
For Rabbit Semiconductor Microprocessors

Integrated C Development System

User’s Manual
010430 - M

SE and Premier Editions

Dynamic C User’s Manual

Part Number 019-0071 • 010430-M

Copyright

© 1999 Z-World, Inc. • All rights reserved.

Z-World, Inc. reserves the right to make changes and improvements to its products without provid-
ing notice.

Trademarks

• Dynamic C® is a registered trademark of Z-World, Inc.

• Windows® is a registered trademark of Microsoft Corporation

Notice to Users

When a system failure may cause serious consequences, protecting life and property against such

consequences with a backup system or safety device is essential. The buyer agrees that protection

against consequences resulting from system failure is the buyer’s responsibility.

This device is not approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional testing may include visual
quality control inspections or mechanical defects analyzer inspections. Specifications are based on

characterization of tested sample units rather than testing over temperature and voltage of each

unit. Rabbit Semiconductor may qualify components to operate within a range of parameters that
is different from the recommended range of the manufacturer. This strategy is believed to be more

economical and effective. Additional testing or burn-in of an individual unit is available by special
arrangement.

Company Address

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA
Telephone: (530) 757-3737
Facsimile: (530) 753-5141
Web site: http://www.zworld.com
ii

Table of Contents

1 Installing Dynamic C................................1

1.1 Requirements ..1

1.2 Assumptions ...1

2 Introduction to Dynamic C3

2.1 The Nature of Dynamic C3
Speed ..3

2.2 Dynamic C Enhancements and

Differences..4
Dynamic C Enhancements4
Dynamic C Differences.....................5

2.3 Dynamic C Differences Between Rabbit
and Z180 ...5

3 Quick Tutorial...7

3.1 Run DEMO1.C7
Single-Stepping8
Watch Expression..............................9
Breakpoint ...9
Editing the Program9

3.2 Run DEMO2.C10
Watching Variables Dynamically10

3.3 Run DEMO3.C10
Cooperative Multitasking................10

3.4 Summary of Features..........................12
Development Functions12
Single-stepping................................12
Setting breakpoints..........................12
Watch expressions...........................12
Costatements12

4 Language ..13

4.1 C Language Elements13

4.2 Punctuation and Tokens......................14

4.3 Data...14

4.4 Names ...15

4.5 Macros ..16
Restrictions......................................18

4.6 Numbers..19

4.7 Strings and Character Data19

4.8 Statements...21

4.9 Declarations ..21

4.10 Functions ..22

4.11 Prototypes ...22

4.12 Type Definitions23

4.13 Aggregate Data Types.........................24
Array ..24
Structure ..24
Union ..25

Composites......................................25

4.14 Storage Classes25

4.15 Pointers ...26

4.16 Pointers to Functions, Indirect Calls...27

4.17 Argument Passing...............................28

4.18 Program Flow28
Loops ..29
Continue and Break.........................29
Branching ..31

4.19 Function Chaining32

4.20 Global Initialization............................33

4.21 Libraries..35

4.22 Support Files.......................................36

4.23 Headers ...36

4.24 Modules ..37
The Key...37
The Header......................................37
The Body...38
Function Description Headers.........39

5 Multitasking with Dynamic C..............41

5.1 Cooperative Multitasking41

5.2 A Real-time Problem43
Solving the Real-time Problem

With a State Machine43

5.3 Costatements.......................................44
Solving the Real-time Problem

With Costatements.......................44
Costatement Syntax.........................45
Control Statements45

5.4 Advanced Costatement Topics46
The CoData Structure......................46
CoData Fields..................................47
Pointer to CoData Structure48
Library Extensions for Use With

Named Costatements48
Firsttime Functions49
Shared Global Variables..................49

5.5 Cofunctions...50
Syntax..50
Calling Restrictions.........................51
CoData Structure.............................51
Firsttime functions51
Types of Cofunctions52
Types of Cofunction Calls...............53
Special Code Blocks54
Solving the Real-time Problem

With Cofunctions.........................55

5.6 Patterns of Cooperative Multitasking .55

5.7 Timing Considerations........................56
Dynamic C User’s Manual iii

waitfor Accuracy Limits................. 57

5.8 Overview of Preemptive Multitasking57

5.9 Slice Statements 57
Syntax ... 57
Usage ... 58
Restrictions 58
Slice Data Structure 59
Slice Internals 59

5.10 Summary .. 61

6 The Virtual Driver................................... 63

6.1 Default Operation............................... 63

6.2 Calling _GLOBAL_INIT() 63

6.3 Global Timer Variables 64

6.4 Watchdog Timers 65
Hardware Watchdog 65
Virtual Watchdogs 65

6.5 Preemptive Multitasking Drivers 65

7 The Slave Port Driver 67

7.1 Slave Port Driver Protocol 67
Overview .. 67
Registers on the Slave 67
Polling and Interrupts 68
Communication Channels 69

7.2 Functions .. 69
SPinit .. 69
SPsetHandler 70
MyHandler...................................... 71
SPtick.. 72
SPclose ... 72

7.3 Examples .. 72
Example of a Simple Status Handler..

72
Example of a Serial Port Handler... 73
cof_MSgetc..................................... 74
cof_MSputc 74
cof_MSread 75
cof_MSwrite 75
MSclose .. 76
MSgetc.. 76
MSgetError 77
MSinit ... 77
MSopen... 78
MSputc ... 78
MSrdFree.. 79
MSsendCommand 79
MSread ... 80
MSwrFree 80
MSwrite .. 81
Example of a Byte Stream Handler 83
cbuf_init.. 83
cof_SPSread 84

cof_SPSwrite 84
SPSinit .. 85
SPSread .. 85
SPSwrite ... 86
SPSwrFree 86
SPSrdFree 87
SPSwrUsed 87
SPSrdUsed...................................... 87

8 Efficiency... 89

8.1 Nodebug Keyword 89

8.2 Static Variables................................... 89

8.3 Function Entry and Exit 90

9 Run-Time Error Processing.................. 91

9.1 User-defined error handlers................ 93

10 Memory Management 95

10.1 Memory Map...................................... 95
Memory Mapping Control.............. 96

10.2 Extended Memory Functions 96
Code Placement in Memory 96

11 The Flash File System 99

11.1 General Usage 99
Wear Leveling 99
Low-level implementation 99

11.2 Application Requirements................ 100

11.3 Functions.. 100
Using File Names 101

11.4 Skeleton Program............................. 102

12 Using Assembly Language 103

12.1 Program Flow................................... 103
Embedded C in Assembly 104

12.2 Comments .. 104

12.3 Labels ... 104

12.4 Defining Constants........................... 105

12.5 Expressions 105

12.6 Multiline Macros.............................. 106

12.7 Special Symbols............................... 106

12.8 C Variables 106

12.9 Stand-alone Assembly Code 107

12.10 Embedded Assembly Code 108
Not Using the IX Register, Function in

Root Memory............................ 109
Using the IX Register, Function in

Root Memory............................ 110
Not Using the IX Register, Function in

Extended Memory..................... 112

12.11 C Functions Calling Assembly Code113

12.12 Assembly Code Calling C Functions114
iv Dynamic C User’s Manual

12.13 Interrupt Routines in Assembly115

12.14 Common Problems116

13 Keywords ...117
abort..117
always_on...117
anymem ..117
auto ...117
break ...118
case ...118
char ...118
const ...119
continue ..120
costate...120
debug ..120
default...121
do..121
else..121
extern..121
firsttime ..122
float...122
for ...123
goto...123
if ...123
init_on...124
int..124
interrupt ..124
long...124
main..125
nodebug ..125
norst ..125
nouseix ...125
NULL ...125
protected ...126
return ..126
root ...127
segchain..127
shared ...127
short ..128
size..128
sizeof ..128
speed...128
static ...129
struct ...129
switch ...130
typedef..130
union...131
unsigned ...131
useix ...131
waitfor ..131
waitfordone

(wfd)..132
while ...132
xdata ...132
xmem..132

xstring...133
yield..133

13.1 Compiler Directives..........................134
#asm options

#endasm ..134
#class options134
#debug

#nodebug.......................................134
#define name text

#define name(params...) text.......134
#fatal "…" ..134
#GLOBAL_INIT { variables }134
#error "…"..135
#funcchain chainname name135
#if constant_expression

#elif constant_expression
#else
#endif ..135

#ifdef name
#ifndef name135

#interleave
#nointerleave.................................135

#KILL name ...136
#makechain chainname136
#memmap options136
#undef name ...136
#use pathname......................................136
#useix

#nouseix ..136
#warns "…" ..136
#warnt "…" ..136
#ximport <filename> <symbol>137

14 Operators ..139

14.1 Arithmetic Operators140
+ ..140
–...140
*...141
/..141
++ ..141
––...142
% ...142

14.2 Assignment Operators142
= ..142
+= ..142
-= ...143
*= ..143
/= ...143
%= ...143
<<=..143
>>=..143
&= ...143
^= ..144
|=..144
Dynamic C User’s Manual v

14.3 Bitwise Operators............................. 144
<<.. 144
>>.. 144
&... 144
^ .. 145
| ... 145
~.. 145

14.4 Relational Operators 145
<.. 145
<=.. 145
>.. 146
>=.. 146

14.5 Equality Operators 146
==.. 146
!= .. 146

14.6 Logical Operators............................. 147
&&.. 147
|| .. 147
!... 147

14.7 Postfix Expressions 147
() .. 147
[] .. 147
. (dot) .. 148
-> .. 148

14.8 Reference/Dereference Operators 148
&... 148
* .. 149

14.9 Conditional Operators 149
? : .. 149

14.10 Other Operators................................ 150
(type)... 150
sizeof... 150
, ... 151

15 Function Reference............................... 153

15.1 Functional Groups............................ 153
 arithmetic 153
 bit manipulation 153
 character 153
 extended memory 153
 fast fourier transforms................. 153
 file system 153
 floating-point math...................... 154
 low-level flash access.................. 154
 I/O ... 154
 interrupts 154
 MicroC/OS-II 155
 miscellaneous 155
 multitasking................................. 156
 number-to-string conversion 156
 real-time clock............................. 156
 serial communication 156
 STDIO... 157

 string manipulation 157
 string-to-number conversion 157
 system.. 157
 watchdog 158

15.2 Alphabetical Listing........................ 159
abs... 159
acos ... 159
acot ... 160
acsc ... 160
asec ... 161
asin.. 161
atan ... 162
atan2 ... 163
atof.. 164
atoi .. 164
atol .. 165
bit.. 165
BIT.. 166
BitRdPortE 166
BitRdPortI 167
BitWrPortE 168
BitWrPortI 169
ceil .. 170
.. 170
chkHardReset 170
chkSoftReset................................. 171
chkWDTO 171
clockDoublerOn 172
clockDoublerOff........................... 172
CoBegin.. 173
cof_serXgetc................................. 173
cof_serXgets 174
cof_serXputc 175
cof_serXputs................................. 176
cof_serXread 177
cof_serXwrite 178
CoPause .. 179
CoResume 180
cos... 180
cosh... 181
defineErrorHandler....................... 181
deg .. 182
DelayMs 182
DelaySec....................................... 183
DelayTicks.................................... 183
Disable_HW_WDT 184
exit .. 184
exp .. 185
fabs ... 185
fclose .. 186
fcreate ... 186
fcreate_unused.............................. 187
fdelete ... 187
fftcplx ... 188
vi Dynamic C User’s Manual

fftcplxinv.......................................189
fftreal ...190
fftrealinv..191
flash_erasechip..............................192
flash_erasesector192
flash_gettype193
flash_init..194
flash_read195
flash_readsector196
flash_sector2xwindow197
flash_writesector198
floor ...199
fmod ..199
fopen_rd ..200
fopen_wr200
forceSoftReset201
fread ..201
frexp ..202
fs_format203
fs_init ..204
fs_reserve_blocks..........................205
fsck ..205
fseek ..206
ftell ..207
fshift ..207
fwrite ...208
ftoa ..208
getchar ...209
getcrc ...209
gets ..210
GetVectExtern2000.......................210
GetVectIntern................................211
hanncplx ..212
hannreal ...213
hitwd..214
htoa..214
IntervalMs215
IntervalSec215
IntervalTick...................................216
ipres ...216
ipset ...217
isalnum ..217
isalpha ...218
iscntrl...218
isCoDone.......................................219
isCoRunning..................................219
isdigit...220
isgraph...220
islower ...221
isspace ...221
isprint ..222
ispunct ...223
isupper ...224
isxdigit...224

itoa...225
kbhit ..225
labs ..226
ldexp..226
log..227
log10..227
longjmp ...228
ltoa...228
ltoan...229
memchr..229
memcmp..230
memcpy...231
memmove......................................231
memset ..232
mktime ..232
mktm ...233
modf ..234
OSInit ..234
OSMboxAccept.............................235
OSMboxCreate..............................235
OSMboxPend236
OSMboxPost237
OSMboxQuery238
OSMemCreate...............................239
OSMemGet240
OSMemPut....................................240
OSMemQuery241
OSQAccept241
OSQCreate242
OSQFlush......................................243
OSQPend.......................................244
OSQPost..245
OSQPostFront246
OSQQuery.....................................247
OSSchedLock................................247
OSSchedUnlock248
OSSemAccept248
OSSemCreate249
OSSemPend249
OSSemPost250
OSSemQuery251
OSSetTickPerSec252
OSStart ..252
OSStatInit......................................253
OSTaskChangePrio.......................253
OSTaskCreate254
OSTaskCreateExt..........................255
OSTaskCreateHook256
OSTaskDel257
OSTaskDelHook258
OSTaskDelReq..............................259
OSTaskQuery................................260
OSTaskResume.............................261
OSTaskStatHook...........................261
Dynamic C User’s Manual vii

OSTaskStkChk 262
OSTaskSuspend............................ 263
OSTaskSwHook 263
OSTimeDly................................... 264
OSTimeDlyHMSM 265
OSTimeDlyResume...................... 266
OSTimeDlySec............................. 267
OSTimeGet................................... 267
OSTimeSet 268
OSTimeTickHook 268
OSVersion 269
outchrs .. 269
outstr ... 270
paddr ... 270
 poly .. 271
pow ... 272
pow10 ... 272
powerspectrum 273
premain ... 274
printf ... 274
putchar .. 275
puts ... 275
qsort .. 276
rad ... 277
rand ... 278
randb ... 278
randg ... 279
RdPortE .. 279
RdPortI ... 280
read_rtc ... 280
read_rtc_32kHz 281
res ... 281
RES... 282
root2xmem.................................... 283
runwatch 283
serCheckParity.............................. 284
serXclose 284
serXdatabits 285
serXflowcontrolOff 285
serXflowcontrolOn....................... 286
serXgetc.. 287
serXgetError 288
serXopen....................................... 289
serXparity 290
serXpeek 291
serXputc.. 291
serXputs.. 292
serXrdFlush 292
serXrdFree 293
serXrdUsed 293
serXread.. 294
serXwrFlush 295
serXwrFree 295
serXwrite 295

set.. 296
SET... 297
setjmp ... 298
SetVectExtern2000....................... 299
SetVectIntern................................ 300
sin ... 300
sinh ... 301
sprintf.. 302
sqrt .. 303
strcat ... 303
strchr ... 304
strcmp ... 305
strcmpi .. 306
strcpy .. 307
strcspn... 307
strlen ... 308
strncat ... 308
strncmp ... 309
strncmpi .. 310
strncpy .. 311
strpbrk... 312
strrchr.. 312
strspn .. 313
strstr .. 313
strtod... 314
strtok... 315
strtol.. 316
_sysIsSoftReset 316
sysResetChain 317
tan ... 317
tanh ... 318
tm_rd .. 319
tm_wr.. 320
tolower.. 321
toupper.. 321
updateTimers 322
use32HzOsc.................................. 322
useClockDivider 323
useMainOsc 323
utoa ... 324
VdGetFreeWd 325
VdHitWd 325
VdInit.. 326
VdReleaseWd............................... 327
WriteFlash2 328
write_rtc.. 329
WrPortE.. 330
WrPortI ... 330
xalloc .. 331
xmem2root.................................... 331
xmem2xmem 332

16 User Interface ... 333

16.1 Editing.. 333
viii Dynamic C User’s Manual

16.2 Menus ...334
New ..335
Open ..335
Save ..335
Save As ...335
Close ..335
Print Preview.................................335
Print ..335
Print Setup.....................................336
Exit ..336

16.3 Edit Menu ...336
Undo ..336
Redo ..337
Cut ..337
Copy ..337
Paste ..337
Find ..337
Replace..337
Find Next.......................................338
Goto ..338
Previous Error338
Next Error338
Edit Mode......................................338

16.4 Compile Menu339
Compile to Target..........................339
Compile to .bin file339
Reset Target/Compile BIOS..........340
Include Debug Code/RST

28 Instructions340

16.5 Run Menu ...341
Run ..341
Run w/ No Polling.........................341
Stop ..341
Reset Program342
Trace Into342
Step over..342
Toggle Breakpoint.........................342
Toggle Hard Breakpoint................342
Toggle Interrupt Flag.....................342
Toggle Polling342
Reset Target...................................343
Close Serial Port............................343

16.6 Inspect Menu343
Add/Del Watch Expression343
Clear Watch Window344
Update Watch Window344
Disassemble at Cursor...................344
Disassemble at Address344
Dump at Address...........................345

16.7 Options Menu346
Editor ..346
Compiler..347
Debugger349
Display ..350

Communications351
Show Tool Bar351
Save Environment352

16.8 Window Menu352
Cascade ...352
Tile Horizontally352
Tile Vertically................................353
Arrange Icons................................353
Message...353
Watch ..353
STDIO...353
Assembly.......................................354
Registers..355
Stack ..355
Information....................................356

16.9 Help Menu ..356
Online Documentation356
Keywords357
Operators.......................................357
HTML Function Reference...........357
Function Lookup/Insert.................357
Keystrokes.....................................359
Search for Help on359
Contents ..359
About ..359

17 µC/OS-II...361

17.1 Changes ..361
Ticks per Second361
Task Creation362
Restrictions....................................363

17.2 Tasking Aware Interrupt Service

Routines (TA-ISR)............................363
Interrupt Priority Levels................363
Possible ISR Scenarios..................364
General Layout of a TA-ISR.........365

17.3 Library Reentrancy369

17.4 How to Get a µC/OS-II Application

Running ..370

17.5 Compatibility with TCP/IP...............375

Software License Agreement377

Index ..381
Dynamic C User’s Manual ix

x Dynamic C User’s Manual

Installing Dynamic C 1

Insert the installation disk or CD in the appropriate disk drive on your PC. The installation should

begin automatically. If it doesn’t, issue the Windows “Run...” command and type the following

command.

The installation program will begin and guide you through the installation process.

1.1 Requirements
Your PC should have at least one free COM port and be running one of the following.

• Windows 95

• Windows 98

• Windows 2000

• Windows Me

• Windows NT

1.2 Assumptions
Assumptions are made regarding your knowledge and experience in the following areas:

• Understanding of the basics of operating a software program and editing files under
Windows on a PC.

• Knowledge of basic assembly language and architecture for controllers.

For a full treatment of C, refer to one or both of the following texts:

The C Programming Language by Kernighan and Ritchie (published by Prentice-Hall).

C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).

‹disk›:\SETUP
Dynamic C User’s Manual 1

2 Dynamic C User’s Manual

Introduction to Dynamic C 2

Dynamic C is an integrated development system for writing embedded software. It runs on an

IBM-compatible PC and is designed for use with Z-World controllers and other controllers based

on the Rabbit microprocessor. The Rabbit 2000 microprocessor is a high-performance 8-bit micro-
processor that can handle C language applications of approximately 50,000 C+ statements or 1

megabyte.

2.1 The Nature of Dynamic C
Dynamic C integrates the following development functions

• Editing

• Compiling

• Linking

• Loading

• Debugging

into one program. In fact, compiling, linking and loading are one function. Dynamic C has an

easy-to-use built-in text editor. Programs can be executed and debugged interactively at the

source-code or machine-code level. Pull-down menus and keyboard shortcuts for most commands

make Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C or the

development system to write assembly language code. C and assembly language may be mixed

together.

Debugging under Dynamic C includes the ability to use printf commands, watch expressions,
breakpoints and other advanced debugging features. Watch expressions can be used to compute C

expressions involving the target’s program variables or functions. Watch expressions can be evalu-
ated while stopped at a breakpoint or while the target is running its program.

Dynamic C provides extensions to the C language (such as shared and protected variables, cos-
tatements and cofunctions) that support real-world embedded system development. Interrupt ser-
vice routines may be written in C. Dynamic C supports cooperative and preemptive multi-tasking.

Dynamic C comes with many function libraries, all in source code. These libraries support real-
time programming, machine level I/O, and provide standard string and math functions.

2.1.1 Speed
Dynamic C compiles directly to memory. Functions and libraries are compiled and linked and

downloaded on-the-fly. On a fast PC, Dynamic C might load 30,000 bytes of code in 5 seconds at
a baud rate of 115,200 bps.
Dynamic C User’s Manual 3

2.2 Dynamic C Enhancements and Differences
Dynamic C differs from a traditional C programming system running on a PC or under UNIX.
The motivation for being different is to be better help customers write the most reliable embedded

control software possible. It is not possible to use standard C in an embedded environment with-
out making adaptations. Standard C makes many assumptions that do not apply to embedded sys-
tems. For example, standard C implicitly assumes that an operating system is present and that a

program starts with a clean slate, whereas embedded systems may have battery-backed memory

and may retain data through power cycles. Z-World has extended the C language in a number of
areas.

2.2.1 Dynamic C Enhancements
Many enhancements have been added to Dynamic C. Some of these are listed below.

• Function chaining, a concept unique to Dynamic C, allows special segments of code to

be embedded within one or more functions. When a named function chain executes, all
the segments belonging to that chain execute. Function chains allow software to per-
form initialization, data recovery, or other kinds of tasks on request.

• Costatements allow concurrent parallel processes to be simulated in a single program.

• Cofunctions allow cooperative processes to be simulated in a single program.

• Slice statements allow preemptive processes in a single program.

• The interrupt keyword in Dynamic C allows the programmer to write interrupt service

routines in C.

• Dynamic C supports embedded assembly code and stand-alone assembly code.

• Dynamic C has shared and protected keywords that help protect data shared between

different contexts or stored in battery-backed memory.

• Dynamic C has a set of features that allow the programmer to make fullest use of
extended memory. Dynamic C supports the 1M address space of the microprocessor.
The address space is segmented by a memory management unit. Normally, Dynamic C

takes care of memory management, but there are instances where the programmer will
want to take control of it. Dynamic C has keywords and directives to help put code and

data in the proper place. The keyword root selects root memory (addresses within the

64K physical address space). The keyword xmem selects extended memory, which

means anywhere in the 1024K or 1M code space. root and xmem are semantically

meaningful in function prototypes and more efficient code is generated when they are

used. Their use must match between the prototype and the function definition. The

directive #memmap allows further control. See “Memory Management” on page 95, for
further details on memory.
4 Dynamic C User’s Manual

2.2.2 Dynamic C Differences
The main differences in Dynamic C are summarized here and discussed in detail in chapters “Lan-
guage” on page 13 and “Keywords” on page 117.

• If a variable is initialized in a declaration (e.g., int x = 0;), it is stored in Flash Mem-
ory (EEPROM) and cannot be changed by an assignment statement. Starting with

Dynamic C 7.x such declaration will generate a warning which can be suppressed using

the const keyword: const int x = 0; To initialize static variables in Static RAM

(SRAM) use #GLOBAL_INIT sections.

• The default storage class is static, not auto. This avoids numerous bugs encountered

in embedded systems due to the use of auto variables. Starting with Dynamic C 7.x, the

default class can changed to auto by the compiler directive #class auto.

• The numerous include files found in typical C programs are not used because Dynamic

C has a library system that automatically provides function prototypes and similar
header information to the compiler before the user’s program is compiled. This is done

via the #use directive. This is an important topic for users who are writing their own

libraries. Those users should refer to the Modules section of the language chapter.

• When declaring pointers to functions, arguments should not be used in the declaration.
Arguments may be used when calling functions indirectly via pointer, but the compiler
will not check the argument list in the call for correctness.

• Bit fields and enumerated types are not supported. Separate compilation of different
parts of the program is not supported or needed. There are minor differences involving

extern and register keywords.

2.3 Dynamic C Differences Between Rabbit and Z180
A major difference in the way Dynamic C interacts with a Rabbit-based board compared to a Z180

or 386EX board is that Dynamic C expects no BIOS kernel to be present on the target when it
starts up. Dynamic C stores the BIOS kernel as a C source file. Dynamic C compiles and loads it
to the Rabbit target when it starts. This is accomplished using the Rabbit CPU’s bootstrap mode

and a special programming cable provided in all Rabbit product development kits. This method

has numerous advantages.

• A socketed flash is no longer needed. BIOS updates can be made without a flash-
EPROM burner since Dynamic C can communicate with a target that has a blank flash

EPROM. Blank flash EPROM can be surface-mounted onto boards, reducing manu-
facturing costs for both Z-World and other board developers. BIOS updates can then be

made available on the Web.

• Advanced users can see and modify the BIOS kernel directly.

• Board Developers can design Dynamic C compatible boards around the Rabbit CPU by

simply following a few simple design guidelines and using a “skeleton” BIOS provided

by Z-World.
Dynamic C User’s Manual 5

• A major new feature introduced in Dynamic C 7.x is the ability to program and debug

over the Internet or local Ethernet. This requires the use of a RabbitLink board, avail-
able alone or as an option with Rabbit-based development kits.
6 Dynamic C User’s Manual

Quick Tutorial 3

Sample programs are provided in the Dynamic C Samples folder, shown below.

The subfolders contain sample programs that illustrate the use of the various Dynamic C librar-
ies. The subfolder named Cofunc, for example, contains sample programs illustrating the use of
COFUNC.LIB. The sample program Pong.c demonstrates output to the STDIO window. Each

sample program has comments that describe its purpose and function.

3.1 Run DEMO1.C
This sample program will be used to illustrate some of the functions of Dynamic C. Open the file

Samples/DEMO1.C. The program will appear in a window, as shown in Figure 1 below (minus

some comments). Use the mouse to place the cursor on the function name printf in the program

and press <ctrl-H>. This brings up a documentation box for the function printf. You can do

this with all functions in the Dynamic C libraries, including libraries you write yourself. Close the

documentation box.
Dynamic C User’s Manual 7

Figure 1. Sample Program DEMO1.C

To run the program DEMO1.C, open it with the File menu, compile it using the Compile menu,
and then run it by selecting Run in the Run menu. The value of the counter should be printed

repeatedly to the STDIO window if everything went well. If this doesn’t work, review the follow-
ing points:

• The target should be ready, indicated by the message “BIOS successfully compiled...”

If you did not receive this message or you get a communication error, recompile the

BIOS by typing <ctrl-Y> or select Recompile BIOS from the Compile menu.

• A message reports “No Rabbit Processor Detected” in cases where the wall transformer
is either not connected or not plugged in.

• The programming cable must be connected to the controller. (The colored wire on the

programming cable is closest to pin 1 on the programming header on the controller).
The other end of the programming cable must be connected to the PC serial port. The

COM port specified in the Dynamic C Options menu must be the same as the one the

programming cable is connected to.

• To check if you have the correct serial port, select Compile, then Compile BIOS, or
press <ctrl-Y>. If the “BIOS successfully compiled …” message does not display, try a

different serial port using the Dynamic C Options menu until you find the serial port
you are plugged into. Don’t change anything in this menu except the COM number.
The baud rate should be 115,200 bps and the stop bits should be 1.

3.1.1 Single-Stepping
Compile DEMO1.C by clicking the Compile button on the task bar. The program will compile

and the screen will come up with a highlighted character (green) at the first executable statement
of the program. Use the F8 key to single-step. Each time the F8 key is pressed, the cursor will

main(){
int i, j;

i = 0;

while (1) {

i++;

for (j=0; j<20000; j++);

printf("i = %d\n", i);

} // end of while

} // end of main

C programs begin with main

Initialize a counter

Print out counter

End of the endless loop

Start an endless loop

Delay by counting to 20,000

Increment counter
8 Dynamic C User’s Manual

advance one statement. When you get to the statement: for(j=0, j< ... , it becomes

impractical to single-step further because you would have to press F8 thousands of times. We will
use this statement to illustrate watch expressions.

3.1.2 Watch Expression
Press <ctrl-W> or choose Add/Del Watch Expression in the Inspect menu. A box will come

up. Type the lower case letter j and click on Add to top, then Close. Now continue single-step-
ping by pressing F8. Each time you step, the watch expression (j) will be evaluated and printed in

the watch window. Note how the value of j advances when the statement j++ is executed.

3.1.3 Breakpoint
Move the cursor to the start of the statement:

for (j=0; j<20000; j++);

To set a breakpoint on this statement, press F2 or select Breakpoint from the Run menu. A red

highlight appears on the first character of the statement. To get the program running at full speed,
press F9 or select Run on the Run menu. The program will advance until it hits the breakpoint.
The breakpoint will start flashing both red and green colors.

To remove the breakpoint, press F2 or select Toggle Breakpoint on the Run menu. To continue

program execution, press F9 or select Run from the Run menu. Now the counter should be print-
ing out regularly in the STDIO window.

You can set breakpoints while the program is running by positioning the cursor to a statement and

using the F2 key. If the execution thread hits the breakpoint, a breakpoint will take place. You can

toggle the breakpoint with the F2 key and continue execution with the F9 key.

3.1.4 Editing the Program
Click on the Edit box on the task bar. This will put Dynamic C into edit mode so that you can

change the program. Use the Save as choice on the File menu to save the file with a new name

so as not to change the demo program. Save the file as MYTEST.C. Now change the number
20000 in the for (.. statement to 10000. Then use the F9 key to recompile and run the pro-
gram. The counter displays twice as quickly as before because you reduced the value in the delay

loop.
Dynamic C User’s Manual 9

3.2 Run DEMO2.C
Go back to edit mode and load the program DEMO2.C using the File menu Open command. This

program is the same as the first program, except that a variable k has been added along with a

statement to increment k by the value of i each time around the endless loop. The statement

runwatch();

has been added as well. This is a debugging statement to view variables while the program is run-
ning. Use the F9 key to compile and run DEMO2.C.

3.2.1 Watching Variables Dynamically
Press <ctrl-W> to open the watch window and add the watch expression k to the top of the list of
watch expressions. Now press <ctrl-U>. Each time you press <ctrl-U>, you will see the current
value of k.

As an experiment, add another expression to the watch window:

k*5

Then press <ctrl-U> several times to observe the watch expressions k and k*5.

3.3 Run DEMO3.C
The example below, sample program DEMO3.C, uses costatements. A costatement is a way to per-
form a sequence of operations that involve pauses or waits for some external event to take place.

3.3.1 Cooperative Multitasking
Cooperative multitasking is a way to perform several different tasks at virtually the same time. An

example would be to step a machine through a sequence of tasks and at the same time carry on a

dialog with the operator via a keyboard interface. Each separate task voluntarily surrenders its

compute time when it does not need to perform any more immediate activity. In preemptive multi-
tasking control is forcibly removed from the task via an interrupt.

Dynamic C has language extensions to support both types of multitasking. For cooperative multi-
tasking the language extensions are costatements and cofunctions. Preemptive multitasking is

accomplished with slicing or by using the µC/OS-II real-time kernel that comes with Dynamic C

Premier.

Advantages of Cooperative Multitasking

Unlike preemptive multitasking, in cooperative multitasking variables can be shared between dif-
ferent tasks without taking elaborate precautions. Cooperative multitasking also takes advantage

of the natural delays that occur in most tasks to more efficiently use the available processor time.

The DEMO3.C sample program has two independent tasks. The first task prints out a message to

STDIO once per second. The second task watches to see if the keyboard has been pressed and

prints out which key was entered.

The numbers in the left margin are reference indicators and not part of the code. Load and run the

program. The elapsed time is printed to the STDIO window once per second. Push several keys

and note how they are reported.
10 Dynamic C User’s Manual

The elapsed time message is printed by the costatement starting at the line marked (2). Costate-
ments need to be executed regularly, often at least every 25 ms. To accomplish this, the costate-
ments are enclosed in a while loop. The while loop starts at (1) and ends at (6). The statement
at (3) waits for a time delay, in this case 1000 ms (one second). The costatement executes each

pass through the while loop. When a waitfor condition is encountered the first time, the cur-
rent value of MS_TIMER is saved and then on each subsequent pass the saved value is compared

to the current value. If a waitfor condition is not encountered, then a jump is made to the end of
the costatement (4), and on the next pass of the loop, when the execution thread reaches the begin-
ning of the costatement, execution passes directly to the waitfor statement. Once 1000 ms has

passed, the statement after the waitfor is executed. A costatement can wait for a long period of
time, but not use a lot of execution time. Each costatement is a little program with its own state-
ment pointer that advances in response to conditions. On each pass through the while loop as

few as one statement in the costatement executes, starting at the current position of the costate-
ment’s statement pointer. Consult Chapter 5 "Multitasking with Dynamic C" for more details.

The second costatement in the program checks to see if a key has been pressed and, if one has,
prints out that key. The abort statement is illustrated at (5). If the abort statement is executed,
the internal statement pointer is set back to the first statement in the costatement, and a jump is

made to the closing brace of the costatement.

To illustrate the use of snooping, use the watch window to observe secs while the program is

running. Add the variable secs to the list of watch expressions, then press <ctrl-U> repeatedly

to observe as secs increases.

main() {
int secs; // seconds counter
secs = 0; // initialize counter

(1) while (1) { // endless loop

// First task will print the seconds elapsed.

(2) costate {
secs++; // increment counter

(3) waitfor(DelayMs(1000)); // wait one second
printf("%d seconds\n", secs); // prnt elapsed secs

(4) }

// Second task will check if any keys have been pressed.

costate {
(5) if (!kbhit()) abort; // key been pressed?

printf(" key pressed = %c\n", getchar());
}

(6) } // end of while loop
} // end of main
Dynamic C User’s Manual 11

3.4 Summary of Features
This chapter provided a quick look at the intuitive interface of Dynamic C and some of the power-
ful options available for embedded systems programming.

3.4.1 Development Functions

When you load a program it appears in an edit window. You compile by clicking Compile on the

task bar or from the Compile menu. The program is compiled into machine language and down-
loaded to the target over the serial port. The execution proceeds to the first statement of main,
where it pauses, waiting to run. Press the F9 key or select Run on the Run menu. If want to com-
pile and run the program with one keystroke, use F9, the run command; if the program is not
already compiled, the run command compiles it.

3.4.2 Single-stepping
This is done with the F8 key. The F7 key can also be used for single-stepping. If the F7 key is

used, then descent into subroutines will take place. With the F8 key the subroutine is executed at
full speed when the statement that calls it is stepped over.

3.4.3 Setting breakpoints

The F2 key is used to toggle a breakpoint at the cursor position if the program has already been

compiled. You can set a breakpoint if the program is paused at a breakpoint. You can also set a

breakpoint in a program that is running at full speed. This will cause the program to break if the

execution thread hits your breakpoint.

3.4.4 Watch expressions
A watch expression is a C expression that is evaluated on command in the watch window. An

expression is basically any type of C formula that can include operators, variables and function

calls, but not statements that require multiple lines such as for or switch. You can have a list of
watch expressions in the watch window. If you are single-stepping, then they are all evaluated on

each step. You can also command the watch expression to be evaluated by using the <ctrl-U>

command. When a watch expression is evaluated at a breakpoint, it is evaluated as if the statement
was at the beginning of the function where you are single-stepping. If your program is running you

can also evaluate watch expressions with a <ctrl-U> if your program has a runwatch() com-
mand that is frequently executed. In this case, only expressions involving global variables can be

evaluated, and the expression is evaluated as if it were in a separate function with no local vari-
ables.

3.4.5 Costatements
A costatement is a Dynamic C extension that allows cooperative multitasking to be programmed

by the user. Keywords, like abort and waitfor, are available to control multitasking opera-
tion from within costatements.
12 Dynamic C User’s Manual

Language 4

Dynamic C is based on the C language. The programmer is expected to know programming meth-
odologies and the basic principles of the C language. Dynamic C has its own set of libraries,
which include user-callable functions (See “Function Reference” on page 153.) Dynamic C librar-
ies are in source code, allowing the creation of customized libraries.

Before starting on your application, read through the rest of this chapter to review C-language fea-
tures and understand the differences between C and Dynamic C.

4.1 C Language Elements
A Dynamic C program is a set of files, each of which is a stream of characters that compose state-
ments in the C language. The language has grammar and syntax, that is, rules for making state-
ments. Syntactic elements—often called tokens—form the basic elements of the C language.
Some of these elements are listed in the table below.

Table 1. C Language Elements

punctuation Symbols used to mark beginnings and endings

names Words used to name data and functions

numbers Literal numeric values

strings Literal character values enclosed in quotes

directives Words that start with # and control compilation

keywords Words used as instructions to Dynamic C

operators Symbols used to perform arithmetic operations
Dynamic C User’s Manual 13

4.2 Punctuation and Tokens
Punctuation marks serve as boundaries in C programs. The table below lists the punctuation marks

and tokens.

4.3 Data
Data (variables and constants) have type, size, structure, and storage class. Basic, or primitive,
data types are shown below.

Table 2. Punctuation Marks and Tokens

Symbol Description

: Terminates a statement label.

;
Terminates a simple statement or a do loop. C requires

these!

,
Separates items in a list, such as an argument list, declaration

list, initialization list, or expression list.

()

Encloses argument or parameter lists. Function calls always

require parentheses. Macros with parameters also require

parentheses. Also used for arithmetic and logical sub

expressions.

{ }
Begins and ends a compound statement, a function body, a

structure or union body, or encloses a function chain segment.

//
Indicates that the rest of the line is a comment and is not
compiled

/* ... */ Comments are nested between the /* and */ tokens.

Table 3. Dynamic C Basic Data Types

Type Description

char 8-bit unsigned integer. Range: 0 to 255 (0xFF)

int 16-bit signed integer. Range: -32,768 to +32,767

unsigned int 16-bit unsigned integer. Range: 0 to +65,535

long 32-bit signed integer. Range: -2,147,483,648 to +2,147,483,647

unsigned long 32-bit unsigned integer. Range 0 to 232 - 1

float

32-bit IEEE floating-point value. The sign bit is 1 for negative

values. The exponent has 8 bits, giving exponents from -127 to

+128. The mantissa has 24 bits. Only the 23 least significant bits

are stored; the high bit is 1 implicitly. (Z180 controllers do not have

floating-point hardware.) Range: 1.18 x 10-38 to 3.40 x 1038
14 Dynamic C User’s Manual

The symbolic names for the hardcoded limits of the data types are defined in limits.h and are

shown here.

4.4 Names
Names identify variables, certain constants, arrays, structures, unions, functions, and abstract data

types. Names must begin with a letter or an underscore (_), and thereafter must be letters, digits,
or an underscore. Names may not contain any other symbols, especially operators. Names are dis-
tinct up to 32 characters, but may be longer. Prior to Dynamic C version 6.19, names were distinct
up to 16 characters, but could be longer. Names may not be the same as any keyword. Names are

case-sensitive.

Examples

References to structure and union elements require “compound” names. The simple names in a

compound name are joined with the dot operator (period).

cursor.loc.x = 10; // set structure element to 10

#define CHAR_BIT 8
#define UCHAR_MAX 255
#define CHAR_MIN 0
#define CHAR_MAX 255
#define MB_LEN_MAX 1

#define SHRT_MIN -32768
#define SHRT_MAX 32767
#define USHRT_MAX 65535

#define INT_MIN -32767
#define INT_MAX 32767
#define UINT_MAX 65535
#define LONG_MIN -2147483647
#define LONG_MAX 2147483647
#define ULONG_MAX 4294967295

my_function // ok
_block // ok
test32 // ok

jumper- // not ok, uses a minus sign
3270type // not ok, begins with digit

Cleanup_the_data_now // These names are
Cleanup_the_data_later // not distinct!
Dynamic C User’s Manual 15

Use the #define directive to create names for constants. These can be viewed as symbolic con-
stants. See Section 4.5, “Macros.”

The term READ_ABS is the same as 10 + 0 or 10, and READ_REL is the same as 10 + 1 or 11.
Note that Dynamic C does not allow anything to be assigned to a constant expression.

READ_ABS = 27; // produces compiler error

4.5 Macros
Macros can be defined in Dynamic C. A macro is a name replacement feature. Dynamic C has a

text preprocessor that expands macros before the program text is compiled. The programmer
assigns a name, up to 31 characters, to a fragment of text. Dynamic C then replaces the macro

name with the text fragment wherever the name appears in the program. In this example,

the variable i gets the value x * 72 + 12. Macros can have parameters such as in the follow-
ing example.

The compiler removes the surrounding white space (comments, tabs and spaces) and collapses

each sequence of white space in the macro definition into one space. It places a \ before any " or
\ to preserve their original meaning within the definition.

#define READ 10
#define WRITE 20
#define ABS 0
#define REL 1
#define READ_ABS READ + ABS
#define READ_REL READ + REL

#define OFFSET 12
#define SCALE 72
int i, x;
i = x * SCALE + OFFSET;

#define word(a, b) (a<<8 | b)
char c;
int i, j;
i = word(j, c); // same as i = (j<<8|c)
16 Dynamic C User’s Manual

Dynamic C implements the # and ## macro operators.

The # operator forces the compiler to interpret the parameter immediately following it as a string

literal. For example, if a macro is defined

#define report(value,fmt)\
printf(#value "=" #fmt "\n", value)

then the macro in

report(string, %s);

will expand to

printf("string" "=" "%s" "\n", string);

and because C always concatenates adjacent strings, the final result of expansion will be

printf("string=%s\n", string);

The ## operator concatenates the preceding character sequence with the following character
sequence, deleting any white space in between. For example, given the macro

#define set(x,y,z) x ## z ## _ ## y()

the macro in

set(AASC, FN, 6);

will expand to

AASC6_FN();

For parameters immediately adjacent to the ## operator, the corresponding argument is not
expanded before substitution, but appears as it does in the macro call.

Generally speaking, Dynamic C expands macro calls recursively until they can expand no more.
Another way of stating this is that macro definitions can be nested.

The exceptions to this rule are

1. Arguments to the # and ## operators are not expanded.

2. To prevent infinite recursion, a macro does not expand within its own expansion.

The following complex example illustrates this.

The code

#define A B
#define B C
#define uint unsigned int
#define M(x) M ## x
#define MM(x,y,z) x = y ## z
#define string something
#define write(value, fmt)\
printf(#value "=" #fmt "\n", value)

uint z;
M (M) (A,A,B);
write(string, %s);
Dynamic C User’s Manual 17

will expand first to

then to

then to

and finally to

4.5.1 Restrictions
The number of arguments in a macro call must match the number of parameters in the macro defi-
nition. An empty parameter list is allowed, but the macro call must have an empty argument list.
Macros are restricted to 32 parameters and 126 nested calls. A macro or parameter name must
conform to the same requirements as any other C name. The C language does not perform macro

replacement inside string literals or character constants, comments, or within a #define direc-
tive.

A macro definition remains in effect unless removed by an #undef directive. If an attempt is

made to redefine a macro without using #undef, a warning will appear and the original defini-
tion will remain in effect.

unsigned int z; // simple expansion
MM (A,A,B); // M(M) does not expand recursively
printf("string" "=" "%s" "\n", string);

// #value →. "string" #fmt → "%s"

unsigned int z;
A = AB; // from A = A ## B
printf("string" "=" "%s" "\n", something);

// string → something

unsigned int z;
B = AB; // A → B
printf("string=%s\n", something); // concatenation

unsigned int z;
C = AB; // B → C
printf("string = %s\n", something);
18 Dynamic C User’s Manual

4.6 Numbers
Numbers are constant values and are formed from digits, possibly a decimal point, and possibly

the letters U, L, X, or A–F, or their lower case equivalents. A decimal point or the presence of
the letter E or F indicates that a number is real (has a floating-point representation).

Integers have several forms of representation. The normal decimal form is the most common.

10 –327 1000 0

An integer is long (32-bit) if its magnitude exceeds the 16-bit range (-32768 to +32767) or if it has

the letter L appended.

0L -32L 45000 32767L

An integer is unsigned if it has the letter U appended. It is long if it also has L appended or if its

magnitude exceeds the 16-bit range.

0U 4294967294U 32767U 1700UL

An integer is hexadecimal if preceded by 0x.

0x7E 0xE000 0xFFFFFFFA

It may contain digits and the letters a–f or A–F.

An integer is octal if begins with zero and contains only the digits 0–7.

0177 020000 000000630

A real number can be expressed in a variety of ways.

4.7 Strings and Character Data
A string is a group of characters enclosed in double quotes (" “).

"Press any key when ready..."

Strings in C have a terminating null byte appended by the compiler. Although C does not have a

string data type, it does have character arrays that serve the purpose. C does not have string opera-
tors, such as concatenate, but library functions strcat() and strncat() are available.

Strings are multibyte objects, and as such they are always referenced by their starting address, and

usually by a char* variable. More precisely, arrays are always passed by address. Passing a

pointer to a string is the same as passing the string. Refer to Section 4.15 for more information on

pointers.

4.5 means 4.5
4f means 4.0
0.3125 means 0.3125

456e-31 means 456 × 10–31

0.3141592e1 means 3.141592
Dynamic C User’s Manual 19

The following example illustrates typical use of strings.

Character constants have a slightly different meaning. They are not strings. A character constant
is enclosed in single quotes (' ') and is a representation of an 8-bit integer value.

'a' '\n' '\x1B'

Any character can be represented by an alternate form, whether in a character constant or in a

string. Thus, nonprinting characters and characters that cannot be typed may be used.

A character can be written using its numeric value preceded by a backslash.

There are also several “special” forms preceded by a backslash.

Examples

const char* select = "Select option\n";
char start[32];
strcpy(start,"Press any key when ready...\n");
printf(select); // pass pointer to string
...
printf(start); // pass string

\x41 // the hex value 41
\101 // the octal value 101
\B10000001 // the binary value 10000001

\a bell
\f formfeed
\r carriage return
\v vertical tab
\\ backslash
\’ single quote

\b backspace
\n newline
\t tab
\0 null char
\c the actual character c
\” double quote

"He said \"Hello.\"" // embedded double quotes
const char j = 'Z'; // character constant
const char* MSG = "Put your disk in the A drive.\n";

// embedded new line at end
printf(MSG); // print MSG
char* default = ""; // empty string: a single null byte
20 Dynamic C User’s Manual

4.8 Statements
Except for comments, everything in a C program is a statement. Almost all statements end with a

semicolon. A C program is treated as a stream of characters where line boundaries are (generally)
not meaningful. Any C statement may be written on as many lines as needed. Comments (the

/*...*/ kind) may occur almost anywhere, even in the middle of a statement, as long as they

begin with /* and end with */.

A statement can be many things. A declaration of variables is a statement. An assignment is a

statement. A while or for loop is a statement. A compound statement is a group of statements

enclosed in braces { and }.

4.9 Declarations
A variable must be declared before it can be used. That means the variable must have a name and

a type, and perhaps its storage class could be specified. If an array is declared, its size must be

given. Root data arrays are limited to a total of 32,767 elements.

If an aggregate type (struct or union) is being declared, its internal structure has to be

described as shown below.

static int thing, array[12]; // static integer variable &
// static integer array

auto float matrix[3][3]; // auto float array with 2
// dimensions

char *message="Press any key...” // initialized pointer to
// char array

struct { // description of struct
char flags;
struct { // a nested structure here
int x;
int y;
} loc;

} cursor;
...
int a;
a = cursor.loc.x; // use of struct element here
Dynamic C User’s Manual 21

4.10 Functions
The basic unit of a C application program is a function. Most functions accept parameters—or
arguments—and return results, but there are exceptions. All C functions have a return type that
specifies what kind of result, if any, it returns. A function with a void return type returns no

result. If a function is declared without specifying a return type, the compiler assumes that it is to

return an int (integer) value.

A function may call another function, including itself (a recursive call). The main function is

called automatically after the program compiles or when the controller powers up. The beginning

of the main function is the entry point to the entire program.

4.11 Prototypes
A function may be declared with a prototype. This is so that

1. Functions that have not been compiled may be called.

2. Recursive functions may be written.

3. The compiler may perform type-checkingon the parameters to make sure that calls to

the function receive arguments of the expected type. A function prototype describes

how to call the function and is nearly identical to the function’s initial code.

It is not necessary to provide parameter names in a prototype, but the parameter type is required,
and all parameters must be included. (If the function accepts a variable number of arguments, as

printf does , use an ellipsis.)

/* This is a function prototype.*/
long tick_count (char clock_id);

/* This is the function’s definition.*/
long tick_count (char clock_id){

...
}

/* This prototype is as good as the one above. */
long tick_count (char);

/* This is a prototype that uses ellipsis. */
int startup (device id, ...);
22 Dynamic C User’s Manual

4.12 Type Definitions
Both types and variables may be defined. One virtue of high-level languages such as C and Pascal
is that abstract data types can be defined. Once defined, the data types can be used as easily as

simple data types like int, char, and float. Consider this example.

Use typedef to create a meaningful name for a class of data. Consider this example.

This example shows many of the basic C constructs.

The program above calculates the sum of squares of two numbers, g and h, which are initialized to

10 and 12, respectively. The main function calls the init function to give values to the global

typedef int MILES; // a basic type named MILES
typedef struct { // a structure type...

float re; // ...
float im; // ...

} COMPLEX; // ...named COMPLEX
MILES distance; // declare variable of type MILES
COMPLEX z, *zp; // declare complex variable and ptr

typedef unsigned int node;
void NodeInit(node); // type name is informative
void NodeInit(unsigned int); // not very informative

/* Put descriptive information in your program code using
this form of comment, which can be inserted anywhere and can
span lines. The double slash comment (shown below) may be
placed at end-of-line.*/

#define SIZE 12 // A symbolic constant defined.
int g, h; // Declare global integers.
float sumSquare(int, int); // Prototypes for
void init(); // functions below.
main(){ // Program starts here.

float x; // x is local to main.
init(); // Call a void function.
x = sumSquare(g, h); // x gets sumSquare value.
printf(“x = %f”,x); // printf is a standard function.

}
void init(){ // Void functions do things but

g = 10; // they return no value.
h = SIZE; // Here, it uses the symbolic

} // constant defined above.
float sumSquare(int a, int b){// Integer args.

float temp; // Local var.
temp = a*a + b*b; // Arithmetic.
return(temp); // Return value.

}

/* and here is the end of the program */
Dynamic C User’s Manual 23

variables g and h. Then it uses the sumSquare function to perform the calculation and assign

the result of the calculation to the variable x. It prints the result using the library function

printf, which includes a formatting string as the first argument.

Notice that all functions have { and } enclosing their contents, and all variables are declared

before use. The functions init and sumSquare were defined before use, but there are alterna-
tives to this. The “Prototypes” section explained this.

4.13 Aggregate Data Types
Simple data types can be grouped into more complex aggregate forms.

4.13.1 Array
A data type, whether it is simple or complex, can be replicated in an array. The declaration

represents a contiguous group of 10 integers. Array elements are referenced by their subscript.

Array subscripts count up from 0. Thus, item[7] above is the eighth item in the array. Notice

the [and] enclosing both array dimensions and array subscripts. Arrays can be “nested.” The

following doubly dimensioned array, or “array of arrays.”

is referenced in a similar way.

The first dimension of an array does not have to be specified as long as an initialization list is

specified.

4.13.2 Structure
Variables may be grouped together in structures (struct in C) or in arrays. Structures may be

nested.

int item[10]; // An array of 10 integers.

j = item[n]; // The nth element of item.

int matrix[7][3];

scale = matrix[i][j];

int x[][2] = { {1, 2}, {3, 4}, {5, 6} };
char string[] = "abcdefg";

struct {
char flags;
struct {
int x;
int y;

} loc;
} cursor;
24 Dynamic C User’s Manual

Structures can be nested. Structure members—the variables within a structure—are referenced

using the dot operator.

The size of a structure is the sum of the sizes of its components.

4.13.3 Union
A union overlays simple or complex data. That is, all the union members have the same address.
The size of the union is the size of the largest member.

Unions can be nested. Union members—the variables within a union—are referenced, like struc-
ture elements, using the dot operator.

4.13.4 Composites
Composites of structures, arrays, unions, and primitive data may be formed. This example shows

an array of structures that have arrays as structure elements.

Refer to an element of array c (above) as shown here.

4.14 Storage Classes
Variable storage can be auto or static. The default storage class is static, but can be

changed by using #class auto. The default storage class can be superseded by the use of the

keyword auto or static in a variable declaration.

These terms apply to local variables, that is, variables defined within a function. If a variable does

not belong to a function, it is called a global variable--meaning available anywhere--but there is no

keyword in C to represent this fact. Global variables always have static storage

The term static means the data occupies a permanent fixed location for the life of the program.
The term auto refers to variables that are placed on the system stack for the life of a function call.

j = cursor.loc.x

union {
int ival;
long jval;
float xval;

} u;

j = u.ival

typedef struct {
int *x;
int c[32]; // array in structure

} node;
node list[12]; // array of structures

z = list[n].c[m];
...
list[0].c[22] = 0xFF37;
Dynamic C User’s Manual 25

4.15 Pointers
A pointer is a variable that holds the 16-bit logical address of another variable, a structure, or a

function. Variables can be declared pointers with the indirection operator (*). Conversely, a

pointer can be set to the address of a variable using the & (address) operator.

In this example, the variable ptr_to_i is a pointer to an integer. The statement j =
*ptr_to_i; references the value of the integer by the use of the asterisk. Using correct
pointer terminology, the statement dereferences the pointer ptr_to_i. Then *ptr_to_i and

i have identical values.

Note that ptr_to_i and i do not have the same values because ptr_to_i is a

pointer and i is an int. Note also that * has two meanings (not counting its use

as a multiplier in others contexts)—in a variable declaration such as int
*ptr_to_i; the * means that the variable will be a pointer type, and in an exe-
cutable statement j = *ptr_to_i; means “the value stored at the address

contained in ptr_to_i.”

Pointers may point to other pointers.

It is possible to do pointer arithmetic, but this is slightly different from ordinary integer arithmetic.
Here are some examples.

Because the float is a 4-byte storage element, the statement q = p+5 sets the actual value of q

to p+20. The statement q++ adds 4 to the actual value of q. If f were an array of 1-byte charac-
ters, the statement q++ adds 1 to q.

Beware of using uninitialized pointers. Uninitialized pointers can reference ANY location in

memory. Storing data using an uninitialized pointer can overwrite code or cause a crash.

int *ptr_to_i;
int i;
ptr_to_i = &i; // set pointer equal to the address of i
i = 10: // assign a value to i
j = *ptr_to_i; // this sets j equal to the value in i

int *ptr_to_i;
int **ptr_to_ptr_to_i;

int i,j;

ptr_to_i = &i; // Set pointer equal to the address of i.
ptr_to_ptr_to_i = &ptr_to_i; // Set a pointer to the pointer

// to the address of i.
i = 10; // Assign a value to i.
j = **ptr_to_ptr_to_i;// This sets j equal to the value in i.

float f[10], *p, *q; // an array and some ptrs
p = &f; // point p to array element 0
q = p+5; // point q to array element 5
q++; // point q to array element 6
p = p + q; // illegal!
26 Dynamic C User’s Manual

A common mistake is to declare and use a pointer to char, thinking there is a string. But an unini-
tialized pointer is all there is.

Pointer checking is a run-time option in Dynamic C. Use the compiler options command in the

OPTIONS menu. Pointer checking will catch attempts to dereference a pointer to un allocated

memory. However, if an uninitialized pointer happens to contain the address of a memory location

that the compiler has already allocated, pointer checking will not catch this logic error. Because

pointer checking is a run-time option, pointer checking adds instructions to code when pointer
checking is used.

4.16 Pointers to Functions, Indirect Calls
Pointers to functions may be declared. When a function is called using a pointer to it, instead of
directly, we call this an indirect call.

The syntax for declaring a pointer to a function is different than for ordinary pointers, and

Dynamic C syntax for this is slightly different than the standard C syntax. Standard syntax for a

pointer to a function is:

for example:

Dynamic C doesn’t recognize the argument list in function pointer declarations. The correct
Dynamic syntax for the above examples would be:

char* string;
...
strcpy(string, "hello"); // Invalid!
printf(string); // Invalid!

returntype (*name)([argument list]);

int (*func1)(int a, int b);
void (*func2)(char*);

int (*func1)();
void (*func2)();
Dynamic C User’s Manual 27

You can pass arguments to functions that are called indirectly by pointer, but the compiler will not
check them for correctness. The following program shows some examples of function pointer
usage.

4.17 Argument Passing
In C, function arguments are generally passed by value. That is, arguments passed to a C function

are generally copies—on the program stack—of the variables or expressions specified by the

caller. Changes made to these copies do not affect the original values in the calling program.

In Dynamic C and most other C compilers, however, arrays are always passed by address. This

policy includes strings (which are character arrays).

Dynamic C passes structs by value—on the stack. Passing a large struct takes a long time

and can easily cause a program to run out of memory. Pass pointers to large structs if such

problems occur.

For a function to modify the original value of a parameter, pass the address of, or a pointer to, the

parameter and then design the function to accept the address of the item.

4.18 Program Flow
Three terms describe the flow of execution of a C program: sequencing, branching and looping.
Sequencing is simply the execution of one statement after another. Looping is the repetition of a

group of statements. Branching is the choice of groups of statements. Program flow is altered by

“calling” a function, that is transferring control to the function. Control is passed back to the call-
ing function when the called function returns.

typedef int (*fnptr)(); // create a pointer to int func.type

main(){
int x,y;
int (*fnc1)(); // declare a var. fnc1 as ptr to int func.
fnptr fp2; // declare a var. fp2 as ptr to int func.
fnc1 = intfunc; // initialize fnc1 to point to intfunc
fp2 = intfunc; // init. fp2 to point to the same func.

x = (*fnc1)(1,2); // call intfunc via fnc1
y = (*fp2)(3,4); // call intfunc via fp2

printf("%d\n", x);
printf("%d\n", y);

}

int intfunc(int x, int y){
return x+y;

}

28 Dynamic C User’s Manual

4.18.1 Loops
A while loop tests a condition at the start of the loop. As long as expression is true (non-zero),
the loop body (some statement(s)) will execute. If expression is initially false (zero), the loop body

will not execute. The curly braces are necessary if there is more than one statement in the loop

body.

A do loop tests a condition at the end of the loop. As long as expression is true (non-zero) the

loop body (some statement(s)) will execute. A do loop executes at least once before its test.
Unlike other controls, the do loop requires a semicolon at the end.

The for loop is more complex: it sets an initial condition (exp1), evaluates a terminating condi-

tion (exp2), and provides a stepping expression (exp3) that is evaluated at the end of each iteration.

Each of the three expressions is optional.

If the end condition is initially false, a for loop body will not execute at all. A typical use of the

for loop is to count n times.

This loop initially sets i to 0, continues as long as i is less than n (stops when i equals n), and

increments i at each pass.

Another use for the for loop is the infinite loop, which is useful in control systems.

Here, there is no initial condition, no end condition, and no stepping expression. The loop body

(some statement(s)) continues to execute endlessly. An endless loop can also be achieved with a

while loop. This method is slightly less efficient than the for loop.

4.18.2 Continue and Break
Two other constructs are available to help in the construction of loops: the continue statement
and the break statement.

while(expression){
some statement(s)

}

do{
some statements

}while(expression);

for(exp1 ; exp2 ; exp3){

some statements
}

sum = 0;
for(i = 0; i < n; i++){

sum = sum + array[i];
}

for(;;){some statement(s)}

while(1) { some statement(s) }
Dynamic C User’s Manual 29

The continue statement causes the program control to skip unconditionally to the next pass of
the loop. In the example below, if bad is true, more statements will not execute; control will pass

back to the top of the while loop.

The break statement causes the program control to jump unconditionally out of a loop. In the

example below, if cond_RED is true, more statements will not be executed and control will pass

to the next statement after the ending curly brace of the for loop

The break keyword also applies to the switch/case statement described in the next sec-
tion. The break statement jumps out of the innermost control structure (loop or switch state-
ment) only.

There will be times when break is insufficient. The program will need to either jump out more

than one level of nesting or there will be a choice of destinations when jumping out. Use a goto

statement in such cases. For example,

get_char();

while(! EOF){
some statements
if(bad) continue;
more statements

}

for(i=0;i<n;i++){
some statements
if(cond_RED) break;
more statements

}

while(some statements){
for(i=0;i<n;i++){

some statements
if(cond_RED) goto yyy;

some statements
if(code_BLUE) goto zzz;

more statements
}

}
yyy:

handle cond_RED
zzz:

handle code_BLUE
30 Dynamic C User’s Manual

4.18.3 Branching
The goto statement is the simplest form of a branching statement. Coupled with a statement
label, it simply transfers program control to the labeled statement.

The colon at the end of the labels is required.

The next simplest form of branching is the if statement. The simple form of the if statement
tests a condition and executes a statement or compound statement if the condition expression is

true (non-zero). The program will ignore the if body when the condition is false (zero).

A more complex form of the if statement tests the condition and executes certain statements if
the expression is true, and executes another group of statements when the expression is false.

The fullest form of the if statements produces a “chain” of tests.

The program evaluates the first expression (expr1). If that proves false, it tries the second expres-

sion (expr2), and continues testing until it finds a true expression, an else clause, or the end of

the if statement. An else clause is optional. Without an else clause, an if/else if state-
ment that finds no true condition will execute none of the controlled statements.

some statements
abc:

other statements
goto abc;
...
more statements
goto def;
...

def:
more statements

if(expression){
some statement(s)

}

if(expression){
some statement(s) /* if true */

}else{
some statement(s) /* if false */

}

if(expr1){

some statements
}else if(expr2){

some statements
}else if(expr3){

some statements
...

}else{
some statements

}

Dynamic C User’s Manual 31

The switch statement, the most complex branching statement, allows the programmer to phrase

a “multiple choice” branch differently.

First the switch expression is evaluated. It must have an integer value. If one of the constN

values matches the switch expression, the sequence of statements identified by the constN

expression is executed. If there is no match, the sequence of statements identified by the

default label is executed. (The default part is optional.) Unless the break keyword is

included at the end of the case’s statements, the program will “fall through” and execute the state-
ments for any number of other cases. The break keyword causes the program to exit the
switch/case statement.

The colons (:) after break, case and default are required.

4.19 Function Chaining
Function chaining allows special segments of code to be distributed in one or more functions.
When a named function chain executes, all the segments belonging to that chain execute. Func-
tion chains allow the software to perform initialization, data recovery, or other kinds of tasks on

request. There are two directives, #makechain and #funcchain, and one keyword, seg-
chain.

#makechain chain_name

Creates a function chain. When a program executes the named function chain, all of
the functions or chain segments belonging to that chain execute. (No particular order
of execution can be guaranteed.)

#funcchain chain_name name

Adds a function, or another function chain, to a function chain.

segchain chain_name { statements }

Defines a program segment (enclosed in curly braces) and attaches it to the named

function chain.

switch(expression){
case const1 :

statements1
break:

case const2 :

statements2
break:

case const3 :

statements3
break:

...
default:

statementsDEFAULT
}

32 Dynamic C User’s Manual

Function chain segments defined with segchain must appear in a function directly after data

declarations and before executable statements, as shown below.

A program will call a function chain as it would an ordinary void function that has no parameters.
The following example shows how to call a function chain that is named recover.

4.20 Global Initialization
Various hardware devices in a system need to be initialized not only by setting variables and con-
trol registers, but often by complex initialization procedures. Dynamic C provides a specific func-
tion chain, _GLOBAL_INIT, for this purpose.

Your program can initialize variables and take initialization action with global initialization. This

is done by adding segments to the _GLOBAL_INIT function chain, as shown in the example

below.

The special directive #GLOBAL_INIT{ } tells the compiler to add the code in the block

enclosed in braces to the _GLOBAL_INIT function chain. The _GLOBAL_INIT function chain

is always called when your program starts up, so there is nothing special to do to invoke it. It may

be called at anytime in an application program, but do this with caution. When it is called, all cos-
tatements and cofunctions will be initialized. See “Calling _GLOBAL_INIT()” on page 63 for
more information.

Any number of #GLOBAL_INIT sections may be used in your code. The order in which the

#GLOBAL_INIT sections are called is indeterminate since it depends on the order in which they

were compiled.

my_function(){
data declarations
segchain chain_x{

some statements which execute under chain_x
}
segchain chain_y{

some statements which execute under chain_y
}

function body which executes when
my_function is called

}

#makechain recover
...

recover();
Dynamic C User’s Manual 33

long my_func(char j);
main(){

my_func(100);
}
long my_func(char j){

int i;
long array[256];

// The GLOBAL_INIT section is run
// automatically once when program starts up

#GLOBAL_INIT{
for(i = 0; i < 100; i++){

array[i] = i*i;
}

}
return array[j]; // only this code runs when the

// function is called
}

34 Dynamic C User’s Manual

4.21 Libraries
Dynamic C is comprised of many libraries—files of useful functions. They are located in the LIB

subdirectory where Dynamic C was installed. The default library file extension is .LIB.

Dynamic C will extract functions and data from library files and compile them with an application

program that is then downloaded to a controller or saved to a .bin file.

Thus, an application program (the default file extension is .c) consists of a main program (called

main), zero or more functions, and zero or more global data, all of which are distributed through-
out one or more text files. The order in which these are defined is not very important. The mini-
mum program is one file, containing only

main(){
}

Libraries are “linked” with the application through the #use directive. The #use directive iden-
tifies a file from which functions and data may be extracted. Files identified by #use directives

are nestable, as shown below.

Figure 2. Nesting Files in Dynamic C

Most libraries needed by Dynamic C programs are #use’d in the file lib\default.h.

The “Modules” section later in this chapter explains how Dynamic C knows which functions and

global variables in a library to use.

���
��������	

���
��	
���
���
�
���
��������	

���

���
��������	

���
��������
���
��������
���
��������
���
��������	

���

����������	
��
�
���
������
���
�����
��
����

���
�

���
������
���
�����
��
����

���
�

�
��
Dynamic C User’s Manual 35

4.22 Support Files
Dynamic C has several support files that are necessary in building an application. These files are

listed below.

.

4.23 Headers
The following table describes two kinds of headers used in Dynamic C libraries.

You may also notice some “Library Description” headers at the top of library files. These have no

special meaning to Dynamic C, they are simply comment blocks.

Table 4. Dynamic C Support Files

File Meaning

DCW.CFG Contains configuration data for the target controller.

DC.HH
Contains prototypes, basic type definitions,
#define, and default modes for Dynamic C. This

file can be modified by the programmer.

LIB.DIR

Contains pathnames for all libraries that are to be

known to Dynamic C. The programmer can add to, or
remove libraries from this list. The factory default is

for this file to contain all the libraries on the Dynamic

C distribution disk. No library will be usable unless it is

listed in this file.

DEFAULT.H
Contains a set of #use directives for each control
product that Z-World ships. This file can be modified.

Table 5. Dynamic C Library Headers

Header Description

Module headers
Makes functions and global variables in the library

known to Dynamic C.

Function

Description

headers

Describe functions. Function headers form the basis

for function lookup help.
36 Dynamic C User’s Manual

4.24 Modules
This is a very important topic that must be understood by those writing their own libraries for
Dynamic C. Modules provide Dynamic C with the ability to know which functions and global
variables in a library to use.

A library file contains a group of modules. A module has three parts: the key, the header, and a

body of code (functions and data).

A module in a library has a structure like this one.

4.24.1 The Key
The line (a specially-formatted comment)

begins the header of a module and contains the module key. The key is a list of names (of func-
tions and data). The key tells the compiler what functions and data in the module are available for
reference. It is important to format this comment properly. Otherwise, Dynamic C cannot identify

the module correctly.

If there are many names after BeginHeader, the list of names can continue on subsequent lines.
All names must be separated by commas. A key can have no names in it and it’s associated header
will still be parsed by the precompiler and compiler.

4.24.2 The Header
Every line between the comments containing BeginHeader and EndHeader belongs to the

header of the module. When an application #uses a library, Dynamic C compiles every header,
and just the headers, in the library. The purpose of a header is to make certain names defined in a

module known to the application. With proper function prototypes and variable declarations, a

module header ensures proper type checking throughout the application program. Prototypes, vari-
ables, structures, typedefs and macros declared in a header section will always be parsed by the

compiler if the library is used, and will have global scope. It is even permissible to put function

bodies in header sections, but this is not recommended. Variables declared in a header section will
be allocated memory space unless the declaration is preceded with extern .

/*** BeginHeader func1, var2, */
prototype for func1
declaration for var2

/*** EndHeader */
definition of func1 and
possibly other functions and data

/*** BeginHeader [name1, name2,] */
Dynamic C User’s Manual 37

4.24.3 The Body
Every line of code after the EndHeader comment belongs to the body of the module until (1)
end-of-file or (2) the BeginHeader comment of another module. Dynamic C compiles the

entire body of a module if any of the names in the key are referenced (used) anywhere in the appli-
cation. For this reason, it is not wise to put many functions in one module regardless of whether
they are actually going to be used by the program.

To minimize waste, it is recommended that a module header contain only prototypes and extern

declarations. (Prototypes and extern declarations do not generate any code by themselves.)
Define code and data only in the body of a module. That way, the compiler will generate code or
allocate data only if the module is used by the application program. Programmers who create their
own libraries must write modules following the guideline in this section. Remember that the

library must be included in LIB.DIR and a #use directive for the library must be placed some-
where in the code.

Example

There are three modules defined in this code. The first one is responsible for the variable ticks,
the second and third modules define functions Get_Ticks and Inc_Ticks that access the

variable. Although Inc_Ticks is an assembly language routine, it has a function prototype in

the module header, allowing the compiler to check calls to it.

If the application program calls Inc_Ticks or Get_Ticks (or both), the module bodies corre-
sponding to the called routines will be compiled. The compilation of these routines further trig-
gers compilation of the module body corresponding to ticks because the functions use the

variable ticks.

/*** BeginHeader ticks */
extern unsigned long ticks;

/*** EndHeader */
unsigned long ticks;

/*** BeginHeader Get_Ticks */
unsigned long Get_Ticks();

/*** EndHeader */
unsigned long Get_Ticks(){

...
}
/*** BeginHeader Inc_Ticks */

void Inc_Ticks(int i);
/*** EndHeader */
#asm
Inc_Ticks::

or a
ipset 1
...
ipres
ret

#endasm
38 Dynamic C User’s Manual

4.24.4 Function Description Headers
Each user-callable function in a Z-World library has a descriptive header preceding the function to

describe the function. Function headers are extracted by Dynamic C to provide on-line help mes-
sages.

The header is a specially formatted comment, such as the following example.

If this format is followed, user-created library functions will show up in the Function

Lookup/Insert facility. Note that these sections are scanned in only when Dynamic C starts.

/* START FUNCTION DESCRIPTION **********************
WrIOport <IO.LIB>
SYNTAX: void WrIOport(int portaddr, int value);
DESCRIPTION:
Writes data to the specified I/O port.
PARAMETER1: portaddr - register address of the port.
PARAMETER2: value - data to be written to the port.

RETURN VALUE: None
KEY WORDS: parallel port

SEE ALSO: RdIOport
END DESCRIPTION ***********************************/
Dynamic C User’s Manual 39

40 Dynamic C User’s Manual

Multitasking with Dynamic C 5

A task is an ordered list of operations to perform. In a multitasking environment, more than one

task (each representing a sequence of operations) can appear to execute in parallel. In reality, a

single processor can only execute one instruction at a time. If an application has multiple tasks to

perform, multitasking software can usually take advantage of natural delays in each task to

increase the overall performance of the system. Each task can do some of its work while the other
tasks are waiting for an event, or for something to do. In this way, the tasks execute almost in par-
allel.

There are two types of multitasking available for developing applications in Dynamic C: preemp-
tive and cooperative. In a cooperative multitasking environment, each well-behaved task voluntar-
ily gives up control when it is waiting, allowing other tasks to execute. Dynamic C has language

extensions, costatements and cofunctions, to support cooperative multitasking. Preemptive multi-
tasking is supported by the slice statement, which allows a computation to be divided into small
slices of a few milliseconds each, and by the µC/OS-II real-time kernel.

5.1 Cooperative Multitasking
In the absence of a preemptive multitasking kernel or operating system, a programmer given a

real-time programming problem that involves running separate tasks on different time scales will
often come up with a solution that can be described as a big loop driving state machines.

Figure 1. Big Loop

State machine

State machine

State machine

 Top of loop
Dynamic C User’s Manual 41

This means that the program consists of a large, endless loop—a big loop. Within the loop, tasks

are accomplished by small fragments of a program that cycle through a series of states. The state is

typically encoded as numerical values in C variables.

State machines can become quite complicated, involving a large number of state variables and a

large number of states. The advantage of the state machine is that it avoids busy waiting, which is

waiting in a loop until a condition is satisfied. In this way, one big loop can service a large number
of state machines, each performing its own task, and no one is busy waiting.

The cooperative multitasking language extensions added to Dynamic C use the big loop and state

machine concept, but C code is used to implement the state machine rather than C variables. The

state of a task is remembered by a statement pointer that records the place where execution of the

block of statements has been paused to wait for an event.

To multitask using Dynamic C language extensions, most application programs will have some

flavor of this simple structure:

main() {
int i;
while(1) { // endless loop for

// . multitasking framework
costate { // task 1

. . . // body of costatement
}
costate { // task 2

. . . // body of costatement
}

}
}

42 Dynamic C User’s Manual

5.2 A Real-time Problem
The following sequence of events is common in real-time programming.

Start:

1. Wait for a pushbutton to be pressed

2. Turn on the first device.

3. Wait 60 seconds

4. Turn on the second device

5. Wait 60 seconds.

6. Turn off both devices

7. Go back to the start.

The most rudimentary way to perform this function is to idle (“busy wait”) in a tight loop at each

of the steps where waiting is specified. But most of the computer time will used waiting for the

task, leaving no execution time for other tasks.

5.2.1 Solving the Real-time Problem With a State Machine
 Here is what a state machine solution might look like.

task1state = 1; // initialization:
while(1){

switch(task1state){
case 1:

if(buttonpushed()){
task1state=2; turnondevice1();
timer1 = time; // time incremented every sec

}
break;

case 2:
if((time-timer1) >= 60L){

task1state=3; turnondevice2();
timer2=time;

}
break;

case 3:
if((time-timer2) >= 60L){

task1state=1; turnoffdevice1();
turnoffdevice2();

}
break;

}
(other tasks or state machines)

}

Dynamic C User’s Manual 43

If there are other tasks to be run, this control problem can be solved better by creating a loop that
processes a number of tasks. Now, each task can relinquish control when it is waiting, thereby

allowing other tasks to proceed. Each task then does its work in the idle time of the other tasks.

5.3 Costatements
Costatements are Dynamic C extensions to the C language which simplify implementation of state

machines. Costatements are cooperative because their execution can be voluntarily suspended and

later resumed. The body of a costatement is an ordered list of operations to perform -- a task. Each

costatement has its own statement pointer to keep track of which item on the list will be performed

when the costatement is given a chance to run. As part of the startup initialization, the pointer is

set to point to the first statement of the costatement.

The statement pointer is effectively a state variable for the costatement or cofunction. It specifies

the statement where execution is to begin when the program execution thread hits the start of the

costatement.

All costatements in the program, except those that use pointers as their names, are initialized when

the function chain _GLOBAL_INIT is called. _GLOBAL_INIT is called automatically by pre-
main before main is called. Calling _GLOBAL_INIT from an application program will cause

reinitialization of anything that was initialized in the call made by premain.

5.3.1 Solving the Real-time Problem With Costatements
The Dynamic C costatement provides an easier way to control the tasks. It is relatively easy to add

a task that checks for the use of an emergency stop button and then behaves accordingly.

The solution is elegant and simple. Note that the second costatement looks much like the original
description of the problem. All the branching, nesting and variables within the task are hidden in

the implementation of the costatement and its waitfor statements.

while(1){
costate{ ... } // task 1

costate{ // task 2
waitfor(buttonpushed());
turnondevice1();
waitfor(DelaySec(60L));
turnondevice2();
waitfor(DelaySec(60L));
turnoffdevice1();
turnoffdevice2();

}

costate{ ... } // task n
}

44 Dynamic C User’s Manual

5.3.2 Costatement Syntax

costate [name [state]] {
[statement | yield; | abort; | waitfor(expression);] . . .}

The keyword costate identifies the statements enclosed in curly braces that follow as a costate-
ment.

name can be one of the following:

• A valid C name not previously used. This results in the creation of a structure of type

CoData of the same name.

• The name of a local or global CoData structure that has already been defined

• A pointer to an existing structure of type CoData

Costatements can be named or unnamed. If name is absent the compiler creates an

“unnamed” structure of type CoData for the costatement.

state can be one of the following:

• always_on

The costatement is always active. This option causes the costatement to be compiled in

such a manner that it does not check for a paused condition. CoPause cannot be used.

• init_on

The costatement is initially active and will automatically execute the first time it is

encountered in the execution thread. The costatement becomes inactive after it com-
pletes (or aborts). The costatement can be paused by CoPause.

If state is absent, a named costatement is initialized in a paused condition and will not execute

until CoBegin or CoResume is executed. The costatement will then execute once and become

inactive again.

Unnamed costatements are always_on. You cannot specify init_on without specifying a

name.

5.3.3 Control Statements
waitfor(expression);

The keyword waitfor indicates a special waitfor statement and not a function call.
The expression is computed each time waitfor is executed. If true (non-zero), execu-
tion proceeds to the next statement, otherwise a jump is made to the closing brace of the

costatement or cofunction, with the statement pointer continuing to point to the wait-

for statement. Any valid C function that returns a value can be used in a waitfor

statement.

yield

The yield statement makes an unconditional exit from a costatement or a cofunction.
Dynamic C User’s Manual 45

abort

The abort statement causes the costatement or cofunction to terminate execution. If
a costatement is always_on, the next time the program reaches it, it will restart from

the top. If the costatement is not always_on, it becomes inactive and will not execute

again until turned on by some other software.

A costatement can have as many C statements, including abort, yield, and waitfor state-
ments, as needed. Costatements can be nested.

5.4 Advanced Costatement Topics
Each costatement has a structure of type CoData. This structure contains state and timing infor-
mation. It also contains the address inside the costatement that will execute the next time the pro-
gram thread reaches the costatement. A value of zero in the address location indicates the

beginning of the costatement.

5.4.1 The CoData Structure
typedef struct {

char CSState;
unsigned int lastlocADDR;
char lastlocCBR;
char ChkSum;
char firsttime;
union{

unsigned long ul;
struct {

unsigned int u1;
unsigned int u2;

} us;
} content;
char ChkSum2;

} CoData;
46 Dynamic C User’s Manual

5.4.2 CoData Fields
CSState

The CSState field contains two flags, STOPPED and INIT, summarized in the table below.

The function isCoDone() returns true (1) if both the STOPPED and INIT flags are set.

The function isCoRunning() returns true (1) if the STOPPED flag is not set.

The CSState field applies only if the costatement has a name The CSState flag has no mean-
ing for unnamed costatements or cofunctions.

Last Location

The two fields lastlocADDR and lastlocCBR are represent the 24-bit address of the loca-
tion at which to resume execution of the costatement. If lastlocADDR is zero (as it is when ini-
tialized), the costatement executes from the beginning, subject to the CSState flag. If
lastlocADDR is nonzero, the costatement resumes at the 24-bit address represented by last-
locADDR and lastlocCBR.

These fields are zeroed whenever one of the following is true:

• the CoData structure is initialized by a call to _GLOBAL_INIT, CoBegin or CoReset

• the costatement is executed to completion

• the costatement is aborted.

Check Sum

The ChkSum field is a one-byte check sum of the address. (It is the exclusive-or result of the

bytes in lastlocADDR and lastlocCBR.) If ChkSum is not consistent with the address, the

program will generate a run-time error and reset. The check sum is maintained automatically. It is

initialized by _GLOBAL_INIT, CoBegin and CoReset.

First Time

The firsttime field is a flag that is used by a waitfor, or waitfordone statement. It is set
to 1 before the statement is evaluated the first time. This aids in calculating elapsed time for the

functions DelayMs, DelaySec, DelayTicks, IntervalTick, IntervalMs, and

IntervalSec.

Content

STOPPED INIT State of Costatement

yes yes
Done, or has been initialized to run, but set to

inactive. Set by CoReset.

yes no Paused, waiting to resume. Set by CoPause.

no yes Initialized to run. Set by CoBegin.

no no
Running. CoResume will return the flags to this

state.
Dynamic C User’s Manual 47

The content field (a union) is used by the costatement or cofunction delay routines to store a

delay count.

Check Sum 2

The ChkSum2 field is currently unused.

5.4.3 Pointer to CoData Structure
To obtain a pointer to a named costatement’s CoData structure, do the following:

5.4.4 Library Extensions for Use With Named Costatements

This function returns true if the costatement pointed to by p has completed.

This function returns true if the costatement pointed to by p will run if given a continu-
ation call.

This function initializes a costatement’s CoData structure so that the costatement will
be executed next time it is encountered.

CoData cost1; /* allocate memory for a CoData struct*/
CoData *pcost1;
pcost1 = &cost1; /* get pointer to the CoData struct */

.

.

.
CoBegin (pcost1); /* initialize CoData struct */
costate pcost1 { /* pcost1 is the costatement name */

. /* and a pointer to its */

. /* CoData structure.*/

.
}

int isCoDone(CoData* p)

int isCoRunning(CoData* p)

void CoBegin(CoData* p)
48 Dynamic C User’s Manual

This function will change CoData so that the associated costatement is paused. When a

costatement is called in this state it does an implicit yield until it is released by a call
from CoResume or CoBegin.

This function initializes a costatement’s CoData structure so that the costatement will
not be executed the next time it is encountered (unless the costatement is declared

always_on.)

This function unpauses a paused costatement. The costatement will resume the next
time it is called.

5.4.5 Firsttime Functions
In a function definition, the keyword firsttime causes the function to have an implicit first
parameter: a pointer to the CoData structure of the costatement that calls it.

The following firsttime functions are defined in COSTATE.LIB. For more information see

Chapter 15, “Function Reference.” These functions should be called inside a waitfor statement
because they do not yield while waiting for the desired time to elapse, but instead return 0 to indi-
cate that the desired time has not yet elapsed.

DelayMs IntervalMs

DelaySec IntervalSec

DelayTicks IntervalTick

User-defined firsttime functions are allowed.

5.4.6 Shared Global Variables
These variables are shared, making them atomic when being updated. They are defined and initial-
ized in VDRIVER.LIB. They are updated by the periodic interrupt and are used by first-
time functions.

SEC_TIMER
MS_TIMER
TICK_TIMER

void CoPause(CoData* p)

void CoReset(CoData* p)

void CoResume(CoData* p)
Dynamic C User’s Manual 49

5.5 Cofunctions
Cofunctions, like costatements, are used to implement cooperative multitasking. But, unlike cos-
tatements, they have a form similar to functions in that arguments can be passed to them and a

value can be returned (but not a structure).

The default storage class for a cofunction’s variables is Instance. An instance variable

behaves like a static variable, i.e., its value persists between function calls. Each instance of
an Indexed Cofunction has its own set of instance variables. The compiler directive #class

does not change the default storage class for a cofunction’s variables.

All cofunctions in the program are initialized when the function chain _GLOBAL_INIT is called.
This call is made by premain.

5.5.1 Syntax
A cofunction definition is similar to the definition of a C function.

cofunc|scofunc type [name][[dim]]([type arg1, ..., type argN])
{ [statement | yield; | abort; | waitfor(expression);] ... }

cofunc, scofunc

The keywords cofunc or scofunc (a single-user cofunction) identify the statements

enclosed in curly braces that follow as a cofunction.

type

Whichever keyword (cofunc or scofunc) is used is followed by the data type

returned (void, int, etc.).

name

A name can be any valid C name not previously used. This results in the creation of a

structure of type CoData of the same name. Cofunctions can be named or unnamed. If
name is absent the compiler creates an “unnamed” structure of type CoData for the

cofunction.

dim

The cofunction name may be followed by a dimension if an indexed cofunction is

being defined.

cofunction arguments (arg1, . . ., argN)

As with other Dynamic C functions, cofunction arguments are passed by value.

cofunction body

A cofunction can have as many C statements, including abort, yield, waitfor, and

waitfordone statements, as needed. Cofunctions can contain calls to other cofunc-
tions.
50 Dynamic C User’s Manual

5.5.2 Calling Restrictions
You cannot assign a cofunction to a function pointer then call it via the pointer.

Cofunctions are called using a waitfordone statement. Cofunctions and the waitfordone

statement may return an argument value as in the following example.

The keyword waitfordone (can be abbreviated to the keyword wfd) must be inside a costate-
ment or cofunction. Since a cofunction must be called from inside a wfd statement, ultimately a

wfd statement must be inside a costatement.

If only one cofunction is being called by wfd the curly braces are not needed.

The wfd statement executes cofunctions and firsttime functions. When all the cofunctions

and firsttime functions listed in the wfd statement are complete (or one of them aborts), exe-
cution proceeds to the statement following wfd. Otherwise a jump is made to the ending brace of
the costatement or cofunction where the wfd statement appears and when the execution thread

comes around again control is given back to wfd.

In the example above, x, y and z must be set by return statements inside the called cofunc-
tions. Executing a return statement in a cofunction has the same effect as executing the end brace.

In the example above, the variable k is a status variable that is set according to the following

scheme. If no abort has taken place in any cofunction, k is set to 1, 2, .., n to indicate which

cofunction inside the braces finished executing last. If an abort takes place, k is set to -1, -2, ..., -n

to indicate which cofunction caused the abort.

5.5.3 CoData Structure
The CoData structure discussed in Section 5.4.1 applies to cofunctions; each cofunction has an

associated CoData structure.

5.5.4 Firsttime functions
The firsttime functions discussed in “Firsttime Functions” on page 49 can also be used inside

cofunctions. They should be called inside a waitfor statement. If you call these functions from

inside a wfd statement, no compiler error is generated, but, since these delay functions do not
yield while waiting for the desired time to elapse, but instead return 0 to indicate that the desired

time has not yet elapsed, the wfd statement will consider a return value to be completion of the

firsttime function and control will pass to the statement following the wfd.

int j,k,x,y,z;
j = waitfordone x = Cofunc1;
k = waitfordone{ y=Cofunc2(...); z=Cofunc3(...); }
Dynamic C User’s Manual 51

5.5.5 Types of Cofunctions
There are three types of cofunctions. Which one to use depends on the problem that is being

solved.

 5.5.5.1 Simple Cofunction

A simple cofunction has only one instance and is similar to a regular function with a costate taking

up most of the function’s body.

 5.5.5.2 Indexed Cofunction

An indexed cofunction allows the body of a cofunction to be called more than once with different
parameters and local variables. The parameters and the local variable that are not declared static

have a special lifetime that begins at a first time call of a cofunction instance and ends when the

last curly brace of the cofunction is reached or when an abort or return is encountered.

The indexed cofunction call is a cross between an array access and a normal function call, where

the array access selects the specific instance to be run.

Typically this type of cofunction is used in a situation where N identical units need to be con-
trolled by the same algorithm. For example, a program to control the door latches in a building

could use indexed cofunctions. The same cofunction code would read the key pad at each door,
compare the passcode to the approved list, and operate the door latch. If there are 25 doors in the

building, then the indexed cofunction would use an index ranging from 0 to 24 to keep track of
which door is currently being tested. An indexed cofunction has an index similar to an array index.

The value between the square brackets must be positive and less than the maximum number of
instances for that cofunction. There is no runtime checking on the instance selected, so, like

arrays, the programmer is responsible for keeping this value in the proper range.

Costatements are not supported inside indexed cofunctions.

 5.5.5.3 Single User Cofunction

Since cofunctions are executing in parallel, the same cofunction normally cannot be called at the

same time from two places in the same big loop. For example, the following statement containing

two simple cofunctions will generally cause a fatal error.

This is because the same cofunction is being called from the second location after it has already

started, but not completed, execution for the call from the first location. The cofunction is a state

machine and it has an internal statement pointer that cannot point to two statements at the same

time.

waitfordone{ ICofunc[n](...); ICofunc2[m](...); }

waitfordone(cofunc_nameA(); cofunc_nameA();}
52 Dynamic C User’s Manual

Single-user cofunctions can be used instead. They can be called simultaneously because the sec-
ond and additional callers are made to wait until the first call completes. The following statement,
which contains two single-user cofunctions, is okay.

loopinit()

This function should be called in the beginning of a program that uses single-user cofunctions. It
initializes internal data structures that are used by loophead().

loophead()
This function should be called within the "big loop" in your program. It is necessary for proper
single-user cofunction abandonment handling.

Example

5.5.6 Types of Cofunction Calls
A wfd statement makes one of three types of calls to a cofunction.

 5.5.6.1 First Time Call

A first time call happens when a wfd statement calls a cofunction for the first time in that state-
ment. After the first time, only the original wfd statement can give this cofunction instance con-
tinuation calls until either the instance is complete or until the instance is given another first time

call from a different statement.

 5.5.6.2 Continuation Call

A continuation call is when a cofunction that has previously yielded is given another chance to run

by the enclosing wfd statement. These statements can only call the cofunction if it was the last
statement to give the cofunction a first time call or a continuation call.

 5.5.6.3 Terminal Call

A terminal call ends with a cofunction returning to its wfd statement without yielding to another
cofunction. This can happen when it reaches the end of the cofunction and does an implicit return,
when the cofunction does an explicit return, or when the cofunction aborts.

waitfordone(scofunc_nameA(); scofunc_nameA();}

// echoes characters
main() {

int c;
serXopen(19200);
loopinit();
while (1) {

loophead();
wfd c = cof_serAgetc();
wfd cof_serAputc(c);

}
serAclose();

}

Dynamic C User’s Manual 53

 5.5.6.4 Lifetime of a Cofunction Instance

This stretches from a first time call until its terminal call or until its next first time call.

5.5.7 Special Code Blocks
The following special code blocks can appear inside a cofunction.

everytime { statements }

This must be the first statement in the cofunction. It will be executed every time pro-
gram execution passes to the cofunction no matter where the statement pointer is point-
ing. After the everytime statements are executed, control will pass to the statement
pointed to by the cofunction’s statement pointer.

abandon { statements }

This statement applies to single-user cofunctions only and must be the first statement in

the body of the cofunction. The statements inside the curly braces will be executed if
the single-user cofunction is forcibly abandoned. A call to loophead() (defined in

COFUNC.LIB) is necessary for abandon statements to execute.

Example

The following code illustrates the use of abandon. This program, COFABAND.C, is in the SAM-
PLES/COFUNC folder in the directory where Dynamic C was installed.

scofunc SCofTest(int i){
abandon {

printf("CofTest was abandoned\n");
}
while(i>0) {

printf("CofTest(%d)\n",i);
yield;

}
}

main(){
int x;
for(x=0;x<=10;x++) {

loophead();
if(x<5) {

costate {
wfd SCofTest(1); // first caller

}
}
costate {

wfd SCofTest(2); // second caller
}

}
}

54 Dynamic C User’s Manual

In this example two tasks in main are requesting access to SCofTest. The first request is hon-
ored and the second request is held. When loophead notices that the first caller is not being

called each time around the loop, it cancels the request, calls the abandonment code and allows the

second caller in.

5.5.8 Solving the Real-time Problem With Cofunctions

Cofunctions, with their ability to receive arguments and return values, provide more flexibility and

specificity than our previous solutions. Using cofunctions, new machines can be added with only

trivial code changes. Making buttonpushed() a cofunction allows more specificity because

the value returned can indicate a particular button in an array of buttons. Then that value can be

passed as an argument to the cofunctions turnondevice and turnoffdevice.

5.6 Patterns of Cooperative Multitasking
Sometimes a task may be something that has a beginning and an end. For example, a cofunction to

transmit a string of characters via the serial port begins when the cofunction is first called, and

continues during successive calls as control cycles around the big loop. The end occurs after the

last character has been sent and the waitfordone condition is satisified. This type of a call to a

cofunctions might look like this:

The next statement will execute after the last character is sent.

for(;;){
costate{ // task 1
wfd emergencystop();
for (i=0; i<MAX_DEVICES; i++)

wfd turnoffdevice(i);
}

costate{ // task 2
wfd x = buttonpushed();
wfd turnondevice(x);
waitfor(DelaySec(60L));
wfd turnoffdevice(x);

}
...
costate{ ... } // task n

}

waitfordone{ SendSerial("string of characters"); }
[next statement]
Dynamic C User’s Manual 55

Some tasks may not have an end. They are endless loops. For example, a task to control a servo

loop may run continuously to regulate the temperature in an oven. If there are a a number of tasks

that need to run continuously, then they can be called using a single waitfordone statement as

shown below.

Each task will receive some execution time and, assuming none of the tasks is completed, they

will continue to be called. If one of the cofunctions should abort, then the waitfordone state-
ment will abort, and corrective action can be taken.

5.7 Timing Considerations
In most instances, costatements and cofunctions are grouped as periodically executed tasks. They

can be part of a real-time task, which executes every n milliseconds as shown below using costate-
ments.

Figure 2. Costatement as Part of Real-Time Task

If all goes well, the first costatement will be executed at the periodic rate. The second costatement
will, however, be delayed by the first costatement. The third will be delayed by the second, and so

on. The frequency of the routine and the time it takes to execute comprise the granularity of the

routine.

If the routine executes every 25 milliseconds and the entire group of costatements executes in 5 to

10 milliseconds, then the granularity is 30 to 35 milliseconds. Therefore, the delay between the

occurrence of a waitfor event and the statement following the waitfor can be as much as the

granularity, 30 to 35 ms. The routine may also be interrupted by higher priority tasks or interrupt
routines, increasing the variation in delay.

The consequences of such variations in the time between steps depends on the program’s objec-
tive. Suppose that the typical delay between an event and the controller’s response to the event is

costate {
waitfordone { Task1(); Task2(); Task3(); Task4(); }
[to come here is an error]

}

56 Dynamic C User’s Manual

25 ms, but under unusual circumstances the delay may reach 50 ms. An occasional slow response

may have no consequences whatsoever. If a delay is added between the steps of a process where

the time scale is measured in seconds, then the result may be a very slight reduction in throughput.

If there is a delay between sensing a defective product on a moving belt and activating the reject
solenoid that pushes the object into the reject bin, the delay could be serious. If a critical delay

cannot exceed 40 ms, then a system will sometimes fail if its worst-case delay is 50 ms.

5.7.1 waitfor Accuracy Limits
If an idle loop is used to implement a delay, the processor continues to execute statements almost
immediately (within nanoseconds) after the delay has expired. In other words, idle loops give pre-
cise delays. Such precision cannot be achieved with waitfor delays.

A particular application may not need very precise delay timing. Suppose the application requires

a 60-second delay with only 100 ms of delay accuracy; that is, an actual delay of 60.1 seconds is

considered acceptable. Then, if the processor guarantees to check the delay every 50 ms, the delay

would be at most 60.05 seconds, and the accuracy requirement is satisfied.

5.8 Overview of Preemptive Multitasking
In a preemptive multitasking environment, tasks do not voluntarily relinquish control. Tasks are

scheduled to run by priority level and/or by being given a certain amount of time.

There are two ways to accomplish preemptive multitasking using Dynamic C. The first way is

µC/OS-II, a real-time, preemptive kernel that runs on the Rabbit Microprocessor and is fully sup-
ported by Dynamic C. For more information see Chapter 17, “µC/OS-II.” The other way is to use

slice statements.

5.9 Slice Statements
The slice statement, based on the costatement language construct, allows the programmer to

run a block of code for a specific amount of time.

5.9.1 Syntax
slice ([context_buffer,] context_buffer_size, time_slice)
[name]{[statement|yield;|abort;|waitfor(expression);]}

context_buffer_size

This value must evaluate to a constant integer. The value specifies the size for the

context_buffer. It needs to be large enough for worst-case stack usage by the

user program and interrupt routines.
Dynamic C User’s Manual 57

time_slice

The amount of time in ticks for the slice to run. One tick = 1/1024 second.

name

When defining a named slice statement, you supply a context buffer as the first argu-
ment. When you define an unnamed slice statement, this structure is allocated by the

compiler.

[statement | yield; | abort; | waitfor(expression);]

The body of a slice statement may contain:

• Regular C statements

• yield statements to make an unconditional exit.

• abort statements to make an execution jump to the very end of the statement.

• waitfor statements to suspend progress of the slice statement pending some condi-
tion indicated by the expression.

5.9.2 Usage
The slice statement can run both cooperatively and preemptively all in the same framework. A

slice statements, like costatements and cofunctions, can suspend its execution with an abort,
yield, or waitfor as with costatements and cofunctions, or with an implicit yield deter-
mined by the time_slice parameter that was passed to it.

A routine called from the periodic interrupt forms the basis for scheduling slice statements. It
counts down the ticks and changes the slice statement’s context.

5.9.3 Restrictions
Since a slice statement has its own stack, local auto variables and parameters cannot be

accessed while in the context of a slice statement. Any functions called from the slice statement
function normally.

Only one slice statement can be active at any time, which eliminates the possibility of nesting

slice statements or using a slice statement inside a function that is either directly or indirectly

called from a slice statement. The only methods supported for leaving a slice statement are

completely executing the last statement in the slice, or executing an abort, yield or wait-
for statement.

The return, continue, break, and goto statements are not supported.

Slice statements cannot be used with µC/OS-II or DCRTCP.LIB.
58 Dynamic C User’s Manual

5.9.4 Slice Data Structure
Internally, the slice statement uses two structures to operate. When defining a named slice

statement, you supply a context buffer as the first argument. When you define an unnamed slice

statement, this structure is allocated by the compiler. Internally, the context buffer is represented

by the SliceBuffer structure below.

5.9.5 Slice Internals
When a slice statement is given control, it saves the current context and switches to a context
associated with the slice statement. After that, the driving force behind the slice statement is

the timer interrupt. Each time the timer interrupt is called, it checks to see if a slice statement is

active. If a slice statement is active, the timer interrupt decrements the time_out field in the

slice’s SliceData. When the field is decremented to zero, the timer interrupt saves the

slice statement’s context into the SliceBuffer and restores the previous context. Once the

timer interrupt completes, the flow of control is passed to the statement directly following the

slice statement. A similar set of events takes place when the slice statement does an explicit
yield/abort/waitfor.

struct SliceData {
int time_out;
void* my_sp;
void* caller_sp;
CoData codata;

}

struct SliceBuffer {
SliceData slice_data;
char stack[]; // fills rest of the slice

buffer
};
Dynamic C User’s Manual 59

 5.9.5.1 Example 1

Two slice statements and a costatement will appear to run in parallel. Each block will run inde-
pendently, but the slice statement blocks will suspend their operation after 20 ticks for
slice_a and 40 ticks for slice_b. Costate a will not release control until it either explicitly

yields, aborts, or completes. In contrast, slice_a will run for at most 20 ticks, then slice_b

will begin running. Costate a will get its next opportunity to run about 60 ticks after it relinquishes

control.

 5.9.5.2 Example 2

This code guarantees that the first slice starts on TICK_TIMER evenly divisible by 80 and the sec-
ond starts on TICK_TIMER evenly divisible by 105.

main () {
int x, y, z;
...
for (;;) {

costate a {
...

}
slice(500, 20) { // slice_a

...
}
slice(500, 40) { // slice_b

...
}

}
}

main() {
for(;;) {

costate {
slice(500,20) { // slice_a

waitfor(IntervalTick(80));
...

}
slice(500,50) { // slice_b

waitfor(IntervalTick(105);
...

}
}

}
}

60 Dynamic C User’s Manual

 5.9.5.3 Example 3

This approach is more complicated, but will allow you to spend the idle time doing a low-priority

background task.

5.10 Summary
Although multitasking may actually decrease processor throughput slightly, it is an important con-
cept. A controller is often connected to more than one external device. A multitasking approach

makes it possible to write a program controlling multiple devices without having to think about all
the devices at the same time. In other words, multitasking is an easier way to think about the sys-
tem.

main() {
int time_left;
long start_time;
for(;;) {

start_time = TICK_TIMER;
slice(500,20) { // slice_a

waitfor(IntervalTick(80));
...

}
slice(500,50) { // slice_b

waitfor(IntervalTick(105));
...

}
time_left = 75-(TICK_TIMER-start_time);
if(time_left>0) {

slice(500,75-(TICK_TIMER-start_time)) {// slice_c
...

}
}

}

}

Dynamic C User’s Manual 61

62 Dynamic C User’s Manual

The Virtual Driver 6

Virtual Driver is the name given to some initialization services and a group of services performed

by a periodic interrupt. These services are:

Initialization Services

• Call _GLOBAL_INIT()

• Initialize the global timer variables

• Start the virtual driver periodic interrupt

Periodic Interrupt Services

• Decrement software (virtual) watchdog timers

• Hitting the hardware watchdog timer

• Increment the global timer variables

• Drive uC/OS-II preemptive multitasking

• Drive slice statement preemptive multitasking

6.1 Default Operation
The user should be aware that by default, the Virtual Driver starts and runs in a Dynamic C pro-
gram without the user doing anything. This happens because before main() is called, a function

called premain() is called by the Rabbit kernel (BIOS) that actually calls main(). Before

premain() calls main(), it calls a function named VdInit() that performs the initializa-
tion services, including starting periodic interrupt. If the user were to disable the Virtual Driver by

commenting out the call to VdInit() in premain(), then none of the services performed by

the periodic interrupt would be available. Unless the Virtual Driver is incompatible with some

very tight timing requirements of a program and none of the services performed by the Virtual
Driver are needed, it is recommended that the user not disable it.

6.2 Calling _GLOBAL_INIT()
VdInit calls _GLOBAL_INIT() which runs all #GLOBAL_INIT sections in a program.
_GLOBAL_INIT() also initializes all of the CoData structures needed by costatements and

cofunctions. If VdInit() were not called, users could still use costatements and cofunctions if
the call to VdInit() was replaced by a call to _GLOBAL_INIT(), but the DelaySec() and

DelayMs() functions often used with costatements and cofunctions in waitfor statements

would not work because those functions depend on timer variables which are maintained by the

periodic interrupt.
Dynamic C User’s Manual 63

6.3 Global Timer Variables
The following variables SEC_TIMER, MS_TIMER and TICK_TIMER are global variables

defined as shared unsigned long. On initialization, SEC_TIMER is synchronized with

the real time clock so that the date and time can be accessed more quickly than reading the real
time clock simply by reading MS_TIMER.

The periodic interrupt updates SEC_TIMER every second, MS_TIMER every millisecond, and

TICK_TIMER 2048 times per second (the frequency of the periodic interrupt). These variables

are used by the DelaySec, DelayMS and DelayTicks functions, but are also convenient for
users to use for timing purposes. The following sample shows the use of MS_TIMER to measure

the execution time in micro seconds of a Dynamic C integer add. The work is done in a “nodebug”

function so that the debugging does not affect timing:

#define N 10000
main(){ timeit(); }

nodebug timeit(){
unsigned long int T0;
float T2,T1;
int x,y;
int i;

T0 = MS_TIMER;
for(i=0;i<N;i++) { }

// T1 gives empty loop time
T1=(MS_TIMER-T0);

T0 = MS_TIMER;
for(i=0;i<N;i++){ x+y;}

// T2 gives test code execution time
T2=(MS_TIMER-T0);

// subtract empty loop time and
// convert to time for single pass
T2=(T2-T1)/(float)N;

// multiply by 1000 to convert ms. to us.
printf("time to execute test code = %f us\n",T2*1000.0);

}

64 Dynamic C User’s Manual

6.4 Watchdog Timers
Watchdog timers limit the amount of a time your system will be in an unknown state.

Hardware Watchdog

The Rabbit CPU has one built-in hardware watchdog timer (WDT). The virtual driver “hits” this

watchdog periodically. The following code fragment could be used to disable this WDT:

#asm
ioi ld a,0x51

ld (WDTTR),a
ioi ld a,0x54

ld (WDTTR),a
#endasm

However, it is recommended that the watchdog not be disabled. This prevents the target from

“locking up” by entering an endless loop in software due to coding errors or hardware problems. If
the virtual driver is not used, the user code should periodically call hitwd();

When debugging a program, if the program is stopped at a breakpoint because the breakpoint was

explicitly set, or because the user is single stepping, then the debug kernel hits the hardware

watchdog periodically.

Virtual Watchdogs

There are 10 virtual WDTs available; they are maintained by the virtual driver. Virtual watchdogs,
like the hardware watchdog, limit the amount of time a system is in an unknown state. They also

narrow down the problem area to assist in debugging.

The function VdGetFreeW(count) allocates and initializes a virtual watchdog. The return

value of this function is the ID of the virtual watchdog. If an attempt is made to allocate more than

10 virtual WDTs, a fatal error occurs. In debug mode, this fatal error will cause the program to

return with error code 250. The default run-time error behavior is to reset the board.

The ID returned by VdGetFreeW is used as the argument when calling VdHitWd(ID) or
VdReleaseWd(ID) to hit or deallocate a virtual watchdog

The virtual driver counts down watchdogs every 62.5 ms. If a virtual watchdog reaches 0, this is

fatal error code 247. Once a virtual watchdog is active, it should be reset periodically with a call
to VdHitWd(ID) to prevent this. If count = 2 for a particular WDT, then VdHitWd(ID) will
need to be called within 62.5 ms for that WDT. If count = 255, VdHitWd(ID) will need to be

called within 15.94 seconds.

The virtual driver does not count down any virtual WDTs if the user is debugging with Dynamic C

and stopped at a breakpoint.

6.5 Preemptive Multitasking Drivers
A simple scheduler for Dynamic C’s preemptive slice statement is serviced by the virtual driver.
The scheduling for µC/OS-II a more traditional full-featured real-time kernel, is also done by the

virtual driver.

These two scheduling methods are mutually exclusive—slicing and µC/OS-II must not be

used in the same program.
Dynamic C User’s Manual 65

66 Dynamic C User’s Manual

The Slave Port Driver 7

The Rabbit 2000 microprocessor has hardware for a slave port, allowing a master controller to

read and write certain internal registers on the Rabbit. The library, Slaveport.lib, imple-
ments a complete master slave protocol for the Rabbit slave port. Sample libraries,
Master_serial.lib and Sp_stream.lib provide serial port and stream-based communi-
cation handlers using the slave port protocol.

7.1 Slave Port Driver Protocol
Given the variety of embedded system implementations, the protocol for the slave port
driver was designed to make the software for the master controller as simple as possible.
Each interaction between the master and the slave is initiated by the master. The master
has complete control over when data transfers occur and can expect single, immediate

responses from the slave.

7.1.1 Overview

1. Master writes to the command register after setting the address register and, optionally,
the data register. These registers are internal to the slave.

2. Slave reads the registers that were written by the master.

3. Slave writes to command response register after optionally setting the data register.
This also causes the SLAVEATTN line on the Rabbit slave to be pulled low.

4. Master reads response and data registers.

5. Master writes to the slave port status register to clear interrupt line from the slave.

7.1.2 Registers on the Slave
From the point of view of the master, the slave is an I/O device with four register
addresses.

SPD0R Command and response register

SPD1R Address register

SPD2R Optional data register

SPSR Slave port status register. In this protocol the only bits used in the

status register are for checking the command/response register. Bit
3 is set if the slave has written a response to SPD0R. It is cleared

when the master writes to SPSR, which also deasserts the SLAVE-
ATTN line.
Dynamic C User’s Manual 67

Reading and writing to the same address actually uses two different registers.

The status port is a bit field showing which slave port registers have been updated. For the pur-
poses of this protocol. Only bit 3 needs to be examined. After sending a command, the master can

check bit 3, which is set when the slave writes to the response register. At this point the response

and returned data are valid and should be read before sending a new command. Performing a

dummy write to the status register will clear this bit, so that it can be set by the next response.

Pin assignments for a Rabbit processor acting as a slave are as follows:

For more details and read/write signal timing see the Rabbit 2000 Microproccessor Man-
ual.

7.1.3 Polling and Interrupts
Both the slave and the master can use interrupt or polling for the slave. The parameter passed to

SPinit() determines which one is used. In interrupt mode, the developer can indicate whether
the handler functions for the channels are interruptible or non-interruptible.

Address Read Write

0 Gets command response from slave
Sends command to slave, triggers

slave response

1 Not used
Sets channel address to send

commmand to

2 Gets returned data from slave Sets data byte to send to slave

3 Gets slave port status (see below) Clears slave response bit (see below)

Pin Function

PE7 /CS chip select (active low to read/write slave port)

PB2 /SWR slave write (assert for write cycle)

PB3 /SRD slave read (assert for read cycle)

PB4 A0 low address bit for slave port registers

PB5 A1 high address bit for slave registers

PB7
/SLVATTN asserted by slave when it responds to a

command. cleared by master write to status register

PA0-PA7 slave port data bus
68 Dynamic C User’s Manual

7.1.4 Communication Channels
The Rabbit slave has 256 configurable channels available for communication. The developer must
provide a handler function for each channel that is used. Some basic handlers are available in the

library Slave_Port.lib. These handlers will be discussed later.

When the slave port driver is initialized, a callback table of handler functions is set up. Handler
functions are added to the callback table by SPsetHandler().

7.2 Functions
Slave_port.lib provides the following functions:

int SPinit (int mode);

DESCRIPTION

This function initializes the slave port driver. It sets up the callback tables for the different
channels. The slave port driver can be run in either polling mode where SPtick() must
be called periodically, or in interrupt mode where an ISR is triggered every time the mas-
ter sends a command. There are two version of interrupt mode. In the first, interrupts are

reenabled while the handler function is executing. In the other, the handler function will
execute at the same interrupt priority as the driver ISR.

PARAMETERS

mode 0: For polling
1: For interrupt driven (interruptible handler functions)
2: For interrupt driven (non-interruptible handler functions)

RETURN VALUE

1: Success
0: Failure

LIBRARY

Slave_port.lib

SPinit
Dynamic C User’s Manual 69

int SPsetHandler (char address, int (*handler)(), void
*handler_params);

DESCRIPTION

This function sets up a handler function to process incoming commands from the master
for a particular slave port address.

PARAMETERS

address The 8-bit slave port address of the channel that corresponds to

the handler function.

handler Pointer to the handler function. This function must have a par-
ticular form, which is described by the function description

for MyHandler() shown below. Setting this parameter to

NULL unloads the current handler.

handler_params Pointer that will be saved and passed to the handler function

each time it is called. This allows the handler function to be

parameterized for multiple cases.

RETURN VALUE

1: Success, the handler was set.
0: Failure.

LIBRARY

Slave_port.lib

SPsetHandler
70 Dynamic C User’s Manual

int MyHandler (char command, char data_in, void *params);

DESCRIPTION

This function is a developer-supplied function and can have any valid Dynamic C name.
Its purpose is to handle incoming commands from a master to one of the 256 channels on

the slave port. A handler function must be supplied for every channel that is being used

on the slave port.

PARAMETERS

command This is the received command byte.

data_in The optional data byte

params The optional parameters pointer.

RETURN VALUE

This function must return an integer. The low byte must contains the response code and

the high byte contains the returned data, if there is any.

LIBRARY

This is a developer-supplied function.

MyHandler
Dynamic C User’s Manual 71

void SPtick (void);

DESCRIPTION

This function must be called periodically when the slave port is used in polling mode.

LIBRARY

Slave_port.lib

void SPclose(void);

DESCRIPTION

This function disables the slave port driver and unloads the ISR if one was used.

LIBRARY

Slave_port.lib

7.3 Examples

7.3.1 Example of a Simple Status Handler
A function, SPstatusHandler(), available in Slave_port.lib, is an example of a simple

handler. To set up the function as a handler on slave port address 12, do the following:

SPsetHandler (12, SPstatusHandler, &status_char);

Sending any command to this handler will cause it to respond with a 1 in the response register and

the current value of status_char in the data return register.

SPtick

SPclose
72 Dynamic C User’s Manual

7.3.2 Example of a Serial Port Handler
Slave_port.lib contains handlers for all four serial ports on the slave.
Master_serial.lib contains code for a master using the slave’s serial port handler. This

library illustrates the general case of implementing the master side of the master/slave protocol.

 7.3.2.1 Commands to the Slave

1
Transmit byte, byte value is in data register. Slave responds with 1 if the

byte was processed or 0 if it was not.

2
Receive byte. Slave responds with 2 if has put a new received byte into

the data return register or 0 if there were no bytes to receive.

3
Combined transmit/receive - a combination of the transmit and receive

commands. The response will also be a logicol OR of the two command

responses.

4 Set baud factor, byte 1(LSB)a

a. The actual baud rate is the baud factor multiplied by 300.

5 Set baud factor, byte 2a

6 Set port configuration bits

7 Open port

8 Close port

9

Get errors. Slave responds with 1 if the port is open and can return

an error bitfield. The error bits are the same as for the function

serAgetErrors() and are put in the data return register by the

slave.

10,
11

Returns count of free bytes in the serial port write buffer. The two

commands return the LSB and the MSB of the count respectively. The

LSB(10) should be read first to latch the count.

12,
13

Returns count of free bytes in the serial port read buffer. The two

commands return the LSB and the MSB of the count respectively. The

LSB(12) should be read first to latch the count.

14,
15

Returns count of bytes currently in the serial port write buffer. The two

commands return the LSB and the MSB of the count respectively. The

LSB(14) should be read first to latch the count.

16,
17

Returns count of bytes currently in the serial port write buffer. The two

commands return the LSB and the MSB of the count respectively. The

LSB(16) should be read first to latch the count.
Dynamic C User’s Manual 73

 7.3.2.2 Slave Side of Protocol
To set up the handler to connect serial port A to channel 5 , do the following:

SPsetHandler (5, SPserAhandler, NULL);

 7.3.2.3 Master Side of Protocol
The following functions are in Master_serial.lib. They are for a master using a serial port
handler on a slave.

int cof_MSgetc(char address);

DESCRIPTION

Yields to other tasks until a byte is received from the serial port on the slave.

PARAMETERS

address Slave channel address of the serial handler.

RETURN VALUE

Value of the received character on success;
-1: Failure.

LIBRARY

Master_serial.lib

void cof_MSputc(char address, char ch);

DESCRIPTION

Sends a character to the serial port. Yields until character is sent.

PARAMETER

address Slave channel address of serial handler

ch Character to send

RETURN VALUE

 0: Character was sent
-1: Failure

LIBRARY

Master_serial.lib

cof_MSgetc

cof_MSputc
74 Dynamic C User’s Manual

int cof_MSread(char address, char *buffer, int length, unsigned
long timeout);

DESCRIPTION

Reads bytes from the serial port on the slave into the provided buffer. Waits until at least
one character has been read. Returns after buffer is full, or timeout has expired be-
tween reading bytes. Yields to other tasks while waiting for data.

PARAMETERS

address Slave channel address of serial handler

buffer Buffer to store received bytes

length Size of buffer

timeout Time to wait between bytes before giving up on receiving anymore

RETURN VALUE

Bytes read, or
-1: Failure

LIBRARY

Master_serial.lib

int cof_MSwrite(char address, char *data, int length);

DESCRIPTION

Transmits an array of bytes from the serial port on the slave. Yields to other tasks while

waiting for write buffer to clear.

address Slave channel address of serial handler

data Array to be transmitted

length Size of array

RETURN VALUE

Number of bytes actually written,
-1 if error

LIBRARY

Master_serial.lib

cof_MSread

cof_MSwrite
Dynamic C User’s Manual 75

int MSclose(char address);

DESCRIPTION

Closes a serial port on the slave.

PARAMETERS

address Slave channel address of serial handle.

RETURN VALUE

0: Success
-1: Failure

LIBRARY

Master_serial.lib

int MSgetc(char address);

DESCRIPTION

Receives a character from the serial port.

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Value of recevied character;
-1: No character available.

LIBRARY

MASTER_SERIAL.LIB

MSclose

MSgetc
76 Dynamic C User’s Manual

int MSgetError(char address);

DESCRIPTION

Gets bitfield with any current error from the specified serial port on the slave. Error codes

are:

SER_PARITY_ERROR 0x01
SER_OVERRUN_ERROR 0x02

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success
-1: Failure

LIBRARY

MASTER_SERIAL.LIB

int MSinit(int io_bank);

DESCRIPTION

Sets up the connection to the slave.

PARAMETERS

io_bank The IO bank and chip select pin number for the slave device

(0-7).

RETURN VALUE

1: Success

LIBRARY

Master_serial.lib

MSgetError

MSinit
Dynamic C User’s Manual 77

int MSopen(char address, unsigned long baud);

DESCRIPTION

Opens a serial port on the slave, given that there is a serial handler at the specified ad-
dress on the slave.

PARAMETERS

address Slave channel address of serial handler.

baud Baud rate for the serial port on the slave.

RETURN VALUE

1: Baud rate used matches the argument.
0: Different baud rate is being used.

-1: Slave port comm error occured.

LIBRARY

MASTER_SERIAL.LIB

int MSputc(char address, char ch);

DESCRIPTION

Transmits a single character through the serial port.

PARAMETERS

address Slave channel address of serial handler

ch Character to send

RETURN VALUE

1: Character sent.
0: Transmit buffer is full or locked.

LIBRARY

MASTER_SERIAL.LIB

MSopen

MSputc
78 Dynamic C User’s Manual

int MSrdFree(char address);

DESCRIPTION

Gets the number of bytes available in the specified serial port read buffer on the slave.

PARAMETERS

address Slave channel address of serial handler.

RETURN VALUE

Number of bytes free: Success
-1: Failure

LIBRARY

Master_serial.lib

int MSsendCommand(char address, char command, char data,char
*data_returned, unsigned long timeout);

DESCRIPTION

Sends a single command to the slave and gets a response. This function also serves as a

general example of how to implement the master side of the slave protocol.

PARAMETERS

address Slave channel address to send command to.

command Command to be sent to the slave (see Section 7.3.2.1).

data Data byte to be sent to the slave.

data_returned Address of variable to place data returned by the slave.

timeout Time to wait before giving up on slave response.

RETURN VALUE

≥0: Response code
-1: Timeout occured before response
-2: Nothing at that address (response = 0xff)

LIBRARY

MASTER_SERIAL.LIB

MSrdFree

MSsendCommand
Dynamic C User’s Manual 79

int MSread(char address, char *buffer, int size, unsigned long
timeout);

DESCRIPTION

Receives bytes from the serial port on the slave.

PARAMETERS

address Slave channel address of serial handler.

buffer Array to put received data into.

size Size of array (max bytes to be read).

timeout Time to wait between characters before giving up on receiving any

more.

RETURN VALUE

The number of bytes read into the buffer (behaves like serXread()).

LIBRARY

Master_serial.lib

int MSwrFree(char address)

DESCRIPTION

Gets the number of bytes available in the specified serial port write buffer on the slave.

PARAMETERS

address Slave channel address of serial handler

RETURN VALUE

Number of bytes free: Success
-1: Failure

LIBRARY

Master_serial.lib

MSread

MSwrFree
80 Dynamic C User’s Manual

int MSwrite(char address, char *data, int length);

DESCRIPTION

Sends an array of bytes out the serial port on the slave (behaves like serXwrite()).

PARAMETERS

address Slave channel address of serial handler.

data Array of bytes to send.

length Size of array.

RETURN VALUE

Number of bytes actually sent.

LIBRARY

Master_serial.lib

MSwrite
Dynamic C User’s Manual 81

 7.3.2.4 Sample Program for Master
This sample program, master_demo.c, treats the slave like a serial port.

#use "master_serial.lib"
#define SP_CHANNEL 0x42

char* const test_string = "Hello There";

main(){
char buffer[100];
int read_length;

MSinit(0);

//comment this line out if talking to a stream handler
printf("open returned:0x%x\n", MSopen(SP_CHANNEL, 9600));

while(1)
{

costate
{

wfd{cof_MSwrite(SP_CHANNEL, test_string, strlen(test_string));}
wfd{cof_MSwrite(SP_CHANNEL, test_string, strlen(test_string));}

}
costate
{

wfd{ read_length = cof_MSread(SP_CHANNEL, buffer, 99, 10); }
if(read_length > 0)
{

buffer[read_length] = 0; //null terminator
printf("Read:%s\n", buffer);

}
else if(read_length < 0)
{

printf("Got read error: %d\n", read_length);
}
printf("wrfree = %d\n", MSwrFree(SP_CHANNEL));

}
}

}

82 Dynamic C User’s Manual

7.3.3 Example of a Byte Stream Handler
The library, SP_STREAM.LIB, implements a byte stream over the slave port. If the master is a

Rabbit, the functions in MASTER_SERIAL.LIB can be used to access the stream as though it
came from a serial port on the slave.

 7.3.3.1 Slave Side of Stream Channel
To set up the function SPShandler() as the byte stream handler, do the following:

SPsetHandler (10, SPShandler, stream_ptr);

This sets up the stream to use channel 10 on the slave.

A sample program in Section 7.3.3.2 shows how to set up and initialize the circular buffers. An

internal data structure, SPStream, keeps track of the buffers and a pointer to it is passed to

SPsetHandler() and some of the auxilary functions that supports the byte stream handler.
This is also shown in the sample program.

 7.3.3.1.1 Functions
These are the auxiliary functions that support the stream handler function, SPShandler().

void cbuf_init(char *circularBuffer, int dataSize);

DESCRIPTION

This function initializes a circular buffer.

PARAMETER

circularBuffer The circular buffer to initialize.

dataSize Size available to data. The size must be 9 bytes more than the

number of bytes needed for data. This is for internal book-
keeping.

LIBRARY

Rs232.lib

cbuf_init
Dynamic C User’s Manual 83

int cof_SPSread(SPStream *stream, void *data, int length,
unsigned long tmout);

DESCRIPTION

Reads length bytes from the slave port input buffer or until tmout milliseconds tran-
spires between bytes after the first byte is read. It will yield to other tasks while waiting

for data. This function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Structure to read from slave port buffer.

length Number of bytes to read.

tmout Maximum wait in milliseconds for any byte from previous one.

RETURN VALUE

The number of bytes read from the buffer.

LIBRARY

SP_STREAM.LIB

int cof_SPSwrite(SPStream *stream, void *data, int length);

DESCRIPTION

Transmits length bytes to slave port output buffer.This function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Structure to write to slave port buffer.

length Number of bytes to write.

RETURN VALUE

The number of bytes successfully written to slave port.

LIBRARY

SP_STREAM.LIB

cof_SPSread

cof_SPSwrite
84 Dynamic C User’s Manual

void SPSinit(void);

DESCRIPTION

Initializes the circular buffers used by the stream handler.

LIBRARY

SP_STREAM.LIB

int SPSread(SPStream *stream, void *data, int length, unsigned
long tmout);

DESCRIPTION

This function reads length bytes from the slave port input buffer or until tmout mil-
liseconds transpires between bytes. If no data is available when this function is called, it
will return immediately. This function will call SPtick() if the slave port is in polling

mode. This function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure..

data Buffer to read received data into.

length Maximum number of bytes to read.

tmout Time to wait between received bytes before returning.

RETURN VALUE

Number of bytes read into the data buffer

LIBRARY

SP_STREAM.LIB

SPSinit

SPSread
Dynamic C User’s Manual 85

int SPSwrite(SPSream *stream, void *data, int length)

DESCRIPTION

This function transmits length bytes to slave port output buffer. If the slave port is in poll-
ing mode, this function will call SPtick() while waiting for the output buffer to empty.
This function is non-reentrant.

PARAMETERS

stream Pointer to the stream state structure.

data Bytes to write to stream.

length Size of write buffer.

RETURN VALUE

Number of bytes written into the data buffer

LIBRARY

SP_STREAM.LIB

int SPSwrFree();

DESCRIPTION

Returns number of free bytes in the stream write buffer.

RETURN VALUE

Space available in the stream write buffer.

LIBRARY

SP_STREAM.LIB

SPSwrite

SPSwrFree
86 Dynamic C User’s Manual

int SPSrdFree();

DESCRIPTION

Returns the number of free bytes in the stream read buffer.

RETURN VALUE

Space available in the stream read buffer.

LIBRARY

SP_STREAM.LIB

int SPSwrUsed();

DESCRIPTION

Returns the number of bytes currently in the stream write buffer.

RETURN VALUE

Number of bytes currently in the stream write buffer.

LIBRARY

SP_STREAM.LIB

int SPSrdUsed();

DESCRIPTION

Returns the number of bytes currently in the stream read buffer.

RETURN VALUE

Number of bytes currently in the stream read buffer.

LIBRARY

SP_STREAM.LIB

SPSrdFree

SPSwrUsed

SPSrdUsed
Dynamic C User’s Manual 87

 7.3.3.2 Byte Stream Sample Program

This program runs on a slave and implements a byte stream over the slave port.

/*
* Slave_Port.c

/*

#use "slave_port.lib"
#use "sp_stream.lib"

#define STREAM_BUFFER_SIZE 31

main()
{

char buffer[10];
int bytes_read;

SPStream stream;
// Circular buffers need 9 bytes for bookkeeping.
char stream_inbuf[STREAM_BUFFER_SIZE + 9];
char stream_outbuf[STREAM_BUFFER_SIZE + 9];
SPStream *stream_ptr;

//setup buffers
cbuf_init(stream_inbuf, STREAM_BUFFER_SIZE);
stream.inbuf = stream_inbuf;
cbuf_init(stream_outbuf, STREAM_BUFFER_SIZE);
stream.outbuf = stream_outbuf;

stream_ptr = &stream;
SPinit(1);
SPsetHandler(0x42, SPShandler, stream_ptr);

while(1)
{

bytes_read = SPSread(stream_ptr, buffer, 10, 10);
if(bytes_read)
{

SPSwrite(stream_ptr, buffer, bytes_read);
}

}
}

88 Dynamic C User’s Manual

Efficiency 8

There are a number of methods that can be used to reduce the size of a program, or to increase its

speed.

8.1 Nodebug Keyword
When the PC is connected to a target controller with Dynamic C running, the normal code and

debugging features are enabled. Dynamic C places an RST 28H instruction at the beginning of
each C statement to provide locations for breakpoints. This allows the programmer to single-step

through the program or to set breakpoints. (It is possible to single-step through assembly code at
any time.) During debugging there is additional overhead for entry and exit bookkeeping, and for
checking array bounds, stack corruption, and pointer stores. These “jumps” to the debugger con-
sume one byte of code space and also require execution time for each statement.

At some point, the Dynamic C program will be debugged and can run on the target controller
without the Dynamic C debugger. This saves on overhead when the program is executing. The

nodebug keyword is used in the function declaration to remove the extra debugging instructions

and checks.

nodebug int myfunc(int x, int z){
...

}

If programs are executing on the target controller with the debugging instructions present, but
without Dynamic C attached, the function that handles RST 28H instructions will be replaced by

a simple ret instruction. The target controller will work, but its performance will not be as good

as when the nodebug keyword is used.

If the nodebug option is used for the main function, the program will begin to execute as soon

as it finishes compiling (as long as the program is not compiling to a file).

Use the nodebug keyword with the #asm directive.

Use the directive #nodebug anywhere within the program to enable nodebug for all statements

following the directive. The #debug directive has the opposite effect.

8.2 Static Variables
Using static variables with nodebug functions will increase the program speed greatly. Stack

checking is disabled by default.

When there are more than 128 bytes of auto variables declared in a function, the first 128 bytes

are more easily accessed than later declarations because of the limited 8-bit range of IX and SP

register addressing. Performance is, therefore, slower for bytes above 128.

The shared and the protected keywords in data declarations cause slower fetches and stores,
except for one-byte items and some two-byte items.
Dynamic C User’s Manual 89

8.3 Function Entry and Exit
The following events occur when a program enters a function.

1. The function saves IX on the stack and makes IX the stack frame reference pointer (if
the program is in the useix mode).

2. The function creates stack space for auto variables or to save register variables.

3. The function sets up stack corruption checks if stack checking is enabled (on).

4. The program notifies Dynamic C of the entry to the function so that single-stepping

modes can be resolved (if in debug mode).
Items three and four consume significant execution time and are eliminated when stack checking

is disabled or if the debug mode is off.
90 Dynamic C User’s Manual

Run-Time Error Processing 9

Compiled code generated by Dynamic C calls an error-handling routine for abnormal situations.
The error handler supplied with Dynamic C prints internally defined error messages to a Windows

message box when runtime error messages are detected during a debugging session. When soft-
ware runs stand-alone (disconnected from Dynamic C), such an error message will cause a watch-
dog timeout and reset.

The table below lists the ranges of Dynamic C error codes.

Table 6. Ranges of Dynamic C Error Codes

Code Meaning

0–99 User, nonfatal.

100–127 System, nonfatal.

128–227 User, fatal, no return possible.

228–255 System, fatal, no return possible.
Dynamic C User’s Manual 91

This table lists the fatal errors generated by Dynamic C.

Table 7. Dynamic C Fatal Errors

Code Meaning

228 Pointer store out of bounds

229 Array index out of bounds

230 Stack corrupted

231 Stack overflow

232 Aux stack overflow

233 not used

234 Domain error (for example, acos(2))

235 Range error (for example, tan(pi/2))

236 Floating point overflow

237 Long divide by zero

238 Long modulus, modulus zero

239 not used

240 Integer divide by zero

241 Unexpected interrupt

242 not used

243 Codata structure corrupted

244 Virtual watchdog timeout

245 XMEM allocation failed (xalloc call)

246 Stack allocation failed

247 Stack deallocation failed

248 not used

249 Xmem allocation initialization failed

250 No virtual watchdog timers available

251 No valid MAC address for board

252 Invalid cofunction instance

253 not used

254 not used

255 not used
92 Dynamic C User’s Manual

9.1 User-defined error handlers

It is possible that a user may want to develop their own runtime error handler. They may want to

add their own runtime errors that would require special treatment, or simply add code that logs the

runtime error data to memory.

Here is a particular example: the floating-point math libraries included with Dynamic C are writ-
ten to allow for execution to continue after a domain or range error, but the default Dynamic C

action is to halt with a runtime error if that state occurs. If continued execution was desired (the

function in question would return a value of INF or whatever value is appropriate), then a simple

error handler could be written by a user to pass execution back to the program when a domain or
range error occurs, and pass any other runtime errors to Dynamic C.

A runtime error occurs by a call to exception(). The runtime error code is passed to the func-
tion; exception() pushes various parameters on the stack, and the installed error handler is

called. The default error handler places information on the stack, disables interrupts, and enters an

endless loop by calling the _xexit function in the BIOS. Dynamic C notices this and halts exe-
cution, reporting a runtime error to the user.

To tell the BIOS to use a custom error handler, the following function should be called:

void defineErrorHandler(void *errfcn)

This function sets the BIOS function pointer for runtime errors to the one passed to it. The excep-
tion function provides data on the stack as described in Figure 8..

If the runtime error is to be passed to Dynamic C (i.e. it should halt or reset the system), then reg-
isters should be loaded appropriately and the _xexit function should be called. Dynamic C

expects the following values to be loaded: H should contain the XPC when exception() was

called, L should contain the runtime error code, and HL’ should contain the address where

exception() was called.

Table 8. Stack setup for runtime errors

Address Data at address

SP+0 Return address for error handler

SP+2 Error code

SP+4 Additional data (user-defined)

SP+6
XPC when exception() called

(upper byte)

SP+8 Address where exception() called
Dynamic C User’s Manual 93

94 Dynamic C User’s Manual

Memory Management 10

Processor instructions can specify 16-bit addresses, giving a logical address space of 64K (65,536

bytes). Dynamic C supports a 1M physical address space (20-bit addresses).

An on-chip memory management unit (MMU) translates 16-bit addresses to 20-bit memory

addresses. Four MMU registers (SEGSIZE, STACKSEG, DATASEG and XPC) divide and main-
tain the logical sections and map each section onto physical memory.

10.1 Memory Map
A typical Dynamic C memory mapping of logical and physical address space is shown in the fig-
ure below.

Figure 3. Dynamic C Memory Mapping

0000

6000

C600
D000

E000

FFFF

D000

CF00

CE00

CA00

C600

00000

20000

80000

A0000

Watch Code

Watch Data

External Interrupt
Vectors

Xmem Code

Stack

Root Data

Root Code

RAM

Xmem Code

Root CodeBios

Logical Address Space Physical Address Space

Internal Interrupt
Vectors
Dynamic C User’s Manual 95

This figure illustrates how the logical address space is divided and where code resides in physical
memory. Both the Static RAM and the Flash Memory are 128K in the diagram. Physical memory

starts at address 0x00000 and Flash Memory is usually mapped to the same address. SRAM typi-
cally begins at address 0x80000.

If BIOS code runs from Flash Memory, the BIOS code starts in the root code section at address

0x00000 and fills upward. The rest of the root code will continue to fill upward immediately fol-
lowing the BIOS code. If the BIOS code runs from SRAM, the root code section along with root
data and stack sections will be place at a starting address 0x80000.

10.1.1 Memory Mapping Control
The advanced user of Dynamic C may control how Dynamic C allocates and maps memory.

For further details on memory mapping, refer to the Rabbit Microprocessor

manual.

10.2 Extended Memory Functions
While any C function can call any other C function, no matter where it is located in memory, call-
ing a function located in extended memory is less efficient than calling a function in root memory.

A program can use many pages of extended memory. Under normal execution, code in extended

memory maps to the logical address region E000H to FFFFH.

Extended memory addresses are 20-bit physical addresses (the lower 20 bits of a long integer).
Pointers, on the other hand, are 16-bit machine addresses. They are not interchangeable. How-
ever, there are library functions to convert address formats.

To access extended memory data, use function calls to exchange data between extended memory

and root memory. Use the Dynamic C functions, xmem2root, root2xmem and xmem2xmem to

move blocks of data between logical memory and physical memory.

10.2.1 Code Placement in Memory
Using the keywords xmem and root, there is some flexibility with regard to code placement in

memory.

Pure Assembly Routines

Pure assembly functions (not inline assembly code) must reside in root memory. The keyword

xmem does not apply to these pure assembly functions.

C Functions

C functions can be placed in root memory or extended memory. While access to variables in C

statements is not affected by the placement of the function, Dynamic C will automatically place C

functions in extended memory as root memory fills. Short, frequently used functions may be

declared with the keyword root to force Dynamic C to load them in root memory.

Inline Assembly in C Functions

Inline assembly code may be written in any C function, regardless of whether it is compiled to

extended memory or root memory.

�

96 Dynamic C User’s Manual

However, because the stack frame of an extended memory function introduces four more bytes

between the last pushed argument and the return address, the actual offset of arguments from the

stack pointer depends on whether the code is compiled to extended memory or not. Therefore, it
is important to use the symbolic names of stack-based variables instead of numeric offsets to

access the variables. For example, if j is a stack variable, @sp+j is the actual offset of the vari-
able from the stack pointer. Alternatively, if IX is the frame reference pointer, ix+j specifies the

address of the stack-based variable.

Dynamic C issues a warning when it finds assembly code embedded in an extended memory func-
tion to discourage inline assembly segments that do not use symbolic offsets for stack-based vari-
ables.

All static variables, even those local to extended memory functions, are placed in root memory.
Keep this in mind if the functions have many variables or large arrays. Root memory can fill up

quickly.
Dynamic C User’s Manual 97

98 Dynamic C User’s Manual

The Flash File System 11

Starting with Dynamic C 7.0, a simple file system has been added that should meet most people’s

needs. It can be used with a second Flash Memory or in SRAM (recommended for debugging

purposes only).

The Dynamic C file system supports a total of 127 files. By default, blocks are allocated in 4096

byte chunks. A file, regardless of size, is comprised of at least one block. Files larger than the

block size will be allocated multiple blocks which are not necessarily contiguous in memory.

The low-level Flash Memory access functions should not be used in the same area of the flash

where the flash file system exists.

11.1 General Usage
Some care must be taken when using the file system. Since a Flash Memory is a finite resource,
quickly writing data to the flash could result in using up the its write cycles. For a 256KB flash,
we have 64 blocks. Each write to the flash uses up a single write. If you are using a flash with a

maximum recommendation of 10,000 write cycles, we are limited in writing 640,000 times to the

file system and 6,400,000 times for a 100,000 write cycle flash.

If you are performing one write to the flash per second, you will quickly use up the recommended

lifetime of the flash within a week. You can increase the useful lifetime of the flash by buffering

data before you write it to the flash. If you accumulate 1000 single byte writes into one, you can

expand the life of the flash by an average of 750 times.

The main use of a flash file system should be for infrequently changing data or data rates that have

writes on the order of tens of minutes instead of seconds.

Wear Leveling

The current code has a rudimentary form of wear leveling. When you write into an existing block

it selects a free block with the least number of writes. The file system routines copy the old block

into the new block adding in the users new data. This has the effect of evening the wear if there is

a reasonable turnover in the flash files.

Low-level implementation

For information on the low-level implementation of the flash file system, refer to the beginning of
the library file FILESYSTEM.LIB.
Dynamic C User’s Manual 99

11.2 Application Requirements
To use the file system, a macro that determines which low-level driver is loaded must be defined

in the application program.

#define FS_FLASH // use 2nd flash for file system
#define FS_RAM // use SRAM (supported for debug purposes)

The file system library must be compiled with the application.

#use “FILESYSTEM.LIB”

11.3 Functions
These functions are the file system API. For a complete description see “Function Reference” on

page 153.

The functions fs_init and fs_format are similar, in that they both start the file system. Use

fs_format to erase all blocks in the file system. This function’s third parameter, wearlevel,
should be 1 for a new Flash Memory; otherwise it should be 0 to use the current wear leveling.

Use fs_init to preserve blocks that are in use and to do an integrity check of them. In case of
loss of power, fs_init will delete any blocks that may be partially written and will substitute

Command Description

fs_init Initialize the internal data structures for the file system.

fs_format
Initialize the Flash Memory and the internal data

structures.

fs_reserve_blocks Reserve blocks for privileged files.

fsck Verify data integrity of files.

fcreate Create a file and open it for writing.

fcreate_unused Create a file with an unused file number.

fopen_rd Open a file for reading.

fopen_wr Open a file for writing (also opens it for reading.)

fshift Removes specified number of bytes from file.

fwrite Write to the end of a file.

fread Read from the current file pointer.

fseek Move the read pointer.

ftell Return the current offset of the file pointer.

fclose Close a file.

fdelete Delete a file.

Table 1. Flash File System API
100 Dynamic C User’s Manual

the last known good block for that file. This means that any changes to the file that occurred

between the last write and the power outage would be lost.

Using File Names

To associate a descriptive name with a file, there are several functions in ZSERVER.LIB that will
be useful for this purpose. The file must already exist in the flash file system before using the aux-
iliary functions listed in the following table. These functions were originally intended for use with

an HTTP or FTP server, which is why some of them take a parameter called servermask. To

use these functions for file naming purposes only, this parameter should be SERVER_USER.

For a detailed description of these functions please refer to Dynamic C’s TCP/IP User’s Manual,
or use <CTRL-H> in Dynamic C to use the Library Lookup feature.

Command Description

sspec_addfsfile
Associate a name with the flash file system file number.
The return value is an index into an array of structures

associated with the named files.

sspec_readfile
Read a file represented by the return value of
sspec_addfsfile into a buffer.

sspec_getlength Get the length (number of bytes) of the file.

sspec_getfileloc
Get the file system file number (1-127). Cast return

value to FILENUMBER.

sspec_findname
Find the index (into the array of structures associated

with named files) of the file that has the specified

name.

sspec_getfiletype
Get file type. For flash file system files this value will
be SSPEC_FSFILE.

sspec_findnextfile
Find the next named file in the flash file system, at or
following the specified index, and return the index of
the file.

sspec_remove Remove the file name association.

sspec_save
Saves to the flash file system the array of structures that
reference the named files in the flash file system.

sspec_restore
Restores the array of structures that reference the

named files in the flash file system.

Table 2. Flash File System Auxiliary Functions
Dynamic C User’s Manual 101

11.4 Skeleton Program
The following program uses many of the file system commands. It writes several strings into a

file, reads the file back and prints the contents to the STDIO window. The macro RESERVE

should be 0 when the file system is in SRAM. When the file system is in Flash Memory you can

adjust where it starts by defining RESERVE to be 0 or a multiple of the block size.

After running this program at least once, comment out “#define FORMAT”. You will see that it
runs in a similar fashion, but now the file is appended using fopen_wr instead of being erased

by fs_format and then recreated with fcreate.

For a more robust program, more error checking should be included.

#define FS_FLASH
#use "FILESYSTEM.LIB"

#define FORMAT

#define RESERVE 0L
#define BLOCKS 64
#define TESTFILE 1

main()
{

File file;
static char buffer[256];

#ifdef FORMAT
fs_format(RESERVE,BLOCKS,1);
if(fcreate(&file,TESTFILE)) {

printf("error creating TESTFILE\n");
return -1;

}
#else

fs_init(RESERVE,BLOCKS);
if(fopen_wr(&file,TESTFILE) {

printf("error opening TESTFILE\n");
return -1;

}
#endif

fwrite(&file,"hello",6);
fwrite(&file,"12345",6);
fwrite(&file,"67890",6);

while(fread(&file,buffer,6)>0) {
printf("%s\n",buffer);

}
fclose(&file);

}

102 Dynamic C User’s Manual

Using Assembly Language 12

Dynamic C permits programing in assembly language. Assembly-language statements may either
be embedded in a C function or entire functions may be written in assembly language. C state-
ments may also be embedded in assembly code and refer to C-language variables in the assembly

code.

For further details on specific assembly instructions, refer to the Rabbit 2000

Microprocessor User’s Manual.

12.1 Program Flow
Use the #asm and #endasm directives to place assembly code in Dynamic C programs. For
example, the following function will add two 64-bit numbers together.

The same program could be written in C, but it would be many times slower because C does not
provide an add-with-carry operation (adc).

void eightadd(char *ch1, char *ch2){
#asm

ld hl,(sp+ch2) ; get source pointer
ex de,hl ; save in de
ld hl,(sp+ch1) ; get destination pointer
ld b,8 ; number of bytes
xor a ; clear carry
loop:
ld a,(de) ; ch2 source byte
adc a,(hl) ; add ch1 byte
ld (hl),a ; store result to ch1

address
inc hl ; increment ch1 pointer
inc de ; increment ch2 pointer
djnz loop ; do 8 bytes

; ch1 now points to 64 bit
result
#endasm
}

�

Dynamic C User’s Manual 103

12.1.1 Embedded C in Assembly
A C statement may be placed within assembly code by placing a C in column 1. For example, ini-
tialize global variables.

The keyword nodebug can be placed on the same line as #asm. The main reason for the node-
bug option is to prevent Dynamic C from running out of debugger table memory, and the option

saves space and unnecessary calls to the debugger kernel. If nodebug is specified for an entire

function, then all the blocks of assembly code within the function are assembled in nodebug

mode. There is no need to place the nodebug directive on each block.

A program may be debugged at the assembly language level by opening the assembly window.
Single-stepping and breakpoints are supported in the assembly window. When the assembly win-
dow is open, single-stepping occurs instruction by instruction rather than statement by statement.

The assembly window shows the memory address on the far left, followed by the code bytes for
the instruction at the address, followed by the mnemonics for the instruction. The last column

shows the number of cycles for the instruction, assuming no wait states. The total cycle time for a

block of instructions will be shown at the lowest row in the block in the cycle-time column, if that
block is selected and highlighted with the mouse. The total assumes one execution per instruction,
so the user must take looping and branching into consideration when evaluating execution times.

12.2 Comments
C-style commenting is allowed in embedded assembly code. The assembler will ignore comments

beginning with

; — text from the semicolon to the end of line is ignored.
// — text from the double forward slashes to the end of line is ignored.
/* ... */ — text between slash-asterisk and asterisk-slash is ignored.

12.3 Labels
A label is a name followed by one or two colons. A label followed by a single colon is local,
whereas one followed by two colons is global. A local label is not visible to the code out of the

current embedded assembly segment (i.e., code before the #asm or after the #endasm directive).

Unless it is followed immediately by the assembly language keyword equ, the label identifies the

current code segment address. If the label is followed by equ, the label “equates” to the value of
the expression after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code, Z-World recommends

that preprocessor macros be used instead of equ whenever possible.

#asm nodebug
InitValues::

ld hl,0xa0;
c start_time = 0;
c counter = 256;

ret
#endasm
104 Dynamic C User’s Manual

12.4 Defining Constants
Constants may be created and defined in assembly code. The assembly language keyword db

(“define byte”) places bytes at the current code segment address. The keyword db should be fol-
lowed immediately by numerical values and strings separated by commas as shown here.

Example

Each of the following defines a string "ABC" in code space.

The numerical values and characters in strings are used to initialize sequential byte locations.

The assembly language keyword dw defines 16-bit words, least significant byte first. The keyword

dw should be followed immediately by numerical values, as shown in the following example.

Example

This example defines three constants. The first two constants are literals, and the third constant is

the address of variable xyz.

The numerical values initialize sequential word locations, starting at the current code address.

12.5 Expressions
The assembler parses most C language constant expressions. A C language constant expression is one

whose value is known at compile time. All operators except the following are supported.

db 'A', 'B', 'C'
db "ABC"
db 0x41, 0x42, 0x43

dw 0x0123, 0xFFFF, xyz

?: conditional

[] array index

. dot

-> points to

* dereference

sizeof()
Dynamic C User’s Manual 105

12.6 Multiline Macros
The Dynamic C preprocessor has a special feature to allow multiline macros in assembly code.
The preprocessor expands macros before the assembler parses any text. Putting a $\ at the end of
a line inserts a new line in the text. This only works in assembly code. Labels and comments are

not allowed in multiline macros.

12.7 Special Symbols
This table lists special symbols that can be used in an assembly language expression.

12.8 C Variables
C variable names may be used in assembly language. What a variable name represents (the value

associated with the name) depends on the variable. For a global, static local, or register local vari-
able, the name represents the address of the variable in root memory. For an auto variable or for-
mal argument, the variable name represents its own offset from the frame reference point.

#define SAVEFLAG $\
ld a,b $\
push af $\
pop bc

#asm
...

ld b,0x32
SAVEFLAG

...
#endasm

Table 3. Special Assembly-Language Symbols

Symbol Description

@SP
Indicates the amount of stack space (in bytes) used for
stack-based variables. This does not include arguments.

@RETVAL
Evaluates the offset from the frame reference point to

the stack space reserved for the struct function

returns.

@LENGTH
Determines the next reference address of a variable

plus it size.
106 Dynamic C User’s Manual

The name of a structure element represents the offset of the element from the beginning of the

structure. In the following structure, for example,

the embedded assembly expression s+x evaluates to 0, s+y evaluates to 2, and s+z evaluates to

4, regardless of where structure s may be.

In nested structures, offsets can be composite, as shown here.

12.9 Stand-alone Assembly Code
A stand-alone assembly function is one that is defined outside the context of a C language func-
tion. It can have no auto variables and no formal parameters. Dynamic C always places a stand-
alone assembly function in root memory.

When a program calls a function from C, it puts the first argument into a primary register. If the

first argument has one or two bytes (int, unsigned int, char, pointer), the primary

register is HL (with register H containing the most significant byte). If the first argument has four
bytes (long, unsigned long, float), the primary register is BCDE (with register B con-
taining the most significant byte). Assembly-language code can use the first argument very effi-
ciently. Only the first argument is put into the primary register, while all arguments—including the

first, pushed last—are pushed on the stack.

C function values return in the primary register, if they have four or fewer bytes, either in HL or
BCDE.

Assembly language allows assumptions to be made about arguments passed on the stack, and

auto variables can be defined by reserving locations on the stack for them. However, the offsets

of such implicit arguments and variables must be kept track of. If a function expects arguments or
needs to use stack-based variables, Z-World recommends using the embedded assembly tech-
niques described in the next section.

struct s {
int x;
int y;
int z;

};

struct s {
int x; // s+x = 0
struct a{ // s+a = 2

int b; // a+b = 0 s+a+b = 2
int c; // a+c = 2 s+a+c = 4

}
};
Dynamic C User’s Manual 107

12.10 Embedded Assembly Code
When embedded in a C function, assembly code can access arguments and local variables (either
auto or static) by name. Furthermore, the assembly code does not need to manipulate the

stack because the functions prolog and epilog already do so.

The concept and structure of a stack frame must be understood before correct embedded assembly

code can be written. A stack frame is a run-time structure on the stack that provides the storage for
all auto variables, function arguments and the return address. The following figure shows the

general appearance of a stack frame.

Figure 4. General Appearance of Assembly Code Stack Frame

The return address is always necessary. The presence of auto variables and register variables

depends on the definition of the function. The presence of arguments and structure return space

depends on the function call. (The stack pointer may actually point lower than the indicated mark

temporarily because of temporary information pushed on the stack.)

The shaded area in the stack frame is the stack storage allocated for auto and register vari-
ables. The assembler symbol @SP represents the size of this area. The meaning of this symbol will
become apparent later.

The following sections describe how to access local variables in various types of functions.

���������	
���

��
��������������

��������	
���

������	���
�������

�����������������
��������������������

��������

�����������

���	��	������	��
�����

�������	���
�������

������������		�	

	
������
�	��
��

��

�
���������		�	

�
�
�

��

���	����������
�����������

������������������
��
�

�
�
�

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
�
����
108 Dynamic C User’s Manual

12.10.1 Not Using the IX Register, Function in Root Memory
 Assume this simple function has been called.

The following figure shows how the stack frame will appear after the function call.

Figure 5. Assembly Language Stack Frame
No IX, Function in Root Memory

The symbols for gi, ch, i, lg, x, y, and z will have the following values when used in the

assembly code

.

There is a common method to access the stack-based variables lg, i, ch, and x. Consider, for
example, the case of loading variable x into HL.

int gi; // this is a global variable
root nouseix
void func(char ch, int i, long lg){

auto int x;
static int y;
register int z;

#asm
some assembly code referencing gi, ch, i, lg, x, y,

and z
#endasm
}

lg offset = +6 gi
16-bit address (in root
memory)

i offset = +4 x offset = -2

ch offset = +2 y, z
16-bit address (in root
memory)

������
��	���������� ��

���	�������������� ������������������
��
�

�����

������

	����

��

�

 �

 !

 �

����!�
Dynamic C User’s Manual 109

The following code (using the symbol @SP) is one way to do it.

For static variables (gi, y, and z), the access is much simpler because the symbol evaluates to the

address directly. The following code shows, for example, how to load variable y into HL.

12.10.2 Using the IX Register, Function in Root Memory
Access to stack-based local variables is fairly inefficient. The efficiency improves if there is a reg-
ister for a frame pointer. Dynamic C can use the register IX as a frame pointer. The function in the

previous section would then become the following.

The keyword useix is the only change from the previous sample function. The following figure

shows the stack frame for this function. IX points to the frame reference point.

Figure 6. Assembly Language Stack Frame

Using IX, Function in Root Memory

ld hl,@SP+x ; hl ← the offset from SP to the variable

add hl,sp ; hl ← the address of the variable
ld a,(hl) ; a ← the LSB of x
inc hl ; hl now points to the MSB of x
ld h,(hl) ; h ← the MSB of x
ld lg,a ; lg ← the LSB of x
;; at this point, hl has the value of x

ld hl,(y) ; load hl with contents of y

int gi; // this is a global variable
root useix
void func(char ch, int i, long lg){

auto int x;
static int y;
register int z;

#asm
some assembly code referencing gi, ch, i, lg, x, y, and z

#endasm
}

������
��	���������� ��

���	�������������� ������������������
��
�

�����

������

	����

��

�

 �

 !

 �

����!�
110 Dynamic C User’s Manual

The arguments will have slightly different offsets because of the additional two bytes for the saved

IX register value.

Now, access to stack variables is easier. Consider, for example, how to load ch into register A.

The IX+offset load instruction takes 14 cycles and three bytes. If the program needs to load a four-
byte variable such as lg, the IX+offset instructions are as follows.

This takes a total of 56 cycles and 12 bytes. Even if IX is the frame reference pointer, the @SP

symbol may still be used.

This takes 52 cycles and 11 bytes. The two approaches are competitive. Nonetheless, the use of
IX+offset is always beneficial when used to access single- or double-byte variables.

The offset from IX is a signed 8-bit integer. To use IX+offset, the variable must be within +127 or
–128 bytes of the frame reference point. The @SP method is the only method for variables out of
this range, even if IX is used as a frame reference pointer.

lg offset = +8

i offset = +6

ch offset = +4

ld a,(ix+ch) ; a ← ch

ld e,(ix+lg) ; load LSB of lg
ld d,(ix+lg+1) ;
ld c,(ix+lg+2) ;
ld b,(ix+lg+3) ; load MSB of lg

ld hl,@SP+lg ; hl ← the offset from SP to the variable

add hl,sp ; hl ← the address of the variable
ld hl,(sp+@SP+lg); hl ← the address of the variable
ld e,(hl) ; e ← the LSB of lg
inc hl ;
ld d,(hl) ;
inc hl ;
ld c,(hl) ;
inc hl ;
ld b,(hl) ; b ← the MSB of lg

; A faster way to do it with the Rabbit if
; the offset of lg < 127

ld hl,(sp+@SP+lg+2); load the LSW of lg
ld b,h
ld c,l
ld hl,(sp+@SP+lg) ; load the LSW of lg
ex de,hl
Dynamic C User’s Manual 111

12.10.3 Not Using the IX Register, Function in Extended Memory
Functions that are (possibly) compiled to extended memory are not much different from functions

compiled to root memory. Examine this extended memory function.

If the xmem keyword is present, Dynamic C compiles the function to extended memory. Otherwise,
Dynamic C determines where to compile the function. Note that funcitons compiled to extended memory

have a 3-byte return address instead of a 2-byte return address. In this example, the IX register is not used.
Figure 7 shows the stack frame of the function.

Figure 7. Assembly Language Stack Frame
No IX, Function in Extended Memory

Because of the additional 4 bytes for the return address, the arguments will have slightly different
offsets.

int gi; // this is a global variable
xmem
void func(char ch, int i, long lg){

auto int x;
static int y;
register int z;

#asm
some assembly code referencing gi, ch, i, lg, x, y, and z

#endasm
}

lg offset = +10

i offset = +8

ch offset = +6

���	������������"�

������
��	����������
��

������������������
��
�
�����

������

	����

��

�

 #

 $

 %%

����!�

 &

 �

������������

�����������
112 Dynamic C User’s Manual

Because the compiler maintains the offsets automatically, there is no need to worry about the

change of offsets. The @SP approach discussed previously as a means of accessing stack-based

variables works whether a function is compiled to extended memory or not, as long as the C-lan-
guage names of local variables and arguments are used.

A function compiled to extended memory can use IX as a frame reference pointer as well. This

adds an additional two bytes to argument offsets because of the saved IX value. Again, the

IX+offset approach discussed previously.can be used because the compiler maintains the offsets

automatically.

12.11 C Functions Calling Assembly Code
Dynamic C does not assume that registers are preserved in function calls. In other words, the

function being called need not save and restore registers. If a C-callable assembly function is

expected to return a result (of primitive type), the function must pass the result in the “primary

register.” If the result is an int, unsigned int, char, or a pointer, return the result in HL

(register H contains the most significant byte). If the result is a long, unsigned long, or
float, return the result in BCDE (register B contains the most significant byte). A C function

containing embedded assembly code may, of course, use a C return statement to return a value.
A stand-alone assembly routine, however, must load the primary register with the return value

before the ret instruction.

In contrast, if a function returns a structure (of any size), the calling function reserves space on the

stack for the return value before pushing the last argument (if any). A C function containing

embedded assembly code may use a C return statement to return a value. A stand-alone assem-
bly routine, however, must store the return value in the structure return space on the stack before

returning.

An inline assembly code may access the stack area reserved for structure return values by the sym-
bol @RETVAL, which is an offset from the frame reference point.
Dynamic C User’s Manual 113

The following code shows how to clear field f1 of a structure (as a returned value) of type

struct s.

It is crucial that @SP be added to @RETVAL because @RETVAL is an offset from the frame refer-
ence point, not from the current SP.

12.12 Assembly Code Calling C Functions
A program may call a C function from assembly code. To make this happen, set up part of the

stack frame prior to the call and “unwind” the stack after the call. The procedure to set up the

stack frame is described here.

1. Save all registers that the calling function wants to preserve. A called C function may

change the value of any register. (Pushing registers values on the stack is a good way to

save their values.)

2. If the function return is a struct, reserve space on the stack for the returned structure.
Most functions do not return structures.

3. Compute and push the last argument, if any.

4. Compute and push the second to last argument, if any.

5. Continue to push arguments, if there are more.

6. Compute and push the first argument, if any. Also load the first argument into the pri-
mary register (HL for int, unsigned int, char, and pointers, or BCDE for
long, unsigned long, and float) if it is of a primitive type.

7. Issue the call instruction.

typedef struct ss {
int f0; // first field
char f1; // second field

} xyz;
xyz my_struct;

...
my_struct = func();

...
xyz func(){
#asm

...
xor a ; clear register A.
ld hl,@SP+@RETVAL+ss+f1 ; hl ← the offset from

; SP to the f1 field of
; the returned structure.

add hl,sp ; hl now points to f1.
ld (hl),a ; load a (now 0) to f1.
...

#endasm
}

114 Dynamic C User’s Manual

The caller must unwind the stack after the function returns.

1. Recover the stack storage allocated to arguments. With no more than 6 bytes of argu-
ments, the program may pop data (2 bytes at time) from the stack. Otherwise, it is more

efficient to compute a new SP instead. The following code demonstrates how to

unwind arguments totaling 36 bytes of stack storage.

2. If the function returns a struct, unload the returned structure.

3. Restore registers previously saved. Pop them off if they were stored on the stack.

4. If the function return was not a struct, obtain the returned value from HL or BCDE.

12.13 Interrupt Routines in Assembly
Dynamic C allows interrupt service routines to be written in C (declared with the keyword

interrupt). However, the efficiency of one interrupt routine affects the latency of other inter-
rupt routines. Assembly routines can be more efficient than the equivalent C functions, and there-
fore more suitable for interrupt service routines.

Either stand-alone assembly code or embedded assembly code may be used for interrupt routines.
The benefit of embedding assembly code in a C-language interrupt routine is that there is no need

to worry about saving and restoring registers or reenabling interrupts. The drawback is that the C

interrupt function does save all registers, which takes some amount of time. A stand-alone assem-
bly routine needs to save and restore only the registers it uses.

In general, an interrupt routine performs the following actions.

1. Turn off interrupts upon entry.

2. Save all registers (that will be used) on the stack. Interrupt routines written in C save

all registers on the stack automatically. Stand-alone assembly routines must push the

registers explicitly.

3. Determine the cause of the interrupt. Some devices map multiple causes to the same

interrupt vector. An interrupt handler must determine what actually caused the inter-
rupt.

4. Remove the cause of the interrupt.

5. If an interrupt has more than one possible cause, check for all the causes and remove all
the causes at the same time.

6. When finished, restore registers saved on the stack. Naturally, this code must match the

code that saved the registers. Interrupt routines written in C perform this automatically.
Stand-alone assembly routines must pop the registers explicitly.

; Note that HL is changed by this code!
; Use ex de,hl to save HL if HL has the return value
;;;ex de,hl ; save HL (if required)

ld hl,36 ; want to pop 36 bytes
add hl,sp ; compute new SP value
ld sp,hl ; put value back to SP

;;;ex de,hl ; restore HL (if required)
Dynamic C User’s Manual 115

7. Reenable interrupts. Interrupts are disabled for the entire duration of the interrupt rou-
tine (unless they are enabled explicitly). The interrupt handler must reenable the inter-
rupt so that other interrupts can get the attention of the CPU. Interrupt routines written

in C reenable interrupts automatically when the function returns. Stand-alone assembly

interrupt routines, however, must reenable the interrupt (ipres) explicitly.
The interrupts should be reenabled immediately before the return instructions ret or
reti. If the interrupts are enabled earlier, the system can stack up the interrupts. This

may or may not be acceptable because there is the potential to overflow the stack.

8. Return. There are three types of interrupt returns: ret, reti, and retn.

12.14 Common Problems
Unbalanced stack. Ensure the stack is “balanced” when a routine returns. In other words, the SP

must be same on exit as it was on entry. From the caller’s point of view, the SP register must be

identical before and after the call instruction.

Using the @SP approach after pushing temporary information on the stack. The @SP

approach for inline assembly code assumes that SP points to the low boundary of the stack frame.
This might not be the case if the routine pushes temporary information onto the stack. The space

taken by temporary information on the stack must be compensated for.

The following code illustrates the concept.

Registers not preserved. In Dynamic C, the caller is responsible for saving and restoring all reg-
isters. An assembly routine that calls a C function must assume that all registers will be changed.

Unpreserved registers in interrupt routines cause unpredictable and unrepeatable problems. In

contrast to normal functions, interrupt functions are responsible for saving and restoring all regis-

ters themselves.

;SP still points to the low boundary of the call frame
push hl ; save HL

;SP now two bytes below the stack frame!
...

ld hl,@SP+x+2 ; Add 2 to compensate for altered SP

add hl,sp ; compute as normal
ld a,(hl) ; get the content

...
pop hl ; restore HL

;SP again points to the low boundary of the call frame
116 Dynamic C User’s Manual

Keywords 13

A keyword is a reserved word in C that represents a basic C construct. The word while repre-
sents the beginning of a while loop. It cannot be used for any other purpose. There are many

keywords, and they are summarized in the following pages.

Jumps out of a costatement.

for(;;){
costate {

...
if(condition) abort;

}
...

}

The costatement is always active. (Unnamed costatements are always on.)

Allows the compiler to determine in which part of memory a function will be placed.

anymem int func(){
...

}
#memmap anymem
#asm anymem

...
#endasm

A functions’s local variable is located on the system stack and exists as long as the function call
does.

int func(){
auto float x;
...

}

abort

always_on

anymem

auto
Dynamic C User’s Manual 117

Jumps out of a loop, if, or case statement.

while(expression){
...
if(condition) break;

}
switch(expression){

...
case 3:

...
break;

...

}

Identifies the next “case” in a switch statement.

switch(expression){
case const:

...
case const:

...
case const:

...

...
}

Declares a variable, or array, as a type character. This type is also commonly used to declare 8-
bit integers and “Boolean” data.

char c, x, *string = "hello";
int i;
...
c = (char)i;

break

case

char
118 Dynamic C User’s Manual

This keyword announces that a variable will not have its value changed and that static and ini-
tialized global variable will be placed in flash memory. The keyword const is a type qualifier
and may be used with any static or global type specifier (char, int, struct, etc.). The const

qualifier appears before the type unless it is modifying a pointer. When modifying a pointer, the

const keyword appears after the ‘*’.

In each of the following examples, if const was missing the compiler would generate a trivial
warning. Warnings for const can be turned off by changing the compiler options to report
serious warnings only. Note that const is not currently permitted with return types, automatic

locals or parameters and does not change the default storage class for cofunctions.

Example 1:

Example 2:

Example 3:

Example 4:

Example 5:

const

// ptr_to_x is a constant pointer to an integer
int x;
int * const cptr_to_x = &x;

// cptr_to_i is a constant pointer to a constant integer

const int i = 3;
const int * const cptr_to_i = &i;

// ax is a constant 2 dimensional integer array

const int ax[2][2] = {{2,3}, {1,2}};

struct rec {
int a;
char b[10];

};

// zed is a constant struct

const struct rec zed = {5, “abc”};

// cptr is a constant pointer to an integer

typedef int * ptr_to_int;
const ptr_to_int cptr = &i;

// this declaration is equivalent to the previous one

int * const cptr = &i;
Dynamic C User’s Manual 119

Skip to the next iteration of a loop.

while(expression){
if(nothing to do) continue;
...

}

Indicates the beginning of a costatement.

costate [name [state]] {
...

}

Name can be absent. If name is present, state can be always_on or init_on. If state

is absent, the costatement is initially off.

Indicates a function is to be compiled in debug mode.

Library functions compiled in debug mode can be single-stepped into, and breakpoints can be

set in them.

debug int func(){
...

}
#asm debug

...
#endasm

continue

costate

debug
120 Dynamic C User’s Manual

Identifies the default “case” in a switch statement. The default case, which is optional, exe-
cutes only when the switch expression does not match any other case.

switch(expression){
case const:

...
case const:

...
default:

...
}

Indicates the beginning of a do loop. A do loops tests at the end and executes at least once.

do
...

while(expression);

The statement must have a semicolon at the end.

Indicates a false branch of an if statement

if(expression)
statement // executes when true

else
statement // executes when false

Indicates that a variable is defined in the BIOS, later in a library file, or in another library file.
Its main use is in module headers.

/*** BeginHeader ..., var */
extern int var;

/*** EndHeader */
int var;
...

default

do

else

extern
Dynamic C User’s Manual 121

firsttime in front of a function body declares the function to have an implicit *CoData
parameter as the first parameter. This parameter should not be specified in the call or the proto-
type, but only in the function body parameter list. The compiler generates the code to automati-
cally pass the pointer to the CoData structure associated with the costatement from which the

call is made. A firstime function can only be called from inside of a costatement, cofunc-
tion, or slice statement. The DelayTick function from COSTATE.LIB below is an example

of a firsttime function.

firsttime nodebug int DelayTicks(CoData *pfb, unsigned int
ticks){

if(ticks==0) return 1;
if(pfb->firsttime){

fb->firsttime=0;
/* save current ticker */
fb->content.ul=(unsigned long)TICK_TIMER;

}
else if (TICK_TIMER - pfb->content.ul >= ticks)

return 1;
return 0;

}

Declares a variable, function, or array, as 32-bit IEEE floating point.

int func(){
float x, y, *p;
float PI = 3.14159265;

...
}
float func(float par){

...
}

firsttime

float
122 Dynamic C User’s Manual

Indicates the beginning of a for loop. A for loop has an initializing expression, a limiting

expression, and a stepping expression. Each expression can be empty.

for(;;) // an endless loop
...

}
for(i = 0; i < n; i++) // counting loop

...
}

Causes a program to go to a labeled section of code.

...
if(condition) goto RED;
...

RED:

Use goto to jump forward or backward in a program. Never use goto to jump into a loop

body or a switch case. The results are unpredictable. However, it is possible to jump out of a

loop body or switch case.

Indicates the beginning of an if statement.

if(tank_full) shut_off_water();
if(expression){

statements
}else if(expression){

statements
}else if(expression){

statements
}else if(expression){

statements
...

}else{
statements

}

If one of the expressions is true (they are evaluated in order), the statements controlled by that
expression are executed.

An if statement can have zero or more else if parts. The else is optional and executes

only when none of the if or else if expressions are true (non-zero).

for

goto

if
Dynamic C User’s Manual 123

The costatement is initially on and will automatically execute the first time it is encountered in

the execution thread. The costatement becomes inactive after it completes (or aborts).

Declares a variable, function, or array to be an integer. If nothing else is specified, int implies

a 16-bit signed integer.

int i, j, *k; // 16-bit signed
unsigned int x; // 16-bit unsigned
long int z; // 32-bit signed
unsigned long int w; // 32-bit unsigned
int funct (int arg){

...
}

Indicates that a function is an interrupt service routine. All registers, including alternates, are

saved when an interrupt function is called and restored when the interrupt function returns.
Writing ISRs in C is not recommended when timing is critical.

interrupt isr (){
...

}

An interrupt service routine returns no value and takes no arguments.

Declares a variable, function, or array to be 32-bit integer. If nothing else is specified, long

implies a signed integer.

long i, j, *k; // 32-bit signed
unsigned long int w; // 32-bit unsigned
long funct (long arg){

...
}

init_on

int

interrupt

long
124 Dynamic C User’s Manual

Identifies the main function. All programs start at the beginning of the main function.
(main is actually not a keyword, but is a function name.)

Indicates a function is not compiled in debug mode.

nodebug int func(){
...

}
#asm nodebug

...
#endasm

See also debug and directives #debug #nodebug.

Indicates that a function does not use the RST instruction for breakpoints.

norst void func(){
...

}

Indicates a function does not use the IX register as a stack frame reference pointer.

nouseix void func(){
...

}

The null pointer. (This is actually a macro, not a keyword.) Same as (void *)0.

main

nodebug

norst

nouseix

NULL
Dynamic C User’s Manual 125

An important feature of Dynamic C is the ability to declare variables as protected. Such a vari-
able is protected against loss in case of a power failure or other system reset because the com-
piler generates code that creates a backup copy of a protected variable before the variable is

modified. If the system resets while the protected variable is being modified, the variable’s

value can be restored when the system restarts. Battery-backed RAM is required for this opera-
tion.

A system that shares data among different tasks or among interrupt routines can find its shared

data corrupted if an interrupt occurs in the middle of a write to a multibyte variable (such as

type int or float). The variable might be only partially written at its next use.

Declaring a multibyte variable shared means that changes to the variable are atomic, i.e., inter-
rupts are disabled while the variable is being changed.

Declaring a variable to be “protected” guards against system failure. This means that a copy of
the variable is made before it is modified. If a transient effect such as power failure occurs

when the variable is being changed, the system will restore the variable from the copy.

The call to _sysIsSoftReset checks to see if the previous board reset was due to the com-
piler restarting the program (i.e. a “soft” reset). If so, then it initializes the protected variable

flags and calls sysResetChain(), a function chain that can be used to initialize any pro-
tected variables or do other initialization. If the reset was due to a power failure or watchdog

timeout, then any protected variables that were being written when the reset occurred are

restored.

Explicit return from a function. For functions that return values, this will return the function

result.

void func (){
...
if(expression) return;

...
}
float func (int x){

...
float temp;
...
return (temp * 10 + 1);

}

protected

main(){
protected int state1, state2, state3;

...
_sysIsSoftReset(); // restore any protected variables

}

return
126 Dynamic C User’s Manual

Indicates a function is to be placed in root memory. This keyword is semantically meaningful
in function prototypes and produces more efficient code when used. Its use must be consistent
between the prototype and the function definition.

root int func(){
...

}
#memmap root
#asm root

...
#endasm

Identifies a function chain segment (within a function).

int func (int arg){
...
int vec[10];
...
segchain _GLOBAL_INIT{

for(i = 0; i<10; i++){ vec[i] = 0; }
}
...

}

This example adds a segment to the function chain _GLOBAL_INIT. Using segchain is

equivalent to using the #GLOBAL_INIT directive. When this function chain executes, this and

perhaps other segments elsewhere execute. The effect in this example is to (re)initialize vec.

Indicates that changes to a multi-byte variable (such as a float) are atomic. Interrupts are

disabled when the variable is being changed. Local variables cannot be shared.

shared float x, y, z;
shared int j;

...
main(){

...
}

If i is a shared variable, expressions of the form i++ (or i = i+ 1) constitute two atomic

references to variable i, a read and a write. Be careful because i++ is not an atomic operation.

root

segchain

shared
Dynamic C User’s Manual 127

Declares that a variable or array is short integer (16 bits). If nothing else is specified, short
implies a 16-bit signed integer.

short i, j, *k; // 16-bit, signed
unsigned short int w; // 16-bit, unsigned
short funct (short arg){

...
}

Declares a function to be optimized for size (as opposed to speed).

size int func (){
...

}

A built-in function that returns the size—in bytes—of a variable, array, structure, union, or of a

data type.

j = 2 * sizeof(float);
int list[] = { 10, 99, 33, 2, -7, 63, 217 };

...
x = sizeof(list);

Declares a function to be optimized for speed (as opposed to size).

speed int func (){
...

}

short

size

sizeof

speed
128 Dynamic C User’s Manual

Declares a local variable to have a permanent fixed location in memory, as opposed to auto,
where the variable exists on the system stack. Global variables are by definition static.
Local variables are static by default, unlike standard C.

int func (){
...
int i; // static by default
static float x; // explicitly static
...

}

Indicates the beginning of a structure definition. Structure definitions can be nested.

struct {
...
int x;
int y;

} abc; // defines a struct object
typedef struct {

...

int x;
int y;

} xyz; // defines a struct type...

xyz thing; // ...and a thing of type xyz

static

struct
Dynamic C User’s Manual 129

Indicates the start of a switch statement.

switch(expression){
case const:

...
break;

case const:
...
break;

case const:
...
break

default :
...

}

The switch statement may contain any number of cases. It compares a case-constant expres-
sion with the switch expression. If there is a match, the statements for that case execute.
The default case, if it is present, executes if none of the case-constant expressions match the

switch expression.

If the statements for a case do not include a break, return, continue, or some means of
exiting the switch statement, the cases following the selected case will execute, too, regard-
less of whether their constants match the switch expression.

Identifies a type definition statement. Abstract types can be defined in C.

typedef struct {
int x;
int y;

} xyz; // defines a struct type...
xyz thing; // ...and a thing of type xyz
typedef uint node; // meaningful type name
node master, slave1, slave2;

switch

typedef
130 Dynamic C User’s Manual

Identifies a variable that can contain objects of different types and sizes at different times.
Items in a union have the same address. The size of a union is that of its largest member.

union {
int x;
float y;

} abc; // overlays a float and an int

Declares a variable or array to be unsigned. If nothing else is specified in a declaration,
unsigned means 16-bit unsigned integer.

unsigned i, j, *k; // 16-bit, unsigned
unsigned int x; // 16-bit, unsigned
unsigned long w; // 32-bit, unsigned
unsigned funct (unsigned arg){

...
}

Values in a 16-bit unsigned integer range from 0 to 65,535 instead of –32768 to +32767. Val-
ues in an unsigned long integer range from 0 to 232 – 1.

Indicates that a function uses the IX register as a stack frame pointer.

useix void func(){
...

}

See also nouseix and directives #useix #nouseix.

Used in a costatement, this keyword identifies a point of suspension pending the outcome of a
condition, completion of an event, or some other delay.

for(;;){
costate {

...waitfor (input(1) == HIGH);

...
}
...

}

union

unsigned

useix

waitfor
Dynamic C User’s Manual 131

The waitfordone keyword can be abbreviated as wfd. It is part of Dynamic C’s coopera-
tive multitasking constructs. Used inside a costatement or a cofunction, it executes cofunctions

and firsttime functions. When all the cofunctions and firsttime functions in the wfd

statement are complete, or one of them aborts, execution proceeds to the statement following

wfd. Otherwise a jump is made to the ending brace of the costatement or cofunction where the

wfd statement appears; when the execution thread comes around again, control is given back

to the wfd statement.

This keyword may return an argument.

Identifies the beginning of a while loop. A while loop tests at the beginning and may exe-
cute zero or more times.

while(expression){
...

}

Declares a block of data in extended memory.

xdata name { value_1, ... value_n };

The value list may include constant expressions of type int, float, unsigned int,
long, unsigned long, char, and (quoted) strings.

The 20-bit physical address of the block is assigned to name by the compiler.

Indicates that a function is to be placed in extended memory. This keyword is semantically

meaningful in function prototypes. Its use must be consistent between the prototype and the

function definition.

xmem int func(){
...

}
#memmap xmem

waitfordone
(wfd)

while

xdata

xmem
132 Dynamic C User’s Manual

Declares a table of strings in extended memory. The table entries are 20-bit physical addresses.
The name of the table represents the 20-bit physical address of the table; this address is

assigned to name by the compiler.

xstring name { string_1, . . . string_n };

Used in a costatement, this keyword causes the costatement to pause temporarily, allowing

other costatements to execute. The yield statement does not alter program logic, but merely

postpones it.

for(;;){
costate {

...
yield;
...

}
...

}

xstring

yield
Dynamic C User’s Manual 133

13.1 Compiler Directives
Directives are special keywords prefixed with the symbol #. They tell the compiler how to pro-
ceed. Only one directive per line is allowed, but a directive may span more than one line if a back-
slash (\) is placed at the end of the line(s).

Begins and ends blocks of assembly code. The following options are available.

nodebugdisables debug code during assembly

debugenables debug code during assembly

Controls the storage class for local variables. The available options are:

auto - local variables are placed on the stack.
static - local variables have permanent, fixed storage. This is the default storage class.

Enables or disables debug code compilation.

Defines a macro with or without parameters according to ANSI standard. A macro without
parameters may be considered a symbolic constant.

Supports the # and ## macro operators. Macros can have up to 32 parameters and can be

nested to 126 levels.

Instructs the compiler to act as if a fatal error. The string in quotes following the directive is

the message to be printed

Only way to initialize global variables in a function. For example:

#asm options
#endasm

#class options

#debug
#nodebug

#define name text
#define name(params...) text

#fatal "…"

#GLOBAL_INIT { variables }

#GLOBAL_INIT{ lk_ticks=0; lk_fc_block=0;}
134 Dynamic C User’s Manual

Instructs the compiler to act as if an error was issued. The string in quotes following the direc-
tive is the message to be printed

Adds a function, or another function chain, to a function chain.

These directives control conditional compilation. Combined, they form a multiple-choice if.
When the condition of one of the choices is met, the Dynamic C code selected by the choice is

compiled. Code belonging to the other choices is ignored.

The #elif and #else directives are optional. Any code between an #else and an #endif

is compiled if all constant_expressions are false.

Similar to the #if above, these directives enable and disable code compilation based on

whether or not name has been defined with a #define directive.

Controls whether Dynamic C will intersperse library functions with the program’s functions

during compilation. #nointerleave forces the user-written functions to be compiled first.

#error "…"

#funcchain chainname name

#if constant_expression
#elif constant_expression
#else
#endif

main(){
#if BOARD_TYPE == 1
#define product "Ferrari"
#elif BOARD_TYPE == 2
#define product "Maserati"
#elif BOARD_TYPE == 3
#define product "Lamborghini"
#else
#define product "Chevy"
#endif
...

}

#ifdef name
#ifndef name

#interleave
#nointerleave
Dynamic C User’s Manual 135

To redefine a symbol found in the BIOS of a controller, first KILL the prior name.

Creates a function chain. When a program executes the function chain named in this directive,
all of the functions or segments belonging to that chain execute.

Controls the default memory area for functions. The following options are available.

anymem NNNNwhen code comes within NNNN bytes of the end of root code space, start put-
ting it in xmem. Default memory usage is #memmap anymem 0x2000.

rootall functions not declared as xmem go to root memory

xmemall functions not declared as root go to extended memory

Removes (undefines) a defined macro.

Activates a library named in LIB.DIR so modules in the library can be linked with the appli-
cation program. This directive immediately reads in all the headers in the library unless they

have already been read.

Controls whether functions use the IX register as a stack frame reference pointer or the SP

(stack pointer) register.

Instructs the compiler to act as if a serious warning (#warns) was issued. The string in

quotes following the directive is the message to be printed.

Instructs the compiler to act as if a trivial warning was issued. The string in quotes following

the directive is the message to be printed.

#KILL name

#makechain chainname

#memmap options

#undef name

#use pathname

#useix
#nouseix

#warns "…"

#warnt "…"
136 Dynamic C User’s Manual

This compiler directive places the length of <filename> (stored as a long) and its binary

contents at the next available place in xmem flash. The filename is assumed to be either relative

to the Dynamic C installation directory or a fully qualified path. The symbol is a compiler
macro that gives the physical address where the length and contents were stored.

The sample program ximport.c illustrates the use of this compiler directive.

#ximport <filename> <symbol>
Dynamic C User’s Manual 137

138 Dynamic C User’s Manual

Operators 14

An operator is a symbol such as +, –, or & that expresses some kind of operation on data. Most
operators are binary—they have two operands.

Some operators are unary—they have a single operand,

although, like the minus sign, some unary operators can also be used for binary operations.

There are many kinds of operators with operator precedence. Precedence governs which opera-
tions are performed before other operations, when there is a choice.

For example, given the expression

will the + or the * be performed first? Since * has higher precedence than +, it will be performed

first. The expression is equivalent to

Parentheses can be used to force any order of evaluation. The expression

uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal precedence. Again, parentheses

can circumvent the normal associativity of operators. For example,

Unary operators and assignment operators associate from right to left. Most other operators asso-
ciate from left to right.

Certain operators, namely *, &, (), [], -> and . (dot), can be used on the left side of an

assignment to construct what is called an lvalue. For example,

a + 10 // two operands with binary operator "add"

-amount // single operand with unary “minus”

a = b + c * 10;

a = b + (c * 10);

a = (b + c) * 10;

a = b + c + d; // (b+c) performed first
a = b + (c + d); // now c+d is performed first
int *a(); // function returning ptr to int
int (*a)(); // ptr to function returning int

float x;
(char)&x = 0x17; // low byte of x gets value
Dynamic C User’s Manual 139

When the data types for an operation are mixed, the resulting type is the more precise.

By placing a type name in parentheses in front of a variable, the program will perform type casting

or type conversion. In the example above, the term (float)i means the “the value of i con-
verted to floating point.”

The operators are summarized in the following pages.

14.1 Arithmetic Operators

Unary plus, or binary addition. (Standard C does not have unary plus.) Unary plus does not really

do anything.

a = b + 10.5; // binary addition
z = +y; // just for emphasis!

Unary minus, or binary subtraction.

a = b - 10.5; // binary subtraction
z = -y; // z gets the negative of y

float x, y, z;
int i, j, k;
char c;
z = i / x; // same as (float)i / x
j = k + c; // same as k + (int)c

+

–

140 Dynamic C User’s Manual

Indirection, or multiplication. As a unary operator, it indicates indirection. When used in a declara-
tion, * indicates that the following item is a pointer. When used as an indirection operator in an

expression, * provides the value at the address specified by a pointer.

int *p; // p is a pointer to integer
const int j = 45;
p = &j; // p now points to j.
k = *p; // k gets the value to which

// p points, namely 45.
*p = 25; // The integer to which p

// points gets 25. Same as j = 25,
// since p points to j.

Beware of using uninitialized pointers. Also, the indirection operator can be used in complex

ways.

int *list[10] // array of 10 ptrs to int
int (*list)[10] // ptr to array of 10 ints
float** y; // ptr to a ptr to a float
z = **y; // z gets the value of y
typedef char **stp;
stp my_stuff; // my_stuff is typed char**

As a binary operator, the * indicates multiplication.

a = b * c; // a gets the product of b and c

Divide is a binary operator. Integer division truncates; floating-point division does not.

const int i = 18, const j = 7, k; float x;
k = i / j; // result is 2;
x = (float)i / j; // result is 2.591...

Pre- or post-increment is a unary operator designed primarily for convenience. If the ++ precedes

an operand, the operand is incremented before use. If the ++ operator follows an operand, the

operand is incremented after use.

int i, a[12];
i = 0;
q = a[i++]; // q gets a[0], then i becomes 1
r = a[i++]; // r gets a[1], then i becomes 2
s = ++i; // i becomes 3, then s = i
i++; // i becomes 4

If the ++ operator is used with a pointer, the value of the pointer increments by the size of the

object (in bytes) to which it points. With operands other than pointers, the value increments by 1.

*

/

++
Dynamic C User’s Manual 141

Pre- or post-decrement. If the –– precedes an operand, the operand is decremented before use. If
the –– operator follows an operand, the operand is decremented after use.

int j, a[12];
j = 12;
q = a[––j]; // j becomes 11, then q gets a[11]
r = a[––j]; // j becomes 10, then r gets a[10]
s = j––; // s = 10, then j becomes 9
j––; // j becomes 8

If the –– operator is used with a pointer, the value of the pointer decrements by the size of the

object (in bytes) to which it points. With operands other than pointers, the value decrements by 1.

Modulus. This is a binary operator. The result is the remainder of the left-hand operand divided by

the right-hand operand.

const int i = 13;
j = i % 10; // j gets i mod 10 or 3
const int k = -11;
j = k % 7; // j gets k mod 7 or -4

14.2 Assignment Operators

Assignment. This binary operator causes the value of the right operand to be assigned to the left
operand. Assignments can be “cascaded” as shown in this example.

a = 10 * b + c; // a gets the result of the calculation

a = b = 0; // b gets 0 and a gets 0

Addition assignment.

a += 5; // Add 5 to a. Same as a = a + 5

––

%

=

+=
142 Dynamic C User’s Manual

Subtraction assignment.

a -= 5; // Subtract 5 from a. Same as a = a - 5

Multiplication assignment.

a *= 5; // Multiply a by 5. Same as a = a * 5

Division assignment.

a /= 5; // Divide a by 5. Same as a = a / 5

Modulo assignment.

a %= 5; // a mod 5. Same as a = a % 5

Left shift assignment.

a <<= 5; // Shift a left 5 bits. Same as a = a << 5

Right shift assignment.

a >>= 5; // Shift a right 5 bits. Same as a = a >> 5

Bitwise AND assignment.

a &= b; // AND a with b. Same as a = a & b

-=

*=

/=

%=

<<=

>>=

&=
Dynamic C User’s Manual 143

Bitwise XOR assignment.

a ^= b; // XOR a with b. Same as a = a ^ b

Bitwise OR assignment.

A |= B; // OR a with b. Same as a = a | b

14.3 Bitwise Operators

Shift left. This is a binary operator. The result is the value of the left operand shifted by the num-
ber of bits specified by the right operand.

int i = 0xF00F;
j = i << 4; // j gets 0x00F0

The most significant bits of the operand are lost; the vacated bits become zero.

Shift right. This is a binary operator. The result is the value of the left operand shifted by the num-
ber of bits specified by the right operand:

int i = 0xF00F;
j = i >> 4; // j gets 0xFF00

The least significant bits of the operand are lost; the vacated bits become zero for unsigned vari-
ables and are sign-extended for signed variables.

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:

int x;
z = &x; // z gets the address of x

As a binary operator, this performs the bitwise AND of two integer (char, int, or long) values.

int i = 0xFFF0;
int j = 0x0FFF;
z = i & j; // z gets 0x0FF0

^=

|=

<<

>>

&

144 Dynamic C User’s Manual

Bitwise exclusive OR. A binary operator, this performs the bitwise XOR of two integer (8-bit, 16-
bit or 32-bit) values.

int i = 0xFFF0;
int j = 0x0FFF;
z = i ^ j; // z gets 0xF00F

Bitwise inclusive OR. A binary operator, this performs the bitwise OR of two integer (8-bit, 16-bit
or 32-bit) values.

int i = 0xFF00;
int j = 0x0FF0;
z = i | j; // z gets 0xFFF0

Bitwise complement. This is a unary operator. Bits in a char, int, or long value are inverted:

int switches;
switches = 0xFFF0;
j = ~switches; // j becomes 0x000F

14.4 Relational Operators

Less than. This binary (relational) operator yields a “Boolean” value. The result is 1 if the left
operand < the right operand, and 0 otherwise.

if(i < j){
body // executes if i < j

}
OK = a < b; // true when a < b

Less than or equal. This binary (relational) operator yields a “Boolean” value. The result is 1 if the

left operand ≤ the right operand, and 0 otherwise.

if(i <= j){
body // executes if i <= j

}
OK = a <= b; // true when a <= b

^

|

~

<

<=
Dynamic C User’s Manual 145

Greater than. This binary (relational) operator yields a “Boolean” value. The result is 1 if the left
operand > the right operand, and 0 otherwise.

if(i > j){
body // executes if i > j

}
OK = a > b; // true when a > b

Greater than or equal. This binary (relational) operator yields a “Boolean” value. The result is 1 if
the left operand ≥ the right operand, and 0 otherwise.

if(i >= j){
body // executes if i >= j

}
OK = a >= b; // true when a >= b

14.5 Equality Operators

Equal. This binary (relational) operator yields a “Boolean” value. The result is 1 if the left operand

equals the right operand, and 0 otherwise.

if(i == j){
body // executes if i = j

}
OK = a == b; // true when a = b

Note that the == operator is not the same as the assignment operator (=). A common mistake is to

write

if(i = j){
body

}

Here, i gets the value of j, and the if condition is true when i is non-zero, not when i equals j.

Not equal. This binary (relational) operator yields a “Boolean” value. The result is 1 if the left
operand ≠ the right operand, and 0 otherwise.

if(i != j){
body // executes if i != j

}
OK = a != b; // true when a != b

>

>=

==

!=
146 Dynamic C User’s Manual

14.6 Logical Operators

Logical AND. This is a binary operator that performs the “Boolean” AND of two values. If either
operand is 0, the result is 0 (FALSE). Otherwise, the result is 1 (TRUE).

Logical OR. This is a binary operator that performs the “Boolean” OR of two values. If either
operand is non-zero, the result is 1 (TRUE). Otherwise, the result is 0 (FALSE).

Logical NOT. This is a unary operator. Observe that C does not provide a Boolean data type. In C,
logical false is equivalent to 0. Logical true is equivalent to non-zero. The NOT operator result is 1

if the operand is 0. The result is 0 otherwise.

test = get_input(...);
if(!test){

...
}

14.7 Postfix Expressions

Grouping. Expressions enclosed in parentheses are performed first. Parentheses also enclose func-
tion arguments. In the expression

a = (b + c) * 10;

the term b + c is evaluated first.

Array subscripts or dimension. All array subscripts count from 0.

int a[12]; // array dimension is 12
j = a[i]; // references the ith element

&&

||

!

()

[]
Dynamic C User’s Manual 147

The dot operator joins structure (or union) names and subnames in a reference to a structure (or
union) element.

struct {
int x;
int y;

} coord;
m = coord.x;

Right arrow. Used with pointers to structures and unions, instead of the dot operator.

typedef struct{
int x;
int y;

} coord;
coord *p; // ptr to structure

...
m = p->x; // ref to structure element

14.8 Reference/Dereference Operators

Address operator, or bitwise AND. As a unary operator, this provides the address of a variable:

int x;
z = &x; // z gets the address of x

As a binary operator, this performs the bitwise AND of two integer (char, int, or long) val-
ues.

int i = 0xFFF0;
int j = 0x0FFF;
z = i & j; // z gets 0x0FF0

. (dot)

->

&

148 Dynamic C User’s Manual

Indirection, or multiplication. As a unary operator, it indicates indirection. When used in a declara-
tion, * indicates that the following item is a pointer. When used as an indirection operator in an

expression, * provides the value at the address specified by a pointer.

int *p; // p is a pointer to integer
int j = 45;
p = &j; // p now points to j.
k = *p; // k gets the value to which

// p points, namely 45.
*p = 25; // The integer to which p

// points gets 25. Same as j = 25,
// since p points to j.

Beware of using uninitialized pointers. Also, the indirection operator can be used in complex

ways.

int *list[10] // array of 10 ptrs to int
int (*list)[10] // ptr to array of 10 ints
float** y; // ptr to a ptr to a float
z = **y; // z gets the value of y
typedef char **stp;
stp my_stuff; // my_stuff is typed char**

As a binary operator, the * indicates multiplication.

a = b * c; // a gets the product of b and c

14.9 Conditional Operators
Conditional operators are a three-part operation unique to the C language. The operation has three

operands and the two operator symbols ? and :.

If the first operand evaluates true (non-zero), then the result of the operation is the second operand.
Otherwise, the result is the third operand.

int i, j, k;
...
i = j < k ? j : k;

The ? : operator is for convenience. The above statement is equivalent to the following.

if(j < k)
i = j;

else
i = k;

If the second and third operands are of different type, the result of this operation is returned at the

higher precision.

*

? :
Dynamic C User’s Manual 149

14.10 Other Operators

The cast operator converts one data type to another. A floating-point value is truncated when

converted to integer. The bit patterns of character and integer data are not changed with the cast
operator, although high-order bits will be lost if the receiving value is not large enough to hold the

converted value.

unsigned i; float x = 10.5; char c;
i = (unsigned)x; // i gets 10;
c = *(char*)&x; // c gets the low byte of x
typedef ... typeA;
typedef ... typeB;
typeA item1;
typeB item2;
...
item2 = (typeB)item1; // forces item1 to be

// treated as a typeB

The sizeof operator is a unary operator that returns the size (in bytes) of a variable, structure,
array, or union. It operates at compile time as if it were a built-in function, taking an object or a

type as a parameter.

typedef struct{
int x;
char y;
float z;

} record;
record array[100];
int a, b, c, d;
char cc[] = "Fourscore and seven";
char *list[] = { "ABC", "DEFG", "HI" };

// number of bytes in array
#define array_size sizeof(record)*100
a = sizeof(record); // 7
b = array_size; // 700
c = sizeof(cc); // 20
d = sizeof(list); // 6

Why is sizeof(list) equal to 6? list is an array of 3 pointers (to char) and pointers have

two bytes.

Why is sizeof(cc) equal to 20 and not 19? C strings have a terminating null byte appended by

the compiler.

(type)

sizeof
150 Dynamic C User’s Manual

Comma operator. This operator, unique to the C language, is a convenience. It takes two operands:
the left operand—typically an expression—is evaluated, producing some effect, and then dis-
carded. The right-hand expression is then evaluated and becomes the result of the operation.

This example shows somewhat complex initialization and stepping in a for statement.

for(i=0,j=strlen(s)-1; i<j; i++,j—){
...

}

Because of the comma operator, the initialization has two parts: (1) set i to 0 and (2) get the

length of string s. The stepping expression also has two parts: increment i and decrement j.

The comma operator exists to allow multiple expressions in loop or if conditions.

The table below shows the operator precedence, from highest to lowest. All operators grouped

together have equal precedence.

,

Table 4. Operator Precedence

Operators Associativity Function

() [] -> . left to right member

! ~ ++ --

(type) * & sizeof
right to left unary

* / % left to right multiplicative

+ - left to right additive

<< >> left to right bitwise

< <= > >= left to right relational

== != left to right equality

& left to right bitwise

^ left to right bitwise

| left to right bitwise

&& left to right logical

|| left to right logical

? : right to left conditional

= *= /= %= += -=

<<= >>= &= ^= |=
right to left assignment

, (comma) left to right series
Dynamic C User’s Manual 151

152 Dynamic C User’s Manual

Function Reference 15

15.1 Functional Groups

arithmetic abs
getcrc

bit manipulation bit
BIT
res
RES
set
SET

character isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit

extended memory root2xmem
WriteFlash2
xalloc
xmem2root
xmem2xmem

fast fourier transforms fftcplx
fftcplxinv
fftreal
fftrealinv
hanncplx
hannreal
powerspectrum

file system fclose
fcreate
fcreate_unused
fdelete
fopen_rd
fopen_wr
fread
fs_format
fs_init
fs_reserve_blocks
fsck
fseek
fshift
ftell
fwrite
Dynamic C User’s Manual 153

floating-point math acos
acot
acsc
asec
asin
atan
atan2
ceil
cos
cosh
deg
exp
fabs
floor
fmod
frexp
labs
ldexp
log
log10
modf
poly
pow
pow10
rad
rand
randb
randg
sin
sinh
sqrt
tan
tanh

low-level flash access flash_erasechip
flash_erasesector
flash_gettype
flash_init
flash_read
flash_readsector
flash_sector2xwindow
flash_writesector

I/O BitRdPortE
BitRdPortI
BitWrPortE
BitWrPortI
RdPortE
RdPortI
WrPortE
WrPortI

interrupts GetVectExtern2000
GetVectIntern
SetVectExtern2000
SetVectIntern
154 Dynamic C User’s Manual

MicroC/OS-II OSInit
OSMboxAccept
OSMboxCreate
OSMboxPend
OSMboxPost
OSMboxQuery
OSMemCreate
OSMemGet
OSMemPut
OSMemQuery
OSQAccept
OSQCreate
OSQFlush
OSQPend
OSQPost
OSQPostFront
OSQQuery
OSSchedLock
OSSchedUnlock
OSSemAccept
OSSemCreate
OSSemPend
OSSemPost
OSSemQuery
OSSetTickPerSec
OSStart
OSStatInit
OSTaskChangePrio
OSTaskCreate
OSTaskCreateExt
OSTaskCreateHook
OSTaskDel
OSTaskDelHook
OSTaskDelReq
OSTaskQuery
OSTaskResume
OSTaskStatHook
OSTaskStkChk
OSTaskSuspend
OSTaskSwHook
OSTimeDly
OSTimeDlyHMSM
OSTimeDlyResume
OSTimeDlySec
OSTimeGet
OSTimeSet
OSTimeTickHook
OSVersion

miscellaneous longjmp
qsort
runwatch
setjmp
Dynamic C User’s Manual 155

multitasking CoBegin
CoPause
CoReset
CoResume
DelayMs
DelaySec
DelayTicks
IntervalMs
IntervalSec
IntervalTick
isCoDone
isCoRunning

number-to-string conversion ftoa
htoa
itoa
ltoa
ltoan
utoa

real-time clock mktime
mktm
read_rtc
read_rtc_32kHz
tm_rd
tm_wr
write_rtc

serial communication
(interrupt driven functions)

cof_serXgetc
cof_serXgets
cof_serXputc
cof_serXputs
cof_serXread
cof_serXwrite
serCheckParity
serXclose
serXdatabits
serXflowcontrolOff
serXflowcontrolOn
serXgetc
serXgetError
serXopen
serXparity
serXpeek
serXputc
serXputs
serXrdFlush
serXrdFree
serXrdUsed
serXread
serXwrFlush
serXwrFree
serXwrite
156 Dynamic C User’s Manual

STDIO getchar
gets
kbhit
outchrs
outstr
printf
putchar
puts
sprintf

string manipulation memchr
memcmp
memcpy
memmove
memset
strcat
strchr
strcmp
strcmpi
strcpy
strcspn
strlen
strncat
strncmp
strncmpi
strncpy
strpbrk
strrchr
strspn
strstr
strtok
tolower
toupper

string-to-number conversion atoi
atol
strtod
strtol

system chkHardReset
chkSoftReset
chkWDTO
clockDoublerOff
clockDoublerOn
defineErrorHandler
exit
forceSoftReset
ipres
ipset
premain
_sysIsSoftReset
sysResetChain
updateTimers
use32HzOsc
useClockDivider
useMainOsc
Dynamic C User’s Manual 157

watchdog Disable_HW_WDT
hitwd
VdGetFreeWd
VdHitWd
VdInit
VdReleaseWd
158 Dynamic C User’s Manual

15.2 Alphabetical Listing

int abs(int x);

DESCRIPTION

Computes the absolute value of an integer argument.

PARAMETERS

x Integer argument

RETURN VALUE

Absolute value of the argument.

LIBRARY

MATH.LIB

SEE ALSO

fabs

float acos(float x);

DESCRIPTION

Computes the arccosine of real float value x.

PARAMETERS

x Assumed to be between -1 and 1.

RETURN VALUE

Arccosine of the argument
If x is out of bounds, the function returns 0 and signals a domain error.

LIBRARY

MATH.LIB

SEE ALSO

cos, cosh, asin, atan

abs

acos
Dynamic C User’s Manual 159

float acot(float x);

DESCRIPTION

Computes the arcotangent of real float value x.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE

Arccotangent of the argument.

LIBRARY

MATH.LIB

SEE ALSO

tan, atan

float acsc(float x);

DESCRIPTION

Computes the arccosecant of real float value x.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE

The arccosecant of the argument.

LIBRARY

MATH.LIB

SEE ALSO

sin, asin

acot

acsc
160 Dynamic C User’s Manual

float asec(float x);

DESCRIPTION

Computes the arcsecant of real float value x.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE

The arcsecant of the argument.

LIBRARY

MATH.LIB

SEE ALSO

cos, acos

float asin(float x);

DESCRIPTION

Computes the arcsine of real float value x.

PARAMETERS

x Assumed to be between -1 and +1.

RETURN VALUE

The arcsine of the argument.

LIBRARY

MATH.LIB

SEE ALSO

sin, acsc

asec

asin
Dynamic C User’s Manual 161

float atan(float x);

DESCRIPTION

Computes the arctangent of real float value x.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE

The arctangent of the argument.

LIBRARY

MATH.LIB

SEE ALSO

tan, acot

atan
162 Dynamic C User’s Manual

float atan2(float y, float x);

DESCRIPTION

Computes the arctangent of real float value y/x to find the angle in radians between

the x-axis and the ray through (0,0) and (x,y).

PARAMETERS

y The point corresponding to the y-axis

x The point corresponding to the x-axis

RETURN VALUE

Arctangent of y/x.

If both y and x are zero, the function returns 0 and signals a domain error. Otherwise the

result is returned as follows:

angle x ≠ 0, y ≠ 0
PI/2 x = 0, y > 0
–PI/2 x = 0, y < 0
0 x > 0, y = 0
PI x < 0, y = 0

LIBRARY

MATH.LIB

SEE ALSO

acos, asin, atan, cos, sin, tan

atan2
Dynamic C User’s Manual 163

float atof(char *sptr);

DESCRIPTION

ANSI String to Float Conversion (UNIX compatible)

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted floating value.
If the conversion is invalid, _xtoxErr is set to 1. Otherwise _xtoxErr is set to 0.

LIBRARY

STRING.LIB

SEE ALSO

atoi, atol, strtod

int atoi(char *sptr);

DESCRIPTION

ANSI String to Integer Conversion (UNIX compatible).

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted integer value.

LIBRARY

STRING.LIB

SEE ALSO

atol, atof, strtod

atof

atoi
164 Dynamic C User’s Manual

long atol(char *sptr);

DESCRIPTION

ANSI String to Long Conversion (UNIX compatible).

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted long integer value.

LIBRARY

STRING.LIB

SEE ALSO

atoi, atof, strtod

unsigned int bit(void *address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline

Reads specified bit at memory address. bit may be from 0 to 31. This is equivalent to

the following expression, but more efficient: (*(long *)address >> bit) & 1

PARAMETERS

address Address of byte containing bits 7-0

bit Bit location where 0 represents the least significant bit

RETURN VALUE

1 if specified bit is set,
0 if bit is clear.

LIBRARY

UTIL.LIB

SEE ALSO

BIT

atol

bit
Dynamic C User’s Manual 165

unsigned int BIT(void *address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline

Reads specified bit at memory address. bit may be from 0 to 31. This is equivalent to

the following expression, but more efficient: (*(long *)address>>bit) &1

PARAMETERS

address Address of byte containing bits 7-0

bit Bit location where 0 represents the least significant bit

RETURN VALUE

1 if specified bit is set; 0 if bit is clear.

LIBRARY

UTIL.LIB

SEE ALSO

bit

int BitRdportE(int port, int bitnumber);

DESCRIPTION

Returns 1 or 0 matching the value of the bit read from the specified external I/O port.

PARAMETERS

port Address of external parallel port data register.

bitnumber Bit to read (0–7).

RETURN VALUE

Returns an integer equal to 1 or 0 matching the value of the bit read.

LIBRARY

SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdPortE, WrPortE,
BitWrPortE

BIT

BitRdPortE
166 Dynamic C User’s Manual

int BitRdI(int port, int bitnumber);

DESCRIPTION

Returns 1 or 0 matching the value of the bit read from the specified internal I/O port.

PARAMETERS

port Address of internal parallel port data register.

bitnumber Bit to read (0–7).

RETURN VALUE

Returns an integer equal to 1 or 0 matching the value of the bit read.

LIBRARY

SYSIO.LIB

SEE ALSO

RdPortI, WrPortI, BitWrPortI, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

BitRdPortI
Dynamic C User’s Manual 167

void BitWrPortE(int port, char *portshadow, int value, int
bitcode);

DESCRIPTION

Updates shadow register at bit with value (0 or 1) and copies shadow to register.

WARNING! A shadow register is required for this function.

PARAMETERS

port Address of external parallel port data register.

portshadow Reference pointer to a variable to shadow the current value of the

register.

value Value of 0 or 1 to be written to the bit position.

bitcode Bit position 0–7.

LIBRARY

SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, RdPortE,
WrPortE

BitWrPortE
168 Dynamic C User’s Manual

void BitWrPortI(int port, char *portshadow, int value, int
bitcode);

DESCRIPTION

Updates shadow register at position bitcode with value (0 or 1); copies shadow to reg-
ister.

WARNING! A shadow register is required for this function.

PARAMETERS

port Address of external parallel port data register.

portshadow Reference pointer to a variable to shadow the current value of the

register.

value Value of 0 or 1 to be written to the bit position.

bitcode Bit position 0–7.

LIBRARY

SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

BitWrPortI
Dynamic C User’s Manual 169

float ceil(float x);

DESCRIPTION

Computes the smallest integer greater than or equal to the given number.

PARAMETERS

x Number to round up.

RETURN VALUE

The rounded up number.

LIBRARY

MATH.LIB

SEE ALSO

floor, fmod

int chkHardReset(void);

DESCRIPTION

This function determines whether this restart of the board is due to a hardware reset. As-
serting the RESET line or recycling power are both considered hardware resets. A watch-
dog timeout is not a hardware reset.

RETURN VALUE

1: The processor was restarted due to a hardware reset,
0: If it was not.

LIBRARY

Sys.lib

ceil

chkHardReset
170 Dynamic C User’s Manual

int chkSoftReset(void);

DESCRIPTION

This function determines whether this restart of the board is due to a software reset from

Dynamic C or a call to forceSoftReset().

RETURN VALUE

1: The board was restarted due to a soft reset,
0: If it was not.

LIBRARY

Sys.lib

int chkWDTO(void);

DESCRIPTION

This function determines whether this restart of the board is due to a watchdog timeout.

RETURN VALUE

1: If the board was restarted due to a watchdog timeout,
0: If it was not.

LIBRARY

Sys.lib

chkSoftReset

chkWDTO
Dynamic C User’s Manual 171

void clockDoublerOn();

DESCRIPTION

Enables the Rabbit clock doubler. If the doubler is already enabled, there will be no ef-
fect. Also attempts to adjust the communication rate between Dynamic C and the board

to compensate for the frequency change. User serial port rates need to be adjusted accord-
ingly. Also note that single-stepping through this routine will cause Dynamic C to lose

communication with the target.

LIBRARY

SYS.LIB

SEE ALSO

clockDoublerOff

void clockDoublerOff();

DESCRIPTION

Disables the Rabbit clock doubler. If the doubler is already disabled, there will be no ef-
fect. Also attempts to adjust the communication rate between Dynamic C and the board

to compensate for the frequency change. User serial port rates need to be adjusted accord-
ingly. Also note that single-stepping through this routine will cause Dynamic C to lose

communication with the target.

LIBRARY

SYS.LIB

SEE ALSO

clockDoublerOn

clockDoublerOn

clockDoublerOff
172 Dynamic C User’s Manual

void CoBegin(CoData *p);

DESCRIPTION

Initialize a costatement structure so the costatement will be executed next time it is en-
countered.

PARAMETERS

p Address of costatement

LIBRARY

COSTATE.LIB

int cof_serXgetc(); /* where X = A|B|C|D */

DESCRIPTION

This single-user cofunction yields to other tasks until a character is read from port X. This
function only returns when a character is successfully written. It is non-reentrant.

RETURN VALUE

An integer with the character read into the low byte

LIBRARY

RS232.LIB

EXAMPLE

CoBegin

cof_serXgetc

// echoes characters
main() {

int c;
serXopen(19200);
loopinit();
while (1) {

loophead();
wfd c = cof_serAgetc();
wfd cof_serAputc(c);

}
serAclose();

}

Dynamic C User’s Manual 173

int cof_serXgets(char *s, int max, unsigned long tmout);
/* where X = A|B|C|D */

DESCRIPTION

This single-user cofunction reads characters from port X until a NULL terminator, line-
feed, or carriage return character is read, max characters are read, or until tmout milli-
seconds transpires between characters read. A timeout will never occur if no characters

have been received. This function is non-reentrant.

It yields to other tasks for as long as the input buffer is locked or whenever the buffer be-
comes empty as characters are read. s will always be NULL terminated upon return.

PARAMETERS

s Character array into which a NULL terminated string is read.

max The maximum number of characters to read into s.

tmout Millisecond wait period to allow between characters before timing

out.

RETURN VALUE

1 if CR or max bytes read into s
0 if function times out before reading CR or max bytes

LIBRARY

RS232.LIB

EXAMPLE

cof_serXgets

// echoes NULL terminated character strings
main() {

int getOk;
char s[16];
serAopen(19200);
loopinit();
while (1) {

loophead();
costate {

wfd getOk = cof_serAgets (s, 15, 20);
if (getOk) {

wfd cof_serAputs(s);
}
else { // timed out: s null terminated,
} // but incomplete

}
}
serAclose();

}

174 Dynamic C User’s Manual

void cof_serXputc(int c); /* where X = A|B|C|D */

DESCRIPTION

This single-user cofunction writes a character to serial port X, yielding to other tasks
when the input buffer is locked. This function is non-reentrant.

PARAMETERS

c Character to write.

LIBRARY

RS232.LIB

EXAMPLE

cof_serXputc

// echoes characters
main() {

int c;
serAopen(19200);
loopinit();
while (1) {

loophead();
wfd c = cof_serAgetc();
wfd cof_serAputc(c);

}
serAclose();

}

Dynamic C User’s Manual 175

void cof_serXputs(char *str); /* where X = A|B|C|D */

DESCRIPTION

This single-user cofunction writes a NULL terminated string to port X. It yields to other
tasks for as long as the input buffer may be locked or whenever the buffer may become

full as characters are written. This function is non-reentrant.

PARAMETERS

str NULL-terminated character string to write.

LIBRARY

RS232.LIB

EXAMPLE

cof_serXputs

// writes a null-terminated character string, repeatedly
main() {

const char s[] = "Hello Z-World";
serAopen(19200);
loopinit();
while (1) {

loophead();
costate {

wfd cof_serAputs(s);
}

}
serAclose();

}

176 Dynamic C User’s Manual

int cof_serXread(void* data, int length, unsigned long tmout);
/* where X = A|B|C|D */

DESCRIPTION

This single-user cofunction reads length characters from port X or until tmout milli-
seconds transpires between characters read. It yields to other tasks for as long as the input
buffer is locked or whenever the buffer becomes empty as characters are read. A timeout
will never occur if no characters have been read. This function is non-reentrant.

PARAMETERS

data Data structure into which characters are read.

length The number of characters to read into data.

tmout Millisecond wait period to allow between characters before timing

out.

RETURN VALUE

Number of characters read into data.

LIBRARY

RS232.LIB

EXAMPLE

cof_serXread

// echoes a block of characters
main() {

int n;
char s[16];
serAopen(19200);
loopinit();
while (1) {

loophead();
costate {

wfd n = cof_serAread(s, 15, 20);
wfd cof_serAwrite(s, n);

}
}
serAclose();

}

Dynamic C User’s Manual 177

void cof_serXwrite(void *data, int length);
/* where X = A|B|C|D */

DESCRIPTION

This single-user cofunction writes length bytes to port X. It yields to other tasks for as

long as the input buffer is locked or whenever the buffer becomes full as characters are

written. This function is non-reentrant.

PARAMETERS

data Data structure to write.

length Number of bytes in data to write.

LIBRARY

RS232.LIB

EXAMPLE

cof_serXwrite

// writes a block of characters, repeatedly
main() {

const char s[] = "Hello Z-World";
serAopen(19200);
loopinit();
while (1) {

loophead();
costate {

wfd cof_serAwrite(s, strlen(s));
}

}
serAclose();

}

178 Dynamic C User’s Manual

void CoPause(CoData *p);

DESCRIPTION

Pause execution of a costatement so that it will not run the next time it is encountered un-
less and until CoResume(p) or CoBegin(p) are called.

PARAMETERS

p Address of costatement

LIBRARY

COSTATE.LIB

void CoReset(CoData *p);

DESCRIPTION

Initializes a costatement structure so the costatement will not be executed next time it is

encountered (unless the costatement is declared to be always_on).

PARAMETERS

p Address of costatement

LIBRARY

COSTATE.LIB

CoPause

CoReset
Dynamic C User’s Manual 179

void CoResume(CoData *p);

DESCRIPTION

Resume execution of a costatement that has been paused.

PARAMETERS

p Address of costatement

LIBRARY

COSTATE.LIB

float cos(float x);

DESCRIPTION

Computes the cosine of real float value x (radians).

PARAMETERS

x Radian value to compute

RETURN VALUE

Cosine of the argument.

LIBRARY

MATH.LIB

SEE ALSO

acos, cosh, sin, tan

CoResume

cos
180 Dynamic C User’s Manual

float cosh(float x);

DESCRIPTION

Computes the hyperbolic cosine of real FLOAT value x.

PARAMETERS

x value to compute

RETURN VALUE

Hyperbolic cosine

 If |x| > 89.8 (approx.), the function returns INF and signals a range error.

LIBRARY

MATH.LIB

SEE ALSO

cos, acos, sin, sinh, tan, tanh

void defineErrorHandler(void *errfcn)

DESCRIPTION

Sets the BIOS function pointer for runtime errors to the function pointed to by errfcn.
When a runtime error occurs, the following information is passed to the error handler on

the stack:

SP+0 - return address for exceptionRet
SP+2 - Error code
SP+4 - 0x0000 (can be used for additional information)
SP+6 - XPC when exception() was called (upper byte)
SP+8 - address where exception() was called

The user-defined function should ALWAYS be in root memory. Specify root at the start
of the function definition to ensure this.

PARAMETERS

errfcn Pointer to user-defined runtime error handler.

LIBRARY

SYS.LIB

cosh

defineErrorHandler
Dynamic C User’s Manual 181

float deg(float x);

DESCRIPTION

Changes float radians x to degrees

PARAMETERS

x Radian value to convert

RETURN VALUE

Angle in degrees (a float).

LIBRARY

MATH.LIB

SEE ALSO

rad

int DelayMs(long delayms);

DESCRIPTION

Millisecond time mechanism for the costatement "waitfor" constructs. The initial call to

this function starts the timing. The function returns zero and continues to return zero until
the number of milliseconds specified has passed.

PARAMETERS

delayms The number of milliseconds to wait.

RETURN VALUE

1 if the specified number of milliseconds have elapsed; else 0.

LIBRARY

COSTATE.LIB

deg

DelayMs
182 Dynamic C User’s Manual

int DelaySec(long delaysec);

DESCRIPTION

Second time mechanism for the costatement "waitfor" constructs. The initial call to this
function starts the timing. The function returns zero and continues to return zero until the

number of seconds specified has passed.

PARAMETERS

delaysec The number of seconds to wait.

RETURN VALUE

1 if the specified number of seconds have elapsed; else 0.

LIBRARY

COSTATE.LIB

int DelayTicks(unsigned ticks);

DESCRIPTION

Tick time mechanism for the costatement "waitfor" constructs. The initial call to this

function starts the timing. The function returns zero and continues to return zero until the

number of ticks specified has passed.

1 tick = 1/1024 second.

PARAMETERS

ticks The number of ticks to wait.

RETURN VALUE

1 if the specified tick delay has elapsed; else 0.

LIBRARY

COSTATE.LIB

DelaySec

DelayTicks
Dynamic C User’s Manual 183

void Disable_HW_WDT();

DESCRIPTION

Disables the hardware watchdog timer on the Rabbit processor. Note that the watchdog

will be enabled again just by hitting it. The watchdog is hit by the periodic interrupt,
which is on by default. This function is useful for special situations such as low power
“sleepy mode”.

LIBRARY

SYS.LIB

void exit(int exitcode);

DESCRIPTION

Stops the program and returns exitcode to Dynamic C. Dynamic C uses values above

128 for run-time errors. When not debugging, exit will run an infinite loop, causing a

watchdog timeout if the watchdog is enabled.

PARAMETERS

exitcode Error code passed by Dynamic C

LIBRARY

SYS.LIB

Disable_HW_WDT

exit
184 Dynamic C User’s Manual

float exp(float x);

DESCRIPTION

Computes the exponential of real float value x.

PARAMETERS

x Value to compute

RETURN VALUE

Returns the value of ex.

If x > 89.8 (approx.), the function returns INF and signals a range error. If x < –89.8 (ap-
prox.), the function returns 0 and signals a range error.

LIBRARY

MATH.LIB

SEE ALSO

log, log10, frexp, ldexp, pow, pow10, sqrt

float fabs(float x);

DESCRIPTION

Computes the float absolute value of float x.

PARAMETERS

x Value to compute

RETURN VALUE

x, if x >= 0,
else -x.

LIBRARY

MATH.LIB

SEE ALSO

abs

exp

fabs
Dynamic C User’s Manual 185

void fclose(File* f);

DESCRIPTION

Closes a file.

PARAMETERS

f The pointer to the file to close.

LIBRARY

FILESYSTEM.LIB

int fcreate(File* f, FileNumber fnum);

DESCRIPTION

This function creates a file. Before calling it, a variable of type File must be defined in

the application program.

File file;
fcreate (&file, 1);

PARAMETERS

f The pointer to the created file.

fnum This is a number from 1 through 127. Each file in the flash file sys-
tem is assigned a unique number in this range that is chosen by the

user.

RETURN VALUE

0 - success
1 - failure

LIBRARY

FILESYSTEM.LIB

fclose

fcreate
186 Dynamic C User’s Manual

FileNumber fcreate_unused(File* f);

DESCRIPTION

Searches for the first unused file number in the range 1 through 127, and creates a file

with that number.

PARAMETERS

f The pointer to the created file.

RETURN VALUE

The FileNumber (1-127) of the new file if success.

LIBRARY

FILESYSTEM.LIB

SEE ALSO

fcreate

int fdelete(FileNumber fnum);

DESCRIPTION

Deletes a file.

PARAMETERS

fnum A number in the range 1 through 127 that identifies the file in the

flash file system.

RETURN VALUE

0 - success
1 - failure

LIBRARY

FILESYSTEM.LIB

fcreate_unused

fdelete
Dynamic C User’s Manual 187

void fftcplx(int *x, int N, int *blockexp)

DESCRIPTION

Computes the complex DFT of the N-point complex sequence contained in the array x

and returns the complex result in x. N must be a power of 2 and lie between 4 and 1024.
An invalid N causes a RANGE exception. The N-point complex sequence in array x is

replaced with its N-point complex spectrum. The value of blockexp is increased by 1

each time array x has to be scaled to avoid arithmetic overflow.

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY

FFT.LIB

SEE ALSO

fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal,
powerspectrum

fftcplx
188 Dynamic C User’s Manual

void fftcplxinv(int *x, int N, int *blockexp)

DESCRIPTION

Computes the inverse complex DFT of the N-point complex spectrum contained in the

array x and returns the complex result in x. N must be a power of 2 and lie between 4

and 1024. An invalid N causes a RANGE exception. The value of blockexp is in-
creased by 1 each time array x has to be scaled to avoid arithmetic overflow. The value

of blockexp is also decreased by log2N to include the 1/N factor in the definition of the

inverse DFT

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY

FFT.LIB

SEE ALSO

fftcplx, fftreal, fftrealinv, hanncplx, hannreal,
powerspectrum

fftcplxinv
Dynamic C User’s Manual 189

void fftreal(int *x, int N, int *blockexp)

DESCRIPTION

Computes the N-point, positive-frequency complex spectrum of the 2N-point real se-
quence in array x. The 2N-point real sequence in array x is replaced with its N-point pos-
itive-frequency complex spectrum. The value of blockexp is increased by 1 each

time array x has to be scaled to avoid arithmetic overflow.

The imaginary part of the X[0] term (stored in x[1]) is set to the real part of the fmax term.

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence

is stored in x[0], the first element in x[1], and the kth element in x[k].

N must be a power of 2 and lie between 4 and 1024. An invalid N causes a RANGE ex-
ception.

PARAMETERS

x Pointer to 2N-point sequence of real fractions.

N Number of complex elements in output spectrum

blockexp Pointer to integer block exponent.

LIBRARY

FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftrealinv, hanncplx, hannreal,
powerspectrum

fftreal
190 Dynamic C User’s Manual

void fftrealinv(int *x, int N, int *blockexp)

DESCRIPTION

Computes the 2N-point real sequence corresponding to the N-point, positive-frequency

complex spectrum in array x. The N-point, positive-frequency spectrum contained in ar-
ray x is replaced with its corresponding 2N-point real sequence. The value of blockexp

is increased by 1 each time array x has to be scaled to avoid arithmetic overflow. The

value of blockexp is also decreased by log2N to include the 1/N factor in the definition

of the inverse DFT.

The function expects to find the real part of the fmax term in the imaginary part of the

zero-frequency X[0] term (stored x[1]).

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence

is stored in x[0], the first element in x[1], and the kth element in x[k].

N must be a power of 2 and lie between 4 and 1024. An invalid N causes a RANGE ex-
ception.

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY

FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, hanncplx, hannreal,
powerspectrum

fftrealinv
Dynamic C User’s Manual 191

void flash_erasechip(FlashDescriptor* fd);

DESCRIPTION

Erases an entire Flash Memory chip.

NOTE: fd must have already been initialized with flash_init before calling this

function. See flash_init description for further restrictions.

PARAMETERS

fd Pointer to flash descriptor of the chip to erase.

LIBRARY

FLASH.LIB

SEE ALSO

flash_erasesector, flash_gettype, flash_init, flash_read,
flash_readsector, flash_sector2xwindow, flash_writesector

int flash_erasesector(FlashDescriptor* fd, word which);

DESCRIPTION

Erases a sector of a Flash Memory chip.

NOTE: fd must have already been initialized with flash_init before calling this

function. See flash_init description for further restrictions.

PARAMETERS

fd Pointer to flash descriptor of the chip to erase a sector of.

which The sector to erase.

RETURN VALUE

0 - success

LIBRARY

FLASH.LIB

SEE ALSO

flash_erasechip, flash_gettype, flash_init, flash_read,
flash_readsector, flash_sector2xwindow, flash_writesector

flash_erasechip

flash_erasesector
192 Dynamic C User’s Manual

int flash_gettype(FlashDescriptor* fd);

DESCRIPTION

Returns the 16-bit Flash Memory type of the Flash Memory.

NOTE: fd must have already been initialized with flash_init before calling this

function. See flash_init description for further restrictions.

PARAMETERS

fd The FlashDescriptor of the memory to query.

RETURN VALUE

The integer representing the type of the Flash Memory.

LIBRARY

FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_init, flash_read,
flash_readsector, flash_sector2xwindow, flash_writesector

flash_gettype
Dynamic C User’s Manual 193

int flash_init(FlashDescriptor* fd, int mb3cr);

DESCRIPTION

Initializes an internal data structure of type FlashDescriptor with information

about the Flash Memory chip. The Memory Interface Unit bank register (MB3CR) will
be assigned the value of mb3cr whenever a function accesses the Flash Memory refer-
enced by fd. See the Rabbit 2000 Users Manual for the correct chip select and wait state

settings.

NOTE: Improper use of this function can cause your program to be overwritten or operate

incorrectly. This and the other Flash Memory access functions should not be used on the

same Flash Memory that your program resides on, nor should they be used on the same

region of a second Flash Memory where a file system resides.

Use WriteFlash() to write to the primary Flash Memory.

PARAMETERS

fd This is a pointer to an internal data structure that holds information

about a Flash Memory chip.

mb3cr This is the value to set MB3CR to whenever the Flash Memory is

accessed. 0xc2 (i.e., CS2, /OE0, /WE0, 0 WS) is a typical setting for
the second Flash Memory on the TCP/IP Dev Kit, the Intellicom,
the Advanced Ethernet Core, and the RabbitLink.

RETURN VALUE

0 on success
1 if invalid Flash Memory type
-1 for an attempt to initialize primary Flash Memory

LIBRARY

FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype,
flash_read, flash_readsector, flash_sector2xwindow,
flash_writesector

flash_init
194 Dynamic C User’s Manual

int flash_read(FlashDescriptor* fd, word sector, word offset,
unsigned long buffer, word length);

DESCRIPTION

Reads data from the Flash Memory and stores it in buffer.

NOTE: fd must have already been initialized with flash_init before calling this

function. See the flash_init description for further restrictions.

PARAMETERS

fd The FlashDescriptor of the Flash Memory to read from.

sector The sector of the Flash Memory to read from.

offset The displacement, in bytes, from the beginning of the sector to start
reading at.

buffer The physical address of the destination buffer. TIP: A logical ad-
dress can be changed to a physical with the function paddr.

length The number of bytes to read.

RETURN VALUE

0 on success

LIBRARY

FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype,
flash_init, flash_readsector, flash_sector2xwindow,
flash_writesector, paddr

flash_read
Dynamic C User’s Manual 195

int flash_readsector(FlashDescriptor* fd, word sector, unsigned
long buffer);

DESCRIPTION

Reads the contents of an entire sector of Flash Memory into a buffer.

NOTE: fd must have already been initialized with flash_init before calling this

function. See flash_init description for further restrictions.

PARAMETERS

fd The FlashDescriptor of the Flash Memory to read from.

sector The source sector to read.

buffer The physical address of the destination buffer. TIP: A logical ad-
dress can be changed to a physical with the function paddr.

RETURN VALUE

0 on success

LIBRARY

FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype,
flash_init, flash_read, flash_sector2xwindow,
flash_writesector

flash_readsector
196 Dynamic C User’s Manual

void* flash_sector2xwindow(FlashDescriptor* fd, word sector);

DESCRIPTION

This function sets the MB3CR and XPC value so the requested sector falls within the

XPC window. The MB3CR is the Memory Interface Unit bank register. XPC is one of
four Memory Management Unit registers. See flash_init description for restric-
tions.

PARAMETERS

fd The FlashDescriptor of the Flash Memory.

sector The sector to set the XPC window to.

RETURN VALUE

The logical offset of the sector.

LIBRARY

FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype,
flash_init, flash_read, flash_readsector, flash_writesector

flash_sector2xwindow
Dynamic C User’s Manual 197

int flash_writesector(FlashDescriptor* fd, word sector,
unsigned long buffer);

DESCRIPTION

Writes the contents of buffer to sector on the Flash Memory referenced by fd.
NOTE: fd must have already been initialized with flash_init before calling this

function. See flash_init description for further restrictions.

PARAMETERS

fd The FlashDescriptor of the Flash Memory to write to.

sector The destination sector.

buffer The physical address of the source. TIP: A logical address can be

changed to a physical address with the function paddr

RETURN VALUE

0 on success

LIBRARY

FLASH.LIB

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype,
flash_init, flash_read, flash_readsector,
flash_sector2xwindow

flash_writesector
198 Dynamic C User’s Manual

float floor(float x);

DESCRIPTION

Computes the largest integer less than or equal to the given number.

PARAMETERS

x Value to round down

RETURN VALUE

Rounded down value

LIBRARY

MATH.LIB

SEE ALSO

ceil, fmod

float fmod(float x, float y);

DESCRIPTION

Calculates modulo math.

PARAMETERS

x Dividend

y Divisor

RETURN VALUE

Returns the remainder of x/y. The remaining part of x after all multiples of y have been

removed. For example, if x is 22.7 and y is 10.3, the integral division result is 2. Then

the remainder = 22.7 – 2 × 10.3 = 2.1.

LIBRARY

MATH.LIB

SEE ALSO

ceil, floor

floor

fmod
Dynamic C User’s Manual 199

in fopen_rd(File* f, FileNumber fnum);

DESCRIPTION

Opens a file for reading.

PARAMETERS

f A pointer to the file to read.

fnum A number in the range 1 through 127 that identifies the file in the

flash file system.

RETURN VALUE

0 on success
1 on failure

LIBRARY

FILESYSTEM.LIB

in fopen_wr(File* f, FileNumber fnum);

DESCRIPTION

Opens a file for writing.

PARAMETERS

f A pointer to the file to write.

fnum A number in the range 1 through 127 that identifies the file in the

flash file system.

RETURN VALUE

0 on success
1 on failure

LIBRARY

FILESYSTEM.LIB

fopen_rd

fopen_wr
200 Dynamic C User’s Manual

void forceSoftReset();

DESCRIPTION

Forces the board into a software reset by jumping to the start of the BIOS.

LIBRARY

SYS.LIB

int fread(File* f, char* buf, int len);

DESCRIPTION

Reads len bytes from a file pointed to by f, starting at the current offset into the file, into

buffer. Data is read into buffer pointed to by buf.

PARAMETERS

f A pointer to the file to read from

buf A pointer to the destination buffer.

len Number of bytes to copy.

RETURN VALUE

Number of bytes read.

LIBRARY

FILESYSTEM.LIB

forceSoftReset

fread
Dynamic C User’s Manual 201

float frexp(float x, int *n);

DESCRIPTION

Splits x into a fraction and exponent, f*(2**n)

PARAMETERS

x Number to split

n An integer

RETURN VALUE

The function returns the exponent in the integer *n and the fraction between 0.5, inclu-
sive and 1.0.

LIBRARY

MATH.LIB

SEE ALSO

exp, ldexp

frexp
202 Dynamic C User’s Manual

int fs_format(long reserveblocks, int num_blocks, unsigned long
wearlevel);

DESCRIPTION

Initializes the internal data structures and file system. All blocks in the file system are

erased.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_FLASH is

defined this value should be 0 or a multiple of the block size.
When FS_RAM is defined this parameter is ignored.

num_blocks The number of blocks to allocate for the file system. With a de-
fault block size of 4096 bytes and a 256K Flash Memory, this

value might be 64.

wearlevel This value should be 1 on a new Flash Memory, and some high-
er value on an unformatted used Flash Memory. If you are re-
formatting a Flash Memory you can set wearlevel to 0 to

keep the old wear leveling.

RETURN VALUE

0 on success; 1 on failure

LIBRARY

FILESYSTEM.LIB

EXAMPLE

This program can be found in samples/filesystem/format.c.

fs_format

#define FS_FLASH
#use "filesystem.lib"
#define RESERVE 0
#define BLOCKS 64
#define WEAR 1

main() {
if(fs_format(RESERVE,BLOCKS,WEAR)) {

printf("error formating flash\n");
} else {

printf("flash successfully formatted\n");
}

}

Dynamic C User’s Manual 203

int fs_init(long reserveblocks, int num_blocks);

DESCRIPTION

Initialize the internal data structures for an existing file system. Blocks that are used by

a file are preserved and checked for data integrity.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_FLASH is

defined this value should be 0 or a multiple of the block size.
When FS_RAM is defined this parameter is ignored.

num_blocks The number of blocks that the file system contains. By default
the block size is 4096 bytes.

RETURN VALUE

0 on success
1 on failure

LIBRARY

FILESYSTEM.LIB

fs_init
204 Dynamic C User’s Manual

int fs_reserve_blocks(int blocks);

DESCRIPTION

Sets up a number of blocks that are guaranteed to be available for privileged files. A priv-
ileged file has an identifying number in the range 128 through 143. This function is not
needed in most cases. If it is used, it should be called immediately after fs_init or
fs_format.

PARAMETERS

blocks Number of blocks to reserve.

RETURN VALUE

0 on success
1 on failure

LIBRARY

FILESYSTEM.LIB

int fsck(int flash);

DESCRIPTION

Check the filesystem for errors

PARAMETERS

flash A bitmask indicating which checks to NOT perform. The following

checks are available:

FSCK_HEADERS - Block headers.
FSCK_CHECKSUMS - Data checksums.
FSCK_VERSION - Block versions, from a failed write.

RETURN VALUE

0 on success;
!0 on failure, this is a bitmask indicating which checks failed.

LIBRARY

FILESYSTEM.LIB

fs_reserve_blocks

fsck
Dynamic C User’s Manual 205

int fseek(File* f, long to, char whence);

DESCRIPTION

Places the read pointer at a desired location in the file.

PARAMETERS

f A pointer to the file to seek into.

to The number of bytes to move the read pointer. This can be a posi-
tive or negative number.

whence The location in the file to offset from. This is one of the following

constants.

SEEK_SET - Seek from the beginning of the file.
SEEK_CUR - Seek from the current read position in the file.
SEEK_END - Seek from the end of the file.

EXAMPLE

To seek to 10 bytes from the end of the file f, use fseek(f, -10, SEEK_END);.
To rewind the file f by 5 bytes, use fseek(f, -5, SEEK_CUR);.

RETURN VALUE

0 on success
1 on failure

LIBRARY

FILESYSTEM.LIB

fseek
206 Dynamic C User’s Manual

long ftell(File* f);

DESCRIPTION

Gets the offset from the beginning of a file that the read pointer is currently at.

TIP: ftell() can be used with fseek() to find the length of a file.

fseek(f, 0, SEEK_END); /* seek to the end of the file */
FileLength = ftell(f); /* find the length of the file */

 PARAMETERS

f A pointer to the file to query.

RETURN VALUE

The offset in bytes of the read pointer from the beginning of the file.
-1 on failure.

LIBRARY

FILESYSTEM.LIB

int fshift(File *f, int count, char *buffer);

DESCRIPTION

Removes count number of bytes from the beginning of a file and copies them to buff-
er.

PARAMETERS

f A pointer to the file.

count Number of bytes to shift out.

buffer Buffer to store shifted bytes. If this is NULL, the bytes will be dis-
carded.

RETURN VALUE

Number of bytes shifted out;
0 on error.

LIBRARY

FILESYSTEM.LIB

ftell

fshift
Dynamic C User’s Manual 207

int fwrite(File* f, char* buf, int len);

DESCRIPTION

Appends len bytes from the source buffer to the end of the file.

PARAMETERS

f A pointer to the file to write to.

buf A pointer to the source buffer.

len The number of bytes to write.

RETURN VALUE

The number of bytes written if successful;
0 on failure.

LIBRARY

FILESYSTEM.LIB

int ftoa(float f, char *buf);

DESCRIPTION

Converts a float number to a character string.

The character string only displays the mantissa up to 12 digits, no decimal points. The

function returns the exponent (of 10) that should be used to compensate for the string:
ftoa(1.0,buf) yields buf="1000000000", and returns -10.

PARAMETERS

f Float number to convert

buf Converted string. The string is no longer than 12 characters long.

RETURN VALUE

The exponent of the number.

LIBRARY

STDIO.LIB

SEE ALSO

utoa, itoa

fwrite

ftoa
208 Dynamic C User’s Manual

char getchar(void);

DESCRIPTION

Busy waits for a character to be typed from the stdio window in Dynamic C. The user
should make sure only one process calls this function at a time.

RETURN VALUE

A character typed in the stdio window in Dynamic C.

LIBRARY

STDIO.LIB

SEE ALSO

gets, putchar

int getcrc(char *dataarray, char count, int accum);

DESCRIPTION

Computes the Cyclic Redundancy Check (CRC), or check sum, for count bytes (max-
imum 255) of data in buffer. Calls to getcrc can be “concatenated” using accum to

compute the CRC for a large buffer.

PARAMETERS

dataarray Data buffer

count Number of bytes. Max is 255.

accum Base CRC for the data array.

RETURN VALUE

CRC value.

LIBRARY

MATH.LIB

getchar

getcrc
Dynamic C User’s Manual 209

char *gets(char *s);

DESCRIPTION

Waits for a string terminated by <CR> at the stdio window. The string returned is NULL-
terminated without the return. The user should make sure only one process calls this

function at a time.

PARAMETERS

s The input string is put to the location pointed to by the argument s.
The caller is responsible to make sure the location pointed to by s is
big enough for the string.

RETURN VALUE

Same pointer passed in, but string is changed to a NULL-terminated.

LIBRARY

STDIO.LIB

SEE ALSO

puts, getchar

unsigned GetVectExtern2000();

DESCRIPTION

Reads the address of external interrupt table entry. This function really just returns what is

present in the table. The return value is meaningless if the address of the external interrupt
has not been written.

RETURN VALUE

Jump address in vector table.

LIBRARY

SYS.LIB

SEE ALSO

GetVectIntern, SetVectExtern2000, SetVectIntern

gets

GetVectExtern2000
210 Dynamic C User’s Manual

unsigned GetVectIntern(int vectNum);

DESCRIPTION

Reads the address of the internal interrupt table entry and returns whatever value is at the

address (internal vector table base) + (vectNum*16) + 1.

PARAMETER

vectNum Interrupt number; should be 0–15.

RETURN VALUE

Jump address in vector table.

LIBRARY

SYS.LIB

SEE ALSO

GetVectExtern2000, SetVectExtern2000, SetVectIntern

GetVectIntern
Dynamic C User’s Manual 211

void hanncplx(int *x, int N, int *blockexp)

DESCRIPTION

Convolves an N-point complex spectrum with the three-point Hann kernel. The filtered

spectrum replaces the original spectrum.

The function produces the same results as would be obtained by multiplying the corre-
sponding time sequence by the Hann raised-cosine window.

The zero–crossing width of the main lobe produced by the Hann window is 4 DFT bins.
The adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic

rate of 18 db per octave.

N must be a power of 2 and lie between 4 and 1024. An invalid N causes a RANGE ex-
ception.

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY

FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx,
powerspectrum

hanncplx
212 Dynamic C User’s Manual

void hannreal(int *x, int N, int *blockexp)

DESCRIPTION

Convolves an N-point positive-frequency complex spectrum with the three-point Hann

kernel. The function produces the same results as would be obtained by multiplying the

corresponding time sequence by the Hann raised-cosine window.

The zero–crossing width of the main lobe produced by the Hann window is 4 DFT bins.
The adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic

rate of 18 db per octave.

The imaginary part of the dc term (stored in x[1]) is considered to be the real part of the

fmax term. The dc and fmax spectral components take part in the convolution along with

the other spectral components. The real part of fmax component affects the real part of
the X[N-1] component (and vice versa), and should not arbitrarily be set to zero unless

these components are unimportant.

PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

RETURN VALUE

None. The filtered spectrum replaces the original spectrum.

LIBRARY

FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx,
powerspectrum

hannreal
Dynamic C User’s Manual 213

void hitwd();

DESCRIPTION

Hits the watchdog timer, postponing a hardware reset for 2 seconds. Unless the watchdog

timer is disabled, a program must call this function periodically, or the controller will au-
tomatically reset itself. If the virtual driver is enabled (which it is by default), it will call
hitwd in the background. The virtual driver also makes additional “virtual” watchdog

timers available.

LIBRARY

VDRIVER.LIB

char *htoa(int value, char *buf);

DESCRIPTION

Converts integer value to hexidecimal number and puts result into buf.

PARAMETERS

value 16-bit number to convert

buf Character string of converted number

RETURN VALUE

Pointer to end (NULL terminator) of string in buf.

LIBRARY

STDIO.LIB

SEE ALSO

itoa, utoa, ltoa

hitwd

htoa
214 Dynamic C User’s Manual

int IntervalMs(long ms);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous
call. Intended for use with waitfor.

PARAMETERS

ms The number of milliseconds to wait.

RETURN VALUE

0 if not finished, 1 if delay has expired.

LIBRARY

COSTATE.LIB

int IntervalSec(long sec);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous
call. Intended for use with waitfor.

PARAMETERS

sec The number of seconds to delay.

RETURN VALUE

0 if not finished, 1 if delay has expired.

LIBRARY

COSTATE.LIB

IntervalMs

IntervalSec
Dynamic C User’s Manual 215

int IntervalTick(long tick);

DESCRIPTION

Provides a periodic delay based on the time from the previous call. Intended for use with

waitfor. A tick is 1/1024 seconds.

PARAMETERS

tick The number of ticks to delay

RETURN VALUE

0 if not finished, 1 if delay has expired.

LIBRARY

COSTATE.LIB

void ipres(void);

DESCRIPTION

Dynamic C expands this call inline. Restore previous interrupt priority by rotating the IP

register.

LIBRARY

UTIL.LIB

SEE ALSO

ipset

IntervalTick

ipres
216 Dynamic C User’s Manual

void ipset(int priority)

DESCRIPTION

Dynamic C expands this call inline. Replaces current interrupt priority with another by

rotating the new priority into the IP register.

PARAMETERS

priority Interrupt priority range 0–3, lowest to highest priority.

LIBRARY

UTIL.LIB

SEE ALSO

ipres

int isalnum(int c);

DESCRIPTION

Tests for an alphabetic or numeric character, (A to Z, a to z and 0 to 9).

PARAMETERS

c Character to test.

RETURN VALUE

0 if not an alphabetic or numeric character;
!0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

isalpha, isdigit, ispunct

ipset

isalnum
Dynamic C User’s Manual 217

int isalpha(int c);

DESCRIPTION

Tests for an alphabetic character, (A to Z, or a to z).

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a alphabetic character,
!0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

isalnum, isdigit, ispunct

int iscntrl(int c);

DESCRIPTION

Tests for a control character: 0 <= c <= 31 or c == 127.

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a control character;
!0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

isalpha, isalnum, isdigit, ispunct

isalpha

iscntrl
218 Dynamic C User’s Manual

int isCoDone(CoData *p);

DESCRIPTION

Determine if costatement is initialized and not running.

PARAMETERS

p Address of costatement

RETURN VALUE

1 if costatement is initialized and not running;
0 otherwise.

LIBRARY

COSTATE.LIB

int isCoRunning(CoData *p);

DESCRIPTION

Determine if costatement is stopped or running

PARAMETERS

p Address of costatement

RETURN VALUE

1 if costatement is running

0 otherwise.

LIBRARY

COSTATE.LIB

isCoDone

isCoRunning
Dynamic C User’s Manual 219

int isdigit(int c);

DESCRIPTION

Tests for a decimal digit: 0 - 9

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a decimal digit;
!0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

isxdigit, isalpha, isalpha

int isgraph(int c);

DESCRIPTION

Tests for a printing character other than a space: 33 <= c <= 126

PARAMETERS

c Character to test.

RETURN VALUE

0 if not, !0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

isprint, isalpha, isalnum, isdigit, ispunct

isdigit

isgraph
220 Dynamic C User’s Manual

int islower(int c);

DESCRIPTION

Tests for lower case character.

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a lower case character;
!0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

tolower, toupper, isupper

int isspace(int c);

DESCRIPTION

Tests for a white space, character, tab, return, newline, vertical tab, form feed, and space:
9 <= c <= 13 and c == 32 .

PARAMETERS

c Character to test.

RETURN VALUE

0 if not, !0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

ispunct

islower

isspace
Dynamic C User’s Manual 221

int isprint(int c);

DESCRIPTION

Tests for printing character, including space: 32 <= c <= 126

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a printing character, !0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

isdigit, isxdigit, isalpha, ispunct, isspace, isalnum, isgraph

isprint
222 Dynamic C User’s Manual

int ispunct(int c);

DESCRIPTION

Tests for a punctuation character.

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a character,
!0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

isspace

ispunct

Character Decimal Code

space 32

!"#$%&'()*+,-./ 33 <= c <= 47

:;<=>?@ 58 <= c <= 64

[\]^_` 91 <= c <= 96

{|}~ 123 <= c <= 126
Dynamic C User’s Manual 223

int isupper(int c);

DESCRIPTION

Tests for upper case character.

PARAMETERS

c Character to test.

RETURN VALUE

0 if not, !0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

tolower, toupper, islower

int isxdigit(int c);

DESCRIPTION

Tests for a hexidecimal digit: 0 - 9, A - F, a - f

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a hexidecimal digit, !0 otherwise.

LIBRARY

STRING.LIB

SEE ALSO

isdigit, isalpha, isalpha

isupper

isxdigit
224 Dynamic C User’s Manual

char *itoa(int value, char *buf);

DESCRIPTION

Places up to 5 digit character string at *buf, representing value of signed number, with

minus sign in first place, when appropriate.

Suppresses leading zeros, but leaves one zero digit for value = 0. Max = 65535. 73 pro-
gram bytes.

PARAMETERS

value 16-bit number to convert

buf Character string of converted number

RETURN VALUE

Pointer to the end (NULL terminator) of the string in buf.

LIBRARY

STDIO.LIB

SEE ALSO

atoi, utoa, ltoa

int kbhit();

DESCRIPTION

Detects keystrokes in the Dynamic C STDIO window.

RETURN VALUE

!0 if a key has been pressed, 0 otherwise

LIBRARY

UTIL.LIB

itoa

kbhit
Dynamic C User’s Manual 225

long labs(long x);

DESCRIPTION

Computes the long integer absolute value of long integer x.

PARAMETERS

x Number to compute.

RETURN VALUE

x, if x >= 0, else -x.

LIBRARY

MATH.LIB

SEE ALSO

abs, fabs

float ldexp(float x, int n);

DESCRIPTION

Computes x*(2**n)

PARAMETERS

x The value between 0.5, inclusive, and 1.0.

n An integer

RETURN VALUE

The result of x*(2^n)

LIBRARY

MATH.LIB

SEE ALSO

frexp, exp

labs

ldexp
226 Dynamic C User’s Manual

float log(float x);

DESCRIPTION

Computes the logarithm, base e, of real float value x.

PARAMETERS

x Float value

RETURN VALUE

The function returns –INF and signals a domain error when x ≤ 0.

LIBRARY

MATH.LIB

SEE ALSO

exp, log10

float log10(float x);

DESCRIPTION

Computes the base 10 logarithm of real float value x.

PARAMETERS

x Value to compute

RETURN VALUE

The log base 10 of x.

The function returns –INF and signals a domain error when x ≤ 0.

LIBRARY

MATH.LIB

SEE ALSO

log, exp

log

log10
Dynamic C User’s Manual 227

void longjmp(jmp_buf env, int val);

DESCRIPTION

Restores the stack environment saved in array env[]. See the description of setjmp

for details of use.

PARAMETERS

env Environment previously saved with setjmp.

val Integer result of setjmp.

LIBRARY

SYS.LIB

SEE ALSO

setjmp

char *ltoa(long num, char *ibuf)

DESCRIPTION

This function outputs a signed long number to the character array.

PARAMETERS

num Signed long number

ibuf Pointer to character array

RETURN VALUE

Pointer to the same array passed in to hold the result.

LIBRARY

STDIO.LIB

SEE ALSO

ltoa

longjmp

ltoa
228 Dynamic C User’s Manual

int ltoan(long num);

DESCRIPTION

This function returns the number of characters required to display a signed long number.

PARAMETERS

num 32-bit signed number

RETURN VALUE

The number of characters to display signed long number.

LIBRARY

STDIO.LIB

SEE ALSO

ltoa

void *memchr(void *src, int ch, unsigned int n);

DESCRIPTION

Searches up to n characters at memory pointed to by src for character ch.

PARAMETERS

src Pointer to memory source.

ch Character to search for.

n Number of bytes to search.

RETURN VALUE

Pointer to first occurrence of ch if found within n characters. Otherwise returns NULL.

LIBRARY

STRING.LIB

SEE ALSO

strrchr, strstr

ltoan

memchr
Dynamic C User’s Manual 229

int memcmp(void *s1, void *s2, size_t n);

DESCRIPTION

Performs unsigned character by character comparison of two memory blocks of length n.

PARAMETERS

s1 Pointer to block 1.

s2 Pointer to block 2.

n Maximum number of bytes to compare.

RETURN VALUE

< 0 if str1 is less than str2, meaning that a character in str1 is less than the cor-
responding character in str2
0 if str1 is identical to str2
> 0 if str1 is greater than str2, meaning that a character in str1 is greater than

the corresponding character in str2

LIBRARY

STRING.LIB

SEE ALSO

strncmp

memcmp
230 Dynamic C User’s Manual

void *memcpy(void *dst, void *src, unsigned int n);

DESCRIPTION

Copies a block of bytes from one destination to another. Overlap is handled correctly.

PARAMETERS

dst Pointer to memory destination

src Pointer to memory source

n Number of characters to copy.

RETURN VALUE

Pointer to destination.

LIBRARY

STRING.LIB

SEE ALSO

memmove, memset

void *memmove(void *dst, void *src, unsigned int n);

DESCRIPTION

Copies a block of bytes from one destination to another. Overlap is handled correctly.

PARAMETERS

dst Pointer to memory destination

src Pointer to memory source

n Number of characters to copy.

RETURN VALUE

Pointer to destination.

LIBRARY

STRING.LIB

SEE ALSO

memcpy, memset

memcpy

memmove
Dynamic C User’s Manual 231

void *memset(void *dst, int chr, unsigned int n);

DESCRIPTION

Sets the first n bytes of a block of memory to byte destination.

PARAMETERS

dst Block of memory to set.

chr Byte destination

n Amount of bytes to set.

LIBRARY

STRING.LIB

unsigned long mktime(struct tm *timeptr);

DESCRIPTION

Converts the contents of structure pointed to by timeptr into seconds.

struct tm {
char tm_sec; // seconds 0-59
char tm_min; // 0-59
char tm_hour; // 0-23
char tm_mday; // 1-31
char tm_mon; // 1-12
char tm_year; // 80-147 (1980-2047)
char tm_wday; // 0-6 0==sunday

};

PARAMETERS

timeptr Pointer to tm structure:

RETURN VALUE

Time in seconds since January 1, 1980.

LIBRARY

RTCLOCK.LIB

SEE ALSO

mktm, tm_rd, tm_wr

memset

mktime
232 Dynamic C User’s Manual

unsigned int mktm(struct tm *timeptr, unsigned long time);

DESCRIPTION

Converts the seconds (time) to date and time and fills in the fields of the tm structure

with the result.

struct tm {
char tm_sec; // seconds 0-59
char tm_min; // 0-59
char tm_hour; // 0-23
char tm_mday; // 1-31
char tm_mon; // 1-12
char tm_year; // 80-147 (1980-2047)
char tm_wday; // 0-6 0==sunday

};

PARAMETERS

timeptr Address to store date and time into structure:

time Seconds since January 1, 1980.

RETURN VALUE

0

LIBRARY

RTCLOCK.LIB

SEE ALSO

mktime, tm_rd, tm_wr

mktm
Dynamic C User’s Manual 233

float modf(float x, int *n);

DESCRIPTION

Splits x into a fraction and integer, f + n.

PARAMETERS

x Floating-point integer

n An integer

RETURN VALUE

The integer part in *n and the fractional part satisfies |f| < 1.0

LIBRARY

MATH.LIB

SEE ALSO

fmod, ldexp

void OSInit(void);

DESCRIPTION

Initializes µC/OS-II data; must be called before any other µC/OS-II functions are called.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskCreate, OSTaskCreateExt, OSStart

modf

OSInit
234 Dynamic C User’s Manual

void *OSMboxAccept (OS_EVENT *OSMboxAccept);

DESCRIPTION

Checks the mailbox to see if a message is available. Unlike OSMboxPend(), OSM-
boxAccept() does not suspend the calling task if a message is not available.

PARAMETERS

OSMboxAccept Pointer to the mailbox’s event control block.

RETURN VALUE

Pointer to available message, or a NULL pointer if there is no available message or an er-
ror condition exists.

LIBRARY

UCOS2.LIB

SEE ALSO

OSMboxCreate, OSMboxPend, OSMboxPost, OSMboxQuery

OS_EVENT *OSMboxCreate (void *msg);

DESCRIPTION

Creates a message mailbox if event control blocks are available.

PARAMETERS

msg Pointer to a message to put in the mailbox.

RETURN VALUE

Pointer to mailbox’s event control block, or NULL pointer if no event control block was

available.

LIBRARY

UCOS2.LIB

SEE ALSO

OSMboxAccept, OSMboxPend, OSMboxPost, OSMboxQuery

OSMboxAccept

OSMboxCreate
Dynamic C User’s Manual 235

void *OSMboxPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

Waits for a message to be sent to a mailbox.

PARAMETERS

pevent Pointer to mailbox’s event control block.

timeout Allows task to resume execution if a message was not received by

the number of clock ticks specified. Specifying 0 means the task is

willing to wait forever.

err Pointer to a variable for holding an error code.

RETURN VALUE

Pointer to a message or, if a timeout or error condition occurs, a NULL pointer.

LIBRARY

UCOS2.LIB

SEE ALSO

OSMboxAccept, OSMboxCreate, OSMboxPost, OSMboxQuery

OSMboxPend
236 Dynamic C User’s Manual

INT8U OSMboxPost (OS_EVENT *pevent, void *msg);

DESCRIPTION

Sends a message to the specified mailbox

PARAMETERS

pevent Pointer to mailbox’s event control block.

msg Pointer to message to be posted. A NULL pointer must not be sent.

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent.

OS_MBOX_FULL The mailbox already contains a message. Only one

message at a time can be sent and thus, the message

MUST be consumed before another can be sent.

OS_ERR_EVENT_TYPE Attempting to post to a non-mailbox.

LIBRARY

UCOS2.LIB

SEE ALSO

OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxQuery

OSMboxPost
Dynamic C User’s Manual 237

INT8U OSMboxQuery (OS_EVENT *pevent, OS_MBOX_DATA *pdata);

DESCRIPTION

Obtains information about a message mailbox.

PARAMETERS

pevent Pointer to message mailbox’s event control block.

pdata Pointer to a data structure for information about the message mail-
box

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent

OS_ERR_EVENT_TYPE Attempting to obtain data from a non mailbox.

LIBRARY

UCOS2.LIB

SEE ALSO

OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxPost

OSMboxQuery
238 Dynamic C User’s Manual

OS_MEM *OSMemCreate (void *addr, INT32U nblks, INT32U blksize,
INT8U *err);

DESCRIPTION

Creates a fixed-sized memory partition that will be managed by µC/OS-II.

PARAMETERS

addr Pointer to starting address of the partition.

nblks Number of memory blocks to create in the partition.

blksize The size (in bytes) of the memory blocks.

err Pointer to variable containing an error message.

RETURN VALUE

Pointer to the created memory partition control block if one is available, NULL pointer
otherwise.

LIBRARY

UCOS2.LIB

SEE ALSO

OSMemGet, OSMemPut, OSMemQuery

OSMemCreate
Dynamic C User’s Manual 239

void *OSMemGet (OS_MEM *pmem, INT8U *err);

DESCRIPTION

Gets a memory block from the specified partition.

PARAMETERS

pmem Pointer to partition’s memory control block

err Pointer to variable containing an error message

RETURN VALUE

Pointer to a memory block or a NULL pointer if an error condition is detected.

LIBRARY

UCOS2.LIB

SEE ALSO

OSMemCreate, OSMemPut, OSMemQuery

INT8U OSMemPut(OS_MEM *pmem, void *pblk);

DESCRIPTION

Returns a memory block to a partition.

PARAMETERS

pmem Pointer to the partition’s memory control block.

pblk Pointer to the memory block being released.

RETURN VALUE

OS_NO_ERR The memory block was inserted into the partition.

OS_MEM_FULL If returning a memory block to an already FULL memory partition

(More blocks were freed than allocated!)

LIBRARY

UCOS2.LIB

SEE ALSO

OSMemCreate, OSMemGet, OSMemQuery

OSMemGet

OSMemPut
240 Dynamic C User’s Manual

INT8U OSMemQuery (OS_MEM *pmem, OS_MEM_DATA *pdata);

DESCRIPTION

Determines the number of both free and used memory blocks in a memory partition.

PARAMETERS

pmem Pointer to partition’s memory control block.

pdata Pointer to structure for holding information about the partition.

RETURN VALUE

OS_NO_ERR This function always returns no error

LIBRARY

UCOS2.LIB

SEE ALSO

OSMemCreate, OSMemGet, OSMemPut

void *OSQAccept (OS_EVENT *pevent);

DESCRIPTION

Checks the queue to see if a message is available. Unlike OSQPend(), with OSQAc-
cept() the calling task is not suspended if a message is unavailable.

PARAMETERS

pevent Pointer to the message queue’s event control block.

RETURN VALUE

Pointer to message in the queue if one is available, NULL pointer otherwise.

LIBRARY

UCOS2.LIB

SEE ALSO

OSQCreate, OSQFlush, OSQPend, OSQPost, OSQPostFront, OSQQuery

OSMemQuery

OSQAccept
Dynamic C User’s Manual 241

OS_EVENT *OSQCreate (void **start, INT16U qsize);

DESCRIPTION

Creates a message queue if event control blocks are available.

PARAMETERS

start Pointer to the base address of the message queue storage area. The

storage area MUST be declared an array of pointers to void: void
*MessageStorage[qsize].

qsize Number of elements in the storage area.

RETURN VALUE

Pointer to message queue’s event control block or NULL pointer if no event control
blocks were available.

LIBRARY

UCOS2.LIB

SEE ALSO

OSQAccept, OSQFlush, OSQPend, OSQPost, OSQPostFront, OSQQuery

OSQCreate
242 Dynamic C User’s Manual

INT8U OSQFlush (OS_EVENT *pevent);

DESCRIPTION

Flushes the contents of the message queue.

PARAMETERS

pevent Pointer to message queue’s event control block.

RETURN VALUE

OS_NO_ERR Upon success

OS_ERR_EVENT_TYPE A pointer to a queue was not passed

OS_ERR_PEVENT_NULL If 'pevent' is a NULL pointer

LIBRARY

UCOS2.LIB

SEE ALSO

OSQAccept, OSQCreate, OSQPend, OSQPost, OSQPostFront, OSQQuery

OSQFlush
Dynamic C User’s Manual 243

void *OSQPend (OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

Waits for a message to be sent to a queue.

PARAMETERS

pevent Pointer to message queue’s event control block.

timeout Allow task to resume execution if a message was not received by the

number of clock ticks specified. Specifying 0 means the task is
willing to wait forever.

err Pointer to a variable for holding an error code.

RETURN VALUE

Pointer to a message or, if a timeout occurs, a NULL pointer.

LIBRARY

UCOS2.LIB

SEE ALSO

OSQAccept, OSQCreate, OSQFlush, OSQPost, OSQPostFront,
OSQQuery

OSQPend
244 Dynamic C User’s Manual

INT8U OSQPost (OS_EVENT *pevent, void *msg);

DESCRIPTION

Sends a message to the specified queue.

PARAMETERS

pevent Pointer to message queue’s event control block.

msg Pointer to the message to send. NULL pointer must not be sent.

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent.

OS_Q_FULL The queue cannot accept any more messages be-
cause it is full.

OS_ERR_EVENT_TYPE If a pointer to a queue not passed.

OS_ERR_PEVENT_NULL If pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR If attempting to post to a NULL pointer.

LIBRARY

UCOS2.LIB

SEE ALSO

OSQAccept, OSQCreate, OSQFlush, OSQPend, OSQPostFront,
OSQQuery

OSQPost
Dynamic C User’s Manual 245

INT8U OSQPostFront (OS_EVENT *pevent, void *msg);

DESCRIPTION

Sends a message to the specified queue, but unlike OSQPost(), the message is posted

at the front instead of the end of the queue. Using OSQPostFront() allows 'priority'
messages to be sent.

PARAMETERS

pevent Pointer to message queue’s event control block.

msg Pointer to the message to send. NULL pointer must not be sent.

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent.

OS_Q_FULL The queue cannot accept any more messages because

it is full.

OS_ERR_EVENT_TYPE A pointer to a queue was not passed.

OS_ERR_PEVENT_NULL If pevent is a NULL pointer.

OS_ERR_POST_NULL_PTR Attempting to post to a non mailbox.

LIBRARY

UCOS2.LIB

SEE ALSO

OSQAccept, OSQCreate, OSQFlush, OSQPend, OSQPost, OSQQuery

OSQPostFront
246 Dynamic C User’s Manual

INT8U OSQQuery (OS_EVENT *pevent, OS_Q_DATA *pdata);

DESCRIPTION

Obtains information about a message queue.

PARAMETERS

pevent Pointer to message queue’s event control block.

pdata Pointer to a data structure for message queue information.

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent.

OS_ERR_EVENT_TYPE Attempting to obtain data from a non queue.

OS_ERR_PEVENT_NULL If pevent is a NULL pointer.

LIBRARY

UCOS2.LIB

SEE ALSO

OSQAccept, OSQCreate, OSQFlush, OSQPend, OSQPost, OSQPostFront

void OSSchedLock(void);

DESCRIPTION

Prevents task rescheduling. This allows an application to prevent context switches until
it is ready for them. There must be a matched call to OSSchedUnlock() for every call
to OSSchedLock().

LIBRARY

UCOS2.LIB

SEE ALSO

OSSchedUnlock

OSQQuery

OSSchedLock
Dynamic C User’s Manual 247

void OSSchedUnlock(void);

DESCRIPTION

Allow task rescheduling. There must be a matched call to OSSchedUnlock() for ev-
ery call to OSSchedLock().

LIBRARY

UCOS2.LIB

SEE ALSO

OSSchedLock

INT16U OSSemAccept (OS_EVENT *pevent);

DESCRIPTION

This function checks the semaphore to see if a resource is available or if an event oc-
curred. Unlike OSSemPend(), OSSemAccept() does not suspend the calling task if
the resource is not available or the event did not occur.

PARAMETERS

pevent Pointer to the desired semaphore’s event control block

RETURN VALUE

Semaphore value:
If >0, semaphore value is decremented; value is returned before the decrement.
If 0, then either resource is unavailable, event did not occur, or NULL or invalid pointer
was passed to the function.

LIBRARY

UCOS2.LIB

SEE ALSO

OSSemCreate, OSSemPend, OSSemPost, OSSemQuery

OSSchedUnlock

OSSemAccept
248 Dynamic C User’s Manual

OS_EVENT *OSSemCreate (INT16U cnt);

DESCRIPTION

Creates a semaphore.

PARAMETERS

cnt The initial value of the semaphore.

RETURN VALUE

Pointer to the event control block (OS_EVENT) associated with the created semaphore,
or NULL if no event control block is available.

LIBRARY

UCOS2.LIB

SEE ALSO

OSSemAccept, OSSemPend, OSSemPost, OSSemQuery

void OSSemPend (OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

Waits on a semaphore.

PARAMETERS

pevent Pointer to the desired semaphore’s event control block

timeout Time in clock ticks to wait for the resource. If 0, the task will wait
until the resource becomes available or the event occurs.

err Pointer to error message.

LIBRARY

UCOS2.LIB

SEE ALSO

OSSemAccept, OSSemCreate, OSSemPost, OSSemQuery

OSSemCreate

OSSemPend
Dynamic C User’s Manual 249

INT8U OSSemPost (OS_EVENT *pevent);

DESCRIPTION

This function signals a semaphore.

PARAMETERS

pevent Pointer to the desired semaphore’s event control block

RETURN VALUE

OS_NO_ERR The call was successful and the semaphore was signaled.

OS_SEM_OVF If the semaphore count exceeded its limit. In other words,
you have signalled the semaphore more often than you

waited on it with either OSSemAccept() or OSSem-
Pend().

OS_ERR_EVENT_TYPE If a pointer to a semaphore not passed.

OS_ERR_PEVENT_NULL If 'pevent' is a NULL pointer.

LIBRARY

UCOS2.LIB

SEE ALSO

OSSemAccept, OSSemCreate, OSSemPend, OSSemQuery

OSSemPost
250 Dynamic C User’s Manual

INT8U OSSemQuery (OS_EVENT *pevent, OS_SEM_DATA *pdata);

DESCRIPTION

Obtains information about a semaphore.

PARAMETERS

pevent Pointer to the desired semaphore’s event control block

pdata Pointer to a data structure that will hold information about the sema-
phore.

RETURN VALUE

OS_NO_ERR The call was successful and the message was sent.

OS_ERR_EVENT_TYPE Attempting to obtain data from a non semaphore.

OS_ERR_PEVENT_NULL If pevent is a NULL pointer.

LIBRARY

UCOS2.LIB

SEE ALSO

OSSemAccept, OSSemCreate, OSSemPend, OSSemPost

OSSemQuery
Dynamic C User’s Manual 251

INT16U OSSetTickPerSec(INT16U TicksPerSec);

DESCRIPTION

Sets the amount of ticks per second (from 1 - 2048). Ticks per second defaults to 64. If
this function is used, the #define OS_TICKS_PER_SEC needs to be changed so that
the time delay functions work correctly. Since this function uses integer division, the ac-
tual ticks per second may be slightly different that the desired ticks per second.

PARAMETERS

TicksPerSec Unsigned 16-bit integer.

RETURN VALUE

The actual ticks per second set, as an unsigned 16-bit integer.

LIBRARY

UCOS2.LIB

SEE ALSO

OSStart

void OSStart(void);

DESCRIPTION

Starts the multitasking process, allowing µC/OS-II to manage the tasks that have been

created. Before OSStart() is called, OSInit() MUST have been called and at least
one task MUST have been created. This function calls OSStartHighRdy which calls
OSTaskSwHook and sets OSRunning to TRUE.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskCreate, OSTaskCreateExt

OSSetTickPerSec

OSStart
252 Dynamic C User’s Manual

void OSStatInit(void);

DESCRIPTION

Determines CPU usage.

LIBRARY

UCOS2.LIB

INT8U OSTaskChangePrio (INT8U oldprio, INT8U newprio);

DESCRIPTION

Allows a task's priority to be changed dynamically. Note that the new priority MUST be

available.

PARAMETERS

oldprio The priority level to change from.

newprio The priority level to change to.

RETURN VALUE

OS_NO_ERR The call was successful.

OS_PRIO_INVALID The priority specified is higher that the maximum allowed

(i.e. >= OS_LOWEST_PRIO).

OS_PRIO_EXIST The new priority already exist.

OS_PRIO_ERR There is no task with the specified OLD priority (i.e. the

OLD task does not exist).

LIBRARY

UCOS2.LIB

OSStatInit

OSTaskChangePrio
Dynamic C User’s Manual 253

INT8U OSTaskCreate(void (*task)(), void *pdata, INT16U stk_size, INT8U

prio);

DESCRIPTION

Creates a task to be managed by µC/OS-II. Tasks can either be created prior to the start
of multitasking or by a running task. A task cannot be created by an ISR.

PARAMETERS

task Pointer to the task’s starting address.

pdata Pointer to a task’s initial parameters.

stk_size Number of bytes of the stack.

prior The task’s unique priority number.

RETURN VALUE

OS_NO_ERR The call was successful.

OS_PRIO_EXIT The task priority already exists (each task MUST have a

unique priority).

OS_PRIO_INVALID The priority specified is higher than the maximum allowed

(i.e. >= OS_LOWEST_PRIO).

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskCreateExt

OSTaskCreate
254 Dynamic C User’s Manual

INT8U OSTaskCreateExt (void (*task)(), void *pdata, INT8U
prio, INT16U id, INT16U stk_size, void *pext, INT16U opt);

DESCRIPTION

Creates a task to be managed by µC/OS-II. Tasks can either be created prior to the start
of multitasking or by a running task. A task cannot be created by an ISR. This function

is similar to OSTaskCreate() except that it allows additional information about a

task to be specified.

PARAMETERS

task Pointer to task’s code.

pdata Pointer to optional data area; used to pass parameters to the task at
start of execution.

prio The task’s unique priority number; the lower the number the higher
the priority.

id The task’s identification number (0..65535).

stk_size Size of the stack in number of elements. If OS_STK is set to

INT8U, stk_size corresponds to the number of bytes available.
If OS_STK is set to INT16U, stk_size contains the number of
16-bit entries available. Finally, if OS_STK is set to INT32U,
stk_size contains the number of 32-bit entries available on the

stack.

pext Pointer to a user-supplied Task Control Block (TCB) extension.

opt The lower 8 bits are reserved by µC/OS-II. The upper 8 bits control
application-specific options. Select an option by setting the corre-
sponding bit(s).

RETURN VALUE

OS_NO_ERR The call was successful.

OS_PRIO_EXIT The task priority already exists (each task MUST have a

unique priority).

OS_PRIO_INVALID The priority specified is higher than the maximum allowed

(i.e. >= OS_LOWEST_PRIO).

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskCreate

OSTaskCreateExt
Dynamic C User’s Manual 255

void OSTaskCreateHook(OS_TCB *ptcb);

DESCRIPTION

Called by µC/OS-II whenever a task is created. This call-back function resides in

UCOS2.LIB and extends functionality during task creation by allowing additional in-
formation to be passed to the kernel, anything associated with a task. This function can

also be used to trigger other hardware, such as an oscilloscope. Interrupts are disabled

during this call, therefore, it is recommended that code be kept to a minimum.

PARAMETERS

ptcb Pointer to the TCB of the task being created.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskDelHook

OSTaskCreateHook
256 Dynamic C User’s Manual

INT8U OSTaskDel (INT8U prio);

DESCRIPTION

Deletes a task. The calling task can delete itself by passing either its own priority number
or OS_PRIO_SELF if it doesn’t know its priority number. The deleted task is returned

to the dormant state and can be re-activated by creating the deleted task again.

PARAMETERS

prio Task’s priority number.

RETURN VALUE

OS_NO_ERR The call was successful.

OS_TASK_DEL_IDLE Attempting to delete uC/OS-II's idle task.

OS_PRIO_INVALID The priority specified is higher than the maximum allowed

(i.e. >= OS_LOWEST_PRIO) or, OS_PRIO_SELF not
specified.

OS_TASK_DEL_ERR The task to delete does not exist.

OS_TASK_DEL_ISR Attempting to delete a task from an ISR.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskDelReq

OSTaskDel
Dynamic C User’s Manual 257

void OSTaskDelHook(OS_TCB *ptcb);

DESCRIPTION

Called by µC/OS-II whenever a task is deleted. This call-back function resides in

UCOS2.LIB. Interrupts are disabled during this call, therefore, it is recommended that
code be kept to a minimum.

PARAMETERS

ptcb Pointer to TCB of task being deleted.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskCreateHook

OSTaskDelHook
258 Dynamic C User’s Manual

INT8U OSTaskDelReq (INT8U prio);

DESCRIPTION

Notifies a task to delete itself. A well-behaved task is deleted when it regains control of
the CPU by calling OSTaskDelReq (OSTaskDelReq) and monitoring the return

value.

PARAMETERS

prio The priority of the task that is being asked to delete itself.
OS_PRIO_SELF is used when asking whether another task wants

the current task to be deleted.

RETURN VALUE

OS_NO_ERR The task exists and the request has been registered.

OS_TASK_NOT_EXIST The task has been deleted. This allows the caller to know

whether the request has been executed.

OS_TASK_DEL_IDLE If requesting to delete uC/OS-II's idletask.

OS_PRIO_INVALID The priority specified is higher than the maximum al-
lowed (i.e. >= OS_LOWEST_PRIO) or,
OS_PRIO_SELF is not specified.

OS_TASK_DEL_REQ A task (possibly another task) requested that the running

task be deleted.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskDel

OSTaskDelReq
Dynamic C User’s Manual 259

INT8U OSTaskQuery (INT8U prio, OS_TCB *pdata);

DESCRIPTION

Obtains a copy of the requested task's TCB.

PARAMETERS

prio Priority number of the task.

pdata Pointer to task’s TCB.

RETURN VALUE

OS_NO_ERR The requested task is suspended.

OS_PRIO_INVALID The priority you specify is higher than the maximum al-
lowed (i.e. >= OS_LOWEST_PRIO) or, OS_PRIO_SELF

is not specified.

OS_PRIO_ERR The desired task has not been created.

LIBRARY

UCOS2.LIB

OSTaskQuery
260 Dynamic C User’s Manual

INT8U OSTaskResume (INT8U prio);

DESCRIPTION

Resumes a suspended task. This is the only call that will remove an explicit task suspen-
sion.

PARAMETERS

prio The priority of the task to resume.

RETURN VALUE

OS_NO_ERR The requested task is resumed.

OS_PRIO_INVALID The priority specified is higher than the maximum al-
lowed (i.e. >= OS_LOWEST_PRIO).

OS_TASK_NOT_SUSPENDED The task to resume has not been suspended.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskSuspend

void OSTaskStatHook();

DESCRIPTION

Called every second by µC/OS-II's statistics task. This function resides in UCOS2.LIB

and allows an application to add functionality to the statistics task.

LIBRARY

UCOS2.LIB

OSTaskResume

OSTaskStatHook
Dynamic C User’s Manual 261

INT8U OSTaskStkChk (INT8U prio, OS_STK_DATA *pdata);

DESCRIPTION

Check the amount of free memory on the stack of the specified task.

PARAMETERS

prio The task’s priority.

pdata Pointer to a data structure of type OS_STK_DATA.

RETURN VALUE

OS_NO_ERR The call was successful.

OS_PRIO_INVALID The priority you specify is higher than the maximum al-
lowed (i.e. > OS_LOWEST_PRIO) or,
OS_PRIO_SELF not specified.

OS_TASK_NOT_EXIST The desired task has not been created.

OS_TASK_OPT_ERR If OS_TASK_OPT_STK_CHK was NOT specified

when the task was created.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskCreateExt

OSTaskStkChk
262 Dynamic C User’s Manual

INT8U OSTaskSuspend (INT8U prio);

DESCRIPTION

Suspends a task. The task can be the calling task if the priority passed to OSTaskSus-
pend() is the priority of the calling task or OS_PRIO_SELF. This function should be

used with great care. If a task is suspended that is waiting for an event (i.e. a message, a

semaphore, a queue ...) the task will be prevented from running when the event arrives.

PARAMETERS

prio The priority of the task to suspend.

RETURN VALUE

OS_NO_ERR The requested task is suspended.

OS_TASK_SUS_IDLE Attempting to suspend the idle task (not allowed).

OS_PRIO_INVALID The priority specified is higher than the max allowed (i.e.
>= OS_LOWEST_PRIO) or, OS_PRIO_SELF is not
specified .

OS_TASK_SUS_PRIO The task to suspend does not exist.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTaskResume

void OSTaskSwHook();

DESCRIPTION

Called whenever a context switch happens. The TCB for the task that is ready to run is

accessed via the global variable OSTCBHighRdy, and the TCB for the task that is being

switched out is accessed via the global variable OSTCBCur.

LIBRARY

UCOS2.LIB

OSTaskSuspend

OSTaskSwHook
Dynamic C User’s Manual 263

void OSTimeDly (INT16U ticks);

DESCRIPTION

Delays execution of the task for the specified number of clock ticks. No delay will result
if ticks is 0. If ticks is >0, then a context switch will result.

PARAMETERS

ticks Number of clock ticks to delay the task.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTimeDlyHMSM, OSTimeDlyResume, OSTimeDlySec

OSTimeDly
264 Dynamic C User’s Manual

INT8U OSTimeDlyHMSM (INT8U hours, INT8U minutes, INT8U seconds,
INT16U milli);

DESCRIPTION

Delays execution of the task until specified amount of time expires. This call allows the

delay to be specified in hours, minutes, seconds and milliseconds instead of ticks. The

resolution on the milliseconds depends on the tick rate. For example, a 10 ms delay is not
possible if the ticker interrupts every 100 ms. In this case, the delay would be set to 0.
The actual delay is rounded to the nearest tick.

PARAMETERS

hours Number of hours that the task will be delayed (max. is 255)

minutes Number of minutes (max. 59)

seconds Number of seconds (max. 59)

milli Number of milliseconds (max. 999)

RETURN VALUE

OS_NO_ERR

OS_TIME_INVALID_MINUTES

OS_TIME_INVALID_SECONDS

OS_TIME_INVALID_MS

OS_TIME_ZERO_DLY

LIBRARY

UCOS2.LIB

SEE ALSO

OSTimeDly, OSTimeDlyResume, OSTimeDlySec

OSTimeDlyHMSM
Dynamic C User’s Manual 265

INT8U OSTimeDlyResume (INT8U prio);

DESCRIPTION

Resumes a task that has been delayed through a call to either OSTimeDly() or OS-
TimeDlyHMSM(). Note that this function MUST NOT be called to resume a task that
is waiting for an event with timeout. This situation would make the task look like a tim-
eout occurred (unless this is the desired effect). Also, a task cannot be resumed that has

called OSTimeDlyHMSM() with a combined time that exceeds 65535 clock ticks. In

other words, if the clock tick runs at 100 Hz then, a delayed task will not be able to be

resumed that called OSTimeDlyHMSM(0, 10, 55, 350) or higher.

PARAMETERS

prio Priority of the task to resume.

RETURN VALUE

OS_NO_ERR Task has been resumed.

OS_PRIO_INVALID The priority you specify is higher than the maximum al-
lowed (i.e. >= OS_LOWEST_PRIO).

OS_TIME_NOT_DLY Task is not waiting for time to expire.

OS_TASK_NOT_EXIST The desired task has not been created.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTimeDly, OSTimeDlyHMSM, OSTimeDlySec

OSTimeDlyResume
266 Dynamic C User’s Manual

INT8U OSTimeDlySec (INT16U seconds);

DESCRIPTION

Delays execution of the task until seconds expires. This is a low-overhead version of
OSTimeDlyHMSM for seconds only.

PARAMETERS

seconds The number of seconds to delay.

RETURN VALUE

OS_NO_ERR The call was successful.

OS_TIME_ZERO_DLY A delay of zero seconds was requested.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTimeDly, OSTimeDlyHMSM, OSTimeDlyResume

INT32U OSTimeGet (void);

DESCRIPTION

Obtain the current value of the 32-bit counter that keeps track of the number of clock

ticks.

RETURN VALUE

The current value of OSTime

LIBRARY

UCOS2.LIB

SEE ALSO

OSTimeSet

OSTimeDlySec

OSTimeGet
Dynamic C User’s Manual 267

void OSTimeSet (INT32U ticks);

DESCRIPTION

Sets the 32-bit counter that keeps track of the number of clock ticks.

PARAMETERS

ticks The value to set OSTime to.

LIBRARY

UCOS2.LIB

SEE ALSO

OSTimeGet

void OSTimeTickHook();

DESCRIPTION

This function, as included with Dynamic C, is a stub that does nothing except return. It is
called every clock tick. If the user chooses to rewrite this function, code should be kept
to a minimum as it will directly affect interrupt latency. This function must preserve any

registers it uses, other than the ones that are preserved prior to the call to OSTimeTick-
Hook at the beginning of the periodic interrupt (periodic_isr in VDRIVER.LIB).
Therefore, OSTimeTickHook should be written in assembly. The registers saved by

periodic_isr are: AF,IP, HL,DE and IX.

LIBRARY

UCOS2.LIB

OSTimeSet

OSTimeTickHook
268 Dynamic C User’s Manual

INT16U OSVersion (void)

DESCRIPTION

Returns the version number of µC/OS-II. The returned value corresponds to µC/OS-II's

version number multiplied by 100; i.e., version 2.00 would be returned as 200.

RETURN VALUE

Version number multiplied by 100.

LIBRARY

UCOS2.LIB

char outchrs(char c, int n, int (*putc) ());

DESCRIPTION

Use putc to output n times the character c.

PARAMETERS

c Character to output

n Number of times to output

putc Routine to output one character. The function pointed to by putc

should take a character argument.

RETURN VALUE

The character in parameter c.

LIBRARY

STDIO.LIB

SEE ALSO

outstr

OSVersion

outchrs
Dynamic C User’s Manual 269

char *outstr(char *string, int (*putc)());

DESCRIPTION

Output the string pointed to by string via calls to putc. putc should take a one-
character parameter.

PARAMETERS

string String to output

putc Routine to output one character. The function pointed to by putc

should take a character argument.

RETURN VALUE

Pointer to NULL at end of string.

LIBRARY

STDIO.LIB

SEE ALSO

outchrs

unsigned long paddr(void* pointer)

DESCRIPTION

Converts a logical pointer into its physical address. Use caution when converting address

in the E000-FFFF range. Returns the address based on the XPC on entry.

PARAMETERS

pointer The pointer to convert.

RETURN VALUE

The physical address of the pointer.

LIBRARY

XMEM.LIB

outstr

paddr
270 Dynamic C User’s Manual

float poly(float x, int n, float c[]);

DESCRIPTION

Computes polynomial value by Horner's method. For example, for the fourth-order poly-
nomial 10x4 – 3x2 + 4x + 6, n would be 4 and the coefficients would be

c[4] = 10.0
c[3] = 0.0
c[2] = –3.0
c[1] = 4.0
c[0] = 6.0

PARAMETERS

x Variable of the polynomial.

n The order of the polynomial

c Array containing the coefficients of each power of x.

RETURN VALUE

The polynomial value.

LIBRARY

MATH.LIB

poly
Dynamic C User’s Manual 271

float pow(float x, float y);

DESCRIPTION

Raises x to the yth power.

PARAMETERS

x Value to be raised

y Exponent

RETURN VALUE

x to the yth power

LIBRARY

MATH.LIB

SEE ALSO

exp, pow10, sqrt

float pow10(float x);

DESCRIPTION

10 to the power of x.

PARAMETERS

x Exponent

RETURN VALUE

10 raised to power x

LIBRARY

MATH.LIB

SEE ALSO

pow, exp, sqrt

pow

pow10
272 Dynamic C User’s Manual

void powerspectrum(int *x, int N, *int blockexp)

DESCRIPTION

Computes the power spectrum from a complex spectrum according to

Power[k] = (Re X[k])2 + (Im X[k])2

The N-point power spectrum replaces the N-point complex spectrum. The power of each

complex spectral component is computed as a 32-bit fraction. Its more significant 16-bits

replace the imaginary part of the component; its less significant 16-bits replace the real
part.

If the complex input spectrum is a positive-frequency spectrum computed by fftre-
al(), the imaginary part of the X[0] term (stored x[1]) will contain the real part of the

fmax term and will affect the calculation of the dc power. If the dc power or the fmax pow-
er is important, the fmax term should be retrieved from x[1] and x[1] set to zero before

calling powerspectrum().

The power of the k th term can be retrieved via

P[k]=*(long*)&x[2k]*2^blockexp.

The value of blockexp is first doubled to reflect the squaring operation applied to all
elements in array x. Then it is further increased by 1 to reflect an inherent division-by-
two that occurs during the squaring operation.

PARAMETERS

x pointer to N-element array of complex fractions.

N number of complex elements in array x.

blockexp pointer to integer block exponent.

LIBRARY

FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal

powerspectrum
Dynamic C User’s Manual 273

void premain();

DESCRIPTION

Dynamic C calls premain to start initialization functions such as VdInit. The final
thing premain does is call main. This function should never be called by an applica-
tion program. It is included here for informational purposes only.

LIBRARY

PROGRAM.LIB

void printf(char *fmt, ...);

DESCRIPTION

Outputs the formatted string to the Stdio window in Dynamic C. It will work only when

the controller is in program mode and is connected to the PC running Dynamic C. Unlike

sprintf, only one process should use this function at any time.

PARAMETERS

format String to be formatted.

... Format arguments.

LIBRARY

STDIO.LIB

SEE ALSO

sprintf

premain

printf
274 Dynamic C User’s Manual

void putchar(int ch);

DESCRIPTION

Puts a single character to STDOUT. The user should make sure only one process calls

this function at a time.

PARAMETERS

ch Character to be displayed.

LIBRARY

STDIO.LIB

SEE ALSO

puts, getchar

int puts(char *s);

DESCRIPTION

This function displays the string on the stdio window in Dynamic C. The STDIO window

is responsible for interpreting any escape code sequences contained in the string. Only

one process at a time should call this function.

PARAMETERS

s Pointer to string argument to be displayed.

RETURN VALUE

1 if successful.

LIBRARY

STDIO.LIB

SEE ALSO

putchar, gets

putchar

puts
Dynamic C User’s Manual 275

int qsort(char *base, unsigned n, unsigned s, int (*cmp) ());

DESCRIPTION

Quick sort with center pivot, stack control, and easy-to-change comparison method. This

version sorts fixed-length data items. It is ideal for integers, longs, floats and packed

string data without delimiters.

Can sort raw integers, longs, floats or strings. However, the string sort is not efficient.

PARAMETERS

base Base address of the raw string data

n Number of blocks to sort

s Number of bytes in each block

cmp User-supplied compare routine for two block pointers, p and q, that
returns an int with the same rules used by Unix strcmp(p,q):

 = 0 Blocks p and q are equal
< 0 p < q
> 0 p > q

Beware of using ordinary strcmp()—it requires a NULL at the

end of each string.

RETURN VALUE

0 if the operation is successful.

LIBRARY

SYS.LIB

qsort
276 Dynamic C User’s Manual

EXAMPLE

Output from the above sample program:
0. -90, 12
1. -2, 1
2. 1, 3
3. 3, -2
4. 7, 16
5. 9, 7
6. 10, 9
7. 12, 34
8. 16, -90
9. 34, 10

float rad(float x);

DESCRIPTION

Convert degrees (360 for one rotation) to radians (2π for a rotation).

PARAMETERS

x Degree value to convert

RETURN VALUE

The radians equivalent of degree.

LIBRARY

SYS.LIB

SEE ALSO

deg

// Sort an array of integers.
int mycmp(p,q) int *p,*q; { return (*p - *q);}
const int q[10] = {12,1,3,-2,16,7,9,34,-90,10};
const int p[10] = {12,1,3,-2,16,7,9,34,-90,10};
main() {

int i;
qsort(p,10,2,mycmp);
for(i=0;i<10;++i) printf("%d. %d, %d\n",i,p[i],q[i]);

}

rad
Dynamic C User’s Manual 277

float rand(void);

DESCRIPTION

Uses algorithm rand = (5*rand)modulo 2^32. The random seed is a global un-
signed long, ran_seed, set by initialization (GLOBAL_INIT). It may be modified by

the user. This function is not task reentrant.

RETURN VALUE

A uniformly distributed random number: 0.0 <= v < 1.0.

LIBRARY

MATH.LIB

SEE ALSO

randb, randg

float randb(void);

DESCRIPTION

Uses algorithm rand = (5*rand)modulo 2^32. The random seed is a global un-
signed long, ran_seed, set by initialization (GLOBAL_INIT). It may be modified by

the user. This function is not task reentrant.

RETURN VALUE

Returns a uniformly distributed random number: -1.0 <= v < 1.0.

LIBRARY

MATH.LIB

SEE ALSO

rand, randg

rand

randb
278 Dynamic C User’s Manual

float randg(void);

DESCRIPTION

Distribution is made by adding 16 random numbers uniformly distributed as -1.0 < v <

1.0. Standard deviation is approximately 2.6, mean 0. Algorithm used is rand =
(5*rand)modulo 2^32. The random seed is a global unsigned long, ran_seed,

set by initialization (GLOBAL_INIT). It may be modified by the user. This function is
not task reentrant.

RETURN VALUE

A gaussian distributed random number: -16.0 <= v <16.0.

LIBRARY

MATH.LIB

SEE ALSO

rand, randb

int RdPortE(int port);

DESCRIPTION

Reads an external I/O register specified by the argument.

PARAMETERS

port Address of external parallel port data register.

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port speci-
fied by the argument. Upper byte contains zero.

LIBRARY

SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortE,
BitWrPortE

randg

RdPortE
Dynamic C User’s Manual 279

int RdPortI(int port);

DESCRIPTION

Reads an internal I/O port specified by the argument.

PARAMETERS

port Address of internal parallel port data register.

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port speci-
fied by the argument. Upper byte contains zero.

LIBRARY

SYSIO.LIB

SEE ALSO

RdPortE, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortE,
BitWrPortE

unsigned long read_rtc(void);

DESCRIPTION

Reads the RTC directly - use with caution! In most cases use long variable SEC_TIMER

which contains the same result, unless the RTC has been changed since the start of the

program. If you are running the processor off the 32kHz crystal, use the

read_rtc_32kHz() function instead.

RETURN VALUE

Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY

RTCLOCK.LIB

SEE ALSO

write_rtc

RdPortI

read_rtc
280 Dynamic C User’s Manual

unsigned long read_rtc_32kHz(void);

DESCRIPTION

Reads the real-time clock directly when the Rabbit processor is running off the 32kHz os-
cillator. See read_rtc for more details.

RETURN VALUE

Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY

RTCLOCK.LIB

void res(void *address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline

Clears specified bit at memory address to 0. bit may be from 0 to 31. This is equivalent
to the following expression, but more efficient:
*(long *)address &= ~(1L << bit)

PARAMETERS

address Address of byte containing bits 7-0

bit Bit location where 0 represents the least significant bit

LIBRARY

UTIL.LIB

SEE ALSO

RES

read_rtc_32kHz

res
Dynamic C User’s Manual 281

void RES(void *address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline.

Clears specified bit at memory address to 0. bit may be from 0 to 31. This is equivalent
to the following expression, but more efficient:
*(long *)address &= ~(1L << bit)

PARAMETERS

address Address of byte containing bits 7-0

bit Bit location where 0 represents the least significant bit

LIBRARY

UTIL.LIB

SEE ALSO

res

RES
282 Dynamic C User’s Manual

int root2xmem(unsigned long dest, void *src, unsigned len);

DESCRIPTION

Stores len characters from logical address src to physical address dest.

PARAMETERS

dest Physical address

src Logical address

len Numbers of bytes

RETURN VALUE

0—success
1—attempt to write Flash Memory area, nothing written
2—source not all in root

LIBRARY

XMEM.LIB

SEE ALSO

xalloc, xmem2root

void runwatch();

DESCRIPTION

Runs and updates watch expressions if Dynamic C has requested it with a Ctrl-U. Should

be called periodically in user program.

LIBRARY

SYS.LIB

root2xmem

runwatch
Dynamic C User’s Manual 283

int serCheckParity(char rx_byte, char parity);

DESCRIPTION

This function is different from the other serial routines in that it does not specify a partic-
ular serial port. This function takes any 8-bit character and tests it for correct parity. It
will return true if the parity of rx_byte matches the parity specified. This function is

useful for checking individual characters when using a 7-bit data protocol.

PARAMETERS

rx_byte The 8 bit character being tested for parity.

parity The character ‘O’ for odd parity, or the character ‘E’ for even parity.

RETURN VALUE

1 - if the parity of the byte being tested matches the parity supplied as an argument.
0 - if the parity of the byte does not match.

LIBRARY

RS232.LIB

void serXclose(); /* where X = A|B|C|D */

DESCRIPTION

Disables serial port X. This function is non-reentrant.

LIBRARY

RS232.LIB

serCheckParity

serXclose
284 Dynamic C User’s Manual

void serXdatabits(state); /* where X = A|B|C|D */

DESCRIPTION

Sets the number of data bits in the serial format for this channel. Currently seven or eight
bit modes are supported. This function is non-reentrant.

PARAMETERS

state An integer indicating what bit mode to use. It is best to use one of
the macros provided for this:

PARAM_7BIT Configures serial port to use seven bit data

PARAM_8BIT Configures serial port to use eight bit data (default)

LIBRARY

RS232.LIB

void serXflowcontrolOff(); /* where X = A|B|C|D */

DESCRIPTION

Turns off hardware flow control for serial port X. This function is non-reentrant.

LIBRARY

RS232.LIB

serXdatabits

serXflowcontrolOff
Dynamic C User’s Manual 285

void serXflowcontrolOn(); /* where X = A|B|C|D */

DESCRIPTION

Turns on hardware flow control for channel X. This enables two digital lines that handle

flow control, CTS (clear to send) and RTS (ready to send). CTS is an input that will be

pulled active low by the other system when it is ready to receive data. The RTS signal is

an output that the system uses to indicate that it is ready to receive data; it is driven low

when data can be received.

This function is non-reentrant.

If pins for the flow control lines are not explicitly defined, defaults will be used and com-
piler warnings will be issued. The locations of the flow control lines are specified using

a set of 5 macros (X is A|B|C|D).

SERX_RTS_PORT Data register for the parallel port that the RTS line is on. e.g.
PCDR

SERA_RTS_SHADOW Shadow register for the RTS line's parallel port. e.g.
PCDRShadow

SERA_RTS_BIT The bit number for the RTS line

SERA_CTS_PORT Data register for the parallel port that the CTS line is on

SERA_CTS_BIT The bit number for the CTS line

 LIBRARY

RS232.LIB

serXflowcontrolOn
286 Dynamic C User’s Manual

int serXgetc(); /* where X = A|B|C|D */

DESCRIPTION

Get next available character from serial port X read buffer. This function is non-reentrant.

RETURN VALUE

Success: the next character in the low byte, 0 in the high byte
Failure: -1

LIBRARY

RS232.LIB

EXAMPLE

serXgetc

// echoes characters
main() {

int c;
serAopen(19200);
while (1) {

if ((c = serAgetc()) != -1) {
serAputc(c);

}
}
serAclose()

}

Dynamic C User’s Manual 287

int serXgetError(); /* where X = A|B|C|D */

DESCRIPTION

Returns a byte of error flags, with bits set for any errors that occurred since the last time

this function was called. Any bits set will be automatically cleared when this function is

called, so a particular error will only be reported once. This function is non-reentrant.

The flags are checked with bitmasks to determine which errors occurred. Error bitmasks:

SER_PARITY_ERROR
SER_OVERRUN_ERROR

RETURN VALUE

The error flags byte.

LIBRARY

RS232.LIB

serXgetError
288 Dynamic C User’s Manual

int serXopen(long baud); /* where X = A|B|C|D */

DESCRIPTION

Opens serial port X. This function is non-reentrant.

Defining Buffer Sizes: XINBUFSIZE and XOUTBUFSIZE

The user must define the buffer sizes for each port being used to be a power of 2 minus 1

with a macro, e.g.

#define XINBUFSIZE 63
#define XOUTBUFSIZE 127

Defining the buffer sizes to 2n - 1 makes the circular buffer operations very efficient. If a

value not equal to 2n- 1 is defined, a default of 31 is used and a compiler warning is given.

PARAMETERS

baud Bits per second of data transfer. Note that the baud rate must be

greater than or equal to the peripheral clock frequency ÷ 8192.

RETURN VALUE

1, if the baud rate achieved on the Rabbit is the same as the input baud rate.
0, if the baud rate achieved on the Rabbit does not match the input baud rate.

LIBRARY

RS232.LIB

SEE ALSO

serXgetc, serXpeek, serXputs, serXwrite, cof_serXgetc,
cof_serXgets, cof_serXread, cof_serXputc, cof_serXputs,
cof_serXwrite, serXclose

serXopen
Dynamic C User’s Manual 289

void serXparity(int parity_mode); /* where X = A|B|C|D */

DESCRIPTION

Sets parity mode for channel X. This function is non-reentrant.

Parity generation for 8 bit data can be unusually slow due to the current method for gen-
erating high 9th bits. Whenever, a 9th high bit is needed, the UART is disabled for ap-
proximately 5 baud times to create a long stop bit that should be recognized by the

receiver as a 9th high bit. The long delay is needed if we are using the serial port itself to

handle timing for the delay. Creating a shorter delay would the require use of some other
timer resource. Additionally, transmitting these long stops interferes with the receiver,
since the baud rate is temporarily increased. Thus, 9th bit formats can only be used in

half-duplex mode.

PARAMETERS

parity_mode An integer indicating what parity mode to use. It is best to use

one of the macros provided:

PARAM_NOPARITY Disables parity handling (default)

PARAM_OPARITY Configures serial port to check/generate for odd parity

PARAM_EPARITY Configures serial port to check/generate for even parity

PARAM_2STOP Configures serial port to generate 2 stop bits

LIBRARY

RS232.LIB

serXparity
290 Dynamic C User’s Manual

int serXpeek(); /* where X = [A|B|C|D] */

DESCRIPTION

Returns 1st character in input buffer X, without removing it from the buffer. This function

is non-reentrant.

RETURN VALUE

An integer with 1st character in buffer in the low byte
-1 if the buffer is empty

LIBRARY

RS232.LIB

int serXputc(char c); /* where X = A|B|C|D */

DESCRIPTION

Writes a character to serial port X write buffer. This function is non-reentrant.

PARAMETERS

c Character to write to serial port X write buffer.

RETURN VALUE

0 if buffer locked or full, 1 if character sent.

LIBRARY

RS232.LIB

EXAMPLE

serXpeek

serXputc

main() { // echoes characters
int c;
serAopen(19200);
while (1) {

if ((c = serAgetc()) != -1) {
serAputc(c);

}
}
serAclose();

}

Dynamic C User’s Manual 291

int serXputs(char* s); /* where X = A|B|C|D */

DESCRIPTION

Calls serXwrite(s, strlen(s)). This function is non-reentrant.

PARAMETERS

s NULL-terminated character string to write

RETURN VALUE

The number of characters actually sent from serial port X.

LIBRARY

RS232.LIB

EXAMPLE

void serXrdFlush(); /* where X = A|B|C|D */

DESCRIPTION

Flushes serial port X input buffer. This function is non-reentrant.

LIBRARY

RS232.LIB

serXputs

// writes a null-terminated string of characters, repeatedly
main() {

const char s[] = "Hello Z-World";
serAopen(19200);
while (1) {

serAputs(s);
}
serAclose();

}

serXrdFlush
292 Dynamic C User’s Manual

int serXrdFree(); /* where X = A|B|C|D */

DESCRIPTION

Calculates the number of characters of unused data space. This function is non-reentrant.

RETURN VALUE

The number of chars it would take to fill input buffer X.

LIBRARY

RS232.LIB

int serXrdUsed(); /* where X = A|B|C|D */

DESCRIPTION

Calculates the number of characters ready to read from the serial port receive buffer. This
function is non-reentrant.

RETURN VALUE

The number of characters currently in serial port X receive buffer.

LIBRARY

RS232.LIB

serXrdFree

serXrdUsed
Dynamic C User’s Manual 293

int serXread(void *data, int length, unsigned long tmout);
/* where X = A|B|C|D */

DESCRIPTION

Reads length bytes from serial port X or until tmout milliseconds transpires between

bytes. The countdown of tmout does not begin until a byte has been received. A timeout
occurs immediately if there are no characters to read. This function is non-reentrant.

PARAMETERS

data Data structure to read from serial port X

length Number of bytes to read

tmout Maximum wait in milliseconds for any byte from previous one

RETURN VALUE

The number of bytes read from serial port X.

LIBRARY

RS232.LIB

EXAMPLE

serXread

// echoes a blocks of characters
main() {

int n;
char s[16];
serAopen(19200);
while (1) {

if ((n = serAread(s, 15, 20)) > 0) {
serAwrite(s, n);

}
}
serAclose();

}

294 Dynamic C User’s Manual

void serXwrFlush(); /* where X = A|B|C|D */

DESCRIPTION

Flushes serial port X transmit buffer. This function is non-reentrant.

LIBRARY

RS232.LIB

int serXwrfree(); /* where X = A|B|C|D */

DESCRIPTION

Calculates the free space in the serial port transmit buffer. This function is non-reentrant.

RETURN VALUE

The number of characters the serial port transmit buffer can accept before becoming full.

LIBRARY

RS232.LIB

int serXwrite(void *data, int length); /* where X = A|B|C|D */

DESCRIPTION

Transmits length bytes to serial port X. This function is non-reentrant.

PARAMETERS

data Data structure to write to serial port X.

length Number of bytes to write

RETURN VALUE

The number of bytes successfully written to the serial port.

LIBRARY

RS232.LIB

EXAMPLE

serXwrFlush

serXwrFree

serXwrite
Dynamic C User’s Manual 295

void set(void *address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline

Sets specified bit at memory address to 1. bit may be from 0 to 31. This is equivalent to

the following expression, but more efficient:
*(long *)address |= 1L << bit

PARAMETERS

address Address of byte containing bits 7-0

bit Bit location where 0 represents the least significant bit

LIBRARY

UTIL.LIB

SEE ALSO

SET

// writes a block of characters, repeatedly
main() {

const char s[] = "Hello Z-World";
serAopen(19200);
while (1) {

serAwrite(s, strlen(s));
}

serAclose();
}

set
296 Dynamic C User’s Manual

void SET(void *address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline

Sets specified bit at memory address to 1. bit may be from 0 to 31. This is equivalent to

the following expression, but more efficient:
*(long *)address |= 1L << bit

PARAMETERS

address Address of byte containing bits 7-0

bit Bit location where 0 represents the least significant bit

LIBRARY

UTIL.LIB

SEE ALSO

set

SET
Dynamic C User’s Manual 297

int setjmp(jmp_buf env);

DESCRIPTION

Store the PC (program counter), SP (stack pointer) and other information about the cur-
rent state into env. The saved information can be restored by executing longjmp.

Typical usage:

switch (setjmp(e)) {
case 0: // first time

f(); // try to execute f(), may call longjmp
break; // if we get here, f() was successful

case 1: // to get here, f() called longjmp
do exception handling
break;

case 2: // like above, different exception code
...

}
f() {

g()
...

}
g() {

...
longjmp(e,2); // exception code 2, jump to setjmp state

// ment, but causes setjmp to return 2,
// so execute case 2 in the switch
// statement

}

PARAMETERS

env Information about the current state

RETURN VALUE

Returns zero if it is executed. After longjmp is executed, the program counter, stack point-
er and etc. are restored to the state when setjmp was executed the first time. However,
this time setjmp returns whatever value is specified by the longjmp statement.

LIBRARY

SYS.LIB

SEE ALSO

longjmp

setjmp
298 Dynamic C User’s Manual

unsigned SetVectExtern2000(int priority, void *isr);

DESCRIPTION

Sets up the external interrupt table vectors for external interrupts 0 and 1. This function

is presently used for Rabbit 2000 microprocessors because of the way they handle inter-
rupts. Once this function is called, both interrupts 0 and 1 should be enabled with priority

3; the actual priority used by the interrupt service routine is passed to this function.

PARAMETERS

priority Priority the ISR should run at. Valid values are 1–3.

isr ISR handler address. Must be a root address.

RETURN VALUE

Address of vector table entry, or zero if the priority is not valid.

LIBRARY

SYS.LIB

SEE ALSO

GetVectExtern2000, SetVectIntern, GetVectIntern

SetVectExtern2000
Dynamic C User’s Manual 299

unsigned SetVectIntern(int vectNum, void *isr);

DESCRIPTION

Sets an internal interrupt table entry. All Rabbit interrupts use jump vectors. This function

writes a jp instruction (0xC3) followed by the 16 bit ISR address. It is perfectly permis-
sible to have ISRs in xmem and do long jumps to them from the vector table. It is even

possible to place the entire body of the ISR in the vector table if it is 16 bytes long or less,
but this function only sets up jumps to 16 bit addresses.

PARAMETERS

vectNum Interrupt number: 0–15 are the only valid values.

isr ISR handler address. Must be a root address.

RETURN VALUE

Address of vector table entry, or zero if vectnum is not valid.

LIBRARY

SYS.LIB

SEE ALSO

GetVectExtern2000, SetVectExtern2000, GetVectIntern

float sin(float x);

DESCRIPTION

Computes the sine of x.

PARAMETERS

x Value to compute

RETURN VALUE

Sine of x.

LIBRARY

MATH.LIB

SEE ALSO

sinh, asin, cos, tan

SetVectIntern

sin
300 Dynamic C User’s Manual

float sinh(float x);

DESCRIPTION

Computes the hyperbolic sine of x.

PARAMETERS

x Value to compute

RETURN VALUE

The hyperbolic sine of x.

If x > 89.8 (approx.), the function returns INF and signals a range error. If x < − 89.8

(approx.), the function returns –INF and signals a range error.

LIBRARY

MATH.LIB

SEE ALSO

sin, asin, cosh, tanh

sinh
Dynamic C User’s Manual 301

void sprintf(char *buffer, char *format, ...);

DESCRIPTION

This function takes a format string (pointed to by format), arguments of the format,
and output the formatted string to buffer (pointed to by buffer). The user should

make sure that:

•there are enough arguments after format to fill in the format parameters in the

format string.

• the types of arguments after format match the format fields in format.

• the buffer is large enough to hold the longest possible formatted string.

The following is a short list of possible format parameters in the format string. For more

details, refer to any C language book.

%d decimal integer (expects type int)
%u decimal unsigned integer (expects type unsigned int)
%x hexidecimal integer (expects type signed int or unsigned int)
%s a string (not interpreted, expects type (char *))
%f a float (expects type float)

For example, sprintf(buffer,"%s=%x","variable x",256); should put
the string variable x=100 into buffer.

This function can be called by processes of different priorities.

PARAMETERS

buffer Result string of the formatted string.

format String to be formatted.

... Format arguments.

LIBRARY

STDIO.LIB

SEE ALSO

printf

sprintf
302 Dynamic C User’s Manual

float sqrt(float x);

DESCRIPTION

Calculate the square root of x.

PARAMETERS

x Value to compute

RETURN VALUE

The square root of x.

LIBRARY

MATH.LIB

SEE ALSO

exp, pow, pow10

char *strcat(char *dst, char *src);

DESCRIPTION

Appends one string to another

PARAMETERS

dst Pointer to location to destination string.

src Pointer to location to source string.

RETURN VALUE

Pointer to destination string.

LIBRARY

STRING.LIB

SEE ALSO

strncat

sqrt

strcat
Dynamic C User’s Manual 303

char *strchr(char *src, char ch);

DESCRIPTION

Scans a string for the first occurrence of a given character.

PARAMETERS

src String to be scanned.

ch Character to search

RETURN VALUE

Pointer to the first occurrence of ch in src.
NULL if ch is not found.

LIBRARY

STRING.LIB

SEE ALSO

strrchr, strtok

strchr
304 Dynamic C User’s Manual

int strcmp(char *str1, char *str2)

DESCRIPTION

Performs unsigned character by character comparison of two NULL-terminated strings.

PARAMETERS

str1 Pointer to string 1.

str2 Pointer to string 2.

RETURN VALUE

< 0 if str1 is less than str2

char in str1 is less than corresponding char in str2

 str1 is shorter than but otherwise identical to str2

= 0 str1 is identical to str2

> 0 if str1 is greater than str2

char in str2 is greater than corresponding char in str2
 str2 is shorter than but otherwise identical to str1

LIBRARY

STRING.LIB

SEE ALSO

strncmp, strcmpi, strncmpi

strcmp
Dynamic C User’s Manual 305

int *strcmpi(char *str1, char *str2);

DESCRIPTION

Performs case-insensitive unsigned character by character comparison of two null termi-
nated strings.

PARAMETERS

str1 Pointer to string 1.

str2 Pointer to string 2.

RETURN VALUE

< 0 if str1 is less than str2

char in str1 is less than corresponding char in str2
str1 is shorter than but otherwise identical to str2

= 0 str1 is identical to str2

> 0 if str1 is greater than str2
char in str2 is greater than corresponding char in str2
str2 is shorter than but otherwise identical to str1

LIBRARY

STRING.LIB

SEE ALSO

strncmpi, strncmp, strcmp

strcmpi
306 Dynamic C User’s Manual

char *strcpy(char *dst, char *src);

DESCRIPTION

Copies one string into another string including the NULL terminator.

PARAMETERS

dst Pointer to location to receive string.

src Pointer to location to supply string.

RETURN VALUE

Pointer to destination string.

LIBRARY

STRING.LIB

SEE ALSO

strncpy

unsigned int strcspn(char *s1, char *s2);

DESCRIPTION

Scans a string for the occurrence of any of the characters in another string.

PARAMETERS

s1 String to be scanned.

s2 Character occurrence string.

RETURN VALUE

Returns the position (less one) of the first occurrence of a character in s1 that matches

any character in s2.

LIBRARY

STRING.LIB

SEE ALSO

strchr, strrchr, strtok

strcpy

strcspn
Dynamic C User’s Manual 307

int strlen(char *s);

DESCRIPTION

Calculate the length of a string.

PARAMETERS

s Character string

RETURN VALUE

Number of bytes in a string.

LIBRARY

STRING.LIB

char *strncat(char *dst, char *src, unsigned int n);

DESCRIPTION

Appends one string to another up to and including the NULL terminator or until n char-
acters are transferred, followed by a NULL terminator.

PARAMETERS

dst Pointer to location to receive string.

src Pointer to location to supply string.

n Maximum number of bytes to copy. If equal to zero, this function

has no effect.

RETURN VALUE

Pointer to destination string.

LIBRARY

STRING.LIB

SEE ALSO

strcat

strlen

strncat
308 Dynamic C User’s Manual

int strncmp(char *str1, char *str2, n)

DESCRIPTION

Performs unsigned character by character comparison of two strings of length n.

PARAMETERS

str1 Pointer to string 1.

str2 Pointer to string 2.

n Maximum number of bytes to compare. If zero, both strings are con-
sidered equal.

RETURN VALUE

< 0 if str1 is less than str2

char in str1 is less than corresponding char in str2

= 0 if str1 is identical to str2

> 0 if str1 is greater than str2

char in str2 is greater than corresponding char in str2

LIBRARY

STRING.LIB

SEE ALSO

strcmp, strcmpi, strncmpi

strncmp
Dynamic C User’s Manual 309

int strncmpi(char *str1, char *str2, unsigned n)

DESCRIPTION

Performs case-insensitive unsigned character by character comparison of two strings of
length n.

PARAMETERS

str1 Pointer to string 1.

str2 Pointer to string 2.

n Maximum number of bytes to compare, if zero then strings are con-
sidered equal

RETURN VALUE

< 0 if str1 is less than str2

char in str1 is less than corresponding char in str2

= 0 if str1 is identical to str2

> 0 if str1 is greater than str2
char in str2 is greater than corresponding char in str2

LIBRARY

STRING.LIB

SEE ALSO

strcmpi, strcmp, strncmp

strncmpi
310 Dynamic C User’s Manual

char *strncpy(char *dst, char *src, unsigned int n);

DESCRIPTION

Copies a given number of characters from one string to another and padding with NULL

characters or truncating as necessary.

PARAMETERS

dst Pointer to location to receive string.

src Pointer to location to supply string.

n Maximum number of bytes to copy. If equal to zero, this function

has no effect.

RETURN VALUE

Pointer to destination string.

LIBRARY

STRING.LIB

SEE ALSO

strcpy

strncpy
Dynamic C User’s Manual 311

char *strpbrk(char *s1, char *s2);

DESCRIPTION

Scans a string for the first occurrence of any character from another string.

PARAMETERS

s1 String to be scanned.

s2 Character occurrence string.

RETURN VALUE

Pointer pointing to the first occurrence of a character contained in s2 in s1. Returns
NULL if not found.

LIBRARY

STRING.LIB

SEE ALSO

strchr, strrchr, strtok

char *strrchr(char *s, int c);

DESCRIPTION

Similar to strchr, except this function searches backward from the end of s to the be-
ginning.

PARAMETERS

s String to be searched

c Search character

RETURN VALUE

Pointer to last occurrence of c in s. If c is not found in s, return NULL.

LIBRARY

STRING.LIB

SEE ALSO

strchr, strcspn, strtok

strpbrk

strrchr
312 Dynamic C User’s Manual

size_t strspn(char *src, char *brk);

DESCRIPTION

Scans a string for the first segment in src containing only characters specified in brk.

PARAMETERS

src String to be scanned

brk Set of characters

RETURN VALUE

Returns the length of the segment.

LIBRARY

STRING.LIB

char *strstr(char *s1, char *s2);

DESCRIPTION

Finds a substring specified by s2 in string s1.

PARAMETERS

s1 String to be scanned

s2 Substring

RETURN VALUE

Pointer pointing to the first occurrence of substring s2 in s1. Returns NULL if s2 is not
found in s1.

LIBRARY

STRING.LIB

SEE ALSO

strcspn, strrchr, strtok

strspn

strstr
Dynamic C User’s Manual 313

float strtod(char *s, char **tailptr);

DESCRIPTION

ANSI String to Float Conversion.

PARAMETERS

s String to convert

tailptr Pointer to a pointer of character. The next conversion may resume

at the location specified by *tailptr.

RETURN VALUE

The float number.

LIBRARY

STRING.LIB

SEE ALSO

atof

strtod
314 Dynamic C User’s Manual

char *strtok(char *src, char *brk);

DESCRIPTION

Scans src for tokens separated by delimiter characters specified in brk.

First call with non-NULL for src. Subsequent calls with NULL for src continue to

search tokens in the string. If a token is found (i.e., delineators found), replace the first
delimiter in src with a NULL terminator so that src points to a proper NULL-terminated

token.

PARAMETERS

src String to be scanned, must be in SRAM, cannot be a constant. In

contrast, strings initialized when they are declared are stored in

Flash Memory, and are treated as constants.

brk Character delimiter

RETURN VALUE

Pointer to a token. If no delimiter (therefore no token) is found, returns NULL.

LIBRARY

STRING.LIB

SEE ALSO

strchr, strrchr, strstr, strcspn

strtok
Dynamic C User’s Manual 315

long strtol(char *sptr, char **tailptr, int base);

DESCRIPTION

ANSI String to Long Conversion.

PARAMETERS

sptr String to convert

tailptr Assigned the last position of the conversion. The next conversion

may resume at the location specified by *tailptr.

base Indicates the radix of conversion.

RETURN VALUE

The long integer.

LIBRARY

STRING.LIB

SEE ALSO

atoi, atol

void _sysIsSoftReset();

DESCRIPTION

This function determines whether this restart of the board is due to a software reset from

Dynamic C or a call to forceReset(). If it was a soft reset, this function then does

the following:

Calls _prot_init() to initialize the protected variable mechanisms. It is up to the

user to initialize protected variables.

Calls sysResetChain(). The user my attach functions to this chain to perform addi-
tional startup actions (for example, initializing protected variables). If a soft reset did not
take place, this function calls _prot_recover() to recover any protected variables.

LIBRARY

SYS.LIB

strtol

_sysIsSoftReset
316 Dynamic C User’s Manual

void sysResetChain (void);

DESCRIPTION

This is a function chain that should be used to initialize protected variables. By default,
it's empty.

LIBRARY

SYS.LIB

float tan(float x);

DESCRIPTION

Compute the tangent of the argument.

PARAMETERS

x Value to compute

RETURN VALUE

Returns the tangent of x, where –8 × PI ≤ x ≤ +8 × PI. If x is out of bounds, the function

returns 0 and signals a domain error. If the value of x is too close to a multiple of 90°

(PI/2) the function returns INF and signals a range error.

LIBRARY

MATH.LIB

SEE ALSO

atan, cos, sin, tanh

sysResetChain

tan
Dynamic C User’s Manual 317

float tanh(float x);

DESCRIPTION

Computes the hyperbolic tangent of argument.

PARAMETERS

x Value to compute

RETURN VALUE

Returns the hyperbolic tangent of x. If x > 49.9 (approx.), the function returns INF and

signals a range error. If x < −49.9 (approx.), the function returns –INF and signals a range

error.

LIBRARY

MATH.LIB

SEE ALSO

atan, cosh, sinh, tan

tanh
318 Dynamic C User’s Manual

int tm_rd(struct tm *t);

DESCRIPTION

Reads the current system time into the structure t. WARNING: The variable

SEC_TIMER is initialized when a program is first started. If you change the Real Time

Clock (RTC), this variable will not be updated until you restart a program, and the tm_rd

function will not return the time that the RTC has been reset to. The read_rtc function

will read the actual RTC and can be used if necessary.

PARAMETERS

t Address of structure to store time data

struct tm {
char tm_sec; // seconds 0-59
char tm_min; // 0-59
char tm_hour; // 0-23
char tm_mday; // 1-31
char tm_mon; // 1-12
char tm_year; // 80-147 (1980-2047)
char tm_wday; // 0-6 0==Sunday

};

RETURN VALUE

0 if successful,
-1 if clock read failed.

LIBRARY

RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm_wr

tm_rd
Dynamic C User’s Manual 319

int tm_wr(struct tm *t);

DESCRIPTION

Sets the system time from a tm struct. It is important to note that although tm_rd()

reads the SEC_TIMER variable, not the RTC, tm_wr() writes to the RTC directly, and

SEC_TIMER is not changed until the program is restarted. The reason for this is so that
the DelaySec() function continues to work correctly after setting the system time. To

make tm_rd() match the new time written to the RTC without restarting the program,
the following should be done:

tm_wr(tm);
SEC_TIMER = mktime(tm);

But this could cause problems if a waitfor(DelaySec(n)) is pending completion

in a cooperative multitasking program or if the SEC_TIMER variable is being used in an-
other way the user, so user beware.

PARAMETERS

t Pointer to structure to read date and time from.

struct tm {
char tm_sec; // seconds 0-59
char tm_min; // 0-59
char tm_hour; // 0-23
char tm_mday; // 1-31
char tm_mon; // 1-12
char tm_year; // 80-147 (1980-2047)
char tm_wday; // 0-6 0==Sunday

};

RETURN VALUE

0 if successful,
-1 if clock write failed.

LIBRARY

RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm_rd

tm_wr
320 Dynamic C User’s Manual

int tolower(int c);

DESCRIPTION

Convert alphabetic character to lower case.

PARAMETERS

c Character to convert

RETURN VALUE

Lower case alphabetic character.

LIBRARY

STRING.LIB

SEE ALSO

toupper, isupper, islower

int toupper(int c);

DESCRIPTION

Convert alphabetic character to uppercase.

PARAMETERS

c Character to convert

RETURN VALUE

Upper case alphabetic character.

LIBRARY

STRING.LIB

SEE ALSO

tolower, isupper, islower

tolower

toupper
Dynamic C User’s Manual 321

void updateTimers();

DESCRIPTION

Updates the values of TICK_TIMER, MS_TIMER, and SEC_TIMER while running off
the 32kHz oscillator. Since the periodic interrupt is disabled when running at 32kHz,
these values will not updated unless this function is called.

LIBRARY

SYS.LIB

SEE ALSO

useMainOsc, use32HzOsc

void use32kHzOsc();

DESCRIPTION

Sets the Rabbit processor to use the 32kHz real time clock oscillator for both the CPU and

peripheral clock, and shuts off the main oscillator. If this is already set, there is no effect.
This mode should provide greatly reduced power consumption. Serial communications
will be lost since typical baud rates cannot be made from a 32kHz clock. Also note that
this function disables the periodic interrupt, so waitfor and related statements will not
work properly (although costatements in general will still work). In addition, the values
in TICK_TIMER, MS_TIMER, and SEC_TIMER will not be updated unless you call the

function updateTimers() frequently in your code. In addition, you will need to call
hitwd() periodically to hit the hardware watchdog timer since the periodic interrupt
normally handles that, or disable the watchdog timer before calling this function. The

watchdog can be disabled with Disable_HW_WDT().

use32kHzOsc() is not task reentrant.

LIBRARY

SYS.LIB

SEE ALSO

useMainOsc, useClockDivider, updateTimers

updateTimers

use32HzOsc
322 Dynamic C User’s Manual

void useClockDivider();

DESCRIPTION

Sets the Rabbit processor to use the main oscillator divided by 8 for the CPU (but not the

peripheral clock). If this is already set, there is no effect. Because the peripheral clock is

not affected, serial communications should still work. This function also enables the pe-
riodic interrupt in case it was disabled by a call to user32kHzOsc(). This function is

not task reentrant.

LIBRARY

SYS.LIB

SEE ALSO

useMainOsc, use32HzOsc

void useMainOsc();

DESCRIPTION

Sets the Rabbit processor to use the main oscillator for both the CPU and peripheral
clock. If this is already set, there is no effect. This function also enables the periodic in-
terrupt in case it was disabled by a call to user32kHzOsc(), and updates the

TICK_TIMER, MS_TIMER, and SEC_TIMER variables from the real-time clock. This

function is not task reentrant.

LIBRARY

sys.lib

SEE ALSO

use32HzOsc, useClockDivider

useClockDivider

useMainOsc
Dynamic C User’s Manual 323

char *utoa(unsigned value, char *buf);

DESCRIPTION

Places up to 5 digit character string at *buf representing value of unsigned number. Sup-
presses leading zeros, but leaves one zero digit for value = 0. Max = 65535. 73 program

bytes.

PARAMETERS

value 16-bit number to convert

buf Character string of converted number

RETURN VALUE

Pointer to NULL at end of string.

LIBRARY

STDIO.LIB

SEE ALSO

itoa, htoa, ltoa

utoa
324 Dynamic C User’s Manual

int VdGetFreeWd(char count);

DESCRIPTION

Returns a free virtual watchdog and initializes that watchdog so that the virtual driver be-
gins counting it down from count. The number of virtual watchdogs available is deter-
mined by N_WATCHDOG, which is 5 by default, but can be defined by the user:
#define N_WATCHDOG 10. The virtual driver is called every 0.00048828125 sec.
On every 128th call to it (62.5 ms), the virtual watchdogs are counted down. If any virtual
watchdog reaches 0, this is a fatal error. Once a virtual watchdog is active, it should reset
periodically with a call to VdHitWd to prevent this. The count is decremented, tested

and, if 0, a fatal error occurs.

PARAMETERS

count 1 < count <= 255

RETURN VALUE

Integer id number of an unused virtual watchdog timer.

LIBRARY

VDRIVER.LIB

int VdHitWd(int ndog);

DESCRIPTION

Resets virtual watchdog counter to N counts where N is the argument to the call to

VdGetFreeWd() that obtained the virtual watchdog ndog. The virtual driver counts
down watchdogs every 62.5 ms. If a virtual watchdog reaches 0, this is a fatal error. Once

a virtual watchdog is active it should reset periodically with a call to VdHitWd to pre-
vent this. If count = 2 the VdHitWd will need to be called again for virtual watchdog

ndog within 62.5 ms. If count = 255, VdHitWd will need to be called again for virtual
watchdog ndog within 15.9375 seconds.

PARAMETERS

ndog Id of virtual watchdog returned by VdGetFreeWd()

LIBRARY

VDRIVER.LIB

VdGetFreeWd

VdHitWd
Dynamic C User’s Manual 325

void VdInit(void);

DESCRIPTION

 Initializes virtual driver for all Rabbit boards. Supports DelayMs, DelaySec, Delay-
Tick. VdInit is called by the BIOS unless disabled.

LIBRARY

VDRIVER.LIB

VdInit
326 Dynamic C User’s Manual

int VdReleaseWd(int ndog);

DESCRIPTION

Deactivates a virtual watchdog and makes it available for VdGetFreeWd().

PARAMETERS

ndog Handle returned by VdGetFreeWd

RETURN VALUE

0 - ndog out of range
1 - success

LIBRARY

VDRIVER.LIB

EXAMPLE

VdReleaseWd

// VdReleaseWd virtual watchdog example
main() {

int wd; // handle for a virtual watchdog
unsigned long tm;
tm = SEC_TIMER;
wd = VdGetFreeWd(255);// wd activated, 9 virtual watchdogs now

available

// wd must be hit at least every 15.875
seconds

while(SEC_TIMER - tm < 60) { // let it run for a minute
VdHitWd(wd);// decrements counter corresponding to wd

reset to 12
}

VdReleaseWd(wd); // now there are 10 virtual
// watchdogs available

}

Dynamic C User’s Manual 327

int WriteFlash2(unsigned long flashDst, void* rootSrc, int
len);

DESCRIPTION

Write len bytes to physical address flashDst on the 2nd

flash device from rootSrc. The source must be in root. The flashDstaddress must be in

the range 0x00040000-0x0007FFFF, since the topmost memory quadrant will be mapped

to the 2nd flash (256kb is the maximum size visible on the second flash by this function).
This function is not reentrant.

NOTE: this function should NOT be used if you are using the second flash device for a

flash file system , e.g. if you are writing a TCP/IP-based application!

PARAMETERS

flashDst Physical address of the flash destination

rootSrc Pointer to the root source

len Number of bytes to write

RETURN VALUE

0: Success
-1: Attempt to write non-2nd flash area, nothing written
-2: Rootsrc not in root
-3: Timeout while writing flash

LIBRARY

XMEM.LIB

WriteFlash2
328 Dynamic C User’s Manual

void write_rtc(unsigned long int time);

DESCRIPTION

Writes a 32 bit seconds value to the RTC, zeros other bits. This function does not stop or
delay periodic interrupt. It does not affect the SEC_TIMER or MS_TIMER variables.

PARAMETERS

time 32-bit value representing the number of seconds since January 1,
1980.

LIBRARY

RTCLOCK.C

SEE ALSO

read_rtc

write_rtc
Dynamic C User’s Manual 329

void WrPortE(int port, char *portshadow, int data_value);

DESCRIPTION

Writes an external I/O register with 8 bits and updates shadow for that register. The vari-
able names must be of the form port and portshadow for the most efficient opera-
tion. A NULL pointer may be substituted if shadow support is not desired or needed.

PARAMETERS

port Address of external data register.

portshadow Reference pointer to a variable shadowing the register data. Substi-
tute with NULL pointer (or 0) if shadowing is not required.

data_value Value to be written to the data register

LIBRARY

SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdPortE, BitRdPortE,
BitWrPortE

void WrPortI(int port, char *portshadow, int data_value);

DESCRIPTION

Writes an internal I/O register with 8 bits and updates shadow for that register.

PARAMETERS

port Address of data register.

portshadow Reference pointer to a variable shadowing the register data. Substi-
tute with NULL pointer (or 0) if shadowing is not required.

data_value Value to be written to the data register

LIBRARY

SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, BitRdPortE, BitWrPortI, RdPortE, WrPortE,
BitWrPortE

WrPortE

WrPortI
330 Dynamic C User’s Manual

long xalloc(long sz)

DESCRIPTION

Allocates the specified number of bytes in extended memory.

PARAMETERS

sz Number of bytes to allocate.

RETURN VALUE

The 20-bit physical address of the allocated data on success;
0 on failure.

LIBRARY

SYS.LIB

SEE ALSO

root2xmem, xmem2root

int xmem2root(void *dest, unsigned long int src, unsigned int
len);

DESCRIPTION

Stores len characters from physical address src to logical address dest.

PARAMETERS

dest Logical address

src Physical address

len Numbers of bytes

RETURN VALUE

0 - success
1 - attempt to write Flash Memory area, nothing written
2 - destination not all in root

LIBRARY

XMEM.LIB

SEE ALSO

root2xmem, xalloc

xalloc

xmem2root
Dynamic C User’s Manual 331

int xmem2xmem(unsigned long dest, unsigned long src, unsigned
len);

DESCRIPTION

Stores len characters from physical address src to physical address dest.

PARAMETERS

dest Physical address of destination

src Physical address of source data

len Length of source data in bytes

RETURN VALUE

0 - success
1 - attempt to write Flash Memory area, nothing written

LIBRARY

XMEM.LIB

xmem2xmem
332 Dynamic C User’s Manual

User Interface 16

Dynamic C can be used to edit source files, compile and programs, or choose options for these

activities. There are two modes: edit mode and run mode. The run mode can be also called the

debug mode. Compilation is, in effect, the transition between the edit mode and the run mode.
Developers work with Dynamic C by editing text, issuing menu commands (or keyboard shortcuts

for these commands), and viewing various debugging windows.

Multiple instances of Dynamic C may be run simultaneously. This means multiple debugging ses-
sions are possible over different serial ports. This is useful for debugging multiple boards that are

communicating among themselves

Programs can compile directly to a target controller for debugging in RAM or flash. Programs can

also be compiled to a .bin file.

In order to compile or run a program, a controller must be connected to the PC. Dynamic C

includes editing options and compiler options. Most of the options are in the OPTIONS menu.

16.1 Editing
Once a file has been created or has been opened for editing, the file is displayed in a text window.
It is possible to open or create more than one file and one file can have several windows. Dynamic

C supports normal Windows text editing operations.

Use the mouse (or other pointing device) to position the text cursor, select text, or extend a text
selection. Scroll bars may be used to position text in a window. Dynamic C will, however, work

perfectly well without a mouse, although it may be a bit tedious.

It is also possible to scroll up or down through the text using the arrow keys or the PageUp and

PageDown keys or the Home and End keys. The left and right arrow keys allow scrolling left
and right.

 16.1.0.1 Arrows
Use the up, down, left and right arrow keys to move the cursor in the corresponding direction.

The Ctrl key works in conjunction with the arrow keys this way.

CTRL-Left Move to previous word
CTRL-Right Move to next word
CTRL-Up Scroll up one line (text moves down)
CTRL-Down Scroll down one line

 16.1.0.2 Home

Moves the cursor backward in the text to the start of the line.

Home Move to beginning of line
CTRL-Home Move to beginning of file
SHIFT-Home Select to beginning of line
SHIFT-CTRL-Home Select to beginning of file
Dynamic C User’s Manual 333

 16.1.0.3 End
Moves the cursor forward in the text.

End Move to end of line
CTRL-End Move to end of file
SHIFT-End Select to end of line
SHIFT-CTRL-End Select to end of file

Sections of the program text can be “cut and pasted” (add and delete) or new text may be typed in

directly. New text is inserted at the present cursor position or replaces the current text selection.

The Replace command in the EDIT menu is used to perform search and replace operations either
forwards or backwards.

16.2 Menus

Dynamic C has eight command menus, as well as the standard Windows system menus. An avail-
able command can be executed from a menu by clicking the menu and then clicking the command,
or by (1) pressing the Alt key to activate the menu bar, (2) using the left and right arrow keys to

select a menu, (3) and using the up or down arrow keys to select a command, and (4) pressing

Enter. It is usually more convenient to type keyboard shortcuts (such as <CTRL-H> for HELP)
once they are known. Pressing the Esc key will make any visible menu disappear. A menu can be

activated by holding the Alt key down while pressing the underlined letter of the menu name (use

the space bar and minus key to access the system menus). For example, press <ALT-F> to activate

the FILE menu.

Click the menu title or press <ALT-F> to select the FILE menu.
334 Dynamic C User’s Manual

16.2.1 New
Creates a new, blank, untitled program in a new window.

16.2.2 Open
Presents a dialog in which to specify the name of a file to open. Unless there is a problem,
Dynamic C will present the contents of the file in a text window. The program can then be edited

or compiled.

To select a file, type in the desired file name, or select one from the list. The file’s directory may

also be specified.

16.2.3 Save
The Save command updates an open file to reflect the latest changes. If the file has not been

saved before (that is. the file is a new untitled file), the Save As dialog will appear.

Use the Save command often while editing to protect against loss during power failures or system

crashes.

16.2.4 Save As
Allows a new name to be entered for a file and saves the file under the new name.

16.2.5 Close
Closes the active window. The active window may also be closed by pressing <CTRL-F4> or by

double-clicking on its system menu. If there is an attempt to close a file before it has been saved,
Dynamic C will present a dialog similar to one of these two dialogs.

The file is saved when Yes (or type “y”) is clicked. If the file is untitled, there will be a prompt for
a file name in the Save As dialog. Any changes to the document will be discarded if No is

clicked or “n” is typed. Cancel results in a return to Dynamic C, with no action taken.

16.2.6 Print Preview
Shows approximately what printed text will look like. Dynamic C switches to preview “mode”

when this command is selected, and allows the programmer to navigate through images of the

printed pages.

16.2.7 Print
Text can be printed from any Dynamic C window. There is no restriction to printing source code.
For example, the contents of the assembly window or the watch window can be printed. Dynamic

C displays the following type of dialog when the Print command is selected.

At present, printing all pages is the only option.

As many copies of the text as needed may be printed. If more than one copy is requested, the

pages may be collated or uncollated.

If the Print to File option is selected, Dynamic C creates a file (it will ask for a pathname) in the

format suitable to send to the specified printer. (If the selected printer is a PostScript printer, the

file will contain PostScript.)
Dynamic C User’s Manual 335

To choose a printer, click the Setup button in the Print dialog, or choose the Print Setup... com-
mand from the FILE menu.

16.2.8 Print Setup
Allows choice of which printers to use and to set them up to print text.

There is a choice between using the computer system’s default printer or selecting a specific

printer. Depending on the printer selected, it may be possible to specify paper orientation (portrait
or tall, vs. landscape or wide), and paper size. Most printers have these options. A specific printer
may or may not have more than one paper source.

The Options button allows the print options dialog to be displayed for a specific printer. The

Network button allows printers to be added or removed from the list of printers.

16.2.9 Exit
To exit Dynamic C. When this is done, Windows will either return to the Windows Program Man-
ager or to another application. The keyboard shortcut is <ALT-F4>.

16.3 Edit Menu
Click the menu title or press <ALT-E> to select the EDIT menu.

16.3.1 Undo
This option undoes recent changes in the active edit window. The command may be repeated sev-
eral times to undo multiple changes. The amount of editing that may be undone will vary with the

type of operations performed, but should suffice for a few large cut and paste operations or many
336 Dynamic C User’s Manual

lines of typing. Dynamic C discards all undo information for an edit window when the file is

saved. The keyboard shortcut is <ALT-backspace>.

16.3.2 Redo
Redoes modifications recently undone. This command only works immediately after one or more

Undo operations. The keyboard shortcut is <ALT-SHIFT-backspace>.

16.3.3 Cut
Removes selected text from a source file. A copy of the text is saved on the “clipboard.” The con-
tents of the clipboard may be pasted virtually anywhere, repeatedly, in the same or other source

files, or even in word processing or graphics program documents. The keyboard shortcut is

<CTRL-X>.

16.3.4 Copy
Makes a copy of selected text in a file or in one of the debugging windows. The copy of the text is

saved on the “clipboard.” The contents of the clipboard may be pasted virtually anywhere. The

keyboard shortcut is <CTRL-C>.

16.3.5 Paste
Pastes text on the clipboard as a result of a copy or cut (in Dynamic C or some other Windows

application). The paste command places the text at the current insertion point. Note that nothing

can be pasted in a debugging window. It is possible to paste the same text repeatedly until some-
thing else is copied or cut. The keyboard shortcut is <CTRL-V>.

16.3.6 Find
Finds specified text.

Type the text to be found in the Find box. The Find command (and the Find Next command,
too) will find occurrences of the word “switch.” If case sensitive is clicked, the search will find

occurrences that match exactly. Otherwise, the search will find matches having upper- and lower-
case letters. For example, “switch,” “Switch,” and “SWITCH” would all match. If reverse is

clicked the search will occur in reverse, that is, the search will proceed toward the beginning of the

file, rather than toward the end of the file. Use the From cursor checkbox to choose whether to

search the entire file or to begin at the cursor location. The keyboard shortcut is <CTRL F>.

16.3.7 Replace
Replaces specified text.

Type the text to be found in the Find text box (there is a pulldown list of previously entered

strings). Then type the text to substitute in the Change to text box. If Case sensitive is

selected, the search will find an occurrence that matches exactly. Otherwise, the search will find a

match having upper- and lower-case letters. For example, “reg7,” “REG7,” and “Reg7” all match.

If Reverse is clicked, the search will occur in reverse, that is, the search will proceed toward the

beginning of the file, rather than toward the end of the file. The entire file may be searched from
Dynamic C User’s Manual 337

the current cursor location by clicking the From cursor box, or the search may begin at the cur-
rent cursor location.

The Selection only box allows the substitution to be performed only within the currently

selected text. Use this in conjunction with the Change All button. This box is disabled if no text
is selected.

Normally, Dynamic C will find the search text, then prompts for whether to make the change. This

is an important safeguard, particularly if the Change All button is clicked. If No prompt is

clicked, Dynamic C will make the change (or changes) without prompting.

The keyboard shortcut for Replace is <F6>.

16.3.8 Find Next
Once search text has been specified with the Find or Replace commands, the Find Next com-
mand (F3 for short) will find the next occurrence of the same text, searching forward or in reverse,
case sensitive or not, as specified with the previous Find or Replace command. If the previous

command was Replace, the operation will be a replace.

16.3.9 Goto
Positions the insertion point at the start of the specified line.

Type the line number (or approximate line number) to which to jump. That line, and lines in the

vicinity, will be displayed in the source window.

16.3.10 Previous Error
Locates the previous compilation error in the source code. Any errors will be displayed in a list in

the message window after a program is compiled. Dynamic C selects the previous error in the list
and positions the offending line of code in the text window when the Previous Error command

(<CTRL-P> for short) is made. Use the keyboard shortcuts to locate errors quickly.

16.3.11 Next Error
Locates the next compilation error in the source code. Any errors will be displayed in a list in the

message window after a program is compiled. Dynamic C selects the next error in the list and

positions the offending line of code in the source window when the Next Error command

(<CTRL-N> for short) is made. Use the keyboard shortcuts to locate errors quickly.

16.3.12 Edit Mode
Switches Dynamic C back to edit mode from run mode (also called debug mode). After a program

has been compiled or executed, Dynamic C will not allow any modification to the program unless

the Edit Mode is selected. The keyboard shortcut is F4.
338 Dynamic C User’s Manual

16.4 Compile Menu
Click the menu title or press <ALT-C> to select the COMPILE menu.

16.4.1 Compile to Target
Compiles a program and loads it in the target controller’s memory. The keyboard shortcut is F5.

Dynamic C determines whether to compile to RAM or flash based on the current compiler options

(set with the Options menu). Any compilation errors are listed in the automatically activated mes-
sage window. Hit <F1> to obtain a more descriptive message for any error message that is high-
lighted in this window.

16.4.2 Compile to .bin file
Compiles a program and writes the image to a .bin file. The .bin file can then be used with a

device programmer to program multiple chips; or the Rabbit Field Utility can load the .bin files

to the target. The Include BIOS option should normally be checked. It just causes the BIOS as

well as the user program to be included in the BIN file. If you are creating special program such as

a cold loader that starts at address 0x0000, then this option should be unchecked. This type of use

is for advanced users.

When compiling to a .bin file, choose Use attached target to use the parameters of the con-
troller board connected to your system. If there is no controller board connected to your system or
if there is but you want to define a different configuration, choose Define target configuration.
The Targetless Compilation Parameters menu will appear, as shown below. You can specify board

type and parameters and save the information in a Remote Target Information (RTI) file.
Dynamic C User’s Manual 339

16.4.3 Reset Target/Compile BIOS
This option reloads the BIOS to RAM or flash, depending on the BIOS memory setting chosen in

Options->Compiler Options. The default option is flash.

The following box will appear upon successful compilation and loading of BIOS code.

16.4.4 Include Debug Code/RST 28 Instructions
If this is checked, debug code will be included in the program even if #nodebug precedes the

main function in the program. Debug code consists mainly of RST 28h instructions inserted after
every C statement. At an RST 28h instruction, program execution is transferred to the debug ker-
nel where communication between Dynamic C and the target is tended to before returning to the

user program. There are certain loop optimizations that are not generated when code is compiled

as debug. This option also controls the definition of a compiler-defined macro symbol,
DEBUG_RST. If the menu item is checked then DEBUG_RST is set to 1, otherwise it is 0.
340 Dynamic C User’s Manual

If the option is not checked, the compiler marks all code as nodebug and debugging is not pos-
sible. The only reason to check this option if debugging is finished and the program is ready to be

deployed is to allow some current (or planned) diagnostic capability of the Rabbit Field Utility

(RFU) to work in a deployed system. This option effects both code compiled to .bin files and

code compiled to the target . In order to run the program after compiling to the target with this

option, disconnect the target from the programming port and reset the target CPU.

16.5 Run Menu
Click the menu title or press <ALT-R> to select the RUN menu.

16.5.1 Run
Starts program execution from the current breakpoint. Registers are restored, including interrupt
status, before execution begins. The keyboard shortcut is F9.

16.5.2 Run w/ No Polling
This command is identical to the Run command, with an important exception. When running in

polling mode (F9), the development PC polls or interrupts the target system every 100 ms to

obtain or send information about target breakpoints, watch lines, keyboard-entered target input,
and target output from printf statements. Polling creates interrupt overhead in the target, which

can be undesirable in programs with tight loops. The Run w/ No Polling command allows the

program to run without polling and its overhead. (Any printf calls in the program will cause

execution to pause until polling is resumed. Running without polling also prevents debugging until
polling is resumed.) The keyboard shortcut for this command is <ALT-F9>.

16.5.3 Stop
The Stop command places a hard breakpoint at the point of current program execution. Usually,
the compiler cannot stop within ROM code or in nodebug code. On the other hand, the target can
Dynamic C User’s Manual 341

be stopped at the rst 028h instruction if rst 028h assembly code is inserted as inline assem-
bly code in nodebug code. However, the debugger will never be able to find and place the execu-
tion cursor in nodebug code. The keyboard shortcut is <CTRL-Z>.

16.5.4 Reset Program
Resets program to its initial state. The execution cursor is positioned at the start of the main func-
tion, prior to any global initialization and variable initialization. (Memory locations not covered by

normal program initialization may not be reset.) The keyboard shortcut is <CTRL-F2>.

The initial state includes only the execution point (program counter), memory map registers, and

the stack pointer. The Reset Program command will not reload the program if the previous exe-
cution overwrites the code segment.

16.5.5 Trace Into
Executes one C statement (or one assembly language instruction if the assembly window is dis-
played) with descent into functions. Execution will not descend into functions stored in ROM

because Dynamic C cannot insert the required breakpoints in the machine code. If nodebug is in

effect, execution continues until code compiled without the nodebug keyword is encountered.
The keyboard shortcut is F7.

16.5.6 Step over
Executes one C statement (or one assembly language instruction if the assembly window is dis-
played) without descending into functions. The keyboard shortcut is F8.

16.5.7 Toggle Breakpoint
Toggles a regular (“soft”) breakpoint at the location of the execution cursor. Soft breakpoints do

not affect the interrupt state at the time the breakpoint is encountered, whereas hard breakpoints

do. The keyboard shortcut is F2.

16.5.8 Toggle Hard Breakpoint
Toggles a hard breakpoint at the location of the execution cursor. A hard breakpoint differs from a

soft breakpoint in that interrupts are disabled when the hard breakpoint is reached. The keyboard

shortcut is <ALT-F2>.

16.5.9 Toggle Interrupt Flag
Toggles interrupt state. The keyboard shortcut is <CTRL-I>.

16.5.10 Toggle Polling
Toggles polling mode. When running in polling mode (F9), the development PC polls or inter-
rupts the target system every 100 ms to obtain or send information regarding target breakpoints,
watch lines, keyboard-entered target input, and target output from printf statements. Polling

creates interrupt overhead in the target, which can be undesirable in programs with tight loops.

This command is useful to switch modes while a program is running. The keyboard shortcut is

<CTRL-O>.
342 Dynamic C User’s Manual

16.5.11 Reset Target
Tells the target system to perform a software reset including system initializations. Resetting a tar-
get always brings Dynamic C back to edit mode. The keyboard shortcut is <CTRL-Y>.

16.5.12 Close Serial Port
Disconnects the programming serial port between PC and target so that the target serial port is

accessible to other applications.

16.6 Inspect Menu
Click the menu title or press <ALT-I> to select the INSPECT menu.

The INSPECT menu provides commands to manipulate watch expressions, view disassembled

code, and produce hexadecimal memory dumps. The INSPECT menu commands and their func-
tions are described here.

16.6.1 Add/Del Watch Expression
This command provokes Dynamic C to display the following dialog.

This dialog works in conjunction with the Watch window. The text box at the top is the current
expression. An expression may have been typed here or it was selected in the source code. This

expression may be evaluated immediately by clicking the Evaluate button or it can be added to

the expression list by clicking the Add to top button. Expressions in this list are evaluated, and

the results are displayed in the Watch window, every time the Watch window is updated. Items are

deleted from the expression list by clicking the Del from top button.
Dynamic C User’s Manual 343

An example of the results displayed in the Watch window appears below.

16.6.2 Clear Watch Window
Removes entries from the Watch dialog and removes report text from the Watch window. There is

no keyboard shortcut.

16.6.3 Update Watch Window
Forces expressions in the Watch Expression list to be evaluated and displayed in the Watch win-
dow only when the function runwatch() is called from the application program. runwatch()

monitors for watch update requests and should be called periodically if watch expressions are

used. Normally the Watch window is updated every time the execution cursor is changed, that is

when a single step, a breakpoint, or a stop occurs in the program. The keyboard shortcut is

<CTRL-U>.

16.6.4 Disassemble at Cursor
Loads, disassembles and displays the code at the current editor cursor. This command does not
work in user application code declared as nodebug. Also, this command does not stop the execu-
tion on the target. The keyboard shortcut is <CTRL-F10>.

16.6.5 Disassemble at Address
Loads, disassembles and displays the code at the specified address. This command produces a dia-
log box that asks for the address at which disassembling should begin. Addresses may be entered

in two formats: a 4-digit hexadecimal number that specifies any location in the root space, or a 2-
digit page number followed by a colon followed by a 4-digit logical address, from 00 to FF. The

keyboard shortcut is <ALT-F10>.
344 Dynamic C User’s Manual

16.6.6 Dump at Address
Allows blocks of raw values in any memory location (except the BIOS 0–2000H) to be looked at.
Values can be displayed on the screen or written to a file.

The option Dump to File requires a file pathname and the number of bytes to dump.

The option Save Entire Flash to File requires a file pathname. If you are running in RAM, then

it will be RAM that is saved to a file, not Flash, because this option simply starts dumping physi-
cal memory at address 0.

A typical screen display appears below.

The Memory Dump window can be scrolled. Scrolling causes the contents of other memory

addresses to appear in the window. The window always displays 128 bytes and their ASCII equiv-
alent. Values in the Dump window are updated only when Dynamic C stops, or comes to a break-
point.
Dynamic C User’s Manual 345

16.7 Options Menu
Click the menu title or press <ALT-O> to select the OPTIONS menu.

16.7.1 Editor
The Editor command gets Dynamic C to display the following dialog.

Use this dialog box to change the behavior of the Dynamic C editor. By default, tab stops are set
every three characters, but may be set to any value greater than zero. Auto-Indent causes the edi-
tor to indent new lines to match the indentation of previous lines. Remove Trailing

Whitespace causes the editor to remove extra space or tab characters from the end of a line.
346 Dynamic C User’s Manual

16.7.2 Compiler
The Compiler command gets Dynamic C to display the following dialog, which allows compiler
operations to be changed.

Warning Reports tell the compiler whether to report all warnings, no warnings or serious warn-
ings only. It is advisable to let the compiler report all warnings because each warning is a potential
run-time bug.

Demotions (such as converting a long to an int) are considered non-serious with regard to

warning reports.

The Run-Time Checking options, if checked, cause a fatal error message at run-time. These

options increase the amount of code and cause slower execution, but they can be valuable debug-
ging tools. The options are described in below.

Array Indices—Check array bounds. This feature adds code for every array reference.

Pointers—Check for invalid pointer assignments. A pointer assignment is invalid if the code

attempts to write to a location marked as not writable. Locations marked not writable include the

entire root code segment. This feature adds code for every pointer reference.

 16.7.2.1 Optimize For
Optimizes the program for size or for speed. When the compiler knows more than one sequence of
instructions that perform the same action, it selects either the smallest or the fastest sequence,
depending on the programmer’s choice for optimization.
Dynamic C User’s Manual 347

The difference made by this option is less obvious in the user application (in which most code is

not marked nodebug). The speed gain by optimizing for speed is most obvious for functions that
are marked nodebug and have no auto local (stack-based) variables.

 16.7.2.2 Type Checking
Prototypes—Performs strict type checking of arguments of function calls against the function

prototype. The number of arguments passed must match the number of parameters in the proto-
type. In addition, the types of arguments must match those defined in the prototype. Z-World rec-
ommends prototype checking because it identifies likely run-time problems. To use this feature

fully, all functions should have prototypes (including functions implemented in assembly).

Demotion—Detects demotion. A demotion automatically converts the value of a larger or more

complex type to the value of a smaller or less complex type. The increasing order of complexity of
scalar types is:

char
unsigned int
int
unsigned long
long
float

A demotion deserves a warning because information may be lost in the conversion. For example,
when a long variable whose value is 0x10000 is converted to an int value, the resulting value is

0. The high-order 16 bits are lost. An explicit type casting can eliminate demotion warnings. All
demotion warnings are considered non-serious as far as warning reports are concerned.

Pointer—Generates warnings if pointers to different types are intermixed without type casting.
While type casting has no effect in straightforward pointer assignments of different types, type

casting does affect pointer arithmetic and pointer dereferences. All pointer warnings are consid-
ered non-serious as far as warning reports are concerned.

 16.7.2.3 BIOS Memory Setting

A single, default BIOS source file that is defined in the system registry when installing Dynamic C

is used for both compiling to RAM and compiling to flash. Dynamic C defines a preprocessor
macro, _FLASH_ or _RAM_, depending on which of the following options is selected. This macro

is used to determine the relevant sections of code to compile for the corresponding memory type.

Code and BIOS in Flash—If you select this option, the compiler will load the BIOS to flash

when cold-booting, and will compile the user program to flash where it will normally reside.

Code and BIOS in RAM—If you select this option, the compiler will load the BIOS to RAM on

cold-booting and compile the user program to RAM. This option is useful if you want to use

breakpoints while you are debugging your application, but you don’t want interrupts disabled

while the debugger writes a breakpoint to flash (this can take 10 ms to 20 ms or more, depending

on the flash type used). Note that when you single step through code, the debugger is writing

breakpoints at the next point in code you will step to. It is also possible to have a target that only

has RAM for use as a slave processor, but this requires more than checking this option because

hardware changes are necessary that in turn require a special BIOS and coldloader.
348 Dynamic C User’s Manual

 16.7.2.4 User Defined BIOS File

Use this option to change from the default BIOS to a user-specified file. Enter or select the file

using the browse button/text box underneath this option. The check box labeled use must be

selected or else the default file BIOS defined in the system registry will be used. Note that a single

BIOS file can be made for compiling both to RAM and flash by using the preprocessor macros

FLASH or _RAM_. These two macros are defined by the compiler based on the currently

selected radio button in the BIOS Memory Setting group box.

 16.7.2.5 Watch Code
Allow any expressions in watch expressions. This option causes any compilation of a user
program to pull in all the utility functions used for expression evaluation.

Restricting watch expressions (may save root code space) Choosing this option means

only utility code already used in the application program will be compiled.

16.7.3 Debugger
The Debugger command gets Dynamic C to display the following dialog.

The options on this dialog box may be helpful when debugging programs. In particular, they allow

printf statements and other STDIO output to be logged to a file. Check the box labeled Log STD-
OUT to send a copy of all standard output to the log file. The name of the log file can also be spec-
ified along with whether to append or overwrite if the file already exists. Normally, Dynamic C

automatically opens the STDIO window when a program first attempts to print to it. This can be

changed with the checkbox labeled Auto Open STDIO Window.
Dynamic C User’s Manual 349

16.7.4 Display
The Display command gets Dynamic C to display the following dialog.

Use the Display Options dialog box to change the appearance of Dynamic C windows. First
choose the window from the window list. Then select an attribute from the attribute list and click

the change button. Another dialog box will appear to make the changes. Note that Dynamic C

allows only fixed-pitch fonts and solid colors (if a dithered color is selected, Dynamic C will use

the closest solid color).

The Editor window attributes affect all text windows, except two special cases. After an attempt
is made to compile a program, Dynamic C will either display a list of errors in the message win-
dow (compilation failed), or Dynamic C will switch to run mode (compilation succeeded). In the

case of a failed compile, the editor will take on the Error Editor attributes. In the case of a suc-
cessful compile, the editor will take on the Debug Editor attributes.
350 Dynamic C User’s Manual

16.7.5 Communications
The Communications command displays the following dialog box. Use it to tell Dynamic C

how to communicate with the target controller.

 16.7.5.1 TCP/IP Option
In order to program and debug a controller across a TCP/IP connection, the Network Address

field must have the IP Address of the Z-World RabbitLink that is attached to the controller. To

accept control commands from Dynamic C, the Control Port field must be set to the port used by

the RabbitLink. The Controller Name is for informational purposes only. The Discover button

makes Dynamic C broadcast a query to any RabbitLinks attached to the network. Any Rab-
bitLinks that respond to the broadcast can be selected and their information will be placed in the

appropriate fields.

 16.7.5.2 Serial Options
The COM port, baud rate, and number of stop bits may be selected. The transmission mode radio

buttons also affect communication by controlling the overlap of compilation and downloading.
With No Background TX, Dynamic C will not overlap compilation and downloading. This is

the most reliable mode, but also the slowest—the total compile time is the sum of the processing

time and the communication time. With Full Speed Bkgnd TX, Dynamic C will almost entirely

overlap compilation and downloading. This mode is the fastest, but may result in communication

failure. The Sync. Bkgnd TX mode provides partial overlap of compilation and downloading.
This is the default mode used by Dynamic C.

16.7.6 Show Tool Bar
The Show Tool Bar command toggles the display of the tool bar:

Dynamic C remembers the toolbar setting on exit.
Dynamic C User’s Manual 351

16.7.7 Save Environment
The Save Environment command gets Dynamic C to update the registry and DCW.CFG initial-
ization files immediately with the current options settings. Dynamic C always updates these files

on exit. Saving them while working provides an extra measure of security against Windows

crashes.

16.8 Window Menu
Click the menu title or press <ALT-W> to select the WINDOW menu.

The first group of items is a set of standard Windows commands that allow the application win-
dows to be arranged in an orderly way.

The second group of items presents the various Dynamic C debugging windows. Click on one of
these to activate or deactivate the particular window. It is possible to scroll these windows to view

larger portions of data, or copy information from these windows and paste the information as text
anywhere. The contents of these windows can be printed.

The third group is a list of current windows, including source code windows. Click on one of these

items to bring that window to the front.

16.8.1 Cascade
The Cascade command gets Dynamic C to display windows “on top of each other,” as shown.
The window being worked in is displayed in front of the rest.

16.8.2 Tile Horizontally
The Tile Horizontally command gets Dynamic C to display windows in horizontal (landscape)
orientation, although the windows are stacked vertically.
352 Dynamic C User’s Manual

16.8.3 Tile Vertically
The Tile Vertically command gets Dynamic C to display windows in a vertical (portrait) orienta-
tion.

16.8.4 Arrange Icons
When one or more Dynamic C windows have been minimized, they are displayed as icons. The

Arrange Icons command arranges them neatly.

16.8.5 Message
Click the Message command to activate or deactivate the Message window. A compilation with

errors also activates the message window because the message window displays compilation

errors.

16.8.6 Watch
The Watch command activates or deactivates the watch window. The Add/Del Items command

on the INSPECT menu will do this too. The watch window displays the results whenever
Dynamic C evaluates watch expressions.

16.8.7 STDIO
Click the STDIO command to activate or deactivate the STDIO window. The STDIO window dis-
plays output from calls to printf. If the program calls printf, Dynamic C will activate the

STDIO window automatically, unless another request was made by the programmer. (See the

Debugger Options under the OPTIONS menu.)
Dynamic C User’s Manual 353

16.8.8 Assembly
Click the Assembly command to activate or deactivate the Assembly window. The Assembly

window displays machine code generated by the compiler in assembly language format.

The Disassemble at Cursor or Disassemble at Address commands also activate the

Assembly window.

The Assembly window shows the memory address on the far left, followed by the code bytes for
the instruction at the address, followed by the mnemonics for the instruction. The last column

shows the number of cycles for the instruction, assuming no wait states. The total cycle time for a

block of instructions will be shown at the lowest row in the block in the cycle-time column, if that
block is selected and highlighted with the mouse. The total assumes one execution per instruction,
so the user must take looping and branching into consideration when evaluating execution times.

Use the mouse to select several lines in the Assembly window, and the total cycle time for the

instructions that were selected will be displayed to the lower right of the selection. If the total
includes an asterisk, that means an instruction such as ldir or ret nz with an indeterminate

cycle time was selected.
354 Dynamic C User’s Manual

16.8.9 Registers
Click the Registers command to activate or deactivate the Register window. The Register win-
dow displays the processor register set, including the status register. Letter codes indicate the bits

of the status register (F register). The window also shows the source-code line and column at
which the register “snapshot” was taken. It is possible to scroll back to see the progression of suc-
cessive register snapshots. Registers may be changed when program execution is stopped by click-
ing the right mouse button over the name or value of the register to be changed. Registers PC,
XPC, and SP may not be edited as this can adversely effect program flow and debugging.

16.8.10 Stack
Click the Stack command to activate or deactivate the Stack window. The Stack window displays

the top 8 bytes of the run-time stack. It also shows the line and column at which the stack “snap-
shot” was taken. It is possible to scroll back to see the progression of successive stack snapshots.
Dynamic C User’s Manual 355

16.8.11 Information
Click the Information command to activate the Information window.

The Information window displays how the memory is partitioned and how well the compilation

went. In this example, no space has been allocated to the heap or free space.

16.9 Help Menu
Click the menu title or press <ALT-H> to select the HELP menu.

The HELP menu commands and their functions are described here.

16.9.1 Online Documentation
Opens a browser page and displays a file with links to other manuals. When installing Dynamic C

from CD, this menu item points to the hard disk; after a Web upgrade of Dynamic C, this menu

item points to the Web.
356 Dynamic C User’s Manual

16.9.2 Keywords
Opens a browser page and displays an HTML file of Dynamic C keywords, with links to their
descriptions in this manual.

16.9.3 Operators
Opens a browser page and displays an HTML file of Dynamic C operators, with links to their
descriptions in this manual.

16.9.4 HTML Function Reference
Opens a browser page and displays an HTML file that has two links, one to Dynamic C functions

listed alphabetically, the other to the functions listed by functional group. Each function listed is

linked to its description in this manual.

16.9.5 Function Lookup/Insert
Obtains help information for library functions. When a function name is clicked (or the function

name is selected) in source code and then the help command is issued, Dynamic C displays help

information for that function. The keyboard shortcut is <CTRL-H>.

If Dynamic C cannot find a unique description for the function, it will display the following dialog

box.

Click Lib Entries to display a list of the library functions currently available to the program.
(These are the files named in the file LIB.DIR.) Then select a function name from the list to

receive information about that function.
Dynamic C User’s Manual 357

Dynamic C displays a dialog box like this one when a function is selected to display help informa-
tion.

Although this may be sufficient for most purposes, the Insert Call button can be clicked to turn

the dialog into a “function assistant.”
358 Dynamic C User’s Manual

The function assistant will place a call to the function displayed at the insertion point in the source

code. The function call will be prototypical if OK is clicked; the call needs to be edited for it to

make sense in the context of the code.

Each parameter can be specified, one-by-one, to the function assistant. The function assistant will
return the name and data type of the parameter. When parameter expressions are specified in this

dialog, the function assistant will use those expressions when placing the function call.

If the text cursor is placed on a valid C function call (and one that is known to the function assis-
tant), the function assistant will analyze the function call, and will copy the actual parameters to

the function lookup dialog. Compare the function parameters in the Expr. in Call box in the dia-
log with the expected function call arguments.

Consider, for example, the following code.

...
x = strcpy(comment, "Lower tray needs paper.");
...

If the text cursor is placed on strcpy and the Function Lookup/Insert command is issued,
the function assistant will show the comment as parameter 1 and “Lower tray needs paper.” as

parameter 2. The arguments can then be compared with the expected parameters, and the argu-
ments in the dialog can then be modified.

16.9.6 Keystrokes
Invokes the on-line help system and displays the keystrokes page.

16.9.7 Search for Help on
Select this item to search for help on a particular topic. Type in a keyword and press Enter to see

a list of related topics. Then select a topic from the list and press Enter again to view the topic.

16.9.8 Contents
Invokes the on-line help system and displays the contents page.

16.9.9 About
The About command displays the Dynamic C version number and the copyright notice.
Dynamic C User’s Manual 359

360 Dynamic C User’s Manual

µC/OS-II 17

Not available with SE versions of Dynamic C.

µC/OS-II is a simple, clean, efficient, easy-to-use real-time operating system that runs on the Rab-
bit microprocessor and is fully supported by the Dynamic C development environment. µC/OS-II
is capable of intertask communication and synchronization via the use of semaphores, mailboxes,
and queues. User-definable system hooks are supplied for added system and configuration control
during task creation, task deletion, context switches, and time ticks.

For more information on µC/OS-II, please refer to Jean J. Labrosse’s book, MicroC/OS-II, The

Real-Time Kernel (ISBN: 0-87930-543-6). The data structures (e.g. Event Control Block) refer-
enced in the µC/OS-II function descriptions in Chapter 15 are fully explained in Labrosse’s book.
It can be purchased at the Z-World store, www.zworld.com/store/home.html, or at
http://www.ucos-ii.com/.

17.1 Changes

To take full advantage of services provided by Dynamic C, minor changes have been made to

µC/OS-II.

17.1.1 Ticks per Second
In most implementations of µC/OS-II, OS_TICKS_PER_SEC informs the operating system of
the rate at which OSTimeTick is called; this macro is used as a constant to match the rate of the

periodic interrupt. In µC/OS-II for the Rabbit, however, changing this macro will change the tick

rate of the operating system set up during OSInit. Usually, a real-time operating system has a

tick rate of 10 Hz to 100 Hz, or 10–100 ticks per second. Since the periodic interrupt on the Rabbit
occurs at a rate of 2 kHz, it is recommended that the tick rate be a power of 2 (e.g., 16, 32, or 64).
Keep in mind that the higher the tick rate, the more overhead the system will incur.

In the Rabbit version of µC/OS-II, the number of ticks per second defaults to 64. The actual num-
ber of ticks per second may be slightly different than the desired ticks per second if TicksPer-
Sec does not evenly divide 2048. To change the default tick rate to 32, do the following:

#define OS_TICKS_PER_SEC 32
...
OSInit();
...
OSSetTicksPerSec(OS_TICKS_PER_SEC);
...
OSStart();
Dynamic C User’s Manual 361

http://www.zworld.com/store/home.html
http://www.ucos-ii.com/

17.1.2 Task Creation
In a µC/OS-II application, stacks are declared as static arrays, and the address of either the top or
bottom (depending on the CPU) of the stack is passed to OSTaskCreate. In a Rabbit-based

system, the Dynamic C development environment provides a superior stack allocation mechanism

that µC/OS-II incorporates. Rather than declaring stacks as static arrays, the number of stacks of
particular sizes are declared, and when a task is created using either OSTaskCreate or
OSTaskCreateExt, only the size of the stack is passed, not the memory address. This mecha-
nism allows a large number of stacks to be defined without using up root RAM.

There are five macros located in ucos2.lib that define the number of stacks needed of five different
sizes. In order to have three 256 byte stacks, one 512 byte stack, two 1024 byte stacks, one 2048

byte stack, and no 4096 byte stacks, the following macro definitions would be used:

#define STACK_CNT_256 3 // number of 256 byte stacks
#define STACK_CNT_512 1 // number of 512 byte stacks
#define STACK_CNT_1K 2 // number of 1K stacks
#define STACK_CNT_2K 1 // number of 2K stacks
#define STACK_CNT_4K 0 // number of 4K stacks

These macros can be placed into each µC/OS-II application so that the number of each size stack

can be customized based on the needs of the application. Suppose that an application needs 5

tasks, and each task has a consecutively larger stack. The macros and calls to OSTaskCreate
would look as follows

#define STACK_CNT_256 2 // number of 256 byte stacks
#define STACK_CNT_512 2 // number of 512 byte stacks
#define STACK_CNT_1K 1 // number of 1K stacks
#define STACK_CNT_2K 1 // number of 2K stacks
#define STACK_CNT_4K 1 // number of 4K stacks

OSTaskCreate(task1, NULL, 256, 0);
OSTaskCreate(task2, NULL, 512, 1);
OSTaskCreate(task3, NULL, 1024, 2);
OSTaskCreate(task4, NULL, 2048, 3);
OSTaskCreate(task5, NULL, 4096, 4);

Note that the macro STACK_CNT_256 is set to 2 instead of 1. µC/OS-II always creates an idle

task which runs when no other tasks are in the ready state. Note also that there are two 512 byte

stacks instead of one. This is because the program is given a 512 byte stack. If the application uti-
lizes the µC/OS-II statistics task, then the number of 512 byte stacks would have to be set to 3.
(Statistic task creation can be enabled and disabled via the macro OS_TASK_STAT_EN which is

located in ucos2.lib). If only 6 stacks were declared, one of the calls to OSTaskCreate

would fail.
362 Dynamic C User’s Manual

If an application uses OSTaskCreateExt, which enables stack checking and allows an exten-
sion of the Task Control Block, fewer parameters are needed in the Rabbit version of µC/OS-II.
Using the macros in the example above, the tasks would be created as follows:

OSTaskCreateExt(task1,NULL,0,0,256,NULL, OS_TASKOPTSTK_CHK |
OS_TASKOPTSTK_CLR);

OSTaskCreateExt(task2,NULL,1,1,512,NULL, OS_TASKOPTSTK_CHK |
OS_TASKOPTSTK_CLR);

OSTaskCreateExt(task3,NULL,2,2,1024,NULL, OS_TASKOPTSTK_CHK |
OS_TASKOPTSTK_CLR);

OSTaskCreateExt(task4,NULL,3,3,2048,NULL, OS_TASKOPTSTK_CHK |
OS_TASKOPTSTK_CLR);

OSTaskCreateExt(task5,NULL,4,4,4096,NULL,OS_TASKOPTSTK_CHK |
OS_TASKOPTSTK_CLR);

17.1.3 Restrictions
At the time of this writing, uC/OS-II for Dynamic C is not compatible with the use of Dynamic C's

slice statements. Also, see the function description for OSTimeTickHook for important infor-
mation about preserving registers if that stub function is replaced by a user-defined function.

17.2 Tasking Aware Interrupt Service Routines (TA-ISR)
Special care must be taken when writing an interrupt service routine (ISR) that will be used in con-
junction with µC/OS-II so that µC/OS-II scheduling will be performed at the proper time.

17.2.1 Interrupt Priority Levels
µC/OS-II for the Rabbit reserves interrupt priority levels 2 and 3 for interrupts outside of the ker-
nel. Since the kernel is unaware of interrupts above priority level 1, interrupt service routines for
interrupts which occur at interrupt priority levels 2 and 3 should not be written to be tasking

aware. Also, a µC/OS-II application should only disable interrupts by setting the interrupt priority

level to 1, and should never raise the interrupt priority level above 1.
Dynamic C User’s Manual 363

17.2.2 Possible ISR Scenarios
There are several different scenarios that must be considered when writing an ISR for use with

µC/OS-II. Depending on the use of the ISR, it may or may not have to be written so that it is task-
ing aware. Consider the scenario in the Figure below. In this situation, the ISR for Interrupt X does

not have to be tasking aware since it does not re-enable interrupts before completion and it does

not post to a semaphore, mailbox, or queue.

Figure 8. Type 1 ISR

If, however, an ISR needs to signal a task to the ready state, then the ISR must be tasking aware. In

the example in the Figure below, the TA-ISR increments the interrupt nesting counter, does the

work necessary for the ISR, readies a higher priority task, decrements the nesting count, and

returns to the higher priority task.

Figure 9. Type 2 ISR

Task 1

Task 1

Interrupt X

Interrupt X ISR

ipres

Task 2

Task 1

Interrupt X

Interrupt X TA-ISR

Nesting = 1
Task 1 is readied
Nesting = 0
ipres
364 Dynamic C User’s Manual

It may seem as though the ISR in this Figure does not have to increment and decrement the nesting

count. This is, however, very important. If the ISR for Interrupt X is called during an ISR that re-
enables interrupts before completion, scheduling should not be performed when Interrupt X com-
pletes; scheduling should instead be deferred until the least nested ISR completes. The next Figure

shows an example of this situation.

Figure 10. Type 2 ISR Nested Inside Type 3 ISR

As can be seen here although the ISR for interrupt Z does not signal any tasks by posting to a

semaphore, mailbox, or queue, it must increment and decrement the interrupt nesting count since it
re-enables interrupts (ipres) prior to finishing all of its work.

17.2.3 General Layout of a TA-ISR
A TA-ISR is just like a standard ISR except that it does some extra checking and house-keeping.
The following table summarizes when to use a TA-ISR.

Table 5: Use of TA-ISR

µC/OS-II Application

Type 1*

*. Type 1—Leaves interrupts disabled and does not signal task to ready state

Type 2†

†. Type 2—Leaves interrupts disabled and signals task to ready state

Type 3‡

‡. Type 3—Reenables interrupts before completion

TA-ISR Required? No Yes Yes

Task 2

Task 1

Interrupt Z TA-ISR

Nesting = 2
Task 1 is readied
Nesting = 1
ipres

Interrupt X TA-ISR

Nesting = 1
Do critical code
ipres
Interrupt X

Finish ISR
Nesting = 0

Interrupt Z
Dynamic C User’s Manual 365

The following Figure shows the logical flow of a TA-ISR.

Figure 11. Logical Flow of a TA-ISR

Save registers used by TA-ISR

Reenable interrupts (optional)

Do work necessary for interrupt

Decrement Nesting Count

Call OSIntExit

Clear interrupt source

Increment nesting count

Is Nesting == 0 ?

Restore Registers used by TA-ISR

Return from interrupt

Is switch pending ?

Switch to new task

Yes

Yes

No

No
366 Dynamic C User’s Manual

 17.2.3.1 Sample Code for a TA-ISR
Fortunately, the Rabbit BIOS and libraries provide all of the necessary flags to make TA-ISRs

work. With the code found in Listing 1, minimal work is needed to make a TA-ISR function

correctly with µC/OS-II. TA-ISRs allow µC/OS-II the ability to have ISRs that communicate with

tasks as well as the ability to let ISRs nest, thereby reducing interrupt latency.

Just like a standard ISR, the first thing a TA-ISR does is to save the registers that it is going to use

(1). Once the registers are saved, the interrupt source is cleared (2) and the nesting counter is

incremented (3). Note that bios_intnesting is a global interrupt nesting counter provided in

the Dynamic C libraries specifically for tracking the interrupt nesting level. If an ipres instruc-
tion is executed (4) other interrupts can occur before this ISR is completed, making it necessary

for this ISR to be a TA-ISR. If it is possible for the ISR to execute before µC/OS-II has been fully

initialized and started multi-tasking, a check should be made (5) to insure that µC/OS-II is in a

known state, especially if the TA-ISR signals a task to the ready state (6). After the TA-ISR has

done its necessary work (which may include making a higher priority task than is currently run-
ning ready to run), OSIntExit must be called(7). This µC/OS-II function determines the high-
est priority task ready to run, sets it as the currently running task, and sets the global flag

bios_swpend if a context switch needs to take place. If the TA-ISR decrements the nesting

counter (8) and the count does not go to zero, then the nesting level is saved in

bios_intnesting (9), the registers used by the TA-ISR are restored, interrupts are re-enabled

(if not already done in (4)), and the TA-ISR returns (12). However, if decrementing the nesting

counter in (8) causes the counter to become zero, then bios_swpend must be checked to see if a

context switch needs to occur (10). If a context switch is not pending, then the nesting level is set
(9) and the TA-ISR exits (12). If a context switch is pending, then the remaining context of the

previous task is saved and a long call, which insures that the xpc is saved and restored properly, is

made to bios_intexit (11). bios_intexit is responsible for switching to the stack of the

task that is now ready to run and executing a long call to jump into the new task. The remainder of
(11) is executed when a previously preempted task is allowed to run again.

Listing 1

#asm
taskaware_isr::

push af ;push registers needed by isr
(1)

push hl ;clear interrupt source
(2)

ld hl,bios_intnesting ;increase the nesting count
(3)

inc (hl)
; ipres (optional)

(4)
; do processing necessary for interrupt
ld a,(OSRunning) ;has MCOS started multitasking yet?

(5)
or a
jr z,taisr_decnesting
; possibly signal task to become ready

(6)
call OSIntExit ;sets bios_swpend if higher prio
Dynamic C User’s Manual 367

ready(7)

taisr_decnesting:
ld a,(bios_intnesting) ;nesting counter == 1?

(8)
dec a
jr z,taisr_intexit

taisr_setnesting:
ld (bios_intnesting),a

(9)
jr taisr_done

taisr_intexit:
ld a,(bios_swpend) ;switch pend-

ing? (10)
or a
jr z,taisr_setnesting
push de

(11)
push bc
ex af,af
push af
exx
push hl
push de
push bc
push iy
lcall bios_intexit
pop iy
pop bc
pop de
pop hl
exx
pop af
ex af,af
pop bc
pop de

taisr_done:
pop hl

(12)
pop af
ipres
ret

#endasm
368 Dynamic C User’s Manual

17.3 Library Reentrancy
When writing a µC/OS-II application, it is important to know which Dynamic C library functions

are non-reentrant. If a function is non-reentrant, then only one task may access the function at a

time, and access to the function should be controlled via a µC/OS-II semaphore. The following is

a list of Dynamic C functions that are non-reentrant.

 *reentrant but sets the global _xtoxErr flag

The serial port functions (RS232.LIB functions) should be used in a restricted manner with

µC/OS-II. Two tasks can use the same port as long as both are not reading, or both are not writing;
i.e., one task can read from serial port X and another task can write to serial port X at the same

time without conflict.

Library Non-reentrant Functions

MATH.LIB randg, randb, rand

RS232.LIB All

RTCLOCK.LIB write_rtc, tm_wr

STDIO.LIB
kbhit, getchar, gets, getswf, selectkey

STRING.LIB atof*, atoi*, strtok

SYS.LIB
clockDoublerOn, clockDoublerOff, useMainOsc,
useClockDivider, use32kHzOsc

VDRIVER.LIB VdGetFreeWd, VdReleaseWd

XMEM.LIB root2xmem, xmem2root, WriteFlash

JRIO.LIB
digOut, digOn, digOff, jrioInit, anaIn, anaOut,
cof_anaIn

JR485.LIB All
Dynamic C User’s Manual 369

17.4 How to Get a µC/OS-II Application Running
µC/OS-II is a highly configureable, real-time operating system. It can be customized using as

many or as few of the operating system’s features as needed. This section outlines:

• The configuration constants used in µC/OS-II,

• How to override the default configuration supplied in UCOS2.LIB.

• The necessary steps to get an application running.
It is assumed that the reader has a familiarity with µC/OS-II or has a µC/OS-II reference

(MicroC/OS-II, The Real Time Kernel by Jean J. Labrosse is highly recommended).

Default Configuration
µC/OS-II usually relies on the include file os_cfg.h to get values for the configuration con-
stants. Since Dynamic C does not use this header file, these constants, along with their default
values, are in UCOS2.LIB. A default stack configuration is also supplied in UCOS2.LIB.
µC/OS-II for the Rabbit uses a more intelligent stack allocation scheme than other µC/OS-II
implementations to take better advantage of unused memory.

The default configuration allows up to 10 normally created application tasks running at 64 ticks

per second. Each task has a 512-byte stack. There are 2 queues specified, and 10 events. An

event is a queue, mailbox or semaphore. You can define any combination of these three for a total
of 10. If you want more than 2 queues, however, you must change the default value of
OS_MAX_QS.

Some of the default configuration constants are:

// Maximum number of events (semaphores, queues, mailboxes)
#define OS_MAX_EVENTS 10

// Maximum number of tasks (less stat and idle tasks)
#define OS_MAX_TASKS 10

// Maximum number of queues in system
#define OS_MAX_QS 2

// Maximum number of memory partitions
#define OS_MAX_MEM_PART 0

// Enable normal task creation
#define OS_TASK_CREATE_EN 1

//Disable extended task creation
#defineOS_TASK_CREATE_EXT_EN 0

// Disable task deletion
#define OS_TASK_DEL_EN 0

// Disable statistics task creation
#define OS_TASK_STAT_EN 0

// Enable queue usage
#define OS_Q_EN 1

// Disable memory manager
#define OS_MEM_EN 0

// Enable mailboxes
#define OS_MBOX_EN 1
370 Dynamic C User’s Manual

#// Enable semaphores
define OS_SEM_EN 1

// # of ticks in one second
#define OS_TICKS_PER_SEC 64

// # of 256 byte stacks (idle task stack)
#define STACK_CNT_256 1

//# of 512-byte stackstask stacks + initial program stack
#define STACK_CNT_512 OS_MAX_TASKS+1

If a particular portion of µC/OS-II is disabled, the code for that portion will not be compiled, mak-
ing the overall size of the operating system smaller. Take advantage of this feature by customizing

µC/OS-II based on the needs of each application.

Custom Configuration
In order to customize µC/OS-II by enabling and disabling components of the operating system,
simply redefine the configuration constants as necessary for the application.

#define OS_MAX_EVENTS 2
#define OS_MAX_TASKS 20
#define OS_MAX_QS 0
#define OS_MAX_MEM_PART 15
#define OS_TASK_STAT_EN 1
#define OS_Q_EN 0
#define OS_MEM_EN 1
#define OS_MBOX_EN 0
#define OS_TICKS_PER_SEC 64

If a custom stack configuration is needed also, define the necessary macros for the counts of the

different stack sizes needed by the application.

#define STACK_CNT_256 1 // idle task stack
#define STACK_CNT_512 2 // initial program + stat task stack
#define STACK_CNT_1K 10 // task stacks
#define STACK_CNT_2K 10 // number of 2K stacks

In the application code, follow the µC/OS-II and stack configuration constants with a #use
“ucos2.lib” statement. This ensures that the definitions supplied outside of the library are

used, rather than the defaults in the library.

This configuration uses 20 tasks, two semaphores, up to 15 memory partitions that the memory

manager will control, and makes use of the statistics task. Note that the configuration constants

for task creation, task deletion, and semaphores are not defined as the library defaults will suf-
fice. Also, note that 10 of the application tasks will each have a 1024 byte stack, 10 will each have

a 2048 byte stack, and an extra stack is declared for the statistics task.
Dynamic C User’s Manual 371

Examples
The following sample programs demonstrate the use of the default configuration supplied in

UCOS2.LIB and a custom configuration which overrides the defaults.

Example 1
In this application, ten tasks are created and one semaphore is created. Each task pends on the

semaphore, gets a random number, posts to the semaphore, displays its random number, and

finally delays itself for three seconds.

Looking at the code for this short application, there are several things to note. First, since µC/OS-
II and slice statements are mutually exclusive (both rely on the periodic interrupt for a “heart-
beat”), #use “ucos2.lib” must be included in every µC/OS-II application (1). In order for
each of the tasks to have access to the random number generator semaphore, it is declared as a glo-
bal variable (2). In most cases, all mailboxes, queues, and semaphores will be declared with glo-
bal scope. Next, OSInit must be called before any other µC/OS-II function to ensure that the

operating system is properly initialized (3). Before µC/OS-II can begin running, at least one appli-
cation task must be created. In this application, all tasks are created before the operating system

begins running (4). It is perfectly acceptable for tasks to create other tasks. Next, the semaphore

each task uses is created (5). Once all of the initialization is done, OSStart is called to start
µC/OS-II running (6). In the code that each of the tasks run, it is important to note the variable

declarations. The default storage class in Dynamic C is static, so to ensure that the task code is

reentrant, all are declared auto (7). Each task runs as an infinite loop and once this application is

started, µC/OS-II will run indefinitely.
372 Dynamic C User’s Manual

// 1. Explicitly use uC/OS-II library
#use "ucos2.lib"

void RandomNumberTask(void *pdata);

// 2. Declare semaphore global so all tasks have access
OS_EVENT* RandomSem;

void main()
{

int i;
// 3. Initialize OS internals
OSinit();
for(i = 0; i < OS_MAX_TASKS; i++)

// 4. Create each of the system tasks
OSTaskCreate(RandomNumberTask, NULL, 512, i);

// 5. semaphore to control access to random number generator
RandomSem = OSSemCreate(1);
// 6. Begin multitasking
OSStart();

}

void RandomNumberTask(void *pdata)
{

// 7. Declare as auto to ensure reentrancy.
auto OS_TCB data;
auto INT8U err;
auto INT16U RNum;

OSTaskQuery(OS_PRIO_SELF, &data);
while(1)
{

// Rand is not reentrant, so access must be controlled
// via a semaphore.
OSSemPend(RandomSem, 0, &err);
RNum = (int)(rand() * 100);
OSSemPost(RandomSem);
printf("Task%d's random #: %d\n",data.OSTCBPrio,RNum);

// Wait 3 seconds in order to view output from each task.
OSTimeDlySec(3);

}
}

Dynamic C User’s Manual 373

Example 2
This application runs exactly the same code as Example 1, except that each of the tasks are created

with 1024 byte stacks. The main difference between the two is the configuration of µC/OS-II.

First, each configuration constant that differs from the library default is defined. The configuration

in this example differs from the default in that it allows only two events (the minimum needed

when using only one semaphore), 20 tasks, no queues, no mailboxes, and the system tick rate is set
to 32 ticks per second (1). Next, since this application uses tasks with 1024 byte stacks, it is neces-
sary to define the configuration constants differently than the library default (2). Notice that one

512 byte stack is declared. Every Dynamic C program starts with an initial stack, and defining

STACK_CNT_512 is crucial to ensure that the application has a stack to use during initialization

and before multi-tasking begins. Finally ucos2.lib is explicitly used (3). This ensures that the

definitions in (1 and 2) are used rather than the library defaults. The last step in initialization is to

set the number of ticks per second via OSSetTicksPerSec (4).

The rest of this application is identical to example 1 and is explained in the previous section.

// 1. Define necessary configuration constants for uC/OS-II

#define OS_MAX_EVENTS 2
#define OS_MAX_TASKS 20
#define OS_MAX_QS 0
#define OS_Q_EN 0
#define OS_MBOX_EN 0
#define OS_TICKS_PER_SEC 32

// 2. Define necessary stack configuration constants

#define STACK_CNT_512 1 // initial program stack
#define STACK_CNT_1K OS_MAX_TASKS // task stacks

// 3. This ensures that the above definitions are used
#use "ucos2.lib"
void RandomNumberTask(void *pdata);

// Declare semaphore global so all tasks have access
OS_EVENT* RandomSem;

void main(){
int i;
// Initialize OS internals
OSInit();
for(i = 0; i < OS_MAX_TASKS; i++){

// Create each of the system tasks
OSTaskCreate(RandomNumberTask, NULL, 1024, i);

}
// semaphore to control access to random number generator
RandomSem = OSSemCreate(1);

// 4. Set number of system ticks per second
OSSetTicksPerSec(OS_TICKS_PER_SEC);

// Begin multi-tasking
OSStart();

}

374 Dynamic C User’s Manual

void RandomNumberTask(void *pdata)
{

// Declare as auto to ensure reentrancy.
auto OS_TCB data;
auto INT8U err;
auto INT16U RNum;

OSTaskQuery(OS_PRIO_SELF, &data);
while(1)
{

// Rand is not reentrant, so access must be controlled
// via a semaphore.
OSSemPend(RandomSem, 0, &err);
RNum = (int)(rand() * 100);
OSSemPost(RandomSem);
printf("Task%02d's random #: %d\n",data.OSTCBPrio,RNum);
// Wait 3 seconds in order to view output from each task.
OSTimeDlySec(3);

}
}

17.5 Compatibility with TCP/IP
The TCP/IP stack is reentrant and may be used with the µC/OS real-time kernel. The line

#use ucos2.lib

 must appear before the line

#use dcrtcp.lib.
Dynamic C User’s Manual 375

376 Dynamic C User’s Manual

Software License Agreement
Z-WORLD SOFTWARE END USER LICENSE AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING, COPYING OR OTHERWISE USING

THE ENCLOSED Z-WORLD,INC. ("Z-WORLD") DYNAMIC C SOFTWARE, WHICH

INCLUDES COMPUTER SOFTWARE ("SOFTWARE") AND MAY INCLUDE ASSOCIATED

MEDIA, PRINTED MATERIALS, AND "ONLINE" OR ELECTRONIC DOCUMENTATION

("DOCUMENTATION"), YOU (ON BEHALF OF YOURSELF OR AS AN AUTHORIZED

REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE TO ALL THE TERMS OF THIS

END USER LICENSE AGREEMENT ("LICENSE") REGARDING YOUR USE OF THE

SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS LICENSE,
DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDIATELY

CONTACT Z-WORLD FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to

include to protect our legal rights. If You have any questions, write or call Z-World at (530) 757-
4616, 2900 Spafford Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capital-
ized words used in this License shall have the following meanings:

“Qualified Applications” means an application program developed using the Software and that
links with the development libraries of the Software.

“Qualified Systems” means a microprocessor-based computer system which is either (i) manu-
factured by, for or under license from Z-WORLD, or (ii) based on the Rabbit 2000 micropro-
cessor. Qualified Systems may not be (a) designed or intended to be re-programmable by your
customer using the Software, or (b) competitive with Z-WORLD products, except as otherwise

stated in a written agreement between Z-World and the system manufacturer. Such written

agreement may require an end user to pay run time royalties to Z-World.

2. License. Z-WORLD grants to You a nonexclusive, nontransferable license to (i) use and repro-
duce the Software, solely for internal purposes and only for the number of users for which You

have purchased licenses for (the "Users") and not for redistribution or resale; (ii) use and repro-
duce the Software solely to develop the Qualified Applications; and (iii) use, reproduce and

distribute, the Qualified Applications, in object code only, to end users solely for use on Quali-
fied Systems; provided, however, any agreement entered into between You and such end users

with respect to a Qualified Application is no less protective of Z-Worldís intellectual property

rights than the terms and conditions of this License. (iv) use and distribute with Qualified

Applications and Qualified Systems the program files distributed with Dynamic C named

RFU.EXE, PILOT.BIN, and COLDLOADER.BIN in their unaltered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone else to, decompile,
reverse engineer, disassemble or otherwise attempt to reconstruct or discover the source code

of the Software, alter, merge, modify, translate, adapt in any way, prepare any derivative work

based upon the Software, rent, lease network, loan, distribute or otherwise transfer the Software

or any copy thereof. You shall not make copies of the copyrighted Software and/or documenta-
tion without the prior written permission of Z-WORLD; provided that, You may make one (1)
hard copy of such documentation for each User and a reasonable number of back-up copies for
Dynamic C User’s Manual 377

Your own archival purposes. You may not use copies of the Software as part of a benchmark or
comparison test against other similar products in order to produce results strictly for purposes

of comparison. The Software contains copyrighted material, trade secrets and other proprietary

material of Z-WORLD and/or its licensors and You must reproduce, on each copy of the Soft-
ware, all copyright notices and any other proprietary legends that appear on or in the original
copy of the Software. Except for the limited license granted above, Z-WORLD retains all
right, title and interest in and to all intellectual property rights embodied in the Software,
including but not limited to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other techni-
cal data received from Z-WORLD, nor the direct product thereof, will be exported outside the

United States or re-exported except as authorized and as permitted by the laws and regulations

of the United States and/or the laws and regulations of the jurisdiction, (if other than the United

States) in which You rightfully obtained the Software. The Software may not be exported to

any of the following countries: Cuba, Iran, Iraq, Libya, North Korea, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of
the United States Government, the following provisions apply. The Government agrees: (i)if
the Software is supplied to the Department of Defense ("DOD"), the Software is classified as

"Commercial Computer Software" and the Government is acquiring only "restricted rights" in

the Software and its documentation as that term is defined in Clause 252.227-7013(c)(1) of the

DFARS; and (ii) if the Software is supplied to any unit or agency of the United States Govern-
ment other than DOD, the Government's rights in the Software and its documentation will be as

defined in Clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-
86(d) of the NASA Supplement to the FAR.

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software and

its documentation is at Your sole risk. THE SOFTWARE, DOCUMENTATION, AND TECH-
NICAL SUPPORT ARE PROVIDED ON AN "AS IS" BASIS AND WITHOUT WAR-
RANTY OF ANY KIND. Information regarding any third party services included in this

package is provided as a convenience only, without any warranty by Z-WORLD, and will be

governed solely by the terms agreed upon between You and the third party providing such ser-
vices. Z-WORLD AND ITS LICENSORS EXPRESSLY DISCLAIM ALL WARRANTIES,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED

TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. Z-WORLD

DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE

WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE

SOFTWARE WILL BE CORRECTED. FURTHERMORE, Z-WORLD DOES NOT WAR-
RANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS

OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY

OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY Z-
WORLD OR ITS AUTHORIZED REPRESENTATIVES SHALL CREATE A WARRANTY

OR IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SOME JURISDIC-
TIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE

ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUDING

NEGLIGENCE, SHALL Z-WORLD BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR
378 Dynamic C User’s Manual

CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS

PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE

LIKE) ARISING OUT OF THE USE AND/OR INABILITY TO USE THE SOFTWARE,
EVEN IF Z-WORLD OR ITS AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW

THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE-
QUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT

APPLY TO YOU. IN NO EVENT SHALL Z-WORLDíS TOTAL LIABILITY TO YOU FOR

ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CONTRACT,
TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID

BY YOU FOR THE SOFTWARE.

8. Termination. This License is effective for the duration of the copyright in the Software unless

terminated. You may terminate this License at any time by destroying all copies of the Soft-
ware and its documentation. This License will terminate immediately without notice from Z-
WORLD if You fail to comply with any provision of this License. Upon termination, You must
destroy all copies of the Software and its documentation. Except for Section 2 ("License"), all
Sections of this Agreement shall survive any expiration or termination of this License.

9. General Provisions. No delay or failure to take action under this License will constitute a

waiver unless expressly waived in writing, signed by a duly authorized representative of Z-
WORLD, and no single waiver will constitute a continuing or subsequent waiver. This License

may not be assigned, sublicensed or otherwise transferred by You, by operation of law or other-
wise, without Z-WORLD's prior written consent. This License shall be governed by and con-
strued in accordance with the laws of the United States and the State of California, exclusive of
the conflicts of laws principles. The United Nations Convention on Contracts for the Interna-
tional Sale of Goods shall not apply to this License. If for any reason a court of competent
jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so as to affect the

intent of the parties, and the remainder of this License shall continue in full force and effect.
This License constitutes the entire agreement between the parties with respect to the use of the

Software and its documentation, and supersedes all prior or contemporaneous understandings

or agreements, written or oral, regarding such subject matter. There shall be no contract for
purchase or sale of the Software except upon the terms and conditions specified herein. Any

additional or different terms or conditions proposed by You or contained in any purchase order
are hereby rejected and shall be of no force and effect unless expressly agreed to in writing by

Z-WORLD. No amendment to or modification of this License will be binding unless in writing

and signed by a duly authorized representative of Z-WORLD.

Copyright 2000 Z-World, Inc. All rights reserved.
Dynamic C User’s Manual 379

380 Dynamic C User’s Manual

Index

Symbols

operator16, 17, 18
operator16, 17, 18
#asm89, 103, 104, 134
#class134
#debug89, 125, 134
#define16, 17, 18, 134
#elif135
#else135
#endasm103, 104, 134
#endif135
#error135
#fatal134
#funcchain32, 135
#if ...135
#ifdef135
#ifndef135
#include

absence of35
#interleave135
#KILL136
#makechain32, 136
#memmap4, 136
#nodebug89, 125, 134, 340
#nointerleave135
#nouseix136
#undef18, 136
#use35, 38, 136
#useix136
#warns136
#warnt136
#ximport137
& (address operator)26
* (indirection operator)26
@RETVAL113, 114
@SP108, 110, 111, 113, 114,

116
_GLOBAL_INIT127
{ } curly braces21

A

abort117
About Dynamic C359
abstract data types23
adc (add-with-carry)103
Add to Top button343
Add/Del Items <CTRL-W> 344,

353
Add/Del Watch Expression

<CTRL-W>343
adding watch window items

343, 344
address operator (&)26
address space4
addresses95
addresses in assembly language

106, 109
aggregate data types24
ALT key334
ALT-Backspace336
ALT-C339
ALT-CTRL-F3339
ALT-F10344
ALT-F2341, 342
ALT-F4336
ALT-F9341
ALT-H356
ALT-O346
ALT-R341
ALT-SHIFT-backspace337
ALT-W352
always_on117
anymem117
argument passing ..28, 108, 113,

114, 115
modifying value28

arrange icons
command352

arranged icons353
arrays24, 25, 28

characters19
subscripts24

arrow keys333, 334
Assembly Language103
assembly language3, 38, 89,

104, 105, 113, 114, 115,
116, 342

embedding C statements ..104
assembly window ...3, 104, 352,

354
assignment operators143
associativity139
auto90, 106, 107, 108, 117
Auto Open STDIO Window 349

B

backslash
continuation in directives .134

backslash (\)
character literals16, 20

basic unit of a C program22
baud rate351
BCDE107, 113, 114, 115
BeginHeader37, 38
binary operators139

BIOS121
body

module37, 38
branching31, 32
break29, 30, 32, 118, 130

example30
break points ...89, 104, 125, 342,

344
hard341, 342
interrupt status341, 342
soft341, 342

breaking out of a loop30
breaking out of a switch state-

ment30
buttons, toolbar351

C

C functions calling assembly

code113
C language 3, 4, 5, 13, 19, 23, 28,

32, 105, 107
C statements embedded in as-

sembly code104
C variables in assembly language

106
cascaded windows352
case32, 118, 121
case-sensitive searching337,

338
char23, 118, 132
characters

arrays19
embedded quotes20
nonprinting values20
special values20

checking
pointers27
stack89, 90
type22

Clear Watch Window344
clipboard337
Close <CTRL-F4>335
closing a file335
CoData Structure46

pointer to48
Cofunctions50

abandon54
calling restrictions51
everytime54
indexed52
single user52
syntax50

COM port351
communication
Dynamic C User’s Manual 381

serial 351
compilation .. 333, 339, 353, 356

direct to controller 3
errors 338
speed 3
targetless 339

Compile
to flash 339
to RAM 339
to Target 339

COMPILE menu 339
Compile to File <CTRL-F3>

339
Compile to File with *.RTI File

<ALT-CTRL-F3> 339
Compile to Target <F3> 339
compiler directives 134

#asm 134
#class 134
#debug 134
#define 134
#elif 135
#else 135
#endasm 134
#endif 135
#error 135
#fatal 134
#funcchain 135
#GLOBAL_INIT 134
#if 135
#ifdef 135
#ifndef 135
#interleave 135
#KILL 136
#makechain 136
#memmap 136
#nodebug 134
#nointerleave 135
#nouseix 136
#undef 136
#use 136
#useix 136
#warns 136
#warnt 136
#ximport 137
line continuation 134

Compiler options .. 27, 346, 347,
348

compiling 3
to file 333, 339
to RAM 339
to ROM 339
to target 333, 339

compound

names 15
statements 21

const 119
Contents

Help 359
continue 29, 30, 120, 130

example 30
copying text <CTRL-C> 336,

337
costate 120
Costatements 44

syntax 45
costatements 117, 120, 131, 133
Create *.RTI File for Targetless

Compile 339
CTRL key 333
CTRL-F10 344
CTRL-F2 342
CTRL-F3 339
CTRL-G 338
CTRL-H 357, 358, 359
CTRL-I 341, 342
CTRL-N 338
CTRL-O 341, 342
CTRL-P 338
CTRL-U 344
CTRL-V 337
CTRL-W 344
CTRL-X 337
CTRL-Y 341, 343
CTRL-Z 341
curly braces { } 21
cursor

execution 342
positioning 338
text 359

cutting text <CTRL-X> 337

D

data types 24
aggregate 24
primitive 14

DATASEG 95
db ... 105
DCW.CFG 352
DCW.INI 352
debug 120, 134

editor 350
mode 90, 338, 341

debugger 3
options 346, 349

debugging . 3, 89, 134, 341, 342,
344, 345

assembly-level view 3

declarations 21, 37
default 32, 121

storage class 5
Del from Top button 343
deleting watch window items

343, 344
demotion 347
direct

compilation 3
directives 4

#asm 89, 103, 104
#debug 89, 125, 134
#define 16, 17, 18
#endasm 103, 104
#funcchain 32
#makechain 32
#nodebug 89, 125, 340
#undef 18
#use 35, 38

Disassemble at Address <ALT-
F10> 344, 354

Disassemble at Cursor <CTRL-
F10> 344, 354

disassembled code 343
display

options 346, 350
do loop 29
dot operator 15, 25
dump window 345
dw .. 105
dynamic

storage allocation 25
Dynamic C 3

differences 4, 5, 32
exit 336, 352
installation 5, 116
support files 36

E

EDIT menu 336, 337, 338
edit mode 333, 338, 343
editing 3
editor 3

options 346
else 121
embedded assembly code 3, 108,

113, 114, 115, 116
embedded quotes 20
End key 333
EndHeader 37, 38
EPROM 4, 5
equ 104
errors

codes 91, 92
382 Dynamic C User’s Manual

editor350
fatal92
locating338
run-time91

ESC key
to close menu334

Evaluate button343
examples

break30
continue30
for loop29
modules38
of array24
union25

execution341, 344
cursor342

Exit <ALT-F4>336
Expr. in Call359
extended memory4, 112, 113,

132
extern38, 121

F

F (status register)355
F10352
F2341, 342
F3 ...339
F4 ...338
F6337, 338
F7341, 342
F8341, 342
F9 ...341
file commands

close file335
create file335
open file335
save file335

FILE menu335, 336
Find next <SHIFT-F5>338
firsttime122
float23, 122, 132

values19
for21, 123

character literals20
loop29

example29
frame

reference point113, 114
reference pointer 90, 111, 113,

125
free space356
Full Speed Bkgnd TX351
function calls22, 28, 90, 108,

113, 114, 115, 116, 117,

359
function chains .32, 33, 127, 136
function groups

arithmetic
abs159
getcrc209

bit manipulation
BIT166
bit165
RES282
res281
SET297
set296

character
isalnum217
isalpha218
iscntrl218
isdigit220
isgraph220
islower221
isprint222
ispunct223
isspace221
isupper224
isxdigit224

extended memory
paddr270
root2xmem283
WriteFlash2328
xalloc331
xmem2root331
xmem2xmem332

fast fourier transforms
fftcplx188
fftcplxinv189
fftreal190
fftrealinv191
hanncplx212
hannreal213
powerspectrum273

file system
fclose186
fcreate186
fcreate_unused187
fdelete187
fopen_rd200
fopen_wr200
fread201
fs_format203
fs_init204
fs_reserve_blocks205
fsck205
fseek206
fshift207

ftell207
fwrite208

floating-point math
acos159
acot160
acsc160
asec161
asin161
atan162
atan2163
ceil170
cos180
cosh181
deg182
exp185
fabs185
floor199
fmod199
frexp202
labs226
ldexp226
log227
log10227
modf234
poly271
pow272
pow10272
rad277
rand278
randb278
randg279
sin300
sinh301
sqrt303
tan317
tanh318

I/O
BitRdPortE166
BitRdPortI167
BitWrPortE168
BitWrPortI169
RdPortE279
RdPortI280
WrPortE330
WrPortI330

interrupts
GetVectExtern2000210
GetVectIntern211
SetVectExtern2000299
SetVectIntern300

low-level flash access
flash_erasechip192
flash_erasesector192
flash_gettype193
Dynamic C User’s Manual 383

flash_init 194
flash_read 195
flash_readsector 196
flash_sector2xwindow . 197
flash_writesector 198

MicroC/OS-II
OSInit 234
OSMboxAccept 235
OSMboxCreate 235
OSMboxPend 236
OSMboxPost 237
OSMboxQuery 238
OSMemCreate 239
OSMemGet 240
OSMemPut 240
OSMemQuery 241
OSQAccept 241
OSQCreate 242
OSQFlush 243
OSQPend 244
OSQPost 245
OSQPostFront 246
OSQQuery 247
OSSchedLock 247
OSSchedUnlock 248
OSSemAccept 248
OSSemCreate 249
OSSemPend 249
OSSemPost 250
OSSemQuery 251
OSSetTickPerSec 252
OSStart 252
OSStatInit 253
OSTaskChangePrio 253
OSTaskCreate 254
OSTaskCreateExt 255
OSTaskCreateHook 256
OSTaskDel 257
OSTaskDelHook 258
OSTaskDelReq 259
OSTaskQuery 260
OSTaskResume 261
OSTaskStatHook 261
OSTaskStkChk 262
OSTaskSuspend 263
OSTaskSwHook 263
OSTimeDly 264
OSTimeDlyHMSM 265
OSTimeDlyResume 266
OSTimeDlySec 267
OSTimeGet 267
OSTimeSet 268
OSTimeTickHook 268
OSVersion 269

miscellaneous
longjmp 228
qsort 276
runwatch 283
setjmp 298

multitasking
CoBegin 173
CoPause 179
CoReset 179
CoResume 180
DelayMs 182
DelaySec 183
DelayTicks 183
IntervalMs 215
IntervalSec 215
IntervalTick 216
isCoDone 219
isCoRunning 219

number-to-string conversion
ftoa 208
htoa 214
itoa 225
ltoa 228
ltoan 229
utoa 324

real-time clock
mktime 232
mktm 233
read_rtc 280
read_rtc_32kHz 281
tm_rd 319
tm_wr 320
write_rtc 329

serial communication
cof_serAgetc 173
cof_serAgets 174
cof_serAputc 175
cof_serAputs 176
cof_serAread 177
cof_serAwrite 178
cof_serBgetc 173
cof_serBgets 174
cof_serBputc 175
cof_serBputs 176
cof_serBread 177
cof_serBwrite 178
cof_serCgetc 173
cof_serCgets 174
cof_serCputc 175
cof_serCputs 176
cof_serCread 177
cof_serCwrite 178
cof_serDgetc 173
cof_serDgets 174

cof_serDputc 175
cof_serDputs 176
cof_serDread 177
cof_serDwrite 178
serAclose 284
serAdatabits 285
serAflowcontrolOff 285
serAflowcontrolOn 286
serAgetc 287
serAgetError 288
serAopen 289
serAparity 290
serApeek 291
serAputc 291
serAputs 292
serArdFlush 292
serArdFree 293
serArdUsed 293
serAread 294
serAwrFlush 295
serAwrFree 295
serAwrite 295
serBclose 284
serBdatabits 285
serBflowcontrolOff 285
serBflowcontrolOn 286
serBgetc 287
serBgetError 288
serBopen 289
serBparity 290
serBpeek 291
serBputc 291
serBputs 292
serBrdFlush 292
serBrdFree 293
serBrdUsed 293
serBread 294
serBwrFlush 295
serBwrFree 295
serBwrite 295
serCclose 284
serCdatabits 285
serCflowcontrolOff 285
serCflowcontrolOn 286
serCgetc 287
serCgetError 288
serCheckParity 284
serCopen 289
serCparity 290
serCpeek 291
serCputc 291
serCputs 292
serCrdFlush 292
serCrdFree 293
384 Dynamic C User’s Manual

serCrdUsed293
serCread294
serCwrFlush295
serCwrFree295
serCwrite295
serDclose284
serDdatabits285
serDflowcontrolOff285
serDflowcontrolOn286
serDgetc287
serDgetError288
serDopen289
serDparity290
serDpeek291
serDputc291
serDputs292
serDrdFlush292
serDrdFree293
serDrdUsed293
serDread294
serDwrFlush295
serDwrFree295
serDwrite295

STDIO
getchar209
gets210
kbhit225
outchrs269
outstr270
printf274
putchar275
puts275
sprintf302

string manipulation
memchr229
memcmp230
memcpy231
memmove231
memset232
strcat303
strchr304
strcmp305
strcmpi306
strcpy307
strcspn307
strlen308
strncat308
strncmp309
strncmpi310
strncpy311
strpbrk312
strrchr312
strspn313
strstr313

strtok315
tolower321
toupper321

string-to-number conversion
atof164
atoi164
atol165
strtod314
strtol316

system
_sysIsSoftReset316
chkHardReset170
chkSoftReset171
chkWDTO171
clockDoublerOff172
clockDoublerOn172
defineErrorHandler181
exit184
forceSoftReset201
GetVectExtern2000210
ipres216
ipset217
premain274
sysResetChain317
updateTimers322
use32HzOsc322
useClockDivider323
useMainOsc323

watchdog
Disable_HW_WDT184
hitwd214
VdGetFreeWd325
VdInit326
VdReleaseWd327

function headers39
function help39
function libraries3, 35, 37
function lookup <CTRL-H>

357, 358, 359
function returns90, 113, 114,

115
functions22

entry and exit90
prototypes22, 24, 37

G

generated92
Global Initialization33
global variables25
goto30, 31, 123
Goto <CTRL-G>338

H

hard break points341, 342

header
function39
module37, 38

heap storage356
Help

online359
HELP menu .356, 357, 358, 359
HL 107, 109, 110, 113, 114, 115
Home key333
horizontal tiling352, 353

I

IBM PC3, 341, 351
icons

arranged352, 353
IEEE floating point122
if ...121

multichoice31
simple31
with else31

indirection operator (*)26
information window352, 356
init_on124
insertion point337, 338
INSPECT menu ..343, 344, 345,

353
installation

Dynamic C5, 116
int23, 124, 132
integers19

hexadecimal19
long19
octal19
unsigned19

interrupt124
interrupt service routines 3, 115,

116, 124
interrupt status

and break points341, 342
interrupts115, 116

flag342
latency115

IX (index register) ..89, 90, 111,
112, 113, 125, 131

K

kernel
real-time90

key module37
keystrokes

<ALT R> select RUN menu ..
341

<ALT-Backspace> undoing

changes336
Dynamic C User’s Manual 385

<ALT-C> select COMPILE

menu 339
<ALT-F> select FILE menu ..

334
<ALT-F10> Disassemble at

Address 344
<ALT-F2> Toggle hard break

point 341, 342
<ALT-F4> Exit 336
<ALT-F4> Quitting Dynamic

C 334
<ALT-F9> Run w/ No Polling

341
<ALT-H> select HELP menu

356
<ALT-O> select OPTIONS

menu 346
<ALT-SHIFT-backspace> re-

doing changes 337
<ALT-W> select WINDOW

menu 352
<CTRL-F> Compile to File ..

339
<CTRL-F10> Disassemble at

Cursor 344
<CTRL-F2> Reset Program ..

341, 342
<CTRL-F3> Compile to File

with *.RTI File 339
<CTRL-G> Goto 338
<CTRL-H> Library Help

lookup . 334, 357, 358, 359
<CTRL-I> Toggle interrupt ..

341, 342
<CTRL-N> next error 338
<CTRL-O> Toggle polling ...

341, 342
<CTRL-P> previous error 338
<CTRL-U> Update Watch

window 344
<CTRL-V> pasting text .. 337
<CTRL-W> Add/Del Items ..

344
<CTRL-X> cutting text ... 337
<CTRL-Y> Reset target . 341,

343
<CTRL-Z> Stop 341
<F10> Assembly window 352
<F2> Toggle break point 341,

342
<F3> Compile to Target .. 339
<F7> Trace into 341, 342
<F8> Step over 341, 342
<F9> Run 341

<SHIFT-F5> Find next ... 338
keywords 4, 32, 89, 112, 117,

121, 125, 127, 131
abort 117
always_on 117
anymem 117
auto 117
break 118
case 118
char 118
continue 120
costate 120
debug 120
default 121
do 121
else 121
extern 121
firsttime 122
float 122
for 123
goto 123
if 123
init_on 124
int 124
interrupt 124
long 124
nodebug 125
norst 125
nouseix 125
NULL 125
protected 126
return 126
root 127
segchain 127
shared 127
short 128
size 128
sizeof 128
speed 128
static 129
struct 129
switch 130
typedef 130
union 131
unsigned 131
useix 131
waitfor 131
while 132
xdata 132
xmem 132
xstring 133
yield 133

L

language elements 13, 15, 19,
117

operators 139
latency interrupts 115
Lib Entries 357
LIB.DIR 38, 136, 357
Libraries 35
libraries 3, 35

modules 37
real-time programming 3

library functions 357
Library Help lookup 39
Library Help lookup <CTRL-H>

357, 358, 359
lick 336
linking 3
locating errors 338
long 124, 132
lookup function <CTRL-H>

357, 358, 359
loops 29

breaking out of 30
do 121
for 123
skipping to next pass 30

M

macros 16, 17, 18, 104, 106, 134
restrictions 18
with parameters 16

main function 22, 35, 89, 125
memory

dump 343
dump at address 345
dump Flash 345
dump to file 345
extended 4, 95, 112, 113, 132
logical 95
management 117, 127
physical 95
random access 4, 5
read-only 4, 5
root . 4, 95, 97, 106, 107, 109,

110, 112, 127
memory management unit

(MMU) 4, 95
Memory options 346
menus

COMPILE 334, 339
EDIT 334, 336, 337, 338
FILE 334, 335, 336
HELP 334, 356, 357, 358, 359
386 Dynamic C User’s Manual

INSPECT 334, 343, 344, 345,
353

OPTIONS ..27, 334, 346, 347,
348, 349, 350, 351

RUN334, 341, 342, 343
system334
WINDOW 334, 352, 353, 354,

355, 356
message window ..338, 352, 353
minimized windows353
MMU (memory management

unit)4
modes

debug90, 338, 341
edit338, 343
preview335
run338, 341

module
headers121

modules35, 37, 38
body37, 38
example38
header37, 38
key37
library37

mouse333
Multitasking

cooperative41
preemptive57

N

names15
#define16

Next error <CTRL-N>338
No Background TX351
nodebug .89, 104, 125, 134, 341,

342, 344, 348
norst125
nouseix109, 125
NULL125

O

offsets in assembly language
106, 109, 111, 112, 113

online help39, 359
operators139

(macros)16, 17, 18
(macros)16, 17, 18
arithmetic operators140

decrement (--)142
division (/)141
increment (++)141
indirection (*)141
minus (-)140

modulus (%)142
multiplication (*)141
plus (+)140
pointers141
post-decrement (--)142
post-increment (++)141
pre-decrement (--)142
pre-increment (++)141

assignment operators142
add assign (+=)142
AND assign (&=)143
assign (=)142
divide assign (/=)143
modulo assign (%=)143
multiply assign (*=)143
OR assign (|=)144
shift left (<<=)143
shift right (>>=)143
subtract assign (-=)143
XOR assign (^=)144

associativity139
binary139
bitwise operators

address (&)144
bitwise AND (&)144
bitwise exclusive OR (^)

145
bitwise inclusive OR (|) 145
complement (~)145
pointers144
shift left (<<)144
shift right (>>)144

comma151
conditional operators (? :) 149
equality operators146

equal (==)146
not equal (!=)146

in assembly language105
logical operators147

logical AND (&&)147
logical NOT (!)147
logical OR (| |)147

operator precedence151
postfix expressions147

() parentheses147
[] array indices147
array subscripts or dimen-

sion []147
dot (.)148
parentheses ()147
right arrow (->)148

precedence139
reference/dereference opera-

tors148

address (&)148
bitwise AND (&)148
indirection (*)149
multiplication (*)149

relational operators145
greater than (>)146
greater than or equal (>=) ..

146
less than (<)145
less than or equal (<=) .145

sizeof150
unary139

Optimize For (size or speed) 347
options

compiler346, 347, 348
debugger346, 349
display346, 350
editor346
memory346
serial346, 351

OPTIONS menu ...27, 346, 347,
348, 349, 350, 351

P

PageDown key333
PageUp key333
passing arguments .28, 108, 113,

114, 115
Paste337
pasting text <CTRL-V>337
PC3, 341, 351
pointer checking27
pointers19, 26, 28

uninitialized26
polling341, 342
ports

serial351
positioning text338
power failure126
preserving registers114, 115,

116
preview mode335
Previous error <CTRL-P> ...338
primary register ...107, 113, 114,

115
primitive data types14
Print335
Print Preview335
Print Setup336
printf 20, 24, 341, 342, 349, 353
program

example23
program flow .28, 29, 30, 31, 32
programmable ROM4, 5
Dynamic C User’s Manual 387

programming
real-time 3

promotion 140
protected 126
protected variables 3, 89, 126
prototypes

function 22, 24, 37
in headers 37

punctuation 14

Q

quitting Dynamic C <ALT-F4>

336

R

Rabbit reset
_sysIsSoftReset 316
chkHardReset 170
chkSoftReset 171
chkWDTO 171

Rabbit restart
protected variables 126
sysResetChain 317

RAM
static 4, 5

read-only memory 4, 5
real-time

kernel (RTK) 3, 90
programming 3

redoing changes
<ALT-SHIFT-backspace>

337
registers 90, 108

snapshots 355
variables 26
window 3, 352, 355

remote target information (RTI)
file 339

Replace <F6> 334, 337
replacing text 337, 338
reset

software 343
Reset program <CTRL-F2> 341,

342
Reset target <CTRL-Y> 341,

343
resetting program 342
restarting

program 342
target controller 343

ret 113, 116
reti 116
retn 116
return 113, 126, 130

return address 108, 112
reverse searching 337, 338
ROM 341, 342

programmable 4, 5
root 97, 127

memory 4, 97, 106, 107, 109,
110, 112, 127

rst 028h 342
RST 28H 89
RTI (remote target information)

file 339
RTK (real-time kernel) 3, 90
Run <F9> 341
RUN menu 341, 342, 343
run mode 338, 341
Run w/ No Polling <ALT-F9> ..

341
running

a program 341
in polling mode 341
with no polling 341

run-time
checking 347

S

sample programs
basic C constructs 23

Save 335
Save as 335
Save Environment 352
saving a file 335
scrolling 355
Search for Help 359
searching for text 337, 338
searching in reverse 337, 338
segchain 32, 127
SEGSIZE 95
selecting

COMPILE menu <ALT-C> ..
339

HELP menu <ALT-H> ... 356
OPTIONS menu <ALT-O> ...

346
RUN menu <ALT-R> 341
WINDOW menu <ALT-W> .

352
serial communication 351
serial options 346, 351
serial port 351
shared 127
shared variables 3, 89, 126
SHIFT-F5 338
short 128
Show Tool Bar 351

single stepping 90, 104, 344
in assembly language 89
with descent <F7> 342
without descent <F8> 342

size 128
sizeof 128
skipping to next loop pass 30
Slice Statements 57
soft break points 341, 342
software

libraries 35, 37
reset 343

source window 352
SP (stack pointer) 108, 114, 115,

116, 136
special characters 20
special symbols

in assembly language 106
speed 128
stack 28, 90, 108, 109, 110, 111,

112, 113, 114, 115, 116,
117, 125

checking 89, 90
frame 108, 110, 112, 113, 114,

115, 116
frame reference point 113,

114
frame reference pointer 90,

111, 113, 125
pointer (SP) 108, 114, 115,

116, 136
snapshots 355
window 3, 352, 355

STACKSEG 95
standalone

assembly code 107
state machine

example 43
statements 21
static 129

RAM 4, 5
variables 5, 106, 108

status register (F) 355
STDIO window 3, 349, 352, 353
Step over <F8> 341, 342
Stop <CTRL-Z> 341
stop bits 351
stopping a running program 341
storage class 21, 108

auto 25
default 5
register 25, 26
static 25

strcpy 359
388 Dynamic C User’s Manual

strings19, 20, 132, 134, 135
functions19
terminating null byte19

struct ...21, 24, 25, 28, 107, 108,
113, 114, 115, 129

structures .24, 25, 107, 108, 113,
114, 115

return space108, 113, 114,
115

subscripts
array24

support files36
switch32, 121, 130

breaking out of30
case130

switching to edit mode338
symbolic constant134
Sync. Bkgnd TX351

T

targetless compilation339
text cursor359
Tile Horizontally352, 353
tiling windows352, 353
Toggle break point <F2>341,

342
Toggle hard break point <ALT-

F2>341, 342
Toggle interrupt <CTRL-I> 341,

342
Toggle polling <CTRL-O> .341,

342
toolbar351
Trace into <F7>341, 342
type

checking22, 348
conversion140
definitions23

type casting140
typedef23, 130
types

function22

U

unary operators139
unbalanced stack116
undoing changes <ALT-Back-

space>336
uninitialized

pointers26
union21, 25, 131
unpreserved registers ..114, 115,

116
unsigned131

untitled files335
Update Watch window <CTRL-

U>344
useix90, 110, 131

V

variables
global25

vertical tiling352

W

waitfor131
waitfordone132
warning reports347
watch

dialog343, 344
expressions344, 353
list344
window .3, 343, 344, 352, 353

adding items343, 344
clearing344
deleting items343, 344
updating344

wfd132
while21, 29, 132
WINDOW menu .352, 353, 354,

355, 356
windows352

assembly3, 104, 352, 354
cascaded352
information352, 356
message352, 353
minimized353
register3, 352, 355
stack3, 352, 355
STDIO3, 349, 352, 353
tiled horizontally352, 353
tiled vertically352
watch3, 343, 344, 352, 353

X

xdata132
xmem112, 132
XPC95
xstring133

Y

yield133

Z

Z18089, 95, 355
Dynamic C User’s Manual 389

390 Dynamic C User’s Manual

	Installing Dynamic C �1
	1.1� Requirements
	1.2� Assumptions

	Introduction to Dynamic C �2
	2.1� The Nature of Dynamic C
	2.1.1� Speed

	2.2� Dynamic C Enhancements and Differences
	2.2.1� Dynamic C Enhancements
	2.2.2� Dynamic C Differences

	2.3� Dynamic C Differences Between Rabbit and Z180

	Quick Tutorial �3
	3.1� Run DEMO1.C
	3.1.1� Single-Stepping
	3.1.2� Watch Expression
	3.1.3� Breakpoint
	3.1.4� Editing the Program

	3.2� Run DEMO2.C
	3.2.1� Watching Variables Dynamically

	3.3� Run DEMO3.C
	3.3.1� Cooperative Multitasking

	3.4� Summary of Features
	3.4.1� Development Functions
	3.4.2� Single-stepping
	3.4.3� Setting breakpoints
	3.4.4� Watch expressions
	3.4.5� Costatements

	Language �4
	4.1� C Language Elements
	4.2� Punctuation and Tokens
	4.3� Data
	4.4� Names
	4.5� Macros
	4.5.1� Restrictions

	4.6� Numbers
	4.7� Strings and Character Data
	4.8� Statements
	4.9� Declarations
	4.10� Functions
	4.11� Prototypes
	4.12� Type Definitions
	4.13� Aggregate Data Types
	4.13.1� Array
	4.13.2� Structure
	4.13.3� Union
	4.13.4� Composites

	4.14� Storage Classes
	4.15� Pointers
	4.16� Pointers to Functions, Indirect Calls
	4.17� Argument Passing
	4.18� Program Flow
	4.18.1� Loops
	4.18.2� Continue and Break
	4.18.3� Branching

	4.19� Function Chaining
	4.20� Global Initialization
	4.21� Libraries
	4.22� Support Files
	4.23� Headers
	4.24� Modules
	4.24.1� The Key
	4.24.2� The Header
	4.24.3� The Body
	4.24.4� Function Description Headers

	Multitasking with Dynamic C �5
	5.1� Cooperative Multitasking
	5.2� A Real-time Problem
	5.2.1� Solving the Real-time Problem With�a�State�Machine

	5.3� Costatements
	5.3.1� Solving the Real-time Problem With�Costatements
	5.3.2� Costatement Syntax
	5.3.3� Control Statements

	5.4� Advanced Costatement Topics
	5.4.1� The CoData Structure
	5.4.2� CoData Fields
	5.4.3� Pointer to CoData Structure
	5.4.4� Library Extensions for Use With Named Costatements
	int isCoDone(CoData* p)
	int isCoRunning(CoData* p)
	void CoBegin(CoData* p)
	void CoPause(CoData* p)
	void CoReset(CoData* p)
	void CoResume(CoData* p)

	5.4.5� Firsttime Functions
	5.4.6� Shared Global Variables

	5.5� Cofunctions
	5.5.1� Syntax
	5.5.2� Calling Restrictions
	5.5.3� CoData Structure
	5.5.4� Firsttime functions
	5.5.5� Types of Cofunctions
	5.5.6� Types of Cofunction Calls
	5.5.7� Special Code Blocks
	5.5.8� Solving the Real-time Problem With�Cofunctions

	5.6� Patterns of Cooperative Multitasking
	5.7� Timing Considerations
	5.7.1� waitfor Accuracy Limits

	5.8� Overview of Preemptive Multitasking
	5.9� Slice Statements
	5.9.1� Syntax
	5.9.2� Usage
	5.9.3� Restrictions
	5.9.4� Slice Data Structure
	5.9.5� Slice Internals

	5.10� Summary

	The Virtual Driver �6
	Initialization Services
	Periodic Interrupt Services
	6.1� Default Operation
	6.2� Calling _GLOBAL_INIT()
	6.3� Global Timer Variables
	6.4� Watchdog Timers
	Hardware Watchdog
	Virtual Watchdogs

	6.5� Preemptive Multitasking Drivers

	The Slave Port Driver �7
	7.1� Slave Port Driver Protocol
	7.1.1� Overview
	7.1.2� Registers on the Slave
	7.1.3� Polling and Interrupts
	7.1.4� Communication Channels

	7.2� Functions
	SPinit
	SPsetHandler
	MyHandler
	SPtick
	SPclose

	7.3� Examples
	7.3.1� Example of a Simple Status Handler
	7.3.2� Example of a Serial Port Handler
	cof_MSgetc
	cof_MSputc
	cof_MSread
	cof_MSwrite
	MSclose
	MSgetc
	MSgetError
	MSinit
	MSopen
	MSputc
	MSrdFree
	MSsendCommand
	MSread
	MSwrFree
	MSwrite
	7.3.3� Example of a Byte Stream Handler

	cbuf_init
	cof_SPSread
	cof_SPSwrite
	SPSinit
	SPSread
	SPSwrite
	SPSwrFree
	SPSrdFree
	SPSwrUsed
	SPSrdUsed

	Efficiency �8
	8.1� Nodebug Keyword
	8.2� Static Variables
	8.3� Function Entry and Exit

	Run-Time Error Processing �9
	9.1 User-defined error handlers

	Memory Management �10
	10.1� Memory Map
	10.1.1� Memory Mapping Control

	10.2� Extended Memory Functions
	10.2.1� Code Placement in Memory

	The Flash File System �11
	11.1� General Usage
	Wear Leveling
	Low-level implementation

	11.2� Application Requirements
	11.3� Functions
	Using File Names

	11.4� Skeleton Program

	Using Assembly Language �12
	12.1� Program Flow
	12.1.1� Embedded C in Assembly

	12.2� Comments
	12.3� Labels
	12.4� Defining Constants
	12.5� Expressions
	12.6� Multiline Macros
	12.7� Special Symbols
	12.8� C Variables
	12.9� Stand-alone Assembly Code
	12.10� Embedded Assembly Code
	12.10.1� Not Using the IX Register, Function in Root Memory
	12.10.2� Using the IX Register, Function in Root Memory
	12.10.3� Not Using the IX Register, Function in Extended Memory

	12.11� C Functions Calling Assembly Code
	12.12� Assembly Code Calling C Functions
	12.13� Interrupt Routines in Assembly
	12.14� Common Problems

	Keywords �13
	abort
	always_on
	anymem
	auto
	break
	case
	char
	const
	continue
	costate
	debug
	default
	do
	else
	extern
	firsttime
	float
	for
	goto
	if
	init_on
	int
	interrupt
	long
	main
	nodebug
	norst
	nouseix
	NULL
	protected
	return
	root
	segchain
	shared
	short
	size
	sizeof
	speed
	static
	struct
	switch
	typedef
	union
	unsigned
	useix
	waitfor
	waitfordone (wfd)
	while
	xdata
	xmem
	xstring
	yield
	13.1� Compiler Directives
	#asm options #endasm
	#class options
	#debug #nodebug
	#define name text #define name(params...) text
	#fatal "…"
	#GLOBAL_INIT { variables }
	#error "…"
	#funcchain chainname name
	#if constant_expression #elif constant_expression #else #endif
	#ifdef name #ifndef name
	#interleave #nointerleave
	#KILL name
	#makechain chainname
	#memmap options
	#undef name
	#use pathname
	#useix #nouseix
	#warns "…"
	#warnt "…"
	#ximport <filename> <symbol>

	Operators �14
	14.1� Arithmetic Operators
	+
	–
	*
	/
	++
	––
	%

	14.2� Assignment Operators
	=
	+=
	-=
	*=
	/=
	%=
	<<=
	>>=
	&=
	^=
	|=

	14.3� Bitwise Operators
	<<
	>>
	&
	^
	|
	~

	14.4� Relational Operators
	<
	<=
	>
	>=

	14.5� Equality Operators
	==
	!=

	14.6� Logical Operators
	&&
	||
	!

	14.7� Postfix Expressions
	()
	[]
	. (dot)
	->

	14.8� Reference/Dereference Operators
	&
	*

	14.9� Conditional Operators
	? :

	14.10� Other Operators
	(type)
	sizeof
	,

	Function Reference �15
	15.1� Functional Groups
	arithmetic
	bit manipulation
	character
	extended memory
	fast fourier transforms
	file system
	floating-point math
	low-level flash access
	I/O
	interrupts
	MicroC/OS-II
	miscellaneous
	multitasking
	number-to-string conversion
	real-time clock
	serial communication
	STDIO
	string manipulation
	string-to-number conversion
	system
	watchdog

	15.2� Alphabetical Listing
	abs
	acos
	acot
	acsc
	asec
	asin
	atan
	atan2
	atof
	atoi
	atol
	bit
	BIT
	BitRdPortE
	BitRdPortI
	BitWrPortE
	BitWrPortI
	ceil
	chkHardReset
	chkSoftReset
	chkWDTO
	clockDoublerOn
	clockDoublerOff
	CoBegin
	cof_serXgetc
	cof_serXgets
	cof_serXputc
	cof_serXputs
	cof_serXread
	cof_serXwrite
	CoPause
	CoResume
	cos
	cosh
	defineErrorHandler
	deg
	DelayMs
	DelaySec
	DelayTicks
	Disable_HW_WDT
	exit
	exp
	fabs
	fclose
	fcreate
	fcreate_unused
	fdelete
	fftcplx
	fftcplxinv
	fftreal
	fftrealinv
	flash_erasechip
	flash_erasesector
	flash_gettype
	flash_init
	flash_read
	flash_readsector
	flash_sector2xwindow
	flash_writesector
	floor
	fmod
	fopen_rd
	fopen_wr
	forceSoftReset
	fread
	frexp
	fs_format
	fs_init
	fs_reserve_blocks
	fsck
	fseek
	ftell
	fshift
	fwrite
	ftoa
	getchar
	getcrc
	gets
	GetVectExtern2000
	GetVectIntern
	hanncplx
	hannreal
	hitwd
	htoa
	IntervalMs
	IntervalSec
	IntervalTick
	ipres
	ipset
	isalnum
	isalpha
	iscntrl
	isCoDone
	isCoRunning
	isdigit
	isgraph
	islower
	isspace
	isprint
	ispunct
	isupper
	isxdigit
	itoa
	kbhit
	labs
	ldexp
	log
	log10
	longjmp
	ltoa
	ltoan
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	mktm
	modf
	OSInit
	OSMboxAccept
	OSMboxCreate
	OSMboxPend
	OSMboxPost
	OSMboxQuery
	OSMemCreate
	OSMemGet
	OSMemPut
	OSMemQuery
	OSQAccept
	OSQCreate
	OSQFlush
	OSQPend
	OSQPost
	OSQPostFront
	OSQQuery
	OSSchedLock
	OSSchedUnlock
	OSSemAccept
	OSSemCreate
	OSSemPend
	OSSemPost
	OSSemQuery
	OSSetTickPerSec
	OSStart
	OSStatInit
	OSTaskChangePrio
	OSTaskCreate
	OSTaskCreateExt
	OSTaskCreateHook
	OSTaskDel
	OSTaskDelHook
	OSTaskDelReq
	OSTaskQuery
	OSTaskResume
	OSTaskStatHook
	OSTaskStkChk
	OSTaskSuspend
	OSTaskSwHook
	OSTimeDly
	OSTimeDlyHMSM
	OSTimeDlyResume
	OSTimeDlySec
	OSTimeGet
	OSTimeSet
	OSTimeTickHook
	OSVersion
	outchrs
	outstr
	paddr
	poly
	pow
	pow10
	powerspectrum
	premain
	printf
	putchar
	puts
	qsort
	rad
	rand
	randb
	randg
	RdPortE
	RdPortI
	read_rtc
	read_rtc_32kHz
	res
	RES
	root2xmem
	runwatch
	serCheckParity
	serXclose
	serXdatabits
	serXflowcontrolOff
	serXflowcontrolOn
	serXgetc
	serXgetError
	serXopen
	serXparity
	serXpeek
	serXputc
	serXputs
	serXrdFlush
	serXrdFree
	serXrdUsed
	serXread
	serXwrFlush
	serXwrFree
	serXwrite
	set
	SET
	setjmp
	SetVectExtern2000
	SetVectIntern
	sin
	sinh
	sprintf
	sqrt
	strcat
	strchr
	strcmp
	strcmpi
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncmpi
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	_sysIsSoftReset
	sysResetChain
	tan
	tanh
	tm_rd
	tm_wr
	tolower
	toupper
	updateTimers
	use32HzOsc
	useClockDivider
	useMainOsc
	utoa
	VdGetFreeWd
	VdHitWd
	VdInit
	VdReleaseWd
	WriteFlash2
	write_rtc
	WrPortE
	WrPortI
	xalloc
	xmem2root
	xmem2xmem

	User Interface �16
	16.1� Editing
	16.2� Menus
	16.2.1� New
	16.2.2� Open
	16.2.3� Save
	16.2.4� Save As
	16.2.5� Close
	16.2.6� Print Preview
	16.2.7� Print
	16.2.8� Print Setup
	16.2.9� Exit

	16.3� Edit Menu
	16.3.1� Undo
	16.3.2� Redo
	16.3.3� Cut
	16.3.4� Copy
	16.3.5� Paste
	16.3.6� Find
	16.3.7� Replace
	16.3.8� Find Next
	16.3.9� Goto
	16.3.10� Previous Error
	16.3.11� Next Error
	16.3.12� Edit Mode

	16.4� Compile Menu
	16.4.1� Compile to Target
	16.4.2� Compile to .bin file
	16.4.3� Reset Target/Compile BIOS
	16.4.4� Include Debug Code/RST 28�Instructions

	16.5� Run Menu
	16.5.1� Run
	16.5.2� Run w/ No Polling
	16.5.3� Stop
	16.5.4� Reset Program
	16.5.5� Trace Into
	16.5.6� Step over
	16.5.7� Toggle Breakpoint
	16.5.8� Toggle Hard Breakpoint
	16.5.9� Toggle Interrupt Flag
	16.5.10� Toggle Polling
	16.5.11� Reset Target
	16.5.12� Close Serial Port

	16.6� Inspect Menu
	16.6.1� Add/Del Watch Expression
	16.6.2� Clear Watch Window
	16.6.3� Update Watch Window
	16.6.4� Disassemble at Cursor
	16.6.5� Disassemble at Address
	16.6.6� Dump at Address

	16.7� Options Menu
	16.7.1� Editor
	16.7.2� Compiler
	16.7.3� Debugger
	16.7.4� Display
	16.7.5� Communications
	16.7.6� Show Tool Bar
	16.7.7� Save Environment

	16.8� Window Menu
	16.8.1� Cascade
	16.8.2� Tile Horizontally
	16.8.3� Tile Vertically
	16.8.4� Arrange Icons
	16.8.5� Message
	16.8.6� Watch
	16.8.7� STDIO
	16.8.8� Assembly
	16.8.9� Registers
	16.8.10� Stack
	16.8.11� Information

	16.9� Help Menu
	16.9.1� Online Documentation
	16.9.2� Keywords
	16.9.3� Operators
	16.9.4� HTML Function Reference
	16.9.5� Function Lookup/Insert
	16.9.6� Keystrokes
	16.9.7� Search for Help on
	16.9.8� Contents
	16.9.9� About

	µC/OS-II �17
	17.1� Changes
	17.1.1� Ticks per Second
	17.1.2� Task Creation
	17.1.3� Restrictions

	17.2� Tasking Aware Interrupt Service Routines (TA-ISR)
	17.2.1� Interrupt Priority Levels
	17.2.2� Possible ISR Scenarios
	17.2.3� General Layout of a TA-ISR

	17.3� Library Reentrancy
	17.4� How to Get a µC/OS-II Application Running
	Default Configuration
	Custom Configuration
	Examples
	Example 1
	Example 2

	17.5� Compatibility with TCP/IP

	Software License Agreement
	Index

