of a waveform
15.3. Power factor
15.3.1. Linear resistive load, nonsinusoidal voltage
15.3.2. Nonlinear dynamic load, sinusoidal voltage
15.4. Power phasors in sinusoidal systems
15.5. Harmonic currents in three-phase systems
15.5.1. Harmonic currents in three-phase four-wire networks
15.5.2. Harmonic currents in three-phase three-wire networks
15.5.3. Harmonic current flow in power factor correction capacitors
15.6. AC line current harmonic standards
15.6.1. US MIL STD 461B
15.6.2. International Electrotechnical Commission standard 555
15.6.3. IEEE/ANSI standard 519
16. Line-commutated rectifiers
17. The ideal rectifier
17.1. Properties of the ideal rectifier
17.2. Realization of a near-ideal rectifier
17.3. Single-phase converter systems incorporating ideal rectifiers
17.4. RMS values of rectifier waveforms
17.4.1. Boost rectifier example
17.4.2. Comparison of single-phase rectifier topologies
17.5. Ideal three-phase rectifiers
17.5.1. Three-phase rectifiers operating in CCM
17.5.2. Some other approaches to three-phase rectification
17.6. Summary of key points
18. Low harmonic rectifier modeling and control
18.1. Modeling losses and efficiency in CCM high-quality rectifiers
18.1.1. Expression for controller duty cycle d(t)
18.1.2. Expression for the dc load current
18.1.3. Solution for converter efficiency
18.1.4. Design example
18.2. Controller schemes
18.2.1. Average current control
18.2.2. Feedforward
18.2.3. Current programmed control
18.2.4. Hysteretic control
18.2.5. Nonlinear carrier control
18.3. Control system modeling
18.3.1. Modeling the outer low-bandwidth control system
18.3.2. Modeling the inner wide-bandwidth average current controller
18.4. Summary of key points
Part V. Resonant converters
19. Resonant Conversion
19.1. Sinusoidal analysis of resonant converters
19.1.1. Controlled switch network model
19.1.2. Modeling the rectifier and capacitive filter networks
19.1.3. Resonant tank network
19.1.4. Solution of converter voltage conversion ratio M = V/Vg
19.2. Examples
19.2.1. Series resonant dc-dc converter example
19.2.2. Subharmonic modes of the series resonant converter
19.2.3. Parallel resonant dc-dc converter example
19.3. Exact characteristics of the series and parallel resonant converters
19.3.1. Series resonant converter
19.3.2. Parallel resonant converter
19.4. Soft switching
19.4.1. Operation of the full bridge below resonance: zero-current switching
19.4.2. Operation of the full bridge above resonance: zero-voltage switching
19.4.3. The zero voltage transition converter
19.5. Load-dependent properties of resonant converters
19.5.1. Inverter output characteristics
19.5.2. Dependence of transistor current on load
19.5.3. Dependence of the ZVS/ZCS boundary on load resistance
19.6. Summary of key points
20. Quasi-resonant converters
Appendices
Appendix 1. RMS values of commonly-observed converter waveforms
A1.1. Some common waveforms
A1.2. General piecewise waveform
Appendix 2. Magnetics design tables
A2.1. Pot core data
A2.2. EE core data
A2.3. EC core data
A2.4. ETD core data
A2.5. PQ core data
A2.6. American wire gauge data
Appendix 3. Averaged switch modeling of a CCM SEPIC
Index