Chapter 14. Transformer Design

Some more advanced design issues, not considered in previous chapter:

- Inclusion of core loss
- Selection of operating flux density to optimize total loss
- Multiple winding design: how to allocate the available window area among several windings
- A transformer design procedure
- How switching frequency affects transformer size

Chapter 14. Transformer Design

- 14.1. Winding area optimization
- 14.2. Transformer design: Basic constraints
- 14.3. A step-by-step transformer design procedure
- 14.4. Examples
- 14.5. Ac inductor design
- 14.6. Summary

14.1. Winding area optimization

Given: application with k windings having known rms currents and desired turns ratios

$$\frac{v_1(t)}{n_1} = \frac{v_2(t)}{n_2} = \dots = \frac{v_k(t)}{n_k}$$

Window area W_A

Core mean length per turn (MLT)

Wire resistivity p

Fill factor K_u

Q: how should the window area W_A be allocated among the windings?

Allocation of winding area

$$0 < \alpha_j < 1$$

$$\alpha_1 + \alpha_2 + \dots + \alpha_k = 1$$

Copper loss in winding *j*

Copper loss (not accounting for proximity loss) is

$$P_{cu,j} = I_j^2 R_j$$

Resistance of winding j is

$$R_j = \rho \, \frac{l_j}{A_{W,j}}$$

with

$$l_{j} = n_{j} (MLT)$$

length of wire, winding j

$$A_{W,j} = \frac{W_A K_u \alpha_j}{n_j}$$

wire area, winding j

Hence

$$P_{cu,j} = \frac{n_j^2 i_j^2 \rho (MLT)}{W_A K_u \alpha_j}$$

Total copper loss of transformer

Sum previous expression over all windings:

$$P_{cu,tot} = P_{cu,1} + P_{cu,2} + \dots + P_{cu,k} = \frac{\rho (MLT)}{W_A K_u} \sum_{j=1}^{k} \left(\frac{n_j^2 I_j^2}{\alpha_j} \right)$$

Need to select values for α_1 , α_2 , ..., α_k such that the total copper loss is minimized

Variation of copper losses with α_1

For α_1 = **0**: wire of winding 1 has zero area. $P_{cu,1}$ tends to infinity

For α_1 = 1: wires of remaining windings have zero area. Their copper losses tend to infinity

There is a choice of α_1 that minimizes the total copper loss

Method of Lagrange multipliers to minimize total copper loss

Minimize the function

$$P_{cu,tot} = P_{cu,1} + P_{cu,2} + \dots + P_{cu,k} = \frac{\rho (MLT)}{W_A K_u} \sum_{j=1}^{k} \left(\frac{n_j^2 I_j^2}{\alpha_j} \right)$$

subject to the constraint

$$\alpha_1 + \alpha_2 + \cdots + \alpha_k = 1$$

Define the function

$$f(\alpha_1, \alpha_2, \dots, \alpha_k, \xi) = P_{cu,tot}(\alpha_1, \alpha_2, \dots, \alpha_k) + \xi g(\alpha_1, \alpha_2, \dots, \alpha_k)$$

where

$$g(\alpha_1, \alpha_2, \dots, \alpha_k) = 1 - \sum_{j=1}^k \alpha_j$$

is the constraint that must equal zero and ξ is the Lagrange multiplier

Lagrange multipliers continued

Optimum point is solution of the system of equations

$$\frac{\partial f(\alpha_1, \alpha_2, \dots, \alpha_k, \xi)}{\partial \alpha_1} = 0$$

$$\frac{\partial f(\alpha_1, \alpha_2, \dots, \alpha_k, \xi)}{\partial \alpha_2} = 0$$

$$\vdots$$

$$\frac{\partial f(\alpha_1, \alpha_2, \dots, \alpha_k, \xi)}{\partial \alpha_k} = 0$$

$$\frac{\partial f(\alpha_1, \alpha_2, \dots, \alpha_k, \xi)}{\partial \alpha_k} = 0$$

$$\frac{\partial f(\alpha_1, \alpha_2, \dots, \alpha_k, \xi)}{\partial \xi} = 0$$

Result:

$$\xi = \frac{\rho (MLT)}{W_A K_u} \left(\sum_{j=1}^k n_j I_j \right)^2 = P_{cu,tot}$$

$$\alpha_m = \frac{n_m I_m}{\sum_{m=1}^\infty n_j I_j}$$

An alternate form:

$$\alpha_m = \frac{V_m I_m}{\sum_{m=1}^{\infty} V_j I_j}$$

Interpretation of result

$$\alpha_m = \frac{V_m I_m}{\sum_{m=1}^{\infty} V_j I_j}$$

Apparent power in winding j is

$$V_j I_j$$

where

 V_i is the rms or peak applied voltage

 I_i is the rms current

Window area should be allocated according to the apparent powers of the windings

Example PWM full-bridge transformer

Expressions for RMS winding currents

Allocation of window area: $\alpha_m = \frac{V_m I_m}{\sum_{i=1}^{\infty} V_j I_j}$

$$\alpha_m = \frac{V_m I_m}{\sum_{m=1}^{\infty} V_j I_j}$$

Plug in rms current expressions. Result:

$$\alpha_1 = \frac{1}{\left(1 + \sqrt{\frac{1+D}{D}}\right)}$$

$$\alpha_2 = \alpha_3 = \frac{1}{2} \frac{1}{\left(1 + \sqrt{\frac{D}{1+D}}\right)}$$

Fraction of window area allocated to primary winding

Fraction of window area allocated to each secondary winding

Numerical example

Suppose that we decide to optimize the transformer design at the worst-case operating point D = 0.75. Then we obtain

$$\alpha_1 = 0.396$$
 $\alpha_2 = 0.302$
 $\alpha_3 = 0.302$

The total copper loss is then given by

$$P_{cu,tot} = \frac{\rho(MLT)}{W_A K_u} \left(\sum_{j=1}^3 n_j I_j \right)^2$$
$$= \frac{\rho(MLT) n_2^2 I^2}{W_A K_u} \left(1 + 2D + 2\sqrt{D(1+D)} \right)$$

14.2 Transformer design:

Basic constraints

Core loss

$$P_{fe} = K_{fe}B_{max}^{\beta}A_{c}l_{m}$$

Typical value of β for ferrite materials: 2.6 or 2.7

 B_{max} is the peak value of the ac component of B(t)

So increasing B_{max} causes core loss to increase rapidly

This is the first constraint

Flux density Constraint #2

Flux density B(t) is related to the applied winding voltage according to Faraday's Law. Denote the volt-seconds applied to the primary winding during the positive portion of $v_1(t)$ as λ_1 :

$$\lambda_1 = \int_{t_1}^{t_2} v_1(t) dt$$

This causes the flux to change from its negative peak to its positive peak. From Faraday's law, the peak value of the ac component of flux density is

$$B_{max} = \frac{\lambda_1}{2n_1 A_c}$$

To attain a given flux density, the primary turns should be chosen according to

$$n_1 = \frac{\lambda_1}{2B_{max}A_c}$$

Copper loss Constraint #3

- Allocate window area between windings in optimum manner, as described in previous section
- Total copper loss is then equal to

$$P_{cu} = \frac{\rho(MLT)n_1^2 I_{tot}^2}{W_A K_u}$$

with

$$I_{tot} = \sum_{j=1}^{k} \frac{n_j}{n_1} I_j$$

Eliminate n_1 , using result of previous slide:

$$P_{cu} = \left(\frac{\rho \lambda_1^2 I_{tot}^2}{K_u}\right) \left(\frac{(MLT)}{W_A A_c^2}\right) \left(\frac{1}{B_{max}^2}\right)$$

Note that copper loss decreases rapidly as B_{max} is increased

Total power loss

4.
$$P_{tot} = P_{cu} + P_{fe}$$

There is a value of B_{max} that minimizes the total power loss

$$P_{tot} = P_{fe} + P_{cu}$$

$$P_{fe} = K_{fe} B_{max}^{\beta} A_c l_m$$

$$P_{cu} = \left(\frac{\rho \lambda_1^2 I_{tot}^2}{K_u}\right) \left(\frac{(MLT)}{W_A A_c^2}\right) \left(\frac{1}{B_{max}^2}\right)$$

5. Find optimum flux density B_{max}

Given that

$$P_{tot} = P_{fe} + P_{cu}$$

Then, at the B_{max} that minimizes P_{tot} , we can write

$$\frac{dP_{tot}}{dB_{max}} = \frac{dP_{fe}}{dB_{max}} + \frac{dP_{cu}}{dB_{max}} = 0$$

Note: optimum does not necessarily occur where $P_{fe} = P_{cu}$. Rather, it occurs where

$$\frac{dP_{fe}}{dB_{max}} = -\frac{dP_{cu}}{dB_{max}}$$

Take derivatives of core and copper loss

$$P_{fe} = K_{fe} B_{max}^{\beta} A_{c} l_{m}$$

$$P_{cu} = \left(\frac{\rho \lambda_{1}^{2} I_{tot}^{2}}{K_{u}}\right) \left(\frac{(MLT)}{W_{A} A_{c}^{2}}\right) \left(\frac{1}{B_{max}^{2}}\right)$$

$$\frac{dP_{fe}}{dB_{max}} = \beta K_{fe} B_{max}^{(\beta-1)} A_{c} l_{m}$$

$$\frac{dP_{cu}}{dB_{max}} = -2 \left(\frac{\rho \lambda_{1}^{2} I_{tot}^{2}}{4K_{u}}\right) \left(\frac{(MLT)}{W_{A} A_{c}^{2}}\right) B_{max}^{-3}$$

Now, substitute into $\frac{dP_{fe}}{dB_{max}} = -\frac{dP_{cu}}{dB_{max}}$ and solve for B_{max} :

$$B_{max} = \begin{bmatrix} \rho \lambda_1^2 I_{tot}^2 & (MLT) & 1 \\ 2K_u & W_A A_c^3 l_m & \beta K_{fe} \end{bmatrix}^{\left(\frac{1}{\beta+2}\right)}$$
 Optimum B_{max} for a given core and application

Total loss

Substitute optimum B_{max} into expressions for P_{cu} and P_{fe} . The total loss is:

$$P_{tot} = \left[A_{c}l_{m}K_{fe}\right]^{\left(\frac{2}{\beta+2}\right)} \left[\begin{array}{cc} \rho\lambda_{1}^{2}I_{tot}^{2} & (MLT) \\ 4K_{u} & W_{A}A_{c}^{2} \end{array}\right]^{\left(\frac{\beta}{\beta+2}\right)} \left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)}\right]$$

Rearrange as follows:

$$\frac{W_{A}\left(A_{c}\right)^{\left(2(\beta-1)/\beta\right)}}{\left(MLT\right)l_{m}^{\left(2/\beta\right)}}\left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)}+\left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)}\right]^{-\left(\frac{\beta+2}{\beta}\right)}=\frac{\rho\lambda_{1}^{2}I_{tot}^{2}K_{fe}^{\left(2/\beta\right)}}{4K_{u}\left(P_{tot}\right)^{\left((\beta+2)/\beta\right)}}$$

Left side: terms depend on core geometry

Right side: terms depend on specifications of the application

The core geometrical constant K_{gfe}

Define
$$K_{gfe} = \frac{W_A \left(A_c\right)^{\left(2(\beta-1)/\beta\right)}}{\left(MLT\right) \ l_m^{\left(2/\beta\right)}} \left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)} \right]^{-\left(\frac{\beta+2}{\beta}\right)}$$

Design procedure: select a core that satisfies

$$K_{gfe} \ge \frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u \left(P_{tot}\right)^{\left(\left(\beta+2\right)/\beta\right)}}$$

Appendix 2 lists the values of K_{gfe} for common ferrite cores

 K_{gfe} is similar to the K_g geometrical constant used in Chapter 13:

- K_g is used when B_{max} is specified
- K_{gfe} is used when B_{max} is to be chosen to minimize total loss

14.3 Step-by-step transformer design procedure

The following quantities are specified, using the units noted:

Wire effective resistivity ρ (Ω -cm)

Total rms winding current, ref to pri I_{tot} (A)

Desired turns ratios n_2/n_1 , n_3/n_1 , etc.

Applied pri volt-sec λ_1 (V-sec)

Allowed total power dissipation P_{tot} (W)

Winding fill factor K_u

Core loss exponent β

Core loss coefficient K_{fe} (W/cm³T^{β})

Other quantities and their dimensions:

Core cross-sectional area (cm^2) Core window area $W_{\scriptscriptstyle A}$ (cm^2) Mean length per turn MLT(cm) Magnetic path length (cm) Wire areas A_{w1} , ... (cm^2) B_{max} Peak ac flux density (T)

Procedure

1. Determine core size

$$K_{gfe} \ge \frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u \left(P_{tot}\right)^{\left(\left(\beta+2\right)/\beta\right)}} \ 10^8$$

Select a core from Appendix 2 that satisfies this inequality.

It may be possible to reduce the core size by choosing a core material that has lower loss, i.e., lower $K_{\rm fe}$.

2. Evaluate peak ac flux density

$$B_{max} = \left[10^8 \frac{\rho \lambda_1^2 I_{tot}^2}{2K_u} \frac{(MLT)}{W_A A_c^3 I_m} \frac{1}{\beta K_{fe}}\right]^{\left(\frac{1}{\beta+2}\right)}$$

At this point, one should check whether the saturation flux density is exceeded. If the core operates with a flux dc bias B_{dc} , then $B_{max} + B_{dc}$ should be less than the saturation flux density.

If the core will saturate, then there are two choices:

- Specify B_{max} using the K_g method of Chapter 13, or
- Choose a core material having greater core loss, then repeat steps 1 and 2

3. and 4. Evaluate turns

Primary turns:

$$n_1 = \frac{\lambda_1}{2B_{max}A_c} \quad 10^4$$

Choose secondary turns according to desired turns ratios:

$$n_2 = n_1 \left(\frac{n_2}{n_1} \right)$$

$$n_3 = n_1 \left(\frac{n_3}{n_1} \right)$$

$$\vdots$$

5. and 6. Choose wire sizes

Fraction of window area assigned to each winding:

$$\alpha_1 = \frac{n_1 I_1}{n_1 I_{tot}}$$

$$\alpha_2 = \frac{n_2 I_2}{n_1 I_{tot}}$$

$$\vdots$$

$$\alpha_k = \frac{n_k I_k}{n_1 I_{tot}}$$

Choose wire sizes according to:

$$A_{w1} \le \frac{\alpha_1 K_u W_A}{n_1}$$

$$A_{w2} \le \frac{\alpha_2 K_u W_A}{n_2}$$

$$\vdots$$

Check: computed transformer model

Predicted magnetizing inductance, referred to primary:

$$L_{M} = \frac{\mu n_{1}^{2} A_{c}}{l_{m}}$$

Peak magnetizing current:

$$i_{M, pk} = \frac{\lambda_1}{2L_M}$$

Predicted winding resistances:

$$R_{1} = \frac{\rho n_{1}(MLT)}{A_{w1}}$$

$$R_{2} = \frac{\rho n_{2}(MLT)}{A_{w2}}$$

$$\vdots$$

14.4.1 Example 1: Single-output isolated Cuk converter

$$f_s = 200 \text{ kHz}$$

$$D = 0.5$$

$$n = 5$$

$$K_u = 0.5$$

Allow
$$P_{tot} = 0.25 \text{ W}$$

Use a ferrite pot core, with Magnetics Inc. P material. Loss parameters at 200 kHz are

$$K_{fe} = 24.7$$

$$\beta = 2.6$$

Waveforms

Applied primary voltseconds:

$$\lambda_1 = DT_s V_{c1} = (0.5) (5 \text{ } \mu\text{sec}) (25 \text{ } V)$$

= 62.5 V-\(\mu\)sec

Applied primary rms current:

$$I_1 = \sqrt{D\left(\frac{I}{n}\right)^2 + D'\left(I_g\right)^2} = 4 \text{ A}$$

Applied secondary rms current:

$$I_2 = nI_1 = 20 \text{ A}$$

Total rms winding current:

$$I_{tot} = I_1 + \frac{1}{n} I_2 = 8 \text{ A}$$

Chapter 14: Transformer design

Choose core size

$$K_{gfe} \ge \frac{(1.724 \cdot 10^{-6})(62.5 \cdot 10^{-6})^{2}(8)^{2}(24.7)^{(2/2.6)}}{4(0.5)(0.25)^{(4.6/2.6)}} \quad 10^{8}$$

$$= 0.00295$$

Pot core data of Appendix 2 lists 2213 pot core with

$$K_{gfe} = 0.0049$$

Next smaller pot core is not large enough.

Evaluate peak ac flux density

$$B_{max} = \left[10^8 \frac{(1.724 \cdot 10^{-6})(62.5 \cdot 10^{-6})^2(8)^2}{2(0.5)} \frac{(4.42)}{(0.297)(0.635)^3(3.15)} \frac{1}{(2.6)(24.7)}\right]^{(1/4.6)}$$

$$= 0.0858 \text{ Tesla}$$

This is much less than the saturation flux density of approximately 0.35 T. Values of Bmax in the vicinity of 0.1 T are typical for ferrite designs that operate at frequencies in the vicinity of 100 kHz.

Evaluate turns

$$n_1 = 10^4 \frac{(62.5 \cdot 10^{-6})}{2(0.0858)(0.635)}$$

= 5.74 turns

$$n_2 = \frac{n_1}{n} = 1.15 \text{ turns}$$

In practice, we might select

$$n_1 = 5$$
 and $n_2 = 1$

This would lead to a slightly higher flux density and slightly higher loss.

Determine wire sizes

Fraction of window area allocated to each winding:

$$\alpha_1 = \frac{(4 \text{ A})}{(8 \text{ A})} = 0.5$$

$$\alpha_2 = \frac{(\frac{1}{5})(20 \text{ A})}{(8 \text{ A})} = 0.5$$

(Since, in this example, the ratio of winding rms currents is equal to the turns ratio, equal areas are allocated to each winding)

Wire areas:

$$A_{w1} = \frac{(0.5)(0.5)(0.297)}{(5)} = 14.8 \cdot 10^{-3} \text{ cm}^2$$

$$A_{w2} = \frac{(0.5)(0.5)(0.297)}{(1)} = 74.2 \cdot 10^{-3} \text{ cm}^2$$

From wire table, Appendix 2:

AWG #16

AWG #9

Wire sizes: discussion

Primary

5 turns #16 AWG

Secondary

1 turn #9 AWG

- Very large conductors!
- One turn of #9 AWG is not a practical solution

Some alternatives

- Use foil windings
- Use Litz wire or parallel strands of wire

Effect of switching frequency on transformer size for this P-material Cuk converter example

 As switching frequency is increased from 25 kHz to 250 kHz, core size is dramatically reduced As switching frequency is increased from 400 kHz to 1 MHz, core size increases

14.4.2 Example 2 Multiple-Output Full-Bridge Buck Converter

Other transformer design details

Use Magnetics, Inc. ferrite P material. Loss parameters at 75 kHz:

$$K_{fe} = 7.6 \text{ W/T}^{\beta}\text{cm}^{3}$$

$$\beta = 2.6$$

Use E-E core shape

Assume fill factor of

 $K_u = 0.25$ (reduced fill factor accounts for added insulation required in multiple-output off-line application)

Allow transformer total power loss of

$$P_{tot} = 4 \text{ W}$$
 (approximately 0.5% of total output power)

Use copper wire, with

$$\rho = 1.724 \cdot 10^{-6} \ \Omega$$
-cm

Applied transformer waveforms

Applied primary volt-seconds

$$\lambda_1 = DT_s V_g = (0.75) (6.67 \,\mu\text{sec}) (160 \,\text{V}) = 800 \,\text{V} - \mu\text{sec}$$

Applied primary rms current

$$I_1 = \left(\frac{n_2}{n_1} I_{5V} + \frac{n_3}{n_1} I_{15V}\right) \sqrt{D} = 5.7 \text{ A}$$

Applied rms current, secondary windings

$$I_{tot}$$

RMS currents, summed over all windings and referred to primary

$$I_{tot} = \sum_{\substack{all \ 5 \ windings}} \frac{n_j}{n_1} I_j = I_1 + 2 \frac{n_2}{n_1} I_2 + 2 \frac{n_3}{n_1} I_3$$
$$= (5.7 \text{ A}) + \frac{5}{110} (66.1 \text{ A}) + \frac{15}{110} (9.9 \text{ A})$$
$$= 14.4 \text{ A}$$

Select core size

$$K_{gfe} \ge \frac{(1.724 \cdot 10^{-6})(800 \cdot 10^{-6})^{2}(14.4)^{2}(7.6)^{(2/2.6)}}{4(0.25)(4)^{(4.6/2.6)}} \quad 10^{8}$$

$$= 0.00937$$

A2.2 EE core data

From Appendix 2

Core	Geometrical	Geometrical	Cross-	Bobbin	Mean	Magnetic	Core
type	constant	constant	sectional	winding	length	path	weight
			area	area	per turn	length	
(A)	$K_{g_{_{5}}}$	K_{gfe}	A_{c}	W_A	MLT	l_m	
(mm)	cm ⁵	cm ^x	(cm ²)	(cm ²)	(cm)	(cm)	(g)
EE22	$8.26 \cdot 10^{-3}$	1.8·10 ⁻³	0.41	0.196	3.99	3.96	8.81
EE30	$85.7 \cdot 10^{-3}$	$6.7 \cdot 10^{-3}$	1.09	0.476	6.60	5.77	32.4
EE40	0.209	11.8·10 ⁻³	1.27	1.10	8.50	7.70	50.3
EE50	0.909	$28.4 \cdot 10^{-3}$	2.26	1.78	10.0	9.58	116

Evaluate ac flux density B_{max}

Eq. (14.41):
$$B_{max} = \left[10^8 \ \frac{\rho \lambda_1^2 I_{tot}^2}{2K_u} \ \frac{(MLT)}{W_A A_c^3 I_m} \ \frac{1}{\beta K_{fe}} \right]^{\left(\frac{1}{\beta+2}\right)}$$

Plug in values:

$$B_{max} = \left[10^8 \frac{(1.724 \cdot 10^{-6})(800 \cdot 10^{-6})^2 (14.4)^2}{2 (0.25)} \frac{(8.5)}{(1.1)(1.27)^3 (7.7)} \frac{1}{(2.6)(7.6)} \right]^{(1/4.6)}$$

$$= 0.23 \text{ Tesla}$$

This is less than the saturation flux density of approximately 0.35 T

Evaluate turns

Choose n_1 according to Eq. (14.42):

$$n_1 = \frac{\lambda_1}{2B_{max}A_c} \quad 10^4$$

$$n_1 = 10^4 \frac{(800 \cdot 10^{-6})}{2(0.23)(1.27)}$$

= 13.7 turns

Choose secondary turns according to desired turns ratios:

$$n_2 = \frac{5}{110} n_1 = 0.62 \text{ turns}$$

$$n_3 = \frac{15}{110} n_1 = 1.87 \text{ turns}$$

Rounding the number of turns

To obtain desired turns ratio of

110:5:15

we might round the actual turns to

22:1:3

Increased n_1 would lead to

- Less core loss
- More copper loss
- Increased total loss

Loss calculation with rounded turns

With $n_1 = 22$, the flux density will be reduced to

$$B_{max} = \frac{(800 \cdot 10^{-6})}{2(22)(1.27)} \cdot 10^{4} = 0.143 \text{ Tesla}$$

The resulting losses will be

$$P_{fe} = (7.6)(0.143)^{2.6}(1.27)(7.7) = 0.47 \text{ W}$$

$$P_{cu} = \frac{(1.724 \cdot 10^{-6})(800 \cdot 10^{-6})^{2}(14.4)^{2}}{4(0.25)} \frac{(8.5)}{(1.1)(1.27)^{2}} \frac{1}{(0.143)^{2}} 10^{8}$$

$$= 5.4 \text{ W}$$

$$P_{tot} = P_{fe} + P_{cu} = 5.9 \text{ W}$$

Which exceeds design goal of 4 W by 50%. So use next larger core size: EE50.

Calculations with EE50

Repeat previous calculations for EE50 core size. Results:

$$B_{max} = 0.14 \text{ T}, n_1 = 12, P_{tot} = 2.3 \text{ W}$$

Again round n_1 to 22. Then

$$B_{max} = 0.08 \text{ T}, P_{cu} = 3.89 \text{ W}, P_{fe} = 0.23 \text{ W}, P_{tot} = 4.12 \text{ W}$$

Which is close enough to 4 W.

Wire sizes for EE50 design

Window allocations

Wire gauges

$$\alpha_{1} = \frac{I_{1}}{I_{tot}} = \frac{5.7}{14.4} = 0.396$$

$$A_{w1} = \frac{\alpha_{1}K_{u}W_{A}}{n_{1}} = \frac{(0.396)(0.25)(1.78)}{(22)} = 8.0 \cdot 10^{-3} \text{ cm}^{2}$$

$$\Rightarrow AWG #19$$

$$\alpha_{2} = \frac{n_{2}I_{2}}{n_{1}I_{tot}} = \frac{5}{110} \frac{66.1}{14.4} = 0.209$$

$$A_{w2} = \frac{\alpha_{2}K_{u}W_{A}}{n_{2}} = \frac{(0.209)(0.25)(1.78)}{(1)} = 93.0 \cdot 10^{-3} \text{ cm}^{2}$$

$$\Rightarrow AWG #8$$

$$\alpha_{3} = \frac{n_{3}I_{3}}{n_{1}I_{tot}} = \frac{15}{110} \frac{9.9}{14.4} = 0.094$$

$$A_{w3} = \frac{\alpha_{3}K_{u}W_{A}}{n_{3}} = \frac{(0.094)(0.25)(1.78)}{(3)} = 13.9 \cdot 10^{-3} \text{ cm}^{2}$$

$$\Rightarrow AWG #16$$

Might actually use foil or Litz wire for secondary windings