
paperWhite
Z-WORLD�S REAL-TIME SOFTWARE PHILOSOPHY

Z-World White Paper No. 101 Part No. 022-0023-00

Z-World�s real-time software philosophy harmonizes
with the company�s software development and
hardware philosophies to provide embedded-system
engineers a sophisticated software development
system. This system combines remote debugging
with simple, powerful, and flexible software con-
structs ideally suited to Z-World�s line of single-
board controllers.

Multitasking and Multiprocessing

In a single-processor, multitasking system, more
than one software task appears to be executing
simultaneously. In reality, a single processor can
only execute one instruction at a time, so the parallel
tasks interleave their execution in such a way that
they seem to execute in parallel. Although the
mechanics of multitasking may actually decrease
processor throughput, the benefits of multitasking
are significant enough to offset this use of resources.

However, programming for a multitasking environ-
ment is difficult. Poorly designed or misapplied
multitasking systems incur so much overhead that
the system collapses, failing to answer critical
interrupts in a timely manner. Luckily, multitasking-
control software can usually take advantage of
natural lulls in each task�s sequence of operation to
allow other tasks to execute.

Although �multiprocessing� refers to hardware and
�multitasking� to software, the two have much in
common and often go together. �Multiprocessing�
means, literally, having multiple processors. Soft-
ware can execute across multiple processors in many
different fashions.

For example, an operating system running multiple
programs could assign each currently running
program its own processor. The programs would run
more or less independently of each other. However,
the programs might be sharing system resources such
as a network, a printer, or mass storage. The operat-
ing system would have to handle multiple, asynchro-
nous requests from the programs to use these facili-
ties, and would have to make sure that the programs�
requests did not consist of conflicting commands for
peripheral devices or corrupt each others� data.

In a different configuration, a single program could
distribute multiple, separable �threads� of execution
across several processors. For example, a data-
acquisition program might collect data from many
independent sources. Eventually, the program will
have to synchronize the results of the threads,
generating a composite report. To do this, the
program might have to pause one thread until an-
other thread finishes some vital operation, supplying
a needed intermediate result for the first thread.

Software Models The Outside World

An embedded controller often connects to more than
one external device. A multitasking approach allows
software engineers to devise a solution for each
device in isolation, without having to consider the
requirements of all the devices at the same time. In
other words, multitasking allows software engineers
to partition their software along the organizational
lines of the system to be controlled, constructing an
abstract software model of the real world.

Z-World White Paper No. 101 Page 2 of 7

Z-World�s Multitasking Systems

Although Z-World�s controllers can run programs of
up to 20,000 lines, they are typically used for rela-
tively simple applications. A full-featured real-time
operating system (RTOS), then, is often an unneces-
sary burden. So that software engineers can design a
system that precisely meets their needs, whether
straightforward or complex, Z-World offers three
types of multitasking:

� Cooperative

� Preemptive

� Simplified preemptive

Preemptive Multitasking

Preemption means that some top-priority agency�
usually a timer interrupt or a supervisory task (ker-
nel)�takes control from the task currently running,
giving control of the processor to another, higher-
priority task. The interrupted task has no control
over when preempting may take place and no ability
to stop the interrupt.

A preemptive multitasking system needs, at a mini-
mum, a kernel to stop and start tasks. The kernel
usually uses a timer interrupt from on-board timing
hardware to preempt the currently active task. A
kernel can also take control of the processor in
response to an asynchronous interrupt from the
outside world and, after determining the nature of
the interrupt, decide to switch tasks.

Since a task can be interrupted at any point, preemp-
tive multitasking is well-suited for applications that
require precise timing or high speeds.

Because each task does not know when preemption
may take place, software engineers must be careful
when tasks share common resources such as vari-
ables, displays, storage devices, and communications
lines. Cooperation and coordination among
preemptable tasks are major programming concerns.

The RTK (real-time kernel), one of two kernels
shipped with Z-World�s Dynamic C, supports pre-
emptive multitasking. The RTK supports prioritized
preemption; only a task of higher priority than the
one currently executing can interrupt. Software
engineers may create as many priority levels as

desired when using the RTK. The RTK also has a
suspend function, with which a high-priority task
voluntarily suspends itself (for a specified length of
time or until awakened by other tasks) and lets
lower-priority tasks execute.

Cooperative Multitasking

Cooperative multitasking is the simplest, fastest,
lowest-overhead multitasking possible. Cooperative
multitasking has low overhead because no RTK or
�supervisor� task is needed. Under cooperative
multitasking, each task voluntarily gives up control
so other tasks can execute.

Cooperative multitasking has several advantages
over other types of multitasking:

� The designer has explicit control of the points at
which a task begins and ends logical subsections
of its overall job.

� Programmers have complete, explicit control of
tasks� interactions.

� Tasks communicate more easily.

� Programming is simplified.

� Errors in code are less likely, and are easier to
isolate when they do occur.

� Errors usually degrade performance rather than
halting execution.

� Indeterminate interrupt latency is lower.

Cooperative multitasking does require some
tradeoffs. Compared to preemptive multitasking,
cooperative multitasking�s overall performance is
slower, making it inappropriate for fine-tuned
applications requiring high speed or exact timing.

Cooperative multitasking
is the simplest, fastest,

lowest-overhead multitasking possible

Z-World White Paper No. 101 Page 3 of 7

The costate Function

Z-World�s Dynamic C extension costate
supports cooperative multitasking. The name derives
from the well-known �co-routine,� a concept devel-
oped by IBM decades ago for mainframe computers.
Co-routine allows some routines to stay in memory,
retaining their �current state� between periods of
execution instead of being reinitialized�and per-
haps reloaded�each time they are called.

A costatement is simply a cooperative task. Coopera-
tive tasks run until they encounter an explicit com-
mand in their code to suspend operation. As shown
in Figure 1, this suspension may be temporary
(allowing other costatements time to execute) or
may continue until some condition is met.

Because cooperative-multitasking systems have no
supervisor that automatically deals out processor
time among the tasks, the software engineer must
carefully program in such �wait� and �pause�
commands to maximize a cooperative-multitasking
system�s performance.

Since cooperative tasks interrupt themselves at
convenient points in their execution, cooperative
multitasking is, in a sense, synchronous. A coopera-
tive-multitasking system is thus subject to fewer
problems arising from asynchronous interruptions
than is a preemptive-multitasking system.

Since cooperative-multitasking systems need only a
small amount of system code to save and restore
tasks, they can usually switch between tasks more
quickly than preemptive tasks can.

Simplified Preemptive Multitasking

Z-World�s simplified preemptive multitasking
combines the relative simplicity of cooperative
multitasking with the preemptive ability of a RTOS.

Z-World ships a simplified real-time kernel (SRTK)
with Dynamic C. Like the full RTK, the simplified
RTK is prioritized and preemptive. However, it has
only three levels of priority: high, low, and back-
ground. The high-priority task executes at
25-millisecond intervals, the low-priority task
executes at 100-millisecond intervals, and back-
ground tasks execute only when no other tasks are
executing. Because of the SRTK�s fixed properties, it
is compact and easy to use. The SRTK can be
combined with cooperative multitasking.

Figure 1. Examples of Cooperative Multitasking

main () { ...
 costatement A { ...

 waitfor (<event>)
 ... }

 costatement B { ...
 yield
 ... }

 }

Costatement

...

...

waitfor(<event>)

event != 0

event == 0
...

...

B

yield

Costatement

...

A

main () { ...
 costatement A { ...

 yield
 ... }

 costatement B { ...
 yield
 ... }

 costatement C { ...
 yield
 ... }

 }

...

...

...
...

...
...
yield

Costatement

A
B

C

yield
yield

Costatement
Costatement

Z-World�s simplified preemptive
multitasking combines the relative

 simplicity of cooperative multitasking
 with the preemptive ability of a RTOS

Z-World White Paper No. 101 Page 4 of 7

Programming Considerations

Corrupting Shared, �Non-Atomic� Operations

Real-time programming is perhaps the hardest kind
of programming to do. Problems are difficult to
detect, difficult to diagnose, and difficult to fix.
Verifying that a real-time system will survive all
possible combinations of inputs, insults, and outages
in the real world is a challenging task.

For example, in a real-time system with concurrent
tasks sharing data, subtle problems can occur with
variables that are stored and fetched in a �non-
atomic� manner. Here �atomic� refers to an �atom�
of code; that is, a segment of code that executes from
start to finish as an uninterruptable unit.

If fetching or storing a variable takes several instruc-
tions, it is possible that an interrupt could occur
during this sequence of instructions. Consider a
floating-point variable that occupies four bytes.
Storing a value in this multi-byte variable typically
takes two or more instructions. If an interrupt occurs
between these store instructions, and a new task of
higher priority that uses the same variable takes over,
then the new task will see a corrupted value, partly
old and partly new.

Z-World�s Dynamic C provides a C keyword,
shared, that declares a variable as �atomic.� That
is, Dynamic C will automatically disable interrupts
during stores and fetches of shared variables.

Disabling interrupts during non-atomic operations
cures the problem of data corruption but at the
expense of increased interrupt latency�an important
consideration for a embedded controller that must
respond promptly and predictably to asynchronous
interrupts.

Logical Operators

The nature of C introduces some built-in problems.
For example, a potential problem arises because the
logical operators || (Boolean OR) and && (Boolean
AND) are subject to �short-circuit� evaluation rules.
In an OR expression, such as a||b||c, remaining
terms are not evaluated if any of the preceding terms

are true. In an AND expression, such as a&&b&&c,
remaining terms are not evaluated if any of the
preceding terms are false.

Consider the following code fragment that uses the
Z-World DelayMs function, which delays a task for
the specified number of milliseconds after
DelayMs is called. Because of the short-circuit
evaluation rules, an expression such as

waitfor(test && DelayMs(50L));

waits until test becomes true and then waits 50
milliseconds more. The call to DelayMs, in other
words, will not happen while test is false.

The code executes very differently, however, if the
order of the terms in the expression is reversed:

waitfor(DelayMs(50L) && test);

The expression now calls DelayMs , beginning the
50-millisecond delay, and then checks to see if test
is true. If test becomes true after the 50-millisec-
ond delay has finished, the program will immedi-
ately move to the next expression (rather than calling
DelayMs only after test is true, as in the first
example). Software engineers can avoid short-circuit
evaluation problems by using the bitwise OR and
AND operators (| and &).

Multiprocessing

Some applications may require more input and
output ports than a single control computer can
provide, but be too tightly integrated to be controlled
by two separate programs running on two separate
controllers. Or, in other cases, running numerous
input/output lines through a large machine to and
from a single controller might be physically unsafe
or impractical.

Z-World�s simple approach to multiprocessing
relieves the software engineers of the burden of
coordinating multiple, multitasking programs run-
ning on multiple processors. Z-World implements
multiprocessing as a simple master-slave network of
control computers linked by an inexpensive, twisted-
pair RS-485 multidrop network.

Z-World White Paper No. 101 Page 5 of 7

The software engineer writes a single control pro-
gram for the single master controller. This program
uses a single set of I/O routines to control the input
and output ports of both the master controllers and
all the slave controllers. The slaves all run the same
factory-supplied program from EPROM. The soft-
ware engineer does not need to program the slave
computers.

Further, each controller, whether a master or a slave,
can have Z-World expansion boards attached. Again,
the program running on the master controller uses a
single set of function calls to operate all of the
network�s expansion boards.

These add-on boards could theoretically provide an
additional 48 form-C relay contacts, 16 digital-to-
analog (DAC) output channels, 16 conditioned
analog-to-digital (ADC) input channels, 28 uncondi-
tioned analog-to-digital input channels, 32 digital-
input channels, and 12 high-voltage digital-output
channels.

In practice, because of physical limitations such as
current draw and noise, no more than four expansion
boards can be connected to each controller (see
Figure 2).

Short-Range And Long-Range Networks

Z-World offers sets of function calls for short-range
and long-range versions of its master-slave, multi-
processing network.

The short-range network links a maximum of 16
control computers (1 master and 15 slaves). The
cable length must be short enough and the environ-
ment electrically clean enough so that no communi-
cation errors occur. The short-range network is faster
than the long-range network because it does no error
checking or error recovery. In the event of an error,
the control computer (master or slave) detecting the
error simply resets.

The long-range network can link more than 16
control computers. Because the long-range network
attempts to retransmit garbled communication and
otherwise recover from errors without resetting, it
runs more slowly than does the short-range network.

Z-World�s Real-Time Performance
Enhancements

Z-World�s RTKs and the costate facility are only
part of Z-World�s real-time software philosophy;
other software facilities (supplied as source code)
and hardware devices (such as the watchdog timer,
battery backup, and nonvolatile storage) are integral
parts of Z-World�s real-time system.

The Virtual Driver

The virtual driver is a set of functions providing the
following services:

� Periodic timer interrupts

� Second, millisecond, and tick timers

� Synchronization of the second timer with the real-
time clock

� Virtual watchdog timers

� Periodic scheduling for real time kernels

� The �fastcall� execution thread

� Global initialization

Figure 2. Theoretical Maximum Short-Range System Expansion

Master Slave 1 Slave 15

PLCBus

XP8300 XP8300XP8300

XP8600 XP8600XP8600

XP8500 XP8500XP8500

XP8200 XP8200XP8200

RS-485

Z-World White Paper No. 101 Page 6 of 7

�Fastcall� Task

Both the RTK and the SRTK support a �fastcall�
task, available with either kernel or when no kernel
is running, which can execute as often as 1280 times
per second. The fastcall task preempts all other
tasks.

Global Initialization

Initializing a control program is really an engineer-
ing task because such initializations determine the
�zero state� of a complex hardware/software system.
Consequently, the initialization facilities of conven-
tional compilers generally do not provide enough
programming power for embedded systems. The
global initialization feature of Dynamic C executes
sections in the program declared with a special
keyword. This construct provides a formal, explicit
means of initializing an entire embedded system.
The initialization statements can be complex C code
with loops, branches, and function calls, or simple
assignments�whatever is required.

Interrupts, Failure, and Recovery

Simple applications written for a PC or a UNIX
workstation do not have to handle interrupts because
their operating systems already handle interrupts
from the standard devices usually interfaced to such
programs: a keyboard, serial interfaces, disk drives,
and so on.

Embedded controllers running stand-alone, real-time
programs often have no operating system. Embed-
ded-system designers also have to contend with a
huge range of possible peripheral devices; virtually
any device in the world can interface with a control
computer. Furthermore, real-time applications
require far more robust responses to interrupts and
errors than do workstations.

In many cases, a workstation or PC operating system
responds to problems with an error message and
simply halts (or crashes), leaving the workstation�s
operator to fix the problem. Embedded controllers

generally do not have operators in attendance and so
must handle problems themselves.

Even a �perfect� program may still crash because of
conditions that are beyond the control of the soft-
ware engineer and Dynamic C. For example, black-
outs, brownouts, and �spikes� on the incoming
power lines can put the controller in an undeter-
mined state. Therefore, crash detection and recovery
are important issues for all embedded applications.
As a rule, software engineers can expect that the
logic associated with detecting and handling errors
will be a substantial portion of an embedded
program�s code.

Z-World has derived methods and support routines
for robust embedded systems. Dynamic C makes
writing interrupt and error routines as easy as writing
any other C function.

Software Failures

While software cannot detect all types of software-
related failures, certain software-related failures can
be actively verified. For example, if a software
engineer compiles a program with Dynamic C
debugging options activated, the compiler inserts
code to perform the following routine:

� Check stack integrity

� Check validity of pointers

� Check array-bounds overflow

If such errors occur, the debugging code calls a
function established by the software engineer to
invoke the proper error handler for each type of
error.

Protected-Variable Recovery

Z-World provides a language construct and support
routines for low-level recovery of important vari-
ables. Recovering certain data is particularly impor-
tant if the application uses nonvolatile memory to
store log files because the log files (and the associ-
ated data structures) must persist over crashes.

Z-World White Paper No. 101 Page 7 of 7

Software engineers may declare a variable �pro-
tected.� When a variable, array, or structure is
protected, the compiler generates code that will
perform the following routine when storing a value
in the variable:

� Make a backup copy of the variable

� Set a �flag� indicating the backup copy is valid

� Store the variable

� Reset the flag

If system fails during the write to the variable, the
Z-World recovery function will check the flag and
reestablish the correct version.

Hardware Failures

Software often cannot identify or handle hardware-
related failures because the software itself runs on
the failing hardware. Generally, the only verifiable
hardware failure is power failure. Special hardware
on Z-World�s controllers detects low input voltage
before the regulated, on-board power drops out.
Upon detecting an impending power failure, this
hardware causes an non-maskable interrupt (NMI)
that the processor cannot ignore, and the processor
executes the handler for the NMI. The program
usually has only a few milliseconds or less between
the NMI and complete power failure, however.
Consequently, the NMI handler often can only store
a handful of critical system parameters in some kind
of nonvolatile memory. Z-World control computers
offer, variously, battery-backed RAM, EEPROM, or
flash EPROM as nonvolatile storage.

Hardware Watchdog Timer

A hardware watchdog timer will reset the a control
computer unless it repeatedly receives a signal from
the software within a specified time�about 1.6
seconds for Z-World equipment. A correctly func-
tioning program will periodically reset the watchdog

timer to keep the processor from resetting. The
system assumes that if the watchdog times out, a
software failure must have occurred, and so it resets
the system to allow the program to reinitialize and
attempt a recovery.

Reset and Super-Reset

A reset caused by a power failure, software failure,
operator intervention, or watchdog-timer timeout
causes the program to execute a reset routine.

Z-World strongly suggests that software engineers
distinguish between a program�s initialization during
startup and a program�s recovery from a genuine,
run-time failure. If the program is simply starting up,
the program must initialize its variables to the �zero�
state. When the program is recovering from failure,
however, it must restore critical system parameters
saved from before the failure so that execution can
resume execution at the point of failure.

For this purpose, then, the Dynamic C compiler
places a time stamp in each program. The time
stamp is passed as an argument to main()., which
can use the time stamp to determine if a program is
restarting or responding to a crash. Dynamic C has
separate facilities for a startup reset to the system�s
zero state and a �Super Reset� that allows a program
to resume where it left off.

Enhanced Power-Failure Handler

The circuitry in Z-World�s controllers that detects
power failures goes beyond the industry-standard
handbook design. This enhanced circuitry can
distinguish between a crash resulting from a power
failure (blackout or brownout) and one resulting
from a watchdog timeout. This circuitry allows a
Z-World controller to withstand multiple, rapid
power-line insults that would overload the interrupt
handler of conventional designs.

Part No. 022-0023-00

Z-World Corporate Headquarters
2900 Spafford Street, Davis, California 95616 USA

530.575.3737 � Fax: 530.753.5141

http://www.zworld.com

