Chapter 14. Transformer Design

Some more advanced design issues, not considered in previous chapter:

- Inclusion of core loss
- Selection of operating flux density to optimize total loss
- Multiple winding design: how to allocate the available window area among several windings
- A transformer design procedure
- How switching frequency affects transformer size

Chapter 14. Transformer Design

14.1. Winding area optimization
14.2. Transformer design: Basic constraints
14.3. A step-by-step transformer design procedure
14.4. Examples
14.5. Ac inductor design
14.6. Summary

14.1. Winding area optimization

Given: application with k windings having known rms currents and desired turns ratios

$$
\frac{v_{1}(t)}{n_{1}}=\frac{v_{2}(t)}{n_{2}}=\cdots=\frac{v_{k}(t)}{n_{k}}
$$

Q: how should the window area W_{A} be allocated among the windings?

Allocation of winding area

Copper loss in winding j

Copper loss (not accounting for proximity loss) is

$$
P_{c u, j}=I_{j}^{2} R_{j}
$$

Resistance of winding j is

$$
R_{j}=\rho \frac{l_{j}}{A_{W, j}}
$$

with

$$
\begin{array}{ll}
l_{j}=n_{j}(M L T) & \text { length of wire, winding } j \\
A_{W, j}=\frac{W_{A} K_{u} \alpha_{j}}{n_{j}} & \text { wire area, winding } j
\end{array}
$$

Hence

$$
P_{c u, j}=\frac{n_{j}^{2} i_{j}^{2} \rho(M L T)}{W_{A} K_{u} \alpha_{j}}
$$

Total copper loss of transformer

Sum previous expression over all windings:

$$
P_{c u, t o t}=P_{c u, 1}+P_{c u, 2}+\cdots+P_{c u, k}=\frac{\rho(M L T)}{W_{A} K_{u}} \sum_{j=1}^{k}\left(\frac{n_{j}^{2} I_{j}^{2}}{\alpha_{j}}\right)
$$

Need to select values for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ such that the total copper loss is minimized

Variation of copper losses with α_{1}

For $\alpha_{1}=0$: wire of winding 1 has zero area. $P_{c u, 1}$ tends to infinity For $\alpha_{1}=1$: wires of remaining windings have zero area. Their copper losses tend to infinity
There is a choice of α_{1} that minimizes the total copper loss

Method of Lagrange multipliers to minimize total copper loss

Minimize the function

$$
P_{c u, t o t}=P_{c u, 1}+P_{c u, 2}+\cdots+P_{c u, k}=\frac{\rho(M L T)}{W_{A} K_{u}} \sum_{j=1}^{k}\left(\frac{n_{j}^{2} I_{j}^{2}}{\alpha_{j}}\right)
$$

subject to the constraint

$$
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}=1
$$

Define the function

$$
f\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}, \xi\right)=P_{c u, t o t}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)+\xi g\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)
$$

where

$$
g\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)=1-\sum_{j=1}^{k} \alpha_{j}
$$

is the constraint that must equal zero and ξ is the Lagrange multiplier

Lagrange multipliers

continued

Optimum point is solution of the system of equations

$$
\begin{aligned}
& \frac{\partial f\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}, \xi\right)}{\partial \alpha_{1}}=0 \\
& \frac{\partial f\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}, \xi\right)}{\partial \alpha_{2}}=0
\end{aligned}
$$

$$
\frac{\partial f\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}, \xi\right)}{\partial \alpha_{k}}=0
$$

$$
\frac{\partial f\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}, \xi\right)}{\partial \xi}=0
$$

Result:

$$
\begin{aligned}
& \xi=\frac{\rho(M L T)}{W_{A} K_{u}}\left(\sum_{j=1}^{k} n_{j} I_{j}\right)^{2}=P_{c u, t o t} \\
& \alpha_{m}=\frac{n_{m} I_{m}}{\sum_{n=1}^{\infty} n_{j} I_{j}}
\end{aligned}
$$

An alternate form:

$$
\alpha_{m}=\frac{V_{m} I_{m}}{\sum_{n=1}^{\infty} V_{j} I_{j}}
$$

Interpretation of result

$$
\alpha_{m}=\frac{V_{m} I_{m}}{\sum_{n=1}^{\infty} V_{j} I_{j}}
$$

Apparent power in winding j is

$$
\begin{array}{ll}
V_{j} I_{j} \\
\text { where } & V_{j} \text { is the rms or peak applied voltage } \\
& I_{j} \text { is the rms current }
\end{array}
$$

Window area should be allocated according to the apparent powers of the windings

Example PWM full-bridge transformer

- Note that waveshapes (and hence rms values) of the primary and secondary currents are different
- Treat as a threewinding transformer

Expressions for RMS winding currents

$$
\begin{aligned}
& I_{1}=\sqrt{2 T_{s}} \int_{0}^{2 T_{s}} i_{1}^{2}(t) d t=\frac{n_{2}}{n_{1}} I \sqrt{D} \\
& I_{2}=I_{3}=\sqrt{\frac{1}{2 T_{s}} \int_{0}^{2 T_{s}} i_{2}^{2}(t) d t}=\frac{1}{2} I \sqrt{1+D} \\
& \text { see Appendix } 1
\end{aligned}
$$

Allocation of window area: $\quad \alpha_{m}=\frac{V_{m} I_{m}}{\sum_{n=1} V_{j} I_{j}}$

Plug in rms current expressions. Result:

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\left(1+\sqrt{\frac{1+D}{D}}\right)} \\
& \alpha_{2}=\alpha_{3}=\frac{1}{2} \frac{1}{\left(1+\sqrt{\frac{D}{1+D}}\right)}
\end{aligned}
$$

Fraction of window area allocated to primary winding

Fraction of window area allocated to each secondary winding

Numerical example

Suppose that we decide to optimize the transformer design at the worst-case operating point $D=0.75$. Then we obtain

$$
\begin{aligned}
& \alpha_{1}=0.396 \\
& \alpha_{2}=0.302 \\
& \alpha_{3}=0.302
\end{aligned}
$$

The total copper loss is then given by

$$
\begin{aligned}
P_{c u, t o t} & =\frac{\rho(M L T)}{W_{A} K_{u}}\left(\sum_{j=1}^{3} n_{j} I_{j}\right)^{2} \\
& =\frac{\rho(M L T) n_{2}^{2} I^{2}}{W_{A} K_{u}}(1+2 D+2 \sqrt{D(1+D)})
\end{aligned}
$$

14.2 Transformer design:

Basic constraints

Core loss

$$
P_{f e}=K_{f e} B_{\max }^{\beta} A_{c} l_{m}
$$

Typical value of β for ferrite materials: 2.6 or 2.7
$B_{\max }$ is the peak value of the ac component of $B(t)$
So increasing $B_{\max }$ causes core loss to increase rapidly

This is the first constraint

Flux density

Constraint \#2

Flux density $B(t)$ is related to the applied winding voltage according to Faraday's Law. Denote the voltseconds applied to the primary winding during the positive portion of $v_{1}(t)$ as λ_{1} :

$$
\lambda_{1}=\int_{t_{1}}^{t_{2}} v_{1}(t) d t
$$

This causes the flux to change from its negative peak to its positive peak. From Faraday's law, the peak value of the ac component of flux density is

$$
B_{\max }=\frac{\lambda_{1}}{2 n_{1} A_{c}}
$$

To attain a given flux density, the primary turns should be chosen according to

$$
n_{1}=\frac{\lambda_{1}}{2 B_{\max } A_{c}}
$$

Copper loss
 Constraint \#3

- Allocate window area between windings in optimum manner, as described in previous section
- Total copper loss is then equal to

$$
P_{c u}=\frac{\rho(M L T) n_{1}^{2} I_{t o t}^{2}}{W_{A} K_{u}}
$$

with

$$
I_{t o t}=\sum_{j=1}^{k} \frac{n_{j}}{n_{1}} I_{j}
$$

Eliminate n_{1}, using result of previous slide:

$$
P_{c u}=\left(\frac{\rho \lambda_{1}^{2} I_{t o t}^{2}}{K_{u}}\right)\left(\frac{(M L T)}{W_{A} A_{c}^{2}}\right)\left(\frac{1}{B_{\max }^{2}}\right)
$$

Note that copper loss decreases rapidly as $B_{\max }$ is increased

Total power loss

$$
\text { 4. } P_{t o t}=P_{c u}+P_{f e}
$$

There is a value of $B_{\text {max }}$ that minimizes the total power loss

$$
\begin{aligned}
& P_{t o t}=P_{f e}+P_{c u} \\
& P_{f e}=K_{f e} B_{\max }^{\beta} A_{c} l_{m} \\
& P_{c u}=\left(\frac{\rho \lambda_{1}^{2} I_{\text {tot }}^{2}}{K_{u}}\right)\left(\frac{(M L T)}{W_{A} A_{c}^{2}}\right)\left(\frac{1}{B_{\max }^{2}}\right)
\end{aligned}
$$

5. Find optimum flux density $B_{\max }$

Given that

$$
P_{t o t}=P_{f e}+P_{c u}
$$

Then, at the $B_{\max }$ that minimizes $P_{\text {tot }}$, we can write

$$
\frac{d P_{t o t}}{d B_{\max }}=\frac{d P_{f e}}{d B_{\max }}+\frac{d P_{c u}}{d B_{\max }}=0
$$

Note: optimum does not necessarily occur where $P_{f e}=P_{c u}$. Rather, it occurs where

$$
\frac{d P_{f e}}{d B_{\max }}=-\frac{d P_{c u}}{d B_{\max }}
$$

Take derivatives of core and copper loss

$$
\begin{array}{cl}
P_{f e}=K_{f e} B_{\max }^{\beta} A_{c} l_{m} & P_{c u}=\left(\frac{\rho \lambda_{1}^{2} I_{\text {tot }}^{2}}{K_{u}}\right)\left(\frac{(M L T)}{W_{A} A_{c}^{2}}\right)\left(\frac{1}{B_{\max }^{2}}\right) \\
\frac{d P_{f e}}{d B_{\max }}=\beta K_{f e} B_{\max }^{(\beta-1)} A_{c} l_{m} & \frac{d P_{c u}}{d B_{\max }}=-2\left(\frac{\rho \lambda_{1}^{2} I_{\text {tot }}^{2}}{4 K_{u}}\right)\left(\frac{(M L T)}{W_{A} A_{c}^{2}}\right) B_{\max }^{-3}
\end{array}
$$

Now, substitute into $\quad \frac{d P_{f e}}{d B_{\max }}=-\frac{d P_{c u}}{d B_{\max }} \quad$ and solve for $B_{\max }$:

$$
B_{\max }=\left[\begin{array}{lll}
\frac{\rho \lambda_{1}^{2} I_{\text {tot }}^{2}}{2 K_{u}} & \frac{(M L T)}{W_{A} A_{c}^{3} l_{m}} \frac{1}{\beta K_{f e}}
\end{array}\right]^{\left(\frac{1}{\beta+2}\right)} \quad \begin{aligned}
& \text { Optimum } B_{\max } \text { for a } \\
& \begin{array}{l}
\text { given core and } \\
\text { application }
\end{array}
\end{aligned}
$$

Total loss

Substitute optimum $B_{\max }$ into expressions for $P_{c u}$ and $P_{f e}$. The total loss is:

$$
P_{t o t}=\left[A_{c} l_{m} K_{f e}\right]^{\left(\frac{2}{\beta+2}\right)}\left[\frac{\rho \lambda_{1}^{2} I_{\text {tot }}^{2}}{4 K_{u}} \frac{(M L T)}{W_{A} A_{c}^{2}}\right]^{\left(\frac{\beta}{\beta+2}\right)}\left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)}+\left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)}\right]
$$

Rearrange as follows:

$$
\frac{W_{A}\left(A_{c}\right)^{(2(\beta-1) / \beta)}}{(M L T) l_{m}^{(2 / \beta)}}\left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)}+\left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)}\right]^{-\left(\frac{\beta+2}{\beta}\right)}=\frac{\rho \lambda_{1}^{2} I_{t o t}^{2} K_{f e}^{(2 / \beta)}}{4 K_{u}\left(P_{t o t}\right)^{((\beta+2) / \beta)}}
$$

Left side: terms depend on core geometry

Right side: terms depend on specifications of the application

The core geometrical constant $K_{\text {gfe }}$

Define $\quad K_{g f e}=\frac{W_{A}\left(A_{c}\right)^{(2(\beta-1) / \beta)}}{(M L T) l_{m}^{(2 / \beta)}}\left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)}+\left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)}\right]^{-\left(\frac{\beta+2}{\beta}\right)}$
Design procedure: select a core that satisfies

$$
K_{g f e} \geq \frac{\rho \lambda_{1}^{2} I_{t o t}^{2} K_{f e}^{(2 / \beta)}}{4 K_{u}\left(P_{t o t}\right)^{((\beta+2) / \beta)}}
$$

Appendix 2 lists the values of $K_{g f e}$ for common ferrite cores
$K_{g f e}$ is similar to the K_{g} geometrical constant used in Chapter 13:

- K_{g} is used when $B_{\max }$ is specified
- $K_{g f e}$ is used when $B_{\max }$ is to be chosen to minimize total loss

14.3 Step-by-step transformer design procedure

The following quantities are specified, using the units noted:		
Wire effective resistivity	ρ	(Ω-cm)
Total rms winding current, ref to pri	$I_{\text {tot }}$	(A)
Desired turns ratios		
Applied pri volt-sec	λ_{1}	(V-sec)
Allowed total power dissipation	$P_{\text {tot }}$	(W)
Winding fill factor	K_{u}	
Core loss exponent	β	
Core loss coefficient	$K_{f e}$	(W/cm ${ }^{3} \mathrm{~T}^{\beta}$)

Other quantities and their dimensions:

Core cross-sectional area
Core window area
Mean length per turn
Magnetic path length
Wire areas
Peak ac flux density

A_{c}	$\left(\mathrm{~cm}^{2}\right)$
W_{A}	$\left(\mathrm{~cm}^{2}\right)$
$M L T$	$(\mathrm{~cm})$
l_{e}	$(\mathrm{~cm})$
A_{w}, \ldots	$\left(\mathrm{~cm}^{2}\right)$
$B_{\max }$	(T)

Procedure
 1. Determine core size

$$
K_{g f e} \geq \frac{\rho \lambda_{1}^{2} I_{t o t}^{2} K_{f e}^{(2 / \beta)}}{4 K_{u}\left(P_{t o t}\right)^{((\beta+2) / \beta)}} 10^{8}
$$

Select a core from Appendix 2 that satisfies this inequality.
It may be possible to reduce the core size by choosing a core material that has lower loss, i.e., lower $K_{f e}$.

2. Evaluate peak ac flux density

$$
B_{\max }=\left[10^{8} \frac{\rho \lambda_{1}^{2} I_{\text {tot }}^{2}}{2 K_{u}} \frac{(M L T)}{W_{A} A_{c}^{3} l_{m}} \frac{1}{\beta K_{f e}}\right]^{\left(\frac{1}{\beta+2}\right)}
$$

At this point, one should check whether the saturation flux densityis exceeded. If the core operates with a flux dc bias $B_{d c}$, then $B_{\max }+B_{d c}$ should be less than the saturation flux density.

If the core will saturate, then there are two choices:

- Specify $B_{\max }$ using the K_{g} method of Chapter 13 , or
- Choose a core material having greater core loss, then repeat steps 1 and 2

3. and 4. Evaluate turns

Primary turns:

$$
n_{1}=\frac{\lambda_{1}}{2 B_{\max } A_{c}} 10^{4}
$$

Choose secondary turns according to desired turns ratios:

$$
\begin{gathered}
n_{2}=n_{1}\left(\frac{n_{2}}{n_{1}}\right) \\
n_{3}=n_{1}\left(\frac{n_{3}}{n_{1}}\right) \\
\vdots
\end{gathered}
$$

5. and 6. Choose wire sizes

Fraction of window area assigned to each winding:

$$
\begin{gathered}
\alpha_{1}=\frac{n_{1} I_{1}}{n_{1} I_{t o t}} \\
\alpha_{2}=\frac{n_{2} I_{2}}{n_{1} I_{\text {tot }}} \\
\vdots \\
\alpha_{k}=\frac{n_{k} I_{k}}{n_{1} I_{\text {tot }}}
\end{gathered}
$$

Choose wire sizes according to:

$$
\begin{aligned}
& A_{w 1} \leq \frac{\alpha_{1} K_{u} W_{A}}{n_{1}} \\
& A_{w 2} \leq \frac{\alpha_{2} K_{u} W_{A}}{n_{2}}
\end{aligned}
$$

Check: computed transformer model

Predicted magnetizing inductance, referred to primary:

$$
L_{M}=\frac{\mu n_{1}^{2} A_{c}}{l_{m}}
$$

Peak magnetizing current:

$$
i_{M, p k}=\frac{\lambda_{1}}{2 L_{M}}
$$

Predicted winding resistances:

$$
\begin{gathered}
R_{1}=\frac{\rho n_{1}(M L T)}{A_{w 1}} \\
R_{2}=\frac{\rho n_{2}(M L T)}{A_{w 2}} \\
\vdots
\end{gathered}
$$

14.4.1 Example 1: Single-output isolated Cuk converter

100 W
$D=0.5$
$K_{u}=0.5$

$$
f_{s}=200 \mathrm{kHz}
$$

$$
n=5
$$

Use a ferrite pot core, with Magnetics Inc. P material. Loss parameters at 200 kHz are

$$
K_{f e}=24.7 \quad \beta=2.6
$$

Waveforms

Applied primary voltseconds:

$$
\begin{aligned}
\lambda_{1} & =D T_{s} V_{c 1}=(0.5)(5 \mu \mathrm{sec})(25 \mathrm{~V}) \\
& =62.5 \mathrm{~V}-\mu \mathrm{sec}
\end{aligned}
$$

Applied primary rms current:
$I_{1}=\sqrt{D\left(\frac{I}{n}\right)^{2}+D^{\prime}\left(I_{g}\right)^{2}}=4 \mathrm{~A}$
Applied secondary rms current:

$$
I_{2}=n I_{1}=20 \mathrm{~A}
$$

Total rms winding current:

$$
I_{t o t}=I_{1}+\frac{1}{n} I_{2}=8 \mathrm{~A}
$$

Chapter 14: Transformer design

Choose core size

$$
\begin{aligned}
K_{g f e} & \geq \frac{\left(1.724 \cdot 10^{-6}\right)\left(62.5 \cdot 10^{-6}\right)^{2}(8)^{2}(24.7)^{(222.6)}}{4(0.5)(0.25)^{(4.612 .6)}} 10^{8} \\
& =0.00295
\end{aligned}
$$

Pot core data of Appendix 2 lists 2213 pot core with

$$
K_{g f e}=0.0049
$$

Next smaller pot core is not large enough.

Evaluate peak ac flux density

$$
\begin{aligned}
B_{\max } & =\left[10^{8} \frac{\left(1.724 \cdot 10^{-6}\right)\left(62.5 \cdot 10^{-6}\right)^{2}(8)^{2}}{2(0.5)} \frac{(4.42)}{(0.297)(0.635)^{3}(3.15)} \frac{1}{(2.6)(24.7)}\right]^{(14.6)} \\
& =0.0858 \text { Tesla }
\end{aligned}
$$

This is much less than the saturation flux density of approximately 0.35 T . Values of Bmax in the vicinity of 0.1 T are typical for ferrite designs that operate at frequencies in the vicinity of 100 kHz .

Evaluate turns

$$
\begin{aligned}
n_{1} & =10^{4} \frac{\left(62.5 \cdot 10^{-6}\right)}{2(0.0858)(0.635)} \\
& =5.74 \text { turns } \\
n_{2} & =\frac{n_{1}}{n}=1.15 \text { turns }
\end{aligned}
$$

In practice, we might select

$$
n_{1}=5 \quad \text { and } \quad n_{2}=1
$$

This would lead to a slightly higher flux density and slightly higher loss.

Determine wire sizes

Fraction of window area allocated to each winding:

$$
\begin{aligned}
& \alpha_{1}=\frac{(4 \mathrm{~A})}{(8 \mathrm{~A})}=0.5 \\
& \alpha_{2}=\frac{\left(\frac{1}{5}\right)(20 \mathrm{~A})}{(8 \mathrm{~A})}=0.5
\end{aligned}
$$

Wire areas:

$$
\begin{aligned}
& A_{w 1}=\frac{(0.5)(0.5)(0.297)}{(5)}=14.8 \cdot 10^{-3} \mathrm{~cm}^{2} \\
& A_{w 2}=\frac{(0.5)(0.5)(0.297)}{(1)}=74.2 \cdot 10^{-3} \mathrm{~cm}^{2}
\end{aligned}
$$

(Since, in this example, the ratio of winding rms currents is equal to the turns ratio, equal areas are allocated to each winding)

From wire table, Appendix 2:

AWG \#16

AWG \#9

Wire sizes: discussion

Primary

5 turns \#16 AWG
Secondary
1 turn \#9 AWG

- Very large conductors!
- One turn of \#9 AWG is not a practical solution

Some alternatives

- Use foil windings
- Use Litz wire or parallel strands of wire

Effect of switching frequency on transformer size

 for this P-material Cuk converter example

- As switching frequency is increased from 25 kHz to 250 kHz , core size is dramatically reduced
- As switching frequency is increased from 400 kHz to 1 MHz , core size increases

14.4.2 Example 2
 Multiple-Output Full-Bridge Buck Converter

Other transformer design details

Use Magnetics, Inc. ferrite P material. Loss parameters at 75 kHz :

$$
\begin{aligned}
& K_{f e}=7.6 \mathrm{~W} / \mathrm{T}^{\beta} \mathrm{cm}^{3} \\
& \beta=2.6
\end{aligned}
$$

Use E-E core shape
Assume fill factor of

$$
K_{u}=0.25 \quad \text { (reduced fill factor accounts for added insulation required }
$$ in multiple-output off-line application)

Allow transformer total power loss of

$$
P_{t o t}=4 \mathrm{~W} \quad \text { (approximately } 0.5 \% \text { of total output power) }
$$

Use copper wire, with

$$
\rho=1.724 \cdot 10^{-6} \Omega-\mathrm{cm}
$$

Applied transformer waveforms

Applied primary volt-seconds

$$
\lambda_{1}=D T_{s} V_{g}=(0.75)(6.67 \mu \mathrm{sec})(160 \mathrm{~V})=800 \mathrm{~V}-\mu \mathrm{sec}
$$

Applied primary rms current

$$
\begin{gathered}
i_{1}(t) \uparrow \begin{array}{|c|}
\hline \frac{n_{2}}{n_{1}} I_{5 \mathrm{~V}}+\frac{n_{3}}{n_{1}} I_{15 \mathrm{~V}} \\
\left.-\left(\frac{n_{2}}{n_{1}} I_{5 \mathrm{~V}}+\frac{n_{3}}{n_{1}} I_{15 \mathrm{~V}}\right)\right)
\end{array} \\
\quad I_{1}=\left(\frac{n_{2}}{n_{1}} I_{5 \mathrm{~V}}+\frac{n_{3}}{n_{1}} I_{15 \mathrm{~V}}\right) \sqrt{D}=5.7 \mathrm{~A}
\end{gathered}
$$

Applied rms current, secondary windings

$$
\begin{aligned}
& I_{2}=\frac{1}{2} I_{5 V} \sqrt{1+D}=66.1 \mathrm{~A} \\
& I_{3}=\frac{1}{2} I_{15 V} \sqrt{1+D}=9.9 \mathrm{~A}
\end{aligned}
$$

$I_{t o t}$

RMS currents, summed over all windings and referred to primary

$$
\begin{aligned}
I_{\text {tot }} & =\sum_{\substack{\text { all } 5 \\
\text { windings }}} \frac{n_{j}}{n_{1}} I_{j}=I_{1}+2 \frac{n_{2}}{n_{1}} I_{2}+2 \frac{n_{3}}{n_{1}} I_{3} \\
& =(5.7 \mathrm{~A})+\frac{5}{110}(66.1 \mathrm{~A})+\frac{15}{110}(9.9 \mathrm{~A}) \\
& =14.4 \mathrm{~A}
\end{aligned}
$$

Select core size

$$
\begin{aligned}
K_{g f e} & \geq \frac{\left(1.724 \cdot 10^{-6}\right)\left(800 \cdot 10^{-6}\right)^{2}(14.4)^{2}(7.6)^{(2 / 2.6)}}{4(0.25)(4)^{(4.612 .6)}} 10^{8} \\
& =0.00937
\end{aligned}
$$

A2.2 EE core data
From Appendix 2

Core type (A) (mm)	Geometrical constant $\begin{gathered} K_{g_{5}} \\ \mathrm{~cm}^{5} \end{gathered}$	Geometrical constant $\begin{aligned} & K_{g f e} \\ & \mathrm{~cm}^{x} \end{aligned}$	Crosssectional area $\begin{gathered} A_{c} \\ \left(\mathrm{~cm}^{2}\right) \\ \hline \end{gathered}$	Bobbin winding area W_{A} $\left(\mathrm{~cm}^{2}\right)$	Mean length per turn MLT (cm)	Magnetic path length l_{m} $(\mathrm{~cm})$	Core weight (g)
EE22	$8.26 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$	0.41	0.196	3.99	3.96	8.81
EE30	$85.7 \cdot 10^{-3}$	$6.7 \cdot 10^{-3}$	1.09	0.476	6.60	5.77	32.4
EE40	0.209	$11.8 \cdot 10^{-3}$	1.27	1.10	8.50	7.70	50.3
EE50	0.909	$28.4 \cdot 10^{-3}$	2.26	1.78	10.0	9.58	116

Evaluate ac flux density $B_{\text {max }}$

Eq. (14.41):

$$
B_{\max }=\left[10^{8} \frac{\rho \lambda_{1}^{2} I_{t o t}^{2}}{2 K_{u}} \frac{(M L T)}{W_{A} A_{c}^{3} l_{m}} \frac{1}{\beta K_{f e}}\right]^{\left(\frac{1}{\beta+2}\right)}
$$

Plug in values:

$$
\begin{aligned}
B_{\max } & =\left[10^{8} \frac{\left(1.724 \cdot 10^{-6}\right)\left(800 \cdot 10^{-6}\right)^{2}(14.4)^{2}}{2(0.25)} \frac{(8.5)}{(1.1)(1.27)^{3}(7.7)} \frac{1}{(2.6)(7.6)}\right]^{(1 / 4.6)} \\
& =0.23 \text { Tesla }
\end{aligned}
$$

This is less than the saturation flux density of approximately 0.35 T

Evaluate turns

Choose n_{1} according to Eq. (14.42):

$$
\begin{aligned}
n_{1} & =\frac{\lambda_{1}}{2 B_{\max } A_{c}} 10^{4} \\
n_{1} & =10^{4} \frac{\left(800 \cdot 10^{-6}\right)}{2(0.23)(1.27)} \\
& =13.7 \text { turns }
\end{aligned}
$$

Choose secondary turns according to desired turns ratios:

$$
\begin{aligned}
& n_{2}=\frac{5}{110} n_{1}=0.62 \text { turns } \\
& n_{3}=\frac{15}{110} n_{1}=1.87 \text { turns }
\end{aligned}
$$

Rounding the number of turns
To obtain desired turns ratio of

110:5:15
we might round the actual turns to

22:1:3
Increased n_{1} would lead to

- Less core loss
- More copper loss
- Increased total loss

Loss calculation with rounded turns

With $n_{1}=22$, the flux density will be reduced to

$$
B_{\max }=\frac{\left(800 \cdot 10^{-6}\right)}{2(22)(1.27)} 10^{4}=0.143 \text { Tesla }
$$

The resulting losses will be

$$
\begin{aligned}
P_{f e} & =(7.6)(0.143)^{2.6}(1.27)(7.7)=0.47 \mathrm{~W} \\
P_{c u} & =\frac{\left(1.724 \cdot 10^{-6}\right)\left(800 \cdot 10^{-6}\right)^{2}(14.4)^{2}}{4(0.25)} \frac{(8.5)}{(1.1)(1.27)^{2}} \frac{1}{(0.143)^{2}} 10^{8} \\
& =5.4 \mathrm{~W} \\
P_{\text {tot }} & =P_{f e}+P_{c u}=5.9 \mathrm{~W}
\end{aligned}
$$

Which exceeds design goal of 4 W by 50%. So use next larger core size: EE50.

Calculations with EE50

Repeat previous calculations for EE50 core size. Results:

$$
B_{\max }=0.14 \mathrm{~T}, n_{1}=12, P_{t o t}=2.3 \mathrm{~W}
$$

Again round n_{1} to 22 . Then

$$
B_{\max }=0.08 \mathrm{~T}, P_{c u}=3.89 \mathrm{~W}, P_{f e}=0.23 \mathrm{~W}, P_{t o t}=4.12 \mathrm{~W}
$$

Which is close enough to 4 W .

Wire sizes for EE50 design

Window allocations
$\alpha_{1}=\frac{I_{1}}{I_{\text {tot }}}=\frac{5.7}{14.4}=0.396$
$\alpha_{2}=\frac{n_{2} I_{2}}{n_{1} I_{\text {tot }}}=\frac{5}{110} \frac{66.1}{14.4}=0.209$
$\alpha_{3}=\frac{n_{3} I_{3}}{n_{1} I_{\text {tot }}}=\frac{15}{110} \frac{9.9}{14.4}=0.094 \quad A_{w 3}=\frac{\alpha_{3} K_{u} W_{A}}{n_{3}}=\frac{(0.094)(0.25)(1.78)}{(3)}=13.9 \cdot 10^{-3} \mathrm{~cm}^{2}$

$$
\Rightarrow \mathrm{AWG} \# 16
$$

Wire gauges
$A_{w 1}=\frac{\alpha_{1} K_{u} W_{A}}{n_{1}}=\frac{(0.396)(0.25)(1.78)}{(22)}=8.0 \cdot 10^{-3} \mathrm{~cm}^{2}$
\Rightarrow AWG \#19
$A_{w 2}=\frac{\alpha_{2} K_{u} W_{A}}{n_{2}}=\frac{(0.209)(0.25)(1.78)}{(1)}=93.0 \cdot 10^{-3} \mathrm{~cm}^{2}$
\Rightarrow AWG \#8

Might actually use foil or Litz wire for secondary windings

