D

Dynamic C
PREMIER

For Rabbit Semiconductor Microprocessors

Integrated C Development System

User’s Manual
010430 - M

SE and Premier Editions

Dynamic C User’s Manual
Part Number 019-0071 « 010430-M
Copyright

© 1999 Z-World, Inc. < All rights reserved.

Z-World, Inc. reserves the right to make changes and improvements to its products without provid-
ing notice.

Trademarks

* Dynamic C® is aregistered trademark of Z-World, Inc.

* Windows® isaregistered trademark of Microsoft Corporation
Notice to Users

When a system failure may cause serious consequences, protecting life and property against such
consequences with a backup system or safety deviceisessential. The buyer agrees that protection
againgt consequences resulting from system failure is the buyer’s responsibility.

This deviceisnot approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional testing may include visual
quality control inspections or mechanical defects analyzer inspections. Specifications are based on
characterization of tested sample units rather than testing over temperature and voltage of each
unit. Rabbit Semiconductor may qualify components to operate within arange of parameters that
is different from the recommended range of the manufacturer. This strategy is believed to be more
economical and effective. Additional testing or burn-in of anindividua unit isavailable by special
arrangement.

Company Address
Z-World, Inc.

2900 Spafford Street

Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Facsimile: (530) 753-5141

Web site: http://www.zworld.com

Table of Contents

1 Installing Dynamic C........cccccooovvmrrrennnnn. 1 COMPOSItES......oooiviriiriiriia, 25
11 REQUIreMeNtS......ocooooveomveeereereereeenne. 1 4.14 Storage Classes.........cwvriiriinnennn. 25
1.2 A$umpt| OIS o 1 4,15 POINErS. ..o 26

2 Introduction to DynamicC..................... 3 4.16 - Pointersto Fun.c tions, Indirect Calls...27

) 4,17 Argument Passing.......ccccceeveveeneeeneenne 28

21 TheNaure of Dynamic C ..o 3 418 PrOGrAM FIOW oo 28

SPEEU . 3

) LOOPS .ot 29

2.2 Dynamic C Enhancements and Continue and Break............covve.... 29

Di fferenc_eﬁ .. 4 BIANCHING ..covvvvees e eeeeeeeeeeeeesse 31

Dynam!c = Enhancements """""""" 4 419 Function Chainingcc.cceeereeeeriene 32
Dynamic C Differences.........c.ccoeee. 5 o

23 Dynamic C Differences Between Rabbit 4.20 G_Ioba! Initialization........cccceveevveceeennne, 33

andZ180. 5 421 Libraries.....ccoceceeeieieeeieecreesveeneene 35

. . 4,22 SUppOrt FilES.....ccovvvvverere e 36

3 Quick Tutorial........cccoeveevereererceierserne, 7 423 Headers.........._ %

31 RUNDEMOLC .. 4 824 MOQUIES coovvvvveeeeeeeeeeeeeeeeeoeeeeeeeeeee 37
SINGlE-SePPING .ovvvvvvvvvvvrvvvvsnssnninnenee 8 THE K@Y eorrerereeeesseoeeeeereee e 37
Watch EXPression.........oooooosssesssrree 9 The HEBOEN v.vvvvvvveoeeeeeeeeeeeeeee 37
Breakpoint.........covvvrssssssssvnninnrrnnss 9 THE BOGY +vvrrre e 38
Editing the Program...........cccccoveuenee. 9 Function Description Headers......... 39
3.2 RUnDEMO2C.......ieiverceenas 10
Watching Variables Dynamically10 Multitasking with Dynamic C.............. 41
33 RUNDEMOB3C ..., 10 51 Cooperative Multitasking.................. 41
Cooperative Multitasking................ 10 52 A Red-timeProblem..........ccoeenennen. 43
34 Summary of Features...........ccooue...... 12 Solving the Real-time Problem
Development Functions.................. 12 With a State Machine................... 43
Single-stepping.....c.ccevveeveereereeveenenn 12 53 Costatements.........ccoceervrerereneseeseenens 44
Setting breakpoints..........ccoccevevennee. 12 Solving the Real-time Problem
Watch expressions.........cccocveeeveeenne. 12 With Costatements............ccceueee. 44
Costatements........cooveeererreerrrsieeneens 12 Costatement SyntaX..........cccceveeneene. 45
4 L Control Statements.........ccccevvervenenne. 45
ANQUBE........ooeoeeceeeieeeeee e 13 54 Advanced Costatement Topics......... 46
4.1 CLanguage Elements........c.ccoeiuruenne. 13 The CoData Structure........oroo.. .. 46
4.2 Punctuation and TOKens.............c........ 14 CoData Fields........o.overevrreerenrenene. 47
700G R DT - IS 14 Pointer to CoData Structure............ 48
A4 NAMES...oeoeeeeeeeeeeereeceseeeeeseesseeeenee 15 Library Extensions for Use With
A5 MACIOS ..eeeeeeeeeeeeeeeseeeseeeeeeseeseeene. 16 Named Costatements.................. 48
RESLICHONS. ..o 18 Firsttime FUNCtionSoovvveeveee. 49
46 NUMDESS.......covereireeseeceeeeee e 19 Shared Global Variables............... 49
47 Stringsand Character Data........... 19 55 Cofunctions........cccceeeeeeveeiveesreeenneenn, 50
SYNEBX....eeeirieeieieeie e 50
4.8 S =115 1015 01 KT 21 Calllng RESHCHONS. oo 51
49 DECIarationS.......coeeeeeeeieeeeereeeeeeeeeeas 21 CoData StrUCtUr ..., 51
410 FUNCLIONS ...cocvveeecree et 22 Firsttime functions..........cccceeveeune. 51
A1 PUOWOYDES ..o 22 Types of CofuNCioNS 52
412 Type DEfinitions........cccoevevveerenneenne. 23 Tszpe?‘al()fccgfugrﬂ(l)(n O — gi
ecial Code Blocks..........ccuu.....
4.13 Ag:jrrre%ate Data TYpesS......ccoveveenvereene. Z‘r Solving the Real-time Problem
.. With Cofunctions. ... &5
SITUCEUE...veeeee e 24 . ;)
UNION oo 25 56 Patterns of Cooperative Multitasking.55
5.7 Timing Considerations............ccccceuenne. 56
Dynamic C User’s Manual iii

waitfor Accuracy Limits................. 57 COf_SPSWItE...c.ecvevvveviveeie v 84
58 Overview of Preemptive Multitaski ng57 SPSINit....ccovieiieee e 85
5.9 Slice Statements......ccccceeeverieeeeeeienns 57 SPSr ead """""""""""""""""""""" 85
SYNMEBX wovvvevrereeeeeeeeeeeee s 57 S e] (- 86
USBOE oo esen 58 SPOWIFIE8 oo 86
RS CtIONS.....ovoovvereeereeeeeveenieons 58 SPSIAFTER......oovvveiivvrs 87
Slice Data StrUCtUr .o 59 SPSWIUSEd.......ccvieeeectee e 87
Slicelnternals....o 59 SPSrdUSEd........oeeevererrieireees e 87
5.0 SUMMATY ..oovviniiiiiriniiis 61 8 EffiCIeNCY. .o 89
6 TheVirtual DriVer.........cccooooooccccccee 63 8.1 Nodebug Keyword.........cccccccccvrvvven 89
6.1 Default Operatlon 63 8.2 Static Variables.......ooveeeeeeveeceeree, 89
62 Calling_ GLOBAL_INIT()eoveerrrennn 63 8.3 Function Entry and Exit 90
6.3 Global Timer Variables...................... 64 9 Run-Time Error Processing................. 91
6.4 Watchdog TIMErS oo 65 91 User-defined error handlers................ 93
Hardware Watchdogccceeeueeen. 65
Virtual Watchdogs.............vveeeeen. 65 10 Memory Management ... 95
6.5 Preen]ptive Multitaski ng Drivers....... 65 10.1 Memory Map.....cccccveeeereeeeneenenseenenns 95
. Memory Mapping Contral.............. 96
7 The Slave Port Driver ... 67 102 Extended Memory Functions......... %
7.1 Slave Port Driver Protocol 67 Code Placement in Memory 96
OVEINVIBW ..o 67 .
Reg|sters on the S| AVE o 67 11 The Fl a§1 Fl I e %/Sta’n 99
Polling and Interrupts........ccccevnene 68 11.1 Generd Usage......ccovveriereereeeeneneenens 99
Communication Channels............... 69 Wear Levelingcocoovvvvveeeveveenene, 99
7.2 FUNCHONS....ooeeeeeeeeeeeeeeeeeeeseeeesenes 69 Low-level implementation)
SPINIt .o 69 11.2 Application Requirements................ 100
SPsetHandler ..o, 70 1.3 FUNCHONS ..o, 100
MyHandler ... 71 Using FileNames........c..cccoveunne. 101
SPHCK....eviiceieceee e 72 11.4 Skeleton Program 102
SPCIOSE ..o 72
7.3 EXAMPIES oo 72 12 Using Assembly Language................ 103
Example of a Simple Status Handler .. 12.1 Program FIOW.......ccocoviieiineneeee 103
72 Embedded Cin Assembly 104
Example of a Serial Port Handler ... 73 122 COMMENESooveeeeeeeeeeresseeseseeesieneees 104
COf_MSQRIC. .o “ 123 LaDEIS..ovvcrserrrrsnsersersesnsnnn 104
OO MU v T 124 Defining CONSEaNtS......oevovrvrso 105
cof MSwrite..... 75 125 EXPressionsS......ceieneieseeneens 105
MSClOSE oo 76 12.6 Multiline Macros..........ccevevevvennnene. 106
MSQELC....ce et 76 12.7 Special Symbols.......cccoooevireiiinennn 106
MSQELEITON ...covvs 7 12.8 CVariables......ccocomwvvvnerenrererenrinnns 106
MSINIT e 77 12.9 Stand-alone Assembly Code........... 107
MSOPEN......oiiiiiir e, 78
MSDULC ..o 78 12.10 Embedded Assembly Cod............. 108
MSIAFTE.......ccvvevreecese e, 79 Not Using the X Register, Functionin
MSsendCommandccccceeneneen. 79 ROOt Memory. e S 109
MSIEad ...c.oovvererecieceeee e 80 Using the IX Register, Function in
MSWIETER...ererrrseeeeeessersers 80 ROOL MEMOTY ..o v - 110
MSWIIE ...vevreeeieeire s 81 Not Using the X Register, Functionin
Example of a Byte Stream Handler 83 Extgnded Mgmory 112
Chuf iNnit....ccveeeieeeceecreere 83 12.11 C Functions Calling Assembly Code113
COf_SPSIeadcocoevveeereeerierres 84 12.12 Assembly Code Calling C Functions114
iv Dynamic C User’s Manual

12.13 Interrupt Routinesin Assembly........ 115 DG 1] To T 133

12.14 Common Problemsowomeoeoeoe 116 VIEI oo 133
13 KeyWOrds.........ccccvvveeeereeireiieeesseienenn, 117 13'1#6222&: SnSD OCUVES v 134
=100 OSSR 117 HENABSMN oo 134
AWAYS 0N 117 HC1ESS OPHONS wovvere oo 134
ANYMEM . 117 #debug
AULO .ceeee e 117 #nodebug 134
Breakcveeeeeeee e 118 #define name text
CASE....iiiiiieir 118 #define narne(params...) text....... 134
S ST 118 hagal " 1
Con§t ... 119 #GLOBAL_|N|T{ vari ableﬁ} 134
CONLINUE......oiiiiiiiiie s 120 #error™. " 135
COSLALE.....ccoeee e 120 #funcchain chainname name................ 135
dEbUg .. 120 #if constant_expr on
default.....coevieeeeeeee e, 121 #elif constant_expr on
O 121 #else
IS 121 HENAIT oo 135
them .. 121 #ifdef name
fIrSttime .o 122 HFNAEF NAME oo 135
FlO@L.....cviceeeeeece e 122 Hinterleave
(0] GO 123 HNOINLEN €AVE.o oo 135
goto ... 123 HKILL NAME oo 136
If s 123 #makechain chainhame........oow oo 136
!nlt_on ... 124 HMEMMED OPLONS e 136
! N 124 HUNAEE NAME oo 136
(L1010 o] S 124 HUSE PALNNAME. ..o 136
o] o 124 HUSEIX
MAIN...ii 125 HNOUSEIX oo 136
nOdebUg .. 125 BWANS " " o 136
NOFSE ... 125 WAL " o e 136
NOUSEIX ..uvviieiriiieiiir e e 125 #ximport <filename> <Wb0|> 137
NULL oo 125
[Ogel(= 0 (=10 D 126 14 OPEEOrS.. ..o, 139
FEEUMM e 126 14.1 Arithmetic Operators......oceevveveennns 140
(00 S 127 o 140
SEYCNAIN. ..o 127 ettt 140
(S 0= (<o IS 127 o 141
LS 00 S 128 J oo 141
S 7T 128 b 141
D=0 128 SIS 142
(S 01== o [128 O oo 142
SEALIC v 129 14.2 Ass gnment Operators 142
SETUCT e 129 T 142
SWILCH i 130 T 142
typedef .. 130 T 143
UNTON..eiiii s 131 o 143
UNSIONE ..o 131 - 143
LS G 131 O o 143
WaIFOr .o 131 <<= 143
waitfordone BB e 143
(WEQ) e 132 S e 143
WHIl. .ottt 132 Ao 144
Do = - WSS 132 |: .. 144
XIMEM ..o 132

Dynamic C User’s Manual v

14.3 Bitwise Operators.......cccovveeeeriernnns 144 string manipulation 157
St vtertete st 144 string-to-number conversion....... 157
S 144 VA (< 1 TP 157
& e 144 (TUZ (046 [0 158
LS T PR 145 15.2 Alphabetical Listing.......c..ccocevuerne 159
e 145 A0S 159
N 145 A0S .o 159

14.4 Relational Operators........cccceeeeeennne 145 BCOL i 160
SRS 145 2oL oS 160
S TSRS 145 2SS oSS 161
> e e 146 BNt 161
b TSR 146 - 1 [162

14.5 Equaj i ty Operators ___________________________ 146 AANZ i 163
et 146 = (0 I 164
R 146 A0 ..o 164

14.6 Loglcal Operaors 147 atOl .. 165
& & .. 147 blt .. 165
[147 g_‘T -- 166
| eeeeeeeeeeee et 147 B::Egg::f ----------------------------------- igg

14.1 POS‘C'X EXPIESSIONS. oo ﬂ; BItWIPOME .o 168
L BIWIPOI e 169
QO) oo 148 COIl ot gg
S e ————————— 148 chkHardReset ... 170

14.8 Reference/Dereference Operators.... 148 ChkSoftReset ..o 171
;& ... 14’8 CthDTO 171

.. 149 C|OCkDOUb| Hon T 172

14.9 Conditional Operators............cceeune.. 149 clockDoubl € OFf ..o, 172
2 149 (0701=1=10 14 S 173

14.10 Other Operators........cccceeerereserereens 150 COf_SErXQetC.....ccvereerieiereeieene 173
(877 012) TSR 150 COf_SErXQetS....ccoveveneriereeienene 174
SIZEOF .. 150 COf_SEIrXPULC ..cveeiiieieceee e 175
j eeneehe et ehe et e bt he bt e e e s 151 COf_SErXPULS...cveiierieie e 176

15 Function Reference...........cccocuvveee.e. 153 ggi—zicveﬁ?e """""""""""""""" gg

15.1 Functional Groups..............wwweweeses 153 O Y 179
AthMELIC .o 153 CORESUME oo 180
bit manipulationcnvene. 153 COS..cvnrvreeeessssessesseesssssensessensenneenes 180
CharaCteroovvvririna, 153 (00 OO 181
extended MEMOrYc.coouunene. 153 defineErrorHandler 181
fast fourier transforms................ 153 AEG covvrvevieeee e 182
file system ..., 153 DE@YMS ..o 182
floating-point math.................... 154 DEl@YSEC......oorreereerieerreerieenieeenns 183
low-level flash access.................. 154 DelayTiCKS......oveevereereseeeeieereeens 183
1 S 154 Disable HW WDTcccccovueeunnen. 184
INEITUPLS oo, 154 (] SO 184
MicroC/OSHI ... 155 EXD vvereeiee e 185
MiSCEllAaNEOUS......oovvviriiiriinnas 155 fADS oo 185
MUILHASKING.cvoeiiene 156 {0 [0’ = S 186
number-to-string conversion....... 156 FCrEAE ..o 186
real-time clocK.........coceoeiiienenne. 156 foreate UNUSEd ... oo 187
serial communication.................. 156 10 = 12 (Y 187
STDIO ..t 157 11100011 QU 188

Vi Dynamic C User’s Manual

fftreal ..o 190
fitrealiny ..o 191
flash_erasechip.....ccccccevvivrivrnnnnne 192
flash_erasesectorcccocvevvevennnne. 192
flash_gettype.....ccoovvevevvveeccienin, 193
flash_iNit..cocoevereeeeeee 194
flash_read......ccocoovvevennenceneee 195
flash_readsectorccccvevvevvinnnnns 196
flash_sector2xwindow 197
flash_writesectorcccceeveevevennnne 198
FIOOK vt 199
fMOd .o 199
fopen rd.....cccovveeeeeeeeeece 200
fopen Wr ... 200
forceSoftResetocooevereriiicninne 201
fread oo 201
FrEXP o 202
fs format.....cccooovveveiieieiceee, 203
ST S 204
fs reserve blocks........ccceeeeiennens 205
1S ¢ RS 205
FSEEK cvvvvirire e 206
11 1 RS 207
LS 1111 S 207
FWHTE .o 208
FLOA ..o 208
getchar........ccoceecviiciiene e 209
(015 (03 (TR 209
OELS e 210
GetVectExtern2000...........cccvennee.. 210
GetVectintern.........coeeevnieieeenne 211
hannCplXcocoevernineeee, 212
hannreal ..., 213
RItWd.....eoei e, 214
0107 TR 214
IntervalMsS ..o 215
INtErvalSECoveeeieeereeeecee 215
Interval TicK ... 216
] 0] (ST 216
] 0= RS 217
ISAINUM .o 217
isalpha.....cccocoevne e, 218
1o 0 RS 218
ISCODONE.....ceeeeeeireeeeiee e 219
ISCORUNNING.....ccceererenienierieseenens 219
150 [T [SR 220
ISgraph ..o, 220
ISTOWE ... 221
ISSPACE ...cveeee e 221
1S o1 0| OO 222
ISPUNCL ... 223
ISUPPES ..t 224
(155700 o 1 SRR 224

Dynamic C User’s Manual

IO .+ 225
KBhit .. 225
[ADS . 226
0[S q o F 226
oo S 227
oo 0 227
[[o]gTo [40] o I 228
(o TSRS 228
(10BN 229
MEMCHE ...t 229
(0015 0101010 01 o T 230
(0015 01010/)V 231
MEMMOVE. ... 231
MEMSEL ... 232
MKEHME .o 232
MKEM e 233
(007070 | 234
OSINIt .o 234
OSMDbDOXACCEPL.....covreererieeriniereene 235
OSMboxCreate.......cccoeveerveveenenne. 235
OSMboxPend........ccccoeeveevneeennne 236
OSMDOXPOSEccveeeiesereeieeienee 237
OSMDOXQUENYccuviverrrieneeniereen 238
OSMemCreate.cocvevveeiiveniennns 239
OSMEMGELcceevereerereeeeieee 240
OSMEeMPUL........cceeererreeeeieee 240
OSMEMQUENYoeeeieeeeiieeeeeeene 241
OSQACCEDL ... 241
OSQCreae......ooveeeereerereeee e 242
OSQFIUSN......ceirieeeerreeee 243
(0150 =< 1 o I 244
OSQPOSL......eeeeereeeeeeeere e 245
OSQPOStFrontccccvvvvvicieniennns 246
OSQQUENY ...ttt 247
OSSchedL ocK.......coovieerereeneinienene 247
OSSchedUnlocKcceevecieceeennnns 248
OSSemMACCEPLcoveveeeeriireeeeen 248
OSSemCreate........coevvvvvveiiensienns 249
OSSemPendccccoervieninienne 249
OSSEMPOSE ... 250
OSSEMQUENY ...cveeieieeeeieeeeee 251
OSSetTickPerSec........ooveeeeeeeennne 252
(01555 - SRR 252
OSStatiNit.....ccoveereeeeeeereeeeenee 253
OSTaskChangePrio.......c.ccccceuenee 253
OSTaskCreate.......cccvveveeerveveenrene, 254
OSTaskCreateEXt.........ccovrereennnne 255
OSTaskCreateHookc.......... 256
OSTaskDecccooeneeirrreeieie 257
OSTaskDelHOoOKccveeueruennnne 258
OSTaskDe Req......ccccervereririeine 259
OSTaskQUENYc.ceveruererenienieniene 260
OSTaskResume.........cccceevveveenee 261
OSTaskStatHOOK.........ccveeerieenne 261

Vii

OSTaskSuspend.........ccoceeeverereenens 263
OSTaskSWHOOKcccvvvrerieirinnene 263
OSTIMEDIY....cooeveeereeeceeereens 264
OSTimeDIyHMSMccceevvvnee 265
OSTimeDlyResume............ccceuee. 266
OSTIimeDIySeC......ccccvvevevevrinnnns 267
OSTIMEGEL.....ccvvererriereriererienens 267
OSTIMESELcvvvirerererereeriene 268
OSTimeTickHOOKccoevruneennns 268
OSVEISIONooveririnieerienesieerieens 269
OULCHIS .. 269
OULSET e 270
PAAAr ..o 270
POLY ..t 271
POW ...ttt 272
POWL0 ...t 272
POWErSPECIUM ..o 273
Premain .. .cocoeeeeneeee e 274
Printf ..o 274
PULCHES ... 275
PULS ..o 275
(01570 AU URURTPRRRURRN 276
=0 [USSR 277
(721010 [278
randb........ccoeveiiii e 278
(72190 [0 PSSR 279
RAPOIEcoeiiiie e 279
RAPOIt] ...t 280
=7 o [£ (o 280
read rtc 32kHzccccvevevuvnnene. 281
TES ..ottt ettt e 281
RES.....ooie e 282
FOOE2XIMEM....veeeeieee e 283
FUNWAECH ... 283
serCheckParity.......cccccoevverccnnenne. 284
SErXClOSE ...t 284
serXdatabits.......ccooeverineneniieenns 285
serXflowcontrol Offccceeeee. 285
serXflowcontrolOn...........coccveeee. 286
SEIXQELC ..o iveeee e 287
SErXQELENTOr ... 288
SEIXOPEN. ..ttt 289
SErXPALY e 290
SEIXPEEK ..t 291
SEIXPULC. ..t 291
SEIXPULS...veeee e 292
SerXrdFlush ..o 292
SErXIAFTE.. ... 293
serXrdUsed........cooeviieenieieniienn, 293
SErXIEAd. ..ot 294
SerXWIFIUSH ..o, 295
SETXWIFTEE ...t 295
SErXWIIEE e 295

SEL. it 296
SET o 297
(S'< (10] o I 298
SetVectExtern2000..........ccceveeneee. 299
SetVectintern.......ccoeeevvvencieenn 300
SN e 300
SINN o 301
PNt e 302
S o | (U 303
SECAL .o 303
SHCHI e 304
S 10l 11 o R 305
S 101 1o [306
S 10 o)V 307
SEICSPN. et 307
S (L= o R 308
SINCAL ... 308
SINCMP e 309
SENCMPI e 310
SENCPY e 311
SEPOrK ..o 312
LS (A o SR 312
SEISPN e 313
(S L | SRR 313
LS 1 (0o FU R 314
(S 1 (o] RS 315
LS 1 (o] RS 316
_9ysIsSoftResetccoeveveenieninne 316
sysResetChaincoceveveeiieiennn 317
TN s 317
tANN ., 318
M rd e, 319
M W e 320
LOIOWES ..o, 321
TOUPPES .. 321
UPAALETIMENS ..o 322
USE32HZOSC ... 322
useClockDividercccceevevueenene. 323
USEMaAINOSC......ccvvvveeerieeie e 323
010 = PSRN 324
VdGetFreeWdcccooveieeniiennene 325
VAHItWA ... 325
VANt 326
VdReleaseWd..........coooeveieniecnnne 327
WriteFlash2 ..., 328
1L (= (oS 329
WIPOME........coooiiiiiiiee e, 330
WIPOI] ..o 330
XAlOC .o, 331
XMEMZ2IO0L.......ceeveereriiieeseee e 331
XMEM2XIMEM ...ceeveeierieiveseee e 332
16 User Interface.......cccooeveveecerveicnin. 333
16.1 Editing...cccccoevvvienecene e, 333

viii

Dynamic C User’s Manual

16.2 MENUS...cconiiiirienirie e 334 CommuniCations.........ccoeeereeerenne 351
NEW s 335 Show Tool Barccccceveverenennnne, 351
OPEN oo 335 Save Environment...........c.cccvenenne. 352
SAVE e, 335 16.8 WIiNdow Menu..........ccecvrevverrronns 352
SAVEAS e 335 CasCade ..o 352
ClOSE ..oeveveecee e 335 Tile Hori Zonta”y ___________________________ 352
Print Preview.........c.ooonininnnnnn. 335 Tile Vertically......o.ccooovveereesrienenes 353
Print e 335 Arrange LCONS. oo 353
Print Setup.......ocovvvvinine, 336 MESSAGE. ... 353
EXit o 336 WEECH oo 353
16.3 EditMenU.....ccocovvevieerieereeeeees 336 STDIO.cieieteere e 353
6] 0o (o TR 336 ASSEMBDIY ..o 354
RedO .o, 337 REGISLENS. ..o 355
CUt e 337 SHACK v 355
(G0 VR 337 Information.......c.ccceeeveeeececeecinnen, 356
Paste ..., 337 16.9 HElpMENU ..o 356
FiINd e 337 Online Documentationoevvvuni. 356
Repl ACC....iiiii 337 K eywords ______________________________________ 357
Find Next.......cooovevevecie e 338 Opera[ors _______________________________________ 357
(€ 10] (o T 338 HTML Function Reference........... 357
Previous Errorccccvecvveeeenenne, 338 Function Lookup/| NSEMt oo, 357
NeXt Error ... 338 KEYSIrOKES........ovreeveeverseseeeeans 359
Edit Mode.........oocoeeeeeieiee e, 338 Search for Hel 0] [359
16.4 Compile Menu......coceoeveereeeneneenn. 339 [©00]711513 | £ NN 359
Compileto Target......ccococvvevrnenen 339 Y oo 0 | 359
Compileto .binfile......ccoeveuenee. 339
Reset Target/Compile BIOS......... 340 17 PUC/OS e 361
Include Debug Code/RST 17.1 ChangesSccccoeeeenereeereeeriese e 361
28 INSLrUCtONS.......oovvreeerereene. 340 Ticks per Second.........ooovvvvveevnennss 361
165 RUNMENU cooooeeeeeeeeeess e 341 TasK CIERION oo 362
T 341 RESIMCHONS. .ocvvvvensssnnnssssssssninns 363
Runw/ No Polling............cccc....... 341 172 Tasking Aware Interrupt Service
S 7o TN 341 Routines (TA-ISR)........occnvivinniiniennn. 363
Reset Program............coeeeevereeeens. 342 Interrupt Priority Levels................ 363
TraCe INLO oo 342 Possible ISR Scenarios................. 364
SUEP OVE ..o 342 General Layout of aTA-ISR......... 365
Toggle Breakpoint...........ccccccenee. 342 17.3 Library Reentrancycccccoeevvruenen. 369
Toggle Hard Breakpoint................ 342 17.4 How to Get apuC/OS-II Application
Toggle Interrupt Flag.........c.ocounee. 342 RUNNING oo 370
T0ggIe POIlING oo 342 17.5 Compatibility with TCP/P............. 375
Reset Target.......cccoceeeeveeiieneene 343
Close Serial POrt.........cccovvevevevennn. 343 Software License Agreement............. 377
16.6 Inspect Menuccccecereeniinennnnne 343
Ad/Del Watch EXpresion .. 23 100 (= U 381
Clear Watch Window 344
Update Watch Window 344
Disassemble at Cursor................... 344
Disassemble at Address................ 344
Dump at Address.......c.ccoceeeevennennn. 345
16.7 OptioNSMeNUcccccveevreevrveenieniens 346
Editor ..o 346
COMPIlEr ... 347
[D]= 0100 o= SR 349
(D1 o 350
Dynamic C User’s Manual ix

Dynamic C User’s Manual

Installing Dynamic C 1

Insert the installation disk or CD in the appropriate disk drive on your PC. Theinstallation should
begin automatically. If it doesn’t, issue the Windows “Run...” command and type the following
command.

<«di sk>:\ SETUP

Theinstallation program will begin and guide you through the installation process.

1.1 Requirements
Your PC should have at least one free COM port and be running one of the following.
* Windows 95
Windows 98
Windows 2000
Windows Me
WindowsNT

1.2 Assumptions
Assumptions are made regarding your knowledge and experience in the following areas:

» Understanding of the basics of operating a software program and editing files under
Windows on a PC.

» Knowledge of basic assembly language and architecture for controllers.

For afull treatment of C, refer to one or both of the following texts:

The C Programming Language by Kernighan and Ritchie (published by Prentice-Hall).
C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).

Dynamic C User’s Manual 1

Dynamic C User’s Manual

Introduction to Dynamic C 2

Dynamic C is an integrated development system for writing embedded software. It runs on an
IBM-compatible PC and is designed for use with Z-World controllers and other controllers based
on the Rabbit microprocessor. The Rabbit 2000 microprocessor is a high-performance 8-bit micro-
processor that can handle C language applications of approximately 50,000 C+ statements or 1
megabyte.

2.1 The Nature of Dynamic C

Dynamic C integrates the following devel opment functions

* Editing

e Compiling

e Linking

e Loading

e Debugging

into one program. In fact, compiling, linking and loading are one function. Dynamic C has an
easy-to-use built-in text editor. Programs can be executed and debugged interactively at the
source-code or machine-code level. Pull-down menus and keyboard shortcuts for most commands
make Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C or the
devel opment system to write assembly language code. C and assembly |anguage may be mixed
together.

Debugging under Dynamic C includes the ability to use pri nt f commands, watch expressions,
breakpoints and other advanced debugging features. Watch expressions can be used to compute C
expressions involving the target’s program variables or functions. Watch expressions can be evalu-
ated while stopped at a breakpoint or while the target is running its program.

Dynamic C provides extensions to the C language (such as shared and protected variables, cos-
tatements and cofunctions) that support real-world embedded system development. Interrupt ser-
vice routines may be writtenin C. Dynamic C supports cooperative and preemptive multi-tasking.

Dynamic C comes with many function libraries, all in source code. These libraries support real -
time programming, machine level 1/0, and provide standard string and math functions.

2.1.1 Speed

Dynamic C compiles directly to memory. Functions and libraries are compiled and linked and
downloaded on-the-fly. On afast PC, Dynamic C might load 30,000 bytes of code in 5 seconds at
abaud rate of 115,200 bps.

Dynamic C User’s Manual 3

2.2 Dynamic C Enhancements and Differences

Dynamic C differs from atraditional C programming system running on a PC or under UNIX.
The motivation for being different isto be better help customers write the most reliable embedded
control software possible. It is not possible to use standard C in an embedded environment with-
out making adaptations. Standard C makes many assumptions that do not apply to embedded sys-
tems. For example, standard C implicitly assumes that an operating system is present and that a
program starts with a clean date, whereas embedded systems may have battery-backed memory
and may retain data through power cycles. Z-World has extended the C language in a number of
areas.

2.2.1 Dynamic C Enhancements
Many enhancements have been added to Dynamic C. Some of these are listed below.

 Function chaining, a concept unique to Dynamic C, allows special segments of code to
be embedded within one or more functions. When anamed function chain executes, all
the segments belonging to that chain execute. Function chains allow software to per-
form initialization, data recovery, or other kinds of tasks on request.

» Costatements allow concurrent parallel processes to be simulated in a single program.
» Cofunctions allow cooperative processes to be simulated in a single program.
» Slice statements allow preemptive processes in a single program.

* Theinterrupt keyword in Dynamic C allows the programmer to write interrupt service
routinesin C.

» Dynamic C supports embedded assembly code and stand-alone assembly code.

» Dynamic C has shared and protected keywords that help protect data shared between
different contexts or stored in battery-backed memory.

* Dynamic C has a set of features that allow the programmer to make fullest use of
extended memory. Dynamic C supports the 1M address space of the microprocessor.
The address space is segmented by a memory management unit. Normally, Dynamic C
takes care of memory management, but there are instances where the programmer will
want to take control of it. Dynamic C has keywords and directives to help put code and
datain the proper place. The keyword r oot selectsroot memory (addresses within the
64K physical address space). The keyword x memsel ects extended memory, which
means anywhere in the 1024K or 1M code space. r oot and xmemare semantically
meaningful in function prototypes and more efficient code is generated when they are
used. Their use must match between the prototype and the function definition. The
directive #memmap allows further control. See “Memory Management” on page 95, for
further details on memory.

4 Dynamic C User’s Manual

2.2.2 Dynamic C Differences
The main differencesin Dynamic C are summarized here and discussed in detail in chapters “Lan-
guage” on page 13 and “Keywords’ on page 117.

If avariableisinitialized in adeclaration (e.g.,i nt x = 0;),itisstored in Flash Mem-
ory (EEPROM) and cannot be changed by an assignment statement. Starting with
Dynamic C 7.x such declaration will generate awarning which can be suppressed using
the const keyword: const int x = 0; Toinitialize static variablesin Static RAM
(SRAM) use #GLOBAL _| NI T sections.

The default storage classisst ati ¢, not aut o. This avoids numerous bugs encountered
in embedded systems due to the use of auto variables. Starting with Dynamic C 7.x, the
default class can changed to auto by the compiler directive #cl ass aut o.

The numerous include files found in typical C programs are not used because Dynamic
C has alibrary system that automatically provides function prototypes and similar
header information to the compiler before the user’s program is compiled. Thisis done
viathe #use directive. Thisisan important topic for users who are writing their own
libraries. Those users should refer to the Modules section of the language chapter.

When declaring pointers to functions, arguments should not be used in the declaration.
Arguments may be used when calling functionsindirectly via pointer, but the compiler
will not check the argument list in the call for correctness.

Bit fields and enumerated types are not supported. Separate compilation of different
parts of the program is not supported or needed. There are minor differences involving
externandregi st er keywords.

2.3 Dynamic C Differences Between Rabbit and Z180

A major difference in the way Dynamic C interacts with a Rabbit-based board compared to aZ180
or 386EX board isthat Dynamic C expects no BIOS kernel to be present on the target when it
starts up. Dynamic C stores the BIOS kernel asa C source file. Dynamic C compiles and loads it
to the Rabbit target when it starts. Thisis accomplished using the Rabbit CPU’s bootstrap mode
and a specia programming cable provided in al Rabbit product development kits. This method
has numerous advantages.

A socketed flash is no longer needed. BIOS updates can be made without a flash-
EPROM burner since Dynamic C can communicate with atarget that has ablank flash
EPROM. Blank flash EPROM can be surface-mounted onto boards, reducing manu-
facturing costs for both Z-World and other board developers. BIOS updates can then be
made available on the Web.

Advanced users can see and modify the BIOS kernel directly.

Board Devel opers can design Dynamic C compatible boards around the Rabbit CPU by
simply following afew simple design guidelines and using a*“ skeleton” BIOS provided
by Z-World.

Dynamic C User’s Manual 5

* A magjor new feature introduced in Dynamic C 7.x isthe ability to program and debug
over the Internet or local Ethernet. This requires the use of a RabbitLink board, avail-
able alone or as an option with Rabbit-based devel opment kits.

6 Dynamic C User’s Manual

Quick Tutorial 3

Sample programs are provided in the Dynamic C Sanpl es folder, shown below.

Open

Loak i

...................

Costate
Fit
Inbrupts
Lot
Rtclock

File name:

EE

Ia Samples j gl E

[Serial (A %mem

([Slice B Pong.c

3 Syzclock B Seeparam.c

L Tepip

(1 Timerb

([driver

| Open I

Filez of type: ISl:uur-:e Files [7.c;% lib) j Cancel |

The subfolders contain sample programs that illustrate the use of the various Dynamic C librar-
ies. The subfolder named Cofunc, for example, contains sample programs illustrating the use of
COFUNC. LI B. The sample program Pong. ¢ demonstrates output to the STDIO window. Each
sample program has comments that describe its purpose and function.

3.1 Run DEMOL1.C

This sample program will be used to illustrate some of the functions of Dynamic C. Open thefile
Sanpl es/ DEMOL. C. The program will appear in awindow, as shown in Figure 1 below (minus
some comments). Use the mouse to place the cursor on the function name pr i nt f in the program
and press <ctrl-H>. This brings up a documentation box for the function pri nt f . You can do

thiswith all functionsin the Dynamic C libraries, including libraries you write yourself. Closethe

documentation box.

Dynamic C User’s Manual

C prograns begin with main
mai n(){ /

. A Initialize a counter
int i, j/
i = 0;

_ / Start an endl ess | oop
while (1) {

i h < Increnent counter

for (j=0; j<20000; j++); - Del ay by counting to 20, 000

printf("i = %l\n", i); -

Print out counter

<\

End of the endl ess | oop

} // end of while

} // end of mmin

Figure 1. Sample Program DEMO1.C

To run the program DEMOL. C, open it with the File menu, compile it using the Compile menu,
and then run it by selecting Run in the Run menu. The value of the counter should be printed
repeatedly to the STDIO window if everything went well. If this doesn’t work, review the follow-
ing points:

» Thetarget should be ready, indicated by the message “BIOS successfully compiled...”
If you did not receive this message or you get acommunication error, recompile the
BIOS by typing <ctrl-Y> or select Recompile BIOS from the Compile menu.

» A message reports “ No Rabbit Processor Detected” in cases where the wall transformer
is either not connected or not plugged in.

» The programming cable must be connected to the controller. (The colored wire on the
programming cableis closest to pin 1 on the programming header on the controller).
The other end of the programming cable must be connected to the PC serial port. The
COM port specified in the Dynamic C Options menu must be the same as the one the
programming cable is connected to.

» To check if you have the correct seria port, select Compile, then Compile BIOS, or
press <ctrl-Y>. If the"BIOS successfully compiled ...” message does not display, try a
different serial port using the Dynamic C Options menu until you find the serial port
you are plugged into. Don’t change anything in this menu except the COM number.
The baud rate should be 115,200 bps and the stop bits should be 1.

3.1.1 Single-Stepping

Compile DEMOL. C by clicking the Compile button on the task bar. The program will compile
and the screen will come up with a highlighted character (green) at the first executable statement
of the program. Usethe F8 key to single-step. Each time the F8 key is pressed, the cursor will

8 Dynamic C User’s Manual

advance one statement. When you get to the statement: f or (j =0, j< ... ,it becomes
impractical to single-step further because you would have to press F8 thousands of times. We will
use this statement to illustrate watch expressions.

3.1.2 Watch Expression

Press <ctrl-W> or choose Add/Del Watch Expression in the Inspect menu. A box will come
up. Typethe lower case letter j and click on Add to top, then Close. Now continue single-step-
ping by pressing F8. Each time you step, the watch expression (j) will be evaluated and printed in
the watch window. Note how the value of j advances when the statement j ++ is executed.

3.1.3 Breakpoint
Move the cursor to the start of the statement:
for (j=0; j<20000; j++);
To set a breakpoint on this statement, press F2 or select Breakpoint from the Run menu. A red
highlight appears on the first character of the statement. To get the program running at full speed,

press F9 or select Run on the Run menu. The program will advance until it hits the breakpoint.
The breakpoint will start flashing both red and green colors.

To remove the breakpoint, press F2 or select Toggle Breakpoint on the Run menu. To continue
program execution, press F9 or select Run from the Run menu. Now the counter should be print-
ing out regularly in the STDIO window.

You can set breakpoints while the program is running by positioning the cursor to a statement and
using the F2 key. If the execution thread hits the breakpoint, a breakpoint will take place. You can
toggl e the breakpoint with the F2 key and continue execution with the F9 key.

3.1.4 Editing the Program

Click on the Edit box on the task bar. Thiswill put Dynamic C into edit mode so that you can
change the program. Use the Save as choice on the File menu to save the file with a new name
S0 as not to change the demo program. Save the fileas MYTEST. C. Now change the number
20000inthef or (.. statementto 10000. Then use the F9 key to recompile and run the pro-
gram. The counter displays twice as quickly as before because you reduced the value in the delay
loop.

Dynamic C User’s Manual 9

3.2 Run DEMO2.C

Go back to edit mode and load the program DEMO2. C using the File menu Open command. This
program is the same as the first program, except that a variable k has been added along with a
statement to increment k by the value of i each time around the endless loop. The statement

runwat ch();

has been added as well. Thisis a debugging statement to view variables while the program is run-
ning. Use the F9 key to compile and run DEM22. C.

3.2.1 Watching Variables Dynamically

Press <ctrl-W> to open the watch window and add the watch expression k to the top of thelist of
watch expressions. Now press <ctrl-U>. Each time you press <ctrl-U>, you will seethe current
valueof k.

As an experiment, add another expression to the watch window:
k*5
Then press <ctrl-U> several timesto observe the watch expressionsk and k* 5.

3.3 Run DEMQO3.C

The exampl e below, sample program DEMOB. C, uses costatements. A costatement is away to per-
form a sequence of operations that involve pauses or waits for some external event to take place.

3.3.1 Cooperative Multitasking

Cooperative multitasking is away to perform several different tasks at virtually the same time. An
example would be to step a machine through a sequence of tasks and at the same time carry on a
dialog with the operator via a keyboard interface. Each separate task voluntarily surrenders its
compute time when it does not need to perform any more immediate activity. |n preemptive multi-
tasking control is forcibly removed from the task via an interrupt.

Dynamic C has language extensions to support both types of multitasking. For cooperative multi-
tasking the language extensions are costatements and cofunctions. Preemptive multitasking is
accomplished with dlicing or by using the uC/OS-11 real-time kernel that comes with Dynamic C
Premier.

Advantages of Cooperative Multitasking

Unlike preemptive multitasking, in cooperative multitasking variables can be shared between dif-
ferent tasks without taking elaborate precautions. Cooperative multitasking also takes advantage
of the natural delays that occur in most tasks to more efficiently use the available processor time.

The DEMOB. C sample program has two independent tasks. The first task prints out a message to
STDIO once per second. The second task watches to seeif the keyboard has been pressed and
prints out which key was entered.

The numbers in the left margin are reference indicators and not part of the code. Load and run the
program. The elapsed timeis printed to the STDIO window once per second. Push several keys
and note how they are reported.

10 Dynamic C User’s Manual

mai n() {

int secs; /!l seconds counter
secs = 0; [/ initialize counter
(1) while (1) { /1 endl ess | oop
/1 First task will print the seconds el apsed.

(2) costate {

secs++; [/ increment counter
(3) wai t for (Del ayMs(1000)); /1l wait one second
printf("%l seconds\n", secs); // prnt el apsed secs
(4) 1}
/1 Second task will check if any keys have been pressed.
costate {
(5) if ('kbhit()) abort; /1l key been pressed?
printf(" Kkey pressed = %\n", getchar());
}
(6) } /1 end of while | oop
} /1l end of main

The elapsed time message is printed by the costatement starting at the line marked (2). Costate-
ments need to be executed regularly, often at least every 25 ms. To accomplish this, the costate-
ments are enclosed in awhi | e loop. Thewhi | e loop starts at (1) and ends at (6). The statement
at (3) waitsfor atime delay, in this case 1000 ms (one second). The costatement executes each
pass through the whi | e loop. When awai t f or condition is encountered the first time, the cur-
rent value of MS_TI MERis saved and then on each subsequent pass the saved va ue is compared
to the current value. If awai t f or condition is not encountered, then ajump is made to the end of
the costatement (4), and on the next pass of the loop, when the execution thread reaches the begin-
ning of the costatement, execution passes directly to thewai t f or statement. Once 1000 ms has
passed, the statement after thewai t f or is executed. A costatement can wait for along period of
time, but not use alot of execution time. Each costatement is a little program with its own state-
ment pointer that advances in response to conditions. On each pass through the whi | e loop as
few as one statement in the costatement executes, starting at the current position of the costate-
ment’s statement pointer. Consult Chapter 5 "M ultitasking with Dynamic C" for more details.

The second costatement in the program checks to see if akey has been pressed and, if one has,
printsout that key. Theabort statementisillustrated at (5). If theabort statement is executed,
the internal statement pointer is set back to the first statement in the costatement, and ajump is
made to the closing brace of the costatement.

Toillustrate the use of snooping, use the watch window to observe secs while the program is
running. Add the variable secs to thelist of watch expressions, then press <ctrl-U> repeatedly
to observe assecs increases.

Dynamic C User’s Manual 11

3.4 Summary of Features

This chapter provided a quick look at the intuitive interface of Dynamic C and some of the power-
ful options available for embedded systems programming.

3.4.1 Development Functions

When you load a program it appearsin an edit window. You compile by clicking Compile on the
task bar or from the Compile menu. The program is compiled into machine language and down-
loaded to the target over the serial port. The execution proceeds to the first statement of main,
where it pauses, waiting to run. Pressthe F9 key or select Run on the Run menu. If want to com-
pile and run the program with one keystroke, use F9, the run command; if the program is not
already compiled, the run command compilesit.

3.4.2 Single-stepping

Thisis done with the F8 key. The F7 key can also be used for single-stepping. If the F7 key is
used, then descent into subroutines will take place. With the F8 key the subroutine is executed at
full speed when the statement that callsit is stepped over.

3.4.3 Setting breakpoints

The F2 key is used to toggle a breakpoint at the cursor position if the program has already been
compiled. You can set a breakpoint if the program is paused at a breakpoint. You can also set a
breakpoint in a program that is running at full speed. Thiswill cause the program to break if the
execution thread hits your breakpoint.

3.4.4 Watch expressions

A watch expression isa C expression that is evaluated on command in the watch window. An
expression is basically any type of C formulathat can include operators, variables and function
calls, but not statementsthat require multiple linessuch asf or or swi t ch. You can have alist of
watch expressions in the watch window. If you are single-stepping, then they are all evaluated on
each step. You can also command the watch expression to be evaluated by using the <ctrl-U>
command. When awatch expression is evaluated at a breakpoint, it is evaluated as if the statement
was at the beginning of the function where you are single-stepping. If your program isrunning you
can also evaluate watch expressions with a <ctrl-U> if your program hasar unwat ch() com-
mand that is frequently executed. In this case, only expressionsinvolving global variables can be
evaluated, and the expression is evaluated asif it were in a separate function with no local vari-
ables.

3.4.5 Costatements

A costatement is a Dynamic C extension that allows cooperative multitasking to be programmed
by the user. Keywords, likeabort andwai t f or, areavailableto control multitasking opera-
tion from within costatements.

12 Dynamic C User’s Manual

Language 4

Dynamic C is based on the C language. The programmer is expected to know programming meth-

odologies and the basic principles of the C language. Dynamic C hasits own set of libraries,

which include user-callable functions (See “ Function Reference” on page 153.) Dynamic C librar-
ies are in source code, alowing the creation of customized libraries.

Before starting on your application, read through the rest of this chapter to review C-language fea-
tures and understand the differences between C and Dynamic C.

4.1 C Language Elements
A Dynamic C program is a set of files, each of which is a stream of characters that compose state-

ments in the C language. The language has grammar and syntax, that is, rules for making state-
ments. Syntactic elements—often called tokens—form the basic elements of the C language.

Some of these e ements are listed in the table below.

Table 1. C Language Elements

punctuation

Symbols used to mark beginnings and endings

names

Words used to name data and functions

numbers

Literal numeric values

strings

Literal character values enclosed in quotes

directives

Words that start with # and control compilation

keywords

Words used as instructions to Dynamic C

operators

Symbols used to perform arithmetic operations

Dynamic C User’s Manual

13

4.2 Punctuation and Tokens

Punctuation marks serve as boundariesin C programs. The table below lists the punctuation marks
and tokens.

Table 2. Punctuation Marks and Tokens

Symbol Description

Terminates a statement |abel.

Terminates a simple statement or ado loop. C requires
these!

Separatesitemsin alist, such asan argument list, declaration
list, initialization list, or expression list.

Encloses argument or parameter lists. Function calls always

require parentheses. Macros with parameters also require
() parentheses. Also used for arithmetic and logical sub
eXpressions.

Begins and ends a compound statement, a function body, a
structure or union body, or encloses afunction chain segment.

{}

Indicates that the rest of the line isa comment and is not

I compiled

[* ... */ | Commentsare nested between the/ * and */ tokens.

4.3 Data

Data (variables and constants) have type, size, structure, and storage class. Basic, or primitive,
data types are shown below.

Table 3. Dynamic C Basic Data Types

Type Description
char 8-bit unsigned integer. Range: 0 to 255 (OXFF)
i nt 16-bit signed integer. Range: -32,768 to +32,767
unsi gned int 16-bit unsigned integer. Range: 0 to +65,535
| ong 32-hit signed integer. Range: -2,147,483,648 to +2,147,483,647
unsi gned | ong 32-bit unsigned integer. Range 0to 2°2 - 1

32-bit |EEE floating-point value. The sign bitis 1 for negative
values. The exponent has 8 bits, giving exponents from -127 to

fl oat +128. The mantissa has 24 hits. Only the 23 least significant bits
are stored; the high bitis 1implicitly. (Z180 controllersdo not have

floating-point hardware.) Range: 1.18 x 1038 10 3.40 x 1038

14 Dynamic C User’s Manual

The symbolic names for the hardcoded limits of the datatypes are definedinl i m t s. h and are

shown here.
#define CHAR BI T 8
#def i ne UCHAR_MAX 255
#define CHAR M N 0
#defi ne CHAR MAX 255
#defi ne MB_LEN MAX 1
#define SHRT_M N - 32768
#def i ne SHRT_MAX 32767
#def i ne USHRT_MAX 65535
#define INT_MN - 32767
#defi ne | NT_MAX 32767
#defi ne U NT_MAX 65535
#define LONG M N -2147483647
#def i ne LONG_MAX 2147483647
#defi ne ULONG MAX 4294967295

4.4 Names

Names identify variables, certain constants, arrays, structures, unions, functions, and abstract data
types. Names must begin with aletter or an underscore (_), and thereafter must be letters, digits,
or an underscore. Names may not contain any other symbols, especially operators. Names are dis-
tinct up to 32 characters, but may be longer. Prior to Dynamic C version 6.19, names were distinct
up to 16 characters, but could be longer. Names may not be the same as any keyword. Names are

case-sensitive.

Examples
my_function /1 ok
_bl ock /1 ok
t est 32 /1 ok
j unper - /1 not ok, uses a ninus sign
3270t ype /1 not ok, begins with digit
Cl eanup_t he_data_now /| These nanes are

Cl eanup_t he _data | ater /1 not distinct!

References to structure and union elements require “ compound” names. The simple namesin a
compound name are joined with the dot operator (period).

cursor.loc.x = 10;

/] set structure element to 10

Dynamic C User’s Manual

15

Usethe#def i ne directive to create names for constants. These can be viewed as symbolic con-
stants. See Section 4.5, “Macros.”

#defi ne READ 10
#defi ne WRITE 20
#def i ne ABS 0
#def i ne REL 1
#def i ne READ _ABS READ + ABS
#def i ne READ REL READ + REL

Theterm READ_ABS isthe same as 10 + 0 or 10, and READ_REL isthe sameas 10 + 1 or 11.
Note that Dynamic C does not allow anything to be assigned to a constant expression.

READ ABS = 27; /| produces conpiler error

4.5 Macros

Macros can be defined in Dynamic C. A macro is a name replacement feature. Dynamic C has a
text preprocessor that expands macros before the program text is compiled. The programmer
assigns aname, up to 31 characters, to afragment of text. Dynamic C then replaces the macro
name with the text fragment wherever the name appearsin the program. In this example,

#def i ne OFFSET 12

#defi ne SCALE 72

int i, X;

i = x * SCALE + OFFSET;

thevariablei getsthevaluex * 72 + 12. Macros can have parameters such asin the follow-
ing example.

#define word(a, b) (a<<8 | b)
char c;
int i, j;
i =word(j, ¢); /]l same as i = (]j<<8|c)
The compiler removes the surrounding white space (comments, tabs and spaces) and collapses

each sequence of white space in the macro definition into one space. It placesa\ beforeany " or
\ to preserve their original meaning within the definition.

16 Dynamic C User’s Manual

Dynamic C implements the # and ## macro operators.

The # operator forces the compiler to interpret the parameter immediately following it as a string
literal. For example, if amacro is defined

#define report(val ue, fnt)\
printf(#value "=" #fm "\n", value)

then the macroin

report(string, 9%);
will expand to

printf("string" "
and because C always concatenates adjacent strings, the final result of expansion will be

=" "o8" "\n", string),

printf("string=%\n", string);
The ## operator concatenates the preceding character sequence with the following character
sequence, deleting any white space in between. For example, given the macro

#define set(x,y,z) x ## z ## _ ## y()
themacroin

set(AASC, FN, 6);
will expand to

AASC6_FN() ;

For parameters immediately adjacent to the ## operator, the corresponding argument is not
expanded before substitution, but appears asit does in the macro call.

Generally speaking, Dynamic C expands macro calls recursively until they can expand no more.
Another way of stating thisis that macro definitions can be nested.

The exceptionsto thisrule are
1. Argumentsto the # and ## operators are not expanded.

2. To prevent infinite recursion, a macro does not expand within its own expansion.
The following complex example illustrates this.

#define A B

#define B C

#defi ne ui nt unsigned int

#define Mx) M ## x

#define MM X,y,2z) X =y ## z

#define string sonething

#define wite(value, fnmt)\

printf(#value "=" #fm "\n", val ue)

The code

ui nt z;
M(M (A AB);
wite(string, %);

Dynamic C User’s Manual 17

will expand first to

unsi gned int z; /'l sinple expansion
MM (A A B); /1 MM does not expand recursively
printf("string" "=" "98" "\n", string),

[l #value —. "string" #fnm - "os"

then to

unsigned int z;
A = AB; Il fromA = A ## B
printf("string" "=" "9%" "\n", sonething);

/1 string - sonething

then to

unsigned int z;

B = AB; /[l A - B
printf("string=%\n", sonmething); /1 concatenation
and finally to

unsi gned int z;
C = AB; /Il B - C
printf("string = %\n", sonething);

4.5.1 Restrictions

The number of argumentsin amacro call must match the number of parameters in the macro defi-
nition. An empty parameter list is allowed, but the macro call must have an empty argument list.
Macros are restricted to 32 parameters and 126 nested calls. A macro or parameter name must
conform to the same requirements as any other C name. The C language does not perform macro
replacement inside string literals or character constants, comments, or within a#def i ne direc-
tive.

A macro definition remains in effect unless removed by an #undef directive. If an attemptis
made to redefine a macro without using #undef , awarning will appear and the origina defini-
tion will remainin effect.

18 Dynamic C User’s Manual

4.6 Numbers

Numbers are constant values and are formed from digits, possibly a decimal point, and possibly
thelettersU, L, X, or A—F, or their lower case equivalents. A decimal point or the presence of
the letter E or F indicates that a number isreal (has afloating-point representation).

Integers have several forms of representation. The norma decimal form is the most common.
10 -327 1000 O

Aninteger islong (32-bit) if its magnitude exceeds the 16-bit range (-32768 to +32767) or if it has
the letter L appended.

oL -32L 45000 32767L

Aninteger isunsigned if it has the letter U appended. Itisl ong if it also has L appended or if its
magnitude exceeds the 16-bit range.

ou 4294967294U 32767U 1700UL
Aninteger is hexadecimal if preceded by Ox.
OXx7E OxE000 OxFFFFFFFA
It may contain digits and the lettersa—f or A—F.
Aninteger isoctal if begins with zero and contains only the digits 0—7.
0177 020000 000000630
A rea number can be expressed in avariety of ways.
4.5 means4.5

4f means4.0
0. 3125 means0.3125

456e- 31 means 456 x 10731
0.3141592e1 means 3.141592

4.7 Strings and Character Data
A string isagroup of characters enclosed in double quotes (").
"Press any key when ready..."

Stringsin C have aterminating null byte appended by the compiler. Although C does not have a
string data type, it does have character arrays that serve the purpose. C does not have string opera-
tors, such as concatenate, but library functions strcat() and strncat() are available.

Strings are multibyte objects, and as such they are always referenced by their starting address, and
usualy by achar * variable. More precisely, arrays are aways passed by address. Passing a
pointer to a string is the same as passing the string. Refer to Section 4.15 for more information on
pointers.

Dynamic C User’s Manual 19

The following example illustrates typical use of strings.

const char* select = "Select option\n";

char start[32];

strcpy(start, "Press any key when ready...\n");

printf(select); /| pass pointer to string

printf(start); /'l pass string

Character constants have a slightly different meaning. They are not strings. A character constant
isenclosed in single quotes (* ') and is arepresentation of an 8-bit integer value.

"a' "\'n' "\ x1B
Any character can be represented by an alternate form, whether in a character constant or in a
string. Thus, nonprinting characters and characters that cannot be typed may be used.

A character can be written using its numeric value preceded by a backslash.

\ x41 // the hex val ue 41
\101 /] the octal value 101
\ B10000001 /1 the binary val ue 10000001

There are also several “specia” forms preceded by a backslash.

\a bell \b backspace
\'f fornfeed \n newine
\r carriage return \t tab
\v vertical tab \0O null char
\\ backsl ash \c the actual character c
\" single quote \" doubl e quote
Examples
"He said \"Hello.\"" /| enmbedded doubl e quot es
const char j = "'Z"; /] character constant

const char* MSG = "Put your disk in the A drive.\n";
/| enbedded new |ine at end
printf(MG); [l print MSG
char* default = ""; [l enpty string: a single null byte

20 Dynamic C User’s Manual

4.8 Statements

Except for comments, everything in a C program is a statement. Almost all statements end with a
semicolon. A C program istreated as a stream of characters where line boundaries are (generally)
not meaningful. Any C statement may be written on as many lines as needed. Comments (the
[*...*] kind) may occur amost anywhere, even in the middle of a statement, as long as they
begin with / * and end with */ .

A statement can be many things. A declaration of variables is a statement. An assignment isa
statement. A whi | e or f or loop isastatement. A compound statement is a group of statements
enclosed in braces{ and} .

4.9 Declarations

A variable must be declared before it can be used. That means the variable must have a name and
atype, and perhaps its storage class could be specified. If an array is declared, its size must be
given. Root data arrays are limited to atotal of 32,767 elements.

static int thing, array[12]; /] static integer variable &
/] static integer array

auto float matrix[3][3]; /] auto float array with 2
/1 di mensi ons

char *message="Press any key...” // initialized pointer to

/1l char array

If an aggregate type (st r uct or uni on) isbeing declared, itsinternal structure hasto be
described as shown below.

struct { /] description of struct
char fl ags;
struct { /'l a nested structure here
int Xx;
int y;
} loc;
} cursor;
int a;
a = cursor. | oc. x; /!l use of struct el ement here

Dynamic C User’s Manual 21

4.10 Functions

The basic unit of a C application program is afunction. Most functions accept parameters—or
arguments—and return results, but there are exceptions. All C functions have a return type that
specifieswhat kind of result, if any, it returns. A function with avoi d return type returns no
result. If afunction is declared without specifying a return type, the compiler assumesthat it isto
returnani nt (integer) value.

A function may call another function, including itself (arecursive cal). The mai n functionis
called automatically after the program compiles or when the controller powers up. The beginning
of the mai n function is the entry point to the entire program.

4.11 Prototypes
A function may be declared with a prototype. Thisis so that

1. Functionsthat have not been compiled may be called.
2. Recursive functions may be written.

3. The compiler may perform type-checkingon the parameters to make sure that calls to
the function receive arguments of the expected type. A function prototype describes
how to call the function and is nearly identical to the function’sinitial code.

/* This is a function prototype.*/
long tick _count (char clock id);

/[* This is the function's definition.*/
long tick count (char clock id){

}

It is hot necessary to provide parameter names in a prototype, but the parameter typeis required,
and all parameters must be included. (If the function accepts a variable number of arguments, as
printf does, useanédlipsis.)

/* This prototype is as good as the one above. */
long tick count (char);

/* This is a prototype that uses ellipsis. */
int startup (device id, ...);

22 Dynamic C User’s Manual

4.12 Type Definitions

Both types and variables may be defined. One virtue of high-level languages such as C and Pascal
isthat abstract data types can be defined. Once defined, the data types can be used as easily as
simple datatypeslikei nt, char,andf | oat. Consider this example.

typedef int MLES, // a basic type named M LES

t ypedef struct { /'l a structure type...
float re; Il
float im ...
} COWPLEX; /1 ...named COWPLEX
M LES di st ance; /1 declare variable of type MLES
COWPLEX z, *zp; /| decl are conpl ex variable and ptr

Uset ypedef to create ameaningful name for aclass of data. Consider this example.

t ypedef unsigned int node;
voi d Nodel nit(node); /1 type name is informative
voi d Nodelnit(unsigned int); // not very informative

This example shows many of the basic C constructs.

/* Put descriptive information in your program code using
this formof coment, which can be inserted anywhere and can
span |ines. The doubl e sl ash conment (shown bel ow) nmay be
pl aced at end-of-1line.*/

#define SIZE 12 /1 A synbolic constant defined.
int g, h; /1 Declare gl obal integers.
fl oat sunmSquare(int, int); // Prototypes for
void init(); /1 functions bel ow.
mai n() { /1l Program starts here.
float x; /1 x is local to main.
init(); /[l Call a void function.
X = suntquare(g, h); /1 x gets sunBquare val ue.
printf(“x = %", x); [l printf is a standard function.
}
void init(){ /1 Void functions do things but
g = 10; /1 they return no val ue.
h = Sl ZE; /!l Here, it uses the synbolic
} [/l constant defined above.
float sunmBSquare(int a, int b){// Integer args.
fl oat tenp; /1 Local var.
tenp = a*a + b*b; /[l Arithnetic.
return(tenp); /! Return val ue.
}

/* and here is the end of the program */

The program above calcul ates the sum of squares of two numbers, g and h, which areinitialized to
10 and 12, respectively. The main function calsthei ni t function to give values to the global

Dynamic C User’s Manual 23

variablesg and h. Then it usesthe sunSquar e function to perform the calculation and assign
the result of the calculation to the variable x. It prints the result using the library function
pri nt f, whichincludes aformatting string as the first argument.

Noticethat al functionshave{ and} enclosing their contents, and all variables are declared
before use. The functionsi ni t and sunSquar e were defined before use, but there are alterna-
tivesto this. The “Prototypes’ section explained this.

4.13 Aggregate Data Types

Simple data types can be grouped into more complex aggregate forms.

4.13.1 Array
A data type, whether it is simple or complex, can be replicated in an array. The declaration

int itenf10]; // An array of 10 integers.

represents a contiguous group of 10 integers. Array elements are referenced by their subscript.

j = itenin]; /1l The nth element of item

Array subscripts count up from 0. Thus, i t enf 7] aboveisthe eighth item in the array. Notice
the[and] enclosing both array dimensions and array subscripts. Arrays can be “nested.” The
following doubly dimensioned array, or “array of arrays.”

int matrix[7][3];

isreferenced in asimilar way.

scale = matrix[i][j];

The first dimension of an array does not have to be specified aslong as an initialization list is
specified.

int x[J[2] ={ {1, 2}, {3, 4}, {5 6} };
char string[] = "abcdefg";

4.13.2 Structure

Variables may be grouped together in structures (st r uct in C) or in arrays. Structures may be
nested.

struct {
char fl ags;
struct {
int Xx;
int vy;
} loc;

} cursor;

24 Dynamic C User’s Manual

Structures can be nested. Structure members—the variables within a structure—are referenced
using the dot operator.

j = cursor.loc.x

The size of astructure is the sum of the sizes of its components.

4.13.3 Union

A union overlays simple or complex data. That is, al the union members have the same address.
The size of the union is the size of the largest member.

uni on {
int ival;
l ong jval;
fl oat xval ;
P

Unions can be nested. Union members—the variables within a union—are referenced, like struc-
ture elements, using the dot operator.

j = u.ival

4.13.4 Composites
Composites of structures, arrays, unions, and primitive data may be formed. This example shows
an array of structures that have arrays as structure elements.

t ypedef struct {

int *x;
int c[32]; /] array in structure
} node;
node list[12]; /1 array of structures

Refer to an element of array ¢ (above) as shown here.

z =list[n].c[mM;

list[0].c[22] = OxFF37;

4.14 Storage Classes

Variable storage can beaut o or st at i c. The default storage classisst at i ¢, but can be
changed by using #cl ass aut 0. The default storage class can be superseded by the use of the
keyword aut o or st at i ¢ in avariable declaration.

These terms apply to local variables, that is, variables defined within afunction. If avariable does
not belong to afunction, it is called aglobal variable--meaning available anywhere--but thereisno
keyword in C to represent thisfact. Global variables alwayshave st at i ¢ storage

Theterm st at i ¢ means the data occupies a permanent fixed location for the life of the program.
Theterm aut o refersto variablesthat are placed on the system stack for the life of afunction call.

Dynamic C User’s Manual 25

4.15 Pointers

A pointer is avariable that holds the 16-bit logical address of another variable, a structure, or a
function. Variables can be declared pointers with the indirection operator (*). Conversely, a
pointer can be set to the address of a variable using the & (address) operator.

int *ptr_to_i;

int i;

ptr to i = &; /! set pointer equal to the address of i
i = 10: [/l assign a value to i

j = *ptr_to_i; /!l this sets j equal to the value in i

In this example, thevariablept r _t o_i isapointer to an integer. The statementj =
*ptr_to_i; referencesthevalue of theinteger by the use of the asterisk. Using correct
pointer terminology, the statement dereferences the pointer ptr _to_i. Then*ptr _to_i and
i haveidentical values.

Notethatptr _to_i andi do not havethe samevaluesbecauseptr to_ i isa
pointer andi isani nt . Notealso that * hastwo meanings (not counting its use
asamultiplier in others contexts)—in a variable declaration such asi nt
ptr_to_i; the meansthat the variable will be a pointer type, and in an exe-
cutable statementj = *ptr _to_i; means“thevalue stored at the address
containedinptr _to_i.”

Pointers may point to other pointers.

int *ptr_to_i;
int **ptr_to_ptr_to_i;
int i,j;
ptr to i = &; /1l Set pointer equal to the address of i.
ptr_to_ptr_to i = &ptr_to_i; [// Set a pointer to the pointer
/1l to the address of i.
i = 10; /[l Assign a value to i.
= *

i *ptr_to ptr_to i;// This sets j equal to the value in i.

Itispossibleto do pointer arithmetic, but thisis slightly different from ordinary integer arithmetic.
Here are some examples.

float f[10], *p, *q; /[l an array and sone ptrs

p = &f; /1 point pto array elenment 0
q = pt+5; // point g to array elenment 5
q++; /] point g to array elenment 6
p=p + Q; Il illegal!

Becausethef | oat isa4-byte storage element, the statement q = p+5 setsthe actua value of g
top+20. The statement g++ adds 4 to the actual value of g. If f were an array of 1-byte charac-
ters, the statement q++ adds1toq.

Beware of using uninitialized pointers. Uninitialized pointers can reference ANY location in
memory. Storing data using an uninitialized pointer can overwrite code or cause a crash.

26 Dynamic C User’s Manual

A common mistake isto declare and use a pointer to char , thinking there is a string. But an unini-
tialized pointer is al thereis.

char* string;

'si'rcpy(string, "hello"); /1 1nvalid!
printf(string); /1 lnvalid!

Pointer checking is arun-time option in Dynamic C. Use the compiler options command in the
OPTI ONS menu. Pointer checking will catch attempts to dereference a pointer to un allocated
memory. However, if an uninitialized pointer happens to contain the address of a memory location
that the compiler has already allocated, pointer checking will not catch this logic error. Because
pointer checking is arun-time option, pointer checking adds instructions to code when pointer
checking is used.

4.16 Pointers to Functions, Indirect Calls

Pointers to functions may be declared. When afunction is called using a pointer to it, instead of
directly, we call thisan indirect call.

The syntax for declaring a pointer to afunction is different than for ordinary pointers, and
Dynamic C syntax for thisis dlightly different than the standard C syntax. Standard syntax for a
pointer to afunction is:

returntype (*nanme)([argunent list]);

for example:

int (*funcl)(int a, int b);

void (*func2)(char*);
Dynamic C doesn’t recognize the argument list in function pointer declarations. The correct
Dynamic syntax for the above examples would be:

int (*funcl)();
void (*func2)();

Dynamic C User’s Manual 27

You can pass arguments to functions that are called indirectly by pointer, but the compiler will not
check them for correctness. The following program shows some examples of function pointer

usage.

typedef int (*fnptr)(); // create a pointer to int func.type

mai n(){
int Xx,y;
int (*fncl)(); // declare a var. fncl as ptr to int func.
fnptr fp2; /| declare a var. fp2 as ptr to int func.
fncl = intfunc; // initialize fncl to point to intfunc
fp2 = intfunc; // init. fp2 to point to the same func.
x = (*fncl)(1,2); // call intfunc via fncl
y = (*fp2)(3,4); [// call intfunc via fp2

printf("%\n", Xx);
printf("%\n", y);

}

int intfunc(int x, int y){
return x+y;

}

4.17 Argument Passing

In C, function arguments are generally passed by value. That is, arguments passed to a C function
are generally copies—on the program stack—of the variables or expressions specified by the
caller. Changes made to these copies do not affect the original valuesin the calling program.

In Dynamic C and most other C compilers, however, arrays are always passed by address. This
policy includes strings (which are character arrays).

Dynamic C passes st r uct s by value—on the stack. Passing alargest r uct takesalong time
and can easily cause a program to run out of memory. Pass pointersto largest r uct s if such
problems occur.

For a function to modify the original value of a parameter, pass the address of, or a pointer to, the
parameter and then design the function to accept the address of the item.

4.18 Program Flow

Three terms describe the flow of execution of a C program: sequencing, branching and looping.
Sequencing is simply the execution of one statement after another. Looping is the repetition of a
group of statements. Branching is the choice of groups of statements. Program flow is altered by
“calling” afunction, that istransferring control to the function. Control is passed back to the call-
ing function when the called function returns.

28 Dynamic C User’s Manual

4.18.1 Loops

A whi | e loop tests a condition at the start of the loop. Aslong as expression is true (non-zero),
the loop body (some statement(s)) will execute. If expressionisinitially fase (zero), the loop body
will not execute. The curly braces are necessary if there is more than one statement in the loop
body.

whi | e(expression){
sone st at ement (s)

}

A do loop tests a condition at the end of the loop. Aslong as expression is true (non-zero) the
loop body (some statement(s)) will execute. A do loop executes at least once before its test.
Unlike other controls, the do loop requires a semicolon at the end.

do{
some statenents
}whi | e(expression);

Thef or loop ismore complex: it sets an initial condition (exp,), evaluates a terminating condi-
tion (exp,), and provides a stepping expression (exps) that is evaluated at the end of each iteration.
Each of the three expressionsis optional.

for(expy; expy; expsz){
sone statenments
}

If the end conditionisinitially false, af or loop body will not execute at all. A typical use of the
f or loop isto count n times.

sum = O;

for(i =0; i <n; i++){
sum = sum + array[i];

}

Thisloop initially setsi to 0, continuesaslong asi islessthan n (stopswheni equalsn), and
incrementsi at each pass.

Another use for thef or loop isthe infinite loop, which is useful in control systems.

for(;;){some statenent(s)}

Here, thereisno initial condition, no end condition, and no stepping expression. The loop body
(some statement(s)) continues to execute endlessly. An endless loop can also be achieved with a
whi | e loop. Thismethod is dlightly less efficient than the f or loop.

while(1l) { some statenent(s) }

4.18.2 Continue and Break

Two other constructs are available to help in the construction of loops: the cont i nue statement
and the br eak statement.

Dynamic C User’s Manual 29

Thecont i nue statement causes the program control to skip unconditionally to the next pass of
the loop. In the example below, if bad is true, more statements will not execute; control will pass
back to the top of thewhi | e loop.

get _char();

while(! EOF){
sone statenents
if(bad) continue;
nore statenents

}

The br eak statement causes the program control to jump unconditionally out of aloop. In the
example below, if cond_RED is true, more statements will not be executed and control will pass
to the next statement after the ending curly brace of thef or loop

for(i=0;i<n;i++){
sone statenents
i f(cond_RED) break;
nore statenents

}

The br eak keyword also appliesto the swi t ch/ case statement described in the next sec-
tion. Thebr eak statement jJumps out of the innermost control structure (Iloop or switch state-
ment) only.

There will be timeswhen br eak isinsufficient. The program will need to either jump out more
than one level of nesting or there will be a choice of destinations when jumping out. Useagot o
statement in such cases. For example,

whil e(sone statenents){
for(i=0;i<n;i++){
sone statenents
if(cond_ RED) goto yyy;
sone statenents
if(code BLUE) goto zzz;
nore statenents

yyy:
handl e cond_RED
z22z:
handl e code BLUE

30 Dynamic C User’s Manual

4.18.3 Branching

The got o statement is the simplest form of a branching statement. Coupled with a statement
label, it simply transfers program control to the labeled statement.

sone statenents
abc:

ot her statenents

goto abc;

nore statenents
got o def;

def :
nore statenents

The colon at the end of the labelsis required.

The next simplest form of branching isthei f statement. The simpleform of thei f statement
tests a condition and executes a statement or compound statement if the condition expressionis
true (non-zero). The program will ignore thei f body when the condition is false (zero).
i f(expression){
sone st at ement (s)

}

A more complex form of thei f statement tests the condition and executes certain statements if
the expression istrue, and executes another group of statements when the expression isfalse.
i f(expression){
some statement(s) /* if true */

}el se{
sone statement(s) /* if false */
}

Thefullest form of thei f statements producesa“chain” of tests.

i f(expry){
sone statenents
telse if(expry){
sone statenents
telse if(exprz){
sone statenents
}el se{
sone statenents
}

The program evaluates the first expression (expr4). If that provesfalse, it tries the second expres-
sion (expr,), and continues testing until it finds a true expression, an el se clause, or the end of

theif statement. An el se clauseisoptional. Without anel se clause, ani f/ el se if state-
ment that finds no true condition will execute none of the controlled statements.

Dynamic C User’s Manual 31

The swi t ch statement, the most complex branching statement, allows the programmer to phrase
a“multiple choice” branch differently.

switch(expression){
case constq :

st at ement s,

br eak:
case const, :

statenent s,

br eak:
case constg :

statenent s3
br eak:
def aul t:
St at enent SDEFAULT

}

Firstthe swi t ch expression isevaluated. It must have an integer value. If one of theconst y
values matches the swi t ch expression, the sequence of statementsidentified by the const

expression is executed. If thereis no match, the sequence of statements identified by the

def aul t labd isexecuted. (Thedef aul t partisoptional.) Unlessthe br eak keywordis
included at the end of the case's statements, the program will “fall through” and execute the state-
ments for any number of other cases. Thebr eak keyword causes the program to exit the

swi tch/ case statement.

The colons (:) after br eak, case anddef aul t are required.

4.19 Function Chaining

Function chaining allows special segments of code to be distributed in one or more functions.
When a named function chain executes, all the segments belonging to that chain execute. Func-
tion chains allow the software to perform initialization, data recovery, or other kinds of tasks on
request. There are two directives, #makechai n and #f uncchai n, and one keyword, seg-
chai n.

#makechai n chai n_nane
Creates afunction chain. When a program executes the named function chain, all of

the functions or chain segments belonging to that chain execute. (No particular order
of execution can be guaranteed.)

#funcchai n chai n_nanme nane
Adds afunction, or another function chain, to afunction chain.
segchai n chain_nane { statenents }

Defines a program segment (enclosed in curly braces) and attaches it to the named
function chain.

32 Dynamic C User’s Manual

Function chain segments defined with segchai n must appear in afunction directly after data
declarations and before executabl e statements, as shown below.

my_function(){
data decl arati ons
segchai n chai n_x{
sone statenents which execute under chain_x
}

segchai n chai n_y{
sonme statenments which execute under chain_y
}

function body which executes when
my function is called

}

A program will call afunction chain asit would an ordinary void function that has no parameters.
The following example shows how to call afunction chain that isnamed r ecover.

#makechai n recover

recover();

4.20 Global Initialization

Various hardware devicesin a system need to beinitialized not only by setting variables and con-
trol registers, but often by complex initialization procedures. Dynamic C provides a specific func-
tion chain, _GLOBAL_I| NI T, for this purpose.

Your program can initialize variables and take initialization action with global initiaization. This
is done by adding segmentstothe _GLOBAL_| NI T function chain, as shown in the example
below.

The specia directive #GLOBAL_| NI T{ } tellsthe compiler to add the code in the block
enclosed in bracestothe GLOBAL _| NI T function chain. The GLOBAL_I NI T function chain
is always called when your program starts up, so there is nothing special to do to invoke it. It may
be called at anytime in an application program, but do this with caution. When it is called, all cos-
tatements and cofunctions will beinitialized. See “Calling _GLOBAL_INIT()” on page 63 for
more information.

Any number of #GLOBAL_| NI T sections may be used in your code. The order in which the
#GLOBAL_| NI T sections are called is indeterminate since it depends on the order in which they
were compiled.

Dynamic C User’s Manual 33

l ong ny_func(char j);
mai n(){
nmy_func(100);

}
I ong my_func(char j){
int i;
| ong array[256] ;
[/ The GLOBAL_INIT section is run
/] automatically once when program starts up
#GLOBAL_I NI T{
for(i =0; i < 100; i++){
array[i] =1i*i;
}
}
return array[j]; // only this code runs when the
/1 function is called
}

34

Dynamic C User’s Manual

4.21 Libraries

Dynamic C is comprised of many libraries—files of useful functions. They arelocated inthe LI B
subdirectory where Dynamic C was installed. The default library file extensionis. LI B.

Dynamic C will extract functions and data from library files and compile them with an application
program that is then downloaded to a controller or savedto a. bi n file.

Thus, an application program (the default file extension is. ¢) consists of a main program (called
mai n), zero or more functions, and zero or more global data, all of which are distributed through-
out one or more text files. The order in which these are defined is not very important. The mini-
mum program is one file, containing only

mai n() {

}
Libraries are “linked” with the application through the #use directive. The#use directive iden-
tifies a file from which functions and data may be extracted. Filesidentified by #use directives
are nestable, as shown below.

Application X.LIB Y.LIB
huse x.1ib4— | #use y.1ib4— 7 T
tﬁéin() { 1.51.11.1Ction
i o J.filr.lction
i.h.:ée z.1lib J-Fizr-iction ZLIB

#use z.1lib —

Figure 2. Nesting Files in Dynamic C

Most libraries needed by Dynamic C programs are#use’d inthefilel i b\ def aul t . h.

The“Modules’ section later in this chapter explains how Dynamic C knows which functions and
global variablesin alibrary to use.

Dynamic C User’s Manual 35

4.22 Support Files

Dynamic C has several support files that are necessary in building an application. These files are
listed below.

Table 4. Dynamic C Support Files

File Meaning

DCW CFG Contains configuration data for the target controller.

Contains prototypes, basic type definitions,
DC. HH #def i ne, and default modes for Dynamic C. This
file can be modified by the programmer.

Contains pathnames for al libraries that are to be
known to Dynamic C. The programmer can add to, or
remove libraries from thislist. Thefactory default is

LIB.DIR for thisfileto contain al the libraries on the Dynamic
C distribution disk. No library will beusable unlessitis
listed in thisfile.

DEFAULT. H Contains a set of #use directives for each control

product that Z-World ships. Thisfile can be modified.

4.23 Headers

The following table describes two kinds of headers used in Dynamic C libraries.

Table 5. Dynamic C Library Headers

Header Description
Module headers Makes functions gnd global variablesin the library
known to Dynamic C.
Functl_on_ Describe functions. Function headers form the basis
Description .
for function lookup help.
headers

You may also notice some “Library Description” headers at the top of library files. These have no
special meaning to Dynamic C, they are simply comment blocks.

36 Dynamic C User’s Manual

4.24 Modules

Thisisavery important topic that must be understood by those writing their own libraries for
Dynamic C. Modules provide Dynamic C with the ability to know which functions and global
variablesin alibrary to use.

A library file contains a group of modules. A module has three parts: the key, the header, and a
body of code (functions and data).

A modulein alibrary has a structure like this one.

[*** Begi nHeader funcl, var2, */
prototype for funcl
decl aration for var2
[*** EndHeader */
definition of funcl and
possi bly other functions and data

4.24.1 The Key
The line (a specially-formatted comment)

[*** Begi nHeader [nane;, name,,] */

begins the header of a module and contains the module key. The key isalist of names (of func-
tions and data). The key tells the compiler what functions and data in the module are available for
reference. It isimportant to format this comment properly. Otherwise, Dynamic C cannot identify
the modul e correctly.

If there are many names after Begi nHeader , thelist of names can continue on subsequent lines.
All names must be separated by commas. A key can have no namesin it and it’s associated header
will still be parsed by the precompiler and compiler.

4.24.2 The Header

Every line between the comments containing Begi nHeader and EndHeader belongsto the
header of the module. When an application #usesalibrary, Dynamic C compiles every header,
and just the headers, in the library. The purpose of a header is to make certain names defined in a
module known to the application. With proper function prototypes and variable declarations, a
module header ensures proper type checking throughout the application program. Prototypes, vari-
ables, structures, typedefs and macros declared in a header section will always be parsed by the
compiler if the library is used, and will have global scope. It is even permissible to put function
bodies in header sections, but thisis not recommended. Variables declared in a header section will
be allocated memory space unless the declaration is preceded with ext ern .

Dynamic C User’s Manual 37

4.24.3 The Body

Every line of code after the EndHeader comment belongs to the body of the module until (1)
end-of-file or (2) the Begi nHeader comment of another module. Dynamic C compilesthe
entire body of amodule if any of the namesin the key are referenced (used) anywhere in the appli-
cation. For thisreason, it is not wise to put many functions in one module regardless of whether
they are actually going to be used by the program.

To minimize waste, it is recommended that a module header contain only prototypes and ext er n
declarations. (Prototypesand ext er n declarations do not generate any code by themselves.)
Define code and data only in the body of amodule. That way, the compiler will generate code or
allocate data only if the module is used by the application program. Programmers who create their
own libraries must write modules following the guideline in this section. Remember that the
library must beincluded in LI B. DI Rand a#use directive for the library must be placed some-
where in the code.

Example

[*** Begi nHeader ticks */
extern unsigned |ong ticks;
[*** EndHeader */
unsi gned | ong ticks;
[*** Begi nHeader Get _Ticks */
unsi gned | ong Get Ticks();
[*** EndHeader */
unsi gned | ong Get Ticks(){

}
[*** Begi nHeader Inc_Ticks */

void Inc_Ticks(int i);
[*** EndHeader */
#asm
I nc_Ticks::
or a
i pset 1
i pres
ret
#endasm

There are three modules defined in this code. Thefirst oneisresponsible for the variablet i cks,
the second and third modules define functions Get _Ti cks and | nc_Ti cks that accessthe
variable. Although | nc_Ti cks isan assembly language routine, it has afunction prototypein
the module header, allowing the compiler to check calstoit.

If the application program calls| nc_Ti cks or Get _Ti cks (or both), the module bodies corre-
sponding to the called routines will be compiled. The compilation of these routines further trig-
gers compilation of the module body correspondingtot i cks because the functions use the
variablet i cks.

38 Dynamic C User’s Manual

4.24.4 Function Description Headers

Each user-callable function in a Z-World library has a descriptive header preceding the function to
describe the function. Function headers are extracted by Dynamic C to provide on-line help mes-
sages.

The header is a specially formatted comment, such as the following example.

/* STAR'I' FUNC'I'I O\l DESCRI PTI O\l kkkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkk*k

W | Oport <| O LI B>
SYNTAX: void W1 Oport(int portaddr, int value);
DESCRI PTI ON:

Wites data to the specified 1/0O port.
PARAMETERL: portaddr - register address of the port.
PARAMETER2: value - data to be witten to the port.

RETURN VALUE: None
KEY WORDS: parallel port

SEE ALSO RdI Opor't
END DESCRI PTI O\l ***********************************/

If thisformat is followed, user-created library functions will show up in the Function
L ookup/Insert facility. Note that these sections are scanned in only when Dynamic C starts.

Dynamic C User’s Manual 39

40

Dynamic C User’s Manual

Multitasking with Dynamic C 5

A taskisan ordered list of operations to perform. In a multitasking environment, more than one
task (each representing a sequence of operations) can appear to executein parallel. Inredlity, a
single processor can only execute one instruction at atime. If an application has multiple tasks to
perform, multitasking software can usually take advantage of natural delaysin each task to
increase the overal performance of the system. Each task can do some of its work while the other
tasks are waiting for an event, or for something to do. In this way, the tasks execute almost in par-
alel.

There are two types of multitasking available for developing applications in Dynamic C: preemp-
tive and cooperative. In a cooperative multitasking environment, each well-behaved task voluntar-
ily gives up control when it is waiting, allowing other tasks to execute. Dynamic C has language
extensions, costatements and cofunctions, to support cooperative multitasking. Preemptive multi-
tasking is supported by the dlice statement, which allows a computation to be divided into small
dlices of afew milliseconds each, and by the uC/OS-11 real-time kernel.

5.1 Cooperative Multitasking

In the absence of a preemptive multitasking kernel or operating system, a programmer given a
real-time programming problem that involves running separate tasks on different time scales will
often come up with a solution that can be described as a big loop driving state machines.

\

Top of loop

v

State machine

¢

State machine

¢

State machine
|

Figure 1. Big Loop

Dynamic C User’s Manual 41

This means that the program consists of alarge, endless loop—a big loop. Within the loop, tasks
are accomplished by small fragments of a program that cycle through a series of states. The stateis
typically encoded as numerical valuesin C variables.

State machines can become quite complicated, involving alarge number of state variables and a
large number of states. The advantage of the state machine isthat it avoids busy waiting, which is
waiting in aloop until acondition is satisfied. In this way, one big loop can service alarge number
of state machines, each performing its own task, and no one is busy waiting.

The cooperative multitasking language extensions added to Dynamic C use the big loop and state
machine concept, but C code is used to implement the state machine rather than C variables. The
state of atask is remembered by a statement pointer that records the place where execution of the
block of statements has been paused to wait for an event.

To multitask using Dynamic C language extensions, most application programs will have some
flavor of this simple structure:

mai n() {
int i;
while(1) { /1 endl ess | oop for
/1 . nmultitasking framework
costate { /1l task 1
/1l body of costatenent
}
costate { /'l task 2
/1 body of costatenent
}
}
}

42 Dynamic C User’s Manual

5.2 A Real-time Problem

The following sequence of eventsis common in real-time programming.
Start:

Wait for a pushbutton to be pressed

Turn on thefirst device.
Wait 60 seconds

Turn on the second device
Wait 60 seconds.

Turn off both devices

Go back to the start.

The most rudimentary way to perform this function isto idle (“busy wait”) in atight loop at each
of the steps where waiting is specified. But most of the computer time will used waiting for the
task, leaving no execution time for other tasks.

N o o s~ wDdD P

5.2.1 Solving the Real-time Problem With a State Machine
Here is what a state machine solution might look like.

tasklstate = 1; /1 initialization
whi |l e(1){
swi tch(tasklstate){
case 1:
i f(buttonpushed()){
t asklst at e=2; t ur nondevi cel();
timerl = tinme; [/ time increnented every sec
}
br eak;
case 2:
if((time-timerl) >= 60L){
t asklst at e=3; t ur nondevi ce2();
timer2=tine,;
}
br eak;
case 3:
if((time-timer2) >= 60L){
t asklst at e=1; t ur nof f devi cel();
t ur nof f devi ce2() ;
}
br eak;

}

(other tasks or state machi nes)

Dynamic C User’s Manual 43

If there are other tasks to be run, this control problem can be solved better by creating aloop that
processes a number of tasks. Now, each task can relinquish control when it is waiting, thereby
allowing other tasks to proceed. Each task then doesits work in the idle time of the other tasks.

5.3 Costatements

Costatements are Dynamic C extensions to the C language which simplify implementation of state
machines. Costatements are cooperative because their execution can be voluntarily suspended and
later resumed. The body of a costatement is an ordered list of operationsto perform -- atask. Each
costatement hasits own statement pointer to keep track of which item on thelist will be performed
when the costatement is given a chance to run. As part of the startup initialization, the pointer is
set to point to the first statement of the costatement.

The statement pointer is effectively a state variable for the costatement or cofunction. It specifies
the statement where execution is to begin when the program execution thread hits the start of the
costatement.

All costatements in the program, except those that use pointers as their names, are initialized when
thefunctionchain _GLOBAL _| NI Tiscalled. GLOBAL I NI T iscaled automatically by pr e-

mai n before mai niscalled. Calling _GLOBAL_| NI T from an application program will cause
reinitialization of anything that was initialized in the call made by pr enai n.

5.3.1 Solving the Real-time Problem With Costatements
The Dynamic C costatement provides an easier way to control the tasks. It isrelatively easy to add
atask that checks for the use of an emergency stop button and then behaves accordingly.

whi |l e(1){
costate{ ... } /] task 1
cost at ef /1 task 2

wai t f or (buttonpushed());
t ur nondevi cel();

wai t for(Del aySec(60L));
t ur nondevi ce2();

wai t for(Del aySec(60L));
t ur nof f devi cel();

t ur nof f devi ce2() ;

costate{ ... } /]l task n

}

The solution is elegant and simple. Note that the second costatement looks much like the original
description of the problem. All the branching, nesting and variables within the task are hidden in
the implementation of the costatement and itswai t f or statements.

44 Dynamic C User’s Manual

5.3.2 Costatement Syntax

costate [nane [state]] {

[statement | yield; | abort; | waitfor(expression);] . . .}
The keyword cost at e identifies the statements enclosed in curly braces that follow as a costate-
ment.

nane can be one of the following:

» A valid C name not previoudly used. Thisresults in the creation of a structure of type
CoDat a of the same name.

» Thename of aloca or global CoDat a structure that has already been defined
* A pointer to an existing structure of type CoDat a

Costatements can be named or unnamed. If nane is absent the compiler creates an
“unnamed” structure of type CoDat a for the costatement.

st at e can be one of the following:

* always_on
The costatement is always active. This option causes the costatement to be compiledin
such amanner that it does not check for a paused condition. CoPause cannot be used.

e init_on
The costatement isinitially active and will automatically execute thefirst timeitis
encountered in the execution thread. The costatement becomes inactive after it com-
pletes (or aborts). The costatement can be paused by CoPause.
If st at e isabsent, anamed costatement isinitialized in a paused condition and will not execute
until CoBegi n or CoResune is executed. The costatement will then execute once and become
inactive again.

Unnamed costatements are al ways_on. You cannot specify i ni t _on without specifying a
namne.

5.3.3 Control Statements
wai t f or (expression);

The keyword wai t f or indicates aspecial wai t f or statement and not a function call.
The expression is computed each timewai t f or isexecuted. If true (non-zero), execu-
tion proceedsto the next statement, otherwise ajump is made to the closing brace of the
costatement or cofunction, with the statement pointer continuing to point to the wai t -
f or statement. Any valid C function that returns avalue can be used in awai t f or
Statement.

yield
Theyi el d statement makes an unconditional exit from a costatement or a cofunction.

Dynamic C User’s Manual 45

abort

Theabort statement causes the costatement or cofunction to terminate execution. |If
acostatement isal ways_on, the next time the program reachesit, it will restart from
the top. If the costatement is not al ways_on, it becomes inactive and will not execute
again until turned on by some other software.

A costatement can have as many C statements, including abor t , yi el d, andwai t f or state-
ments, as needed. Costatements can be nested.

5.4 Advanced Costatement Topics

Each costatement has a structure of type CoDat a. This structure contains state and timing infor-
mation. It aso contains the address inside the costatement that will execute the next time the pro-
gram thread reaches the costatement. A value of zero in the address location indicates the
beginning of the costatement.

5.4.1 The CoDat a Structure

t ypedef struct {
char CSSt at e;
unsi gned int | astl ocADDR;
char | astl ocCBR;
char ChkSum
char firsttine;
uni on{
unsi gned | ong ul;
struct {
unsi gned int uil;
unsigned int u2;
} us;
} content;
char ChkSun?;
} CobDat a;

46 Dynamic C User’s Manual

5.4.2 CoData Fields
CSSate

The CSSt at e fidld contains two flags, STOPPED and | NI T, summarized in the table bel ow.

STOPPED INIT State of Costatement
s s Done, or has been initialized to run, but set to
y y inactive. Set by CoReset .
yes no Paused, waiting to resume. Set by CoPause.
no yes Initialized to run. Set by CoBegi n.
Running. CoResune will return the flags to this
no no Sate

Thefunctioni sCoDone() returnstrue (1) if both the STOPPED and | NI T flags are set.
The functioni sCoRunni ng() returnstrue (1) if the STOPPED flag is not set.

The CSSt at e field applies only if the costatement has aname The CSSt at e flag has no mean-
ing for unnamed costatements or cofunctions.

Last Location

Thetwofields| ast | ocADDRand | ast | ocCBR ar e represent the 24-bit address of the loca-
tion at which to resume execution of the costatement. If | ast | oc ADDR is zero (asit iswhen ini-
tialized), the costatement executes from the beginning, subject to the CSSt at e flag. If

| ast | oc ADDRis nonzero, the costatement resumes at the 24-bit address represented by | ast -
| ocADDRand | ast | ocCBR.

These fields are zeroed whenever one of the following is true:

» the CoDat a structureisinitialized by acall to_G.OBAL_I NI T, CoBegi n or CoReset
* the costatement is executed to completion

* the costatement is aborted.

Check Sum

The ChkSum field is a one-byte check sum of the address. (It isthe exclusive-or result of the
bytesinl ast | ocADDR and| ast | ocCBR.) If Chk Sumis not consistent with the address, the
program will generate arun-time error and reset. The check sum is maintained automatically. It is
initialized by GLOBAL_I NI T, CoBegi n and CoReset .

First Time
Thefirsttinefiedisaflagthatisused by awai t f or, or wai t f or done statement. It isset
to 1 before the statement is evaluated the first time. This aids in calculating elapsed time for the

functions Del ayMs, Del aySec, Del ayTi cks, | nterval Ti ck, | nt er val Ms, and
| nt erval Sec.

Content

Dynamic C User’s Manual 47

Thecont ent fidd (aunion) is used by the costatement or cofunction delay routinesto store a
delay count.

Check Sum 2
The ChkSun® field is currently unused.

5.4.3 Pointer to CoData Structure
To obtain a pointer to a named costatement’s CoData structure, do the following:

CoDat a cost1; /* allocate nenory for a CoData struct*/
CoDat a *pcost 1;

pcost1l = &cost1, /* get pointer to the CoData struct */
CoBegi n (pcost1); /[* initialize CoData struct */

costate pcostl { /* pcostl is the costatenent name */

/* and a pointer to its */
/* CoData structure. */

5.4.4 Library Extensions for Use With Named Costatements

I nt 1 sCoDone(CoDat a* p)
Thisfunction returns true if the costatement pointed to by p has completed.

i nt i sCoRunni ng(CoDat a* p)

Thisfunction returns true if the costatement pointed to by p will run if given a continu-
ation call.

voi d CoBegi n(CoDat a* p)

Thisfunction initializes a costatement’s CoData structure so that the costatement will
be executed next timeit is encountered.

48 Dynamic C User’s Manual

voi d CoPause(CoDat a* p)

Thisfunction will change CoData so that the associated costatement is paused. When a
costatement is called in this state it does an implicit yield until it is released by a call
from CoResune or CoBegi n.

voi d CoReset (CoDat a* p)

Thisfunction initializes a costatement’s CoData structure so that the costatement will
not be executed the next timeiit is encountered (unless the costatement is declared
al ways_on.)

voi d CoResune(CoDat a* p)

This function unpauses a paused costatement. The costatement will resume the next
timeitiscalled.

5.4.5 Firsttime Functions
In afunction definition, the keyword f i r st t i me causes the function to have an implicit first
parameter: a pointer to the CoData structure of the costatement that callsit.

Thefollowing fi r st ti me functions are defined in COSTATE. LI B. For more information see
Chapter 15, “Function Reference.” These functions should be called insideawai t f or statement
because they do not yield while waiting for the desired time to elapse, but instead return O to indi-
cate that the desired time has not yet elapsed.

Del ayMs I nterval Ms
Del aySec I nt erval Sec
Del ayTi cks I nterval Tick

User-defined fi r st ti me functions are allowed.

5.4.6 Shared Global Variables

These variables are shared, making them atomic when being updated. They are defined and initial-
izedin VDRI VER. LI B. They are updated by the periodic interrupt and areused by f i r st -

t i me functions.

SEC_TI MER

MS_TI MER
TI CK_TI MER

Dynamic C User’s Manual 49

5.5 Cofunctions

Cofunctions, like costatements, are used to implement cooperative multitasking. But, unlike cos-
tatements, they have aform similar to functions in that arguments can be passed to them and a
value can be returned (but not a structure).

The default storage class for a cofunction’svariablesis| nst ance. Ani nst ance variable
behaveslikeast at i ¢ variable, i.e., its value persists between function calls. Each instance of
an Indexed Cofunction hasits own set of instance variables. The compiler directive#cl ass
does not change the default storage class for a cofunction’s variables.

All cofunctionsin the program are initialized when the function chain _GLOBAL_| NI T iscalled.
Thiscall ismade by pr emai n.

5.5.1 Syntax

A cofunction definition is similar to the definition of a C function.
cofunc| scofunc type [nane][[dinl]([type argl, ..., type argN])
{ [statenent | yield; | abort; | waitfor(expression);] ... }

cof unc, scofunc

The keywords cof unc or scof unc (asingle-user cofunction) identify the statements
enclosed in curly braces that follow as a cofunction.

type
Whichever keyword (cof unc or scof unc) isused isfollowed by the data type
returned (voi d, i nt, etc.).

name

A nane can be any valid C name not previously used. Thisresultsin the creation of a
structure of type CoDat a of the same name. Cofunctions can be named or unnamed. If
nane is absent the compiler creates an “unnamed” structure of type CoDat a for the
cofunction.

dim
The cofunction nane may be followed by adimension if an indexed cofunction is
being defined.
cofunction arguments (argl, . . ., argN)
Aswith other Dynamic C functions, cofunction arguments are passed by value.
cofunction body
A cofunction can have as many C statements, including abor t , yi el d, wai t f or, and

wai t f or done statements, as needed. Cofunctions can contain calls to other cofunc-
tions.

50 Dynamic C User’s Manual

5.5.2 Calling Restrictions
You cannot assign a cofunction to afunction pointer then call it viathe pointer.

Cofunctions are called using awai t f or done statement. Cofunctionsand thewai t f or done
statement may return an argument value as in the following example.

int j,k,Xx,y, z;
j wai t f ordone x = Cof uncl;
k wai t f ordone{ y=Cofunc2(...); z=Cofunc3(...); }

The keyword wai t f or done (can be abbreviated to the keyword wf d) must be inside a costate-
ment or cofunction. Since a cofunction must be called from inside awf d statement, ultimately a
wf d statement must be inside a costatement.

If only one cofunction isbeing called by wf d the curly braces are not needed.

Thewf d statement executes cofunctionsand f i r st t i me functions. When all the cofunctions
andfirstti me functionslisted in the wf d statement are complete (or one of them aborts), exe-
cution proceeds to the statement following wf d. Otherwise a jump is made to the ending brace of
the costatement or cofunction where the wf d statement appears and when the execution thread
comes around again control is given back to wf d.

In the example above, x, y and z must be set by r et ur n statements inside the called cofunc-
tions. Executing a return statement in a cofunction has the same effect as executing the end brace.

In the example above, the variable k is a status variable that is set according to the following
scheme. If no abort has taken place in any cofunction, k issetto 1, 2, .., nto indicate which
cofunction inside the braces finished executing last. If an abort takes place, k issetto -1, -2, ..., -n
to indicate which cofunction caused the abort.

5.5.3 CoData Structure
The CoData structure discussed in Section 5.4.1 applies to cofunctions; each cofunction has an
associated CoData structure.

5.5.4 Firsttime functions

Thefirsttinme functionsdiscussed in “Firsttime Functions” on page 49 can also be used inside
cofunctions. They should be called inside awai t f or statement. If you call these functions from
insde awf d statement, no compiler error is generated, but, since these delay functions do not
yield while waiting for the desired time to elapse, but instead return 0 to indicate that the desired
time has not yet elapsed, the wf d statement will consider a return value to be completion of the
firsttime functionand control will passto the statement following the wf d.

Dynamic C User’s Manual 51

5.5.5 Types of Cofunctions
There are three types of cofunctions. Which one to use depends on the problem that is being
solved.

5.5.5.1 Simple Cofunction

A simple cofunction has only oneinstance and is similar to aregular function with a costate taking
up most of the function’s body.

5.5.5.2 Indexed Cofunction

Anindexed cofunction allows the body of a cofunction to be called more than once with different
parameters and local variables. The parameters and the local variable that are not declared static
have a special lifetime that begins at afirst time call of a cofunction instance and ends when the
last curly brace of the cofunction is reached or when an abort orr et ur n is encountered.

The indexed cofunction call is a cross between an array access and a normal function call, where
the array access selects the specific instance to be run.

Typicaly thistype of cofunction isused in a situation where N identical units need to be con-
trolled by the same algorithm. For example, a program to control the door latchesin a building
could use indexed cofunctions. The same cofunction code would read the key pad at each door,
compare the passcode to the approved list, and operate the door latch. If there are 25 doorsin the
building, then the indexed cofunction would use an index ranging from 0 to 24 to keep track of
which door is currently being tested. An indexed cofunction has an index similar to an array index.

wai tfordone{ |Cofunc[n](...); ICofunc2[m(...); }

The value between the square brackets must be positive and less than the maximum number of
instances for that cofunction. There is no runtime checking on the instance selected, so, like
arrays, the programmer is responsible for keeping this value in the proper range.

Costatements are not supported inside indexed cofunctions.
5.5.5.3 Single User Cofunction

Since cofunctions are executing in parallel, the same cofunction normally cannot be called at the
same time from two places in the same big loop. For example, the following statement containing
two simple cofunctions will generally cause afatal error.

wai t f ordone(cof unc_naneA(); cofunc_nanmeA();}

Thisis because the same cofunction is being called from the second location after it has already
started, but not completed, execution for the call from the first location. The cofunction is a state
machine and it has an internal statement pointer that cannot point to two statements at the same
time.

52 Dynamic C User’s Manual

Single-user cofunctions can be used instead. They can be called simultaneously because the sec-
ond and additional callers are made to wait until the first call completes. The following statement,
which contains two single-user cofunctions, is okay.

wai t f ordone(scofunc_nanmeA(); scofunc_nanmeA();}

loopinit()

This function should be called in the beginning of a program that uses single-user cofunctions. It
initializes internal data structuresthat are used by | oophead() .

loophead()
This function should be called within the "big loop" in your program. It is necessary for proper
single-user cofunction abandonment handling.

Example

/! echoes characters
mai n() {
int c;
ser Xopen(19200) ;
| oopinit();
while (1) {
| oophead() ;
wfd ¢ = cof _serAgetc();
wfd cof _serAputc(c);

}

ser Acl ose();

5.5.6 Types of Cofunction Calls
A wf d statement makes one of three types of callsto a cofunction.

5.5.6.1 First Time Call

A first time call happens when awf d statement calls a cofunction for the first timein that state-
ment. After the first time, only the original wf d statement can give this cofunction instance con-
tinuation calls until either the instance is complete or until the instance is given ancther first time
call from adifferent statement.

5.5.6.2 Continuation Call

A continuation call iswhen a cofunction that has previously yielded is given another chance to run
by the enclosing Wf d statement. These statements can only call the cofunction if it was the last
statement to give the cofunction afirst time call or a continuation call.

5.5.6.3 Terminal Call
A terminal call ends with a cofunction returning to itswf d statement without yielding to another

cofunction. This can happen when it reaches the end of the cofunction and does an implicit return,
when the cofunction does an explicit return, or when the cofunction aborts.

Dynamic C User’s Manual 53

5.5.6.4 Lifetime of a Cofunction Instance

This stretches from afirst time call until itsterminal cal or until its next first time cal.

5.5.7 Special Code Blocks
The following special code blocks can appear inside a cofunction.

everytime { statements}

Thismust be the first statement in the cofunction. It will be executed every time pro-
gram execution passes to the cofunction no matter where the statement pointer is point-
ing. After theever yt i me statements are executed, control will pass to the statement
pointed to by the cofunction’s statement pointer.

abandon { statenents }

This statement appliesto single-user cofunctions only and must be thefirst statement in
the body of the cofunction. The statements inside the curly braces will be executed if
the single-user cofunction isforcibly abandoned. A call to | oophead() (definedin
COFUNC. LI B) isnecessary for abandon statements to execute.

Example

The following code illustrates the use of abandon. This program, COFABAND.C, isin the SAM
PLES/ COFUNC folder in the directory where Dynamic C was installed.

scof unc SCof Test (i nt i){
abandon ({
printf (" Cof Test was abandoned\n");

}
whi | e(i >0) {
printf("Cof Test (%d)\n",i);
yi el d;
}
}
mai n(){
int Xx;
for(x=0; x<=10; x++) {
| oophead() ;
i f(x<5) {
costate {
wfd SCof Test(1); // first caller
}
}
costate {
wf d SCof Test (2); /1l second caller
}
}
}

54 Dynamic C User’s Manual

In this example two tasksin mai n are requesting access to SCof Test . Thefirst request is hon-
ored and the second request is held. When | oophead notices that the first caller is not being
called each time around the loop, it cancel s the request, calls the abandonment code and allows the
second caller in.

5.5.8 Solving the Real-time Problem With Cofunctions

for(;;){

cost at ef /1 task 1
wfd ener gencyst op();
for (i=0; i<MAX DEVI CES; i ++)

wfd turnoffdevice(i);
}

cost at ef /1l task 2
wfd x = buttonpushed();
wfd turnondevice(x);
wai t for(DelaySec(60L));
wfd turnoffdevice(x);

}

'c.o'state{ c.o.) /1 task n

}

Cofunctions, with their ability to receive arguments and return values, provide more flexibility and
specificity than our previous solutions. Using cofunctions, new machines can be added with only
trivial code changes. Making but t onpushed() acofunction allows more specificity because
the value returned can indicate a particular button in an array of buttons. Then that value can be
passed as an argument to the cofunctionst ur nondevi ce andt ur nof f devi ce.

5.6 Patterns of Cooperative Multitasking

Sometimes atask may be something that has a beginning and an end. For example, a cofunction to
transmit a string of charactersviathe seria port begins when the cofunction isfirst called, and
continues during successive calls as control cycles around the big loop. The end occurs after the
last character has been sent and thewai t f or done condition is satisified. Thistype of acall to a
cofunctions might look like this:

wai t f ordone{ SendSerial ("string of characters"); }
[next statenent]

The next statement will execute after the last character is sent.

Dynamic C User’s Manual 55

Some tasks may not have an end. They are endless |oops. For example, atask to control a servo
loop may run continuously to regulate the temperature in an oven. If there are a anumber of tasks
that need to run continuously, then they can be called using asinglewai t f or done statement as
shown below.

costate {
wai t fordone { Task1(); Task2(); Task3(); Task4(); }
[to cone here is an error]

}

Each task will receive some execution time and, assuming none of the tasks is completed, they
will continue to be called. If one of the cofunctions should abort, then thewai t f or done state-
ment will abort, and corrective action can be taken.

5.7 Timing Considerations

In most instances, costatements and cofunctions are grouped as periodically executed tasks. They
can be part of areal-time task, which executes every n milliseconds as shown below using costate-
ments.

lentel' every n milliseconds

costate{ ... }
costate{ ... }
costate{ ... }

costate{ ... }

| exit

Figure 2. Costatement as Part of Real-Time Task

If all goeswell, the first costatement will be executed at the periodic rate. The second costatement
will, however, be delayed by the first costatement. The third will be delayed by the second, and so
on. The frequency of the routine and the time it takes to execute comprise the granularity of the
routine.

If the routine executes every 25 milliseconds and the entire group of costatements executesin 5 to
10 milliseconds, then the granularity is 30 to 35 milliseconds. Therefore, the delay between the
occurrence of awai t f or event and the statement following thewai t f or can be as much asthe
granularity, 30 to 35 ms. The routine may also be interrupted by higher priority tasks or interrupt
routines, increasing the variation in delay.

The consequences of such variationsin the time between steps depends on the program’s objec-
tive. Suppose that the typical delay between an event and the controller’s response to the event is

56 Dynamic C User’s Manual

25 ms, but under unusual circumstances the delay may reach 50 ms. An occasional slow response
may have no consequences whatsoever. If adelay is added between the steps of a process where
the time scale is measured in seconds, then the result may be avery dight reduction in throughput.

If thereis adelay between sensing a defective product on a moving belt and activating the reject

solenoid that pushes the object into the reject bin, the delay could be serious. If acritical delay
cannot exceed 40 ms, then a system will sometimes fail if its worst-case delay is 50 ms.

5.7.1 waitfor Accuracy Limits

If anidleloop isused to implement adelay, the processor continues to execute statements almost
immediately (within nanoseconds) after the delay has expired. In other words, idle loops give pre-
cise delays. Such precision cannot be achieved withwai t f or delays.

A particular application may not need very precise delay timing. Suppose the application requires
a 60-second delay with only 100 ms of delay accuracy; that is, an actual delay of 60.1 secondsis
considered acceptable. Then, if the processor guarantees to check the delay every 50 ms, the delay
would be at most 60.05 seconds, and the accuracy requirement is satisfied.

5.8 Overview of Preemptive Multitasking

In a preemptive multitasking environment, tasks do not voluntarily relinquish control. Tasks are
scheduled to run by priority level and/or by being given a certain amount of time.

There are two ways to accomplish preemptive multitasking using Dynamic C. Thefirst way is
HC/OS-1, areal-time, preemptive kernel that runs on the Rabbit Microprocessor and isfully sup-
ported by Dynamic C. For more information see Chapter 17, “uC/OS-I1.” The other way isto use
sl i ce statements.

5.9 Slice Statements

Thesl i ce statement, based on the costatement language construct, allows the programmer to
run ablock of code for a specific amount of time.

5.9.1 Syntax

slice ([context _buffer,] context buffer_size, tine_slice)
[nane] {[stat enent | yi el d; | abort;|waitfor(expression);]}

context_buffer_size
Thisvalue must evaluate to a constant integer. The value specifies the size for the

cont ext _buf f er. It needsto be large enough for worst-case stack usage by the
user program and interrupt routines.

Dynamic C User’s Manual 57

time dice
The amount of timein ticks for the sice to run. Onetick = 1/1024 second.
name

When defining anamed sl i ce statement, you supply a context buffer as the first argu-
ment. When you define an unnamed sl i ce statement, this structureis alocated by the
compiler.

[statement | yield; | abort; | waitfor (expression);]
The body of asl i ce statement may contain:
* Regular C statements
* yield statementsto make an unconditional exit.
» abort statementsto make an execution jump to the very end of the statement.

* waitfor statementsto suspend progress of the dice statement pending some condi-
tion indicated by the expression.

5.9.2 Usage

Thesl i ce statement can run both cooperatively and preemptively al in the same framework. A
dice statements, like costatements and cofunctions, can suspend its execution with anabor t,

yi el d, orwai t f or aswith costatements and cofunctions, or with animplicityi el d deter-
mined by thet i me_sl i ce parameter that was passed to it.

A routine called from the periodic interrupt forms the basis for scheduling slice statements. It
counts down the ticks and changesthe sl i ce statement’s context.

5.9.3 Restrictions

Sinceasl i ce statement hasits own stack, local auto variables and parameters cannot be
accessed whilein the context of asl i ce statement. Any functions called from the dice statement
function normally.

Only onesl i ce statement can be active at any time, which eliminates the possibility of nesting
sl i ce statementsor usingasl i ce statement inside afunction that is either directly or indirectly
called fromasl i ce statement. The only methods supported for leaving asl i ce statement are

completely executing the last statement inthe sl i ce, or executinganabort,yi el d orwai t -
f or statement.

Ther et urn, conti nue, br eak, and got o statements are not supported.
Slice statements cannot be used with uC/OS-11 or DCRTCP. LI B.

58 Dynamic C User’s Manual

5.9.4 Slice Data Structure

Internally, the sl i ce statement uses two structures to operate. When defining anamed sl i ce
statement, you supply a context buffer asthe first argument. When you define an unnamed sl i ce
statement, this structure is allocated by the compiler. Internally, the context buffer is represented
by the Sl i ceBuf f er structure below.

struct SliceData {
int tinme_out;
voi d* ny_sp;
voi d* cal |l er _sp;
CoDat a codat a;

}

struct SliceBuffer {
Sli ceData slice_dat a;
char stack[]; /1 fills rest of the slice

buf f er
H

5.9.5 Slice Internals

When asl i ce statement is given control, it saves the current context and switches to a context
associated with the sl i ce statement. After that, the driving force behind the sl i ce statement is
the timer interrupt. Each time the timer interrupt is called, it checksto seeif asl i ce statement is
active. If asl i ce statement is active, the timer interrupt decrementsthet i me_out fieldinthe
slice’sSl i ceDat a. When the field is decremented to zero, the timer interrupt saves the

sl i ce statement’s context into the SI i ceBuf f er and restores the previous context. Once the
timer interrupt completes, the flow of control is passed to the statement directly following the

sl i ce statement. A similar set of events takes place whenthesl i ce statement does an explicit
yi el d/abort /wai t f or.

Dynamic C User’s Manual 59

5.9.5.1 Example 1

Two sl i ce statements and a costatement will appear to runin paralel. Each block will run inde-
pendently, but the sl i ce statement blocks will suspend their operation after 20 ticks for
slice_aand40ticksfor sl i ce_b. Costate awill not release control until it either explicitly
yields, aborts, or completes. In contrast, sl i ce_a will run for at most 20 ticks, thensl i ce_b
will begin running. Costate awill get its next opportunity to run about 60 ticks after it relinquishes
control.

main () {
int x, y, z;

for ;1) {
costate a {
}
slice(500, 20) { /1 slice_a
}
slice(500, 40) { [l slice_b
}

}

}
5.9.5.2 Example 2

This code guarantees that the first dice startson TI CK_TI MER evenly divisible by 80 and the sec-
ond startson TI CK_TI MER evenly divisible by 105.

mai n() {
for(;;) {
costate {
slice(500,20) { /] slice_a
wai t for (I nterval Ti ck(80));
}
slice(500,50) { Il slice_b
wai t for (I nterval Ti ck(105);
}
}
}
}

60 Dynamic C User’s Manual

5.9.5.3 Example 3

This approach is more complicated, but will allow you to spend the idle time doing a low-priority
background task.

mai n() {
int tine_left;
|l ong start _tine;

for(;;) {
start _time = TICK Tl MER;
slice(500,20) { /1 slice_a

wai t for (I nterval Ti ck(80));

}
slice(500,50) { /'l slice b
wai t for(lnterval Ti ck(105));

}
time_ left = 75-(TICK TI MER-start _tine);

if(time_left>0) {
slice(500, 75-(TICK TIMER-start _tinme)) {// slice_c

}

5.10 Summary

Although multitasking may actually decrease processor throughput slightly, it is an important con-
cept. A controller is often connected to more than one external device. A multitasking approach
makes it possible to write a program controlling multiple devices without having to think about all
the devices at the same time. In other words, multitasking is an easier way to think about the sys-
tem.

Dynamic C User’s Manual 61

62

Dynamic C User’s Manual

The Virtual Driver 6

Virtual Driver is the name given to some initialization services and a group of services performed
by a periodic interrupt. These services are:

Initialization Services
e Cal GLOBAL_INIT()
* [Initiaize the global timer variables

o Start the virtual driver periodic interrupt

Periodic Interrupt Services

» Decrement software (virtual) watchdog timers
 Hitting the hardware watchdog timer

* Increment the global timer variables

* Drive uC/OS-11 preemptive multitasking

» Drive dlice statement preemptive multitasking

6.1 Default Operation

The user should be aware that by default, the Virtual Driver starts and runsin a Dynamic C pro-
gram without the user doing anything. This happens because before mai n() iscalled, afunction
called pr enmai n() iscalled by the Rabbit kernd (BIOS) that actually callsmai n() . Before
premai n() calsmai n(),itcalsafunction named VVdI ni t () that performstheinitializa-
tion services, including starting periodic interrupt. If the user were to disable the Virtua Driver by
commenting out the call to Vdl ni t () inpremai n(), then none of the services performed by
the periodic interrupt would be available. Unless the Virtual Driver isincompatible with some
very tight timing requirements of a program and none of the services performed by the Virtua
Driver are needed, it is recommended that the user not disableit.

6.2 Calling _GLOBAL_INIT()

Vdlinit cals G.OBAL_I NI T() whichrunsal #G.OBAL_| NI T sectionsin aprogram.
_GLOBAL_I NI T() asoinitidizesall of the CoData structures needed by costatements and
cofunctions. If Vdl nit () werenot called, userscould still use costatements and cofunctionsiif
thecaltoVdl nit () wasreplacedby acall to_ GLOBAL_I NI T() , but the Del aySec() and
Del ayMs() functions often used with costatements and cofunctionsinwai t f or statements
would not work because those functions depend on timer variables which are maintained by the
periodic interrupt.

Dynamic C User’s Manual 63

6.3 Global Timer Variables

Thefollowing variablesSEC Tl MER, MS_TI MERand Tl CK_TI MER are global variables
defined as shar ed unsi gned | ong. Oninitialization, SEC Tl MER s synchronized with
the real time clock so that the date and time can be accessed more quickly than reading the real
time clock simply by reading M5_TI MER.

The periodic interrupt updates SEC_TI MER every second, M5_TI MER every millisecond, and
TI CK_TI MER 2048 times per second (the frequency of the periodic interrupt). These variables
are used by the Del aySec, Del ayMs and Del ayTi cks functions, but are also convenient for
users to use for timing purposes. The following sample shows the use of M5_TI MER to measure
the execution timein micro seconds of a Dynamic C integer add. The work is donein a*“ nodebug”
function so that the debugging does not affect timing:

#define N 10000
main(){ timeit(); }

nodebug tineit(){
unsi gned | ong int TO;
float T2, T1,
int Xx,vy;
int i;

TO = MS_TI MER;

for(i=0;i<Ni++) { }

/[l T1 gives enpty |l oop tine

T1=(M5_TI MER- TO) ;

TO = MS_TI MER;

for(i=0;i<Ni++){ x+y;}

/1l T2 gives test code execution tine
T2=(M5_TI MER- TO) ;

/1 subtract enpty | oop tinme and

/1 convert to time for single pass
T2=(T2-T1)/ (fl oat) N,

/1l multiply by 1000 to convert ns. to us.
printf("tinme to execute test code = % us\n", T2*1000. 0) ;

64 Dynamic C User’s Manual

6.4 Watchdog Timers

Watchdog timers limit the amount of atime your system will bein an unknown state.
Hardware Watchdog

The Rabbit CPU has one built-in hardware watchdog timer (WDT). The virtual driver “hits’ this
watchdog periodically. The following code fragment could be used to disable this WDT:

#asm
ioi Id a, 0x51
Id (WDTTR), a
ioi Id a,0x54
Id (WDTTR), a
#endasm
However, it is recommended that the watchdog not be disabled. This prevents the target from
“locking up” by entering an endless loop in software due to coding errors or hardware problems. If
the virtual driver isnot used, the user code should periodically call hi t wd() ;

When debugging a program, if the program is stopped at a breakpoint because the breakpoint was
explicitly set, or because the user is single stepping, then the debug kernel hits the hardware
watchdog periodically.

Virtual Watchdogs

There are 10 virtual WDTs available; they are maintained by the virtual driver. Virtua watchdogs,
like the hardware watchdog, limit the amount of time a system isin an unknown state. They also
narrow down the problem areato assist in debugging.

Thefunction VdGet Fr eeW count) alocates and initializes avirtual watchdog. The return
value of thisfunction isthe ID of the virtua watchdog. If an attempt is made to allocate more than
10 virtual WDTSs, afatal error occurs. In debug mode, thisfatal error will cause the program to
return with error code 250. The default run-time error behavior is to reset the board.

The ID returned by VdGet Fr eeWis used as the argument when calling VdHi t W(| D) or
VdRel easeWd(| D) to hit or deallocate a virtual watchdog

The virtual driver counts down watchdogs every 62.5 ms. If avirtua watchdog reaches 0, thisis
fatal error code 247. Once avirtual watchdog is active, it should be reset periodically with acall
toVdH t WI(| D) to prevent this. If count = 2 for aparticular WDT, then VdHi t Wi(| D) will
need to be called within 62.5 msfor that WDT. If count = 255, VdHi t Wi(| D) will need to be
called within 15.94 seconds.

Thevirtual driver does not count down any virtual WDTs if the user is debugging with Dynamic C
and stopped at a breakpoint.

6.5 Preemptive Multitasking Drivers

A simple scheduler for Dynamic C's preemptive glice statement is serviced by the virtual driver.
The scheduling for uC/OS-11 a more traditional full-featured real-time kernel, is also done by the
virtual driver.

These two scheduling methods are mutually exclusive—slicing and uC/OS-I1 must not be
used in the same program.

Dynamic C User’s Manual 65

66

Dynamic C User’s Manual

The Slave Port Driver 7

The Rabbit 2000 microprocessor has hardware for a dave port, allowing a master controller to
read and write certain internal registers on the Rabbit. Thelibrary, Sl aveport. | i b, imple-
ments a compl ete master slave protocol for the Rabbit slave port. Sample libraries,

Master _serial.libandSp_stream | i b provideserial port and stream-based communi-
cation handlers using the slave port protocol.

7.1 Slave Port Driver Protocol

Given the variety of embedded system implementations, the protocol for the slave port
driver was designed to make the software for the master controller as smple as possible.
Each interaction between the master and the daveisinitiated by the master. The master
has complete control over when data transfers occur and can expect single, immediate
responses from the slave.

7.1.1 Overview

1. Master writes to the command register after setting the address register and, optionally,
the dataregister. These registers are interna to the slave.

2. Slave reads the registers that were written by the master.

3. Slave writes to command response register after optionally setting the data register.
This also causesthe SLAVEATTN line on the Rabbit slave to be pulled low.

4. Master reads response and data registers.
5. Master writesto the slave port status register to clear interrupt line from the slave.

7.1.2 Registers on the Slave
From the point of view of the master, the ave isan 1/0 device with four register
addresses.

SPDOR Command and response register

SPD1R Address register

SPD2R Optiond data register

SPSR Slave port status register. In this protocol the only bits used in the

status register are for checking the command/response register. Bit
3issetif the dave haswritten aresponse to SPDOR. It is cleared
when the master writesto SPSR, which also deasserts the SLAV E-
ATTN line.

Dynamic C User’s Manual 67

Reading and writing to the same address actually uses two different registers.

Address Read Write

Sends command to slave, triggers

0 Gets command response from slave dave response

Sets channel address to send

1 Not used
commmand to
2 Gets returned data from slave Sets data byte to send to dave
3 Gets dlave port status (see below) | Clears slave response bit (see below)

The status port is a bit field showing which slave port registers have been updated. For the pur-
poses of this protocol. Only bit 3 needsto be examined. After sending a command, the master can
check bit 3, which is set when the slave writes to the response register. At this point the response
and returned data are valid and should be read before sending a new command. Performing a
dummy write to the status register will clear this bit, so that it can be set by the next response.

Pin assignments for a Rabbit processor acting as aslave are as follows:

Pin Function

PE7 /CS chip select (active low to read/write slave port)

PB2 /SWR dave write (assert for write cycle)

PB3 /SRD slave read (assert for read cycle)

PB4 A0 low address hit for slave port registers

PB5 A1 high address hit for slave registers

PR7 /SLVATTN asserted by slave When it responds t_o a
command. cleared by master write to status register

PAO- PA7 slave port data bus

For more details and read/write signal timing see the Rabbit 2000 Microproccessor Man-
ual.

7.1.3 Polling and Interrupts

Both the slave and the master can use interrupt or polling for the slave. The parameter passed to
SPi ni t () determineswhich oneisused. Ininterrupt mode, the developer can indicate whether
the handler functions for the channels are interruptible or non-interruptible.

68 Dynamic C User’s Manual

7.1.4 Communication Channels

The Rabbit slave has 256 configurable channels available for communication. The developer must
provide a handler function for each channel that is used. Some basic handlers are available in the
library Sl ave_Port . | i b. These handlerswill be discussed |ater.

When the slave port driver isinitialized, a callback table of handler functionsis set up. Handler
functions are added to the callback table by SPset Handl er () .

7.2 Functions
Sl ave_port. | i b providesthe following functions:

SPi ni t
int SPinit (int node);

DESCRIPTION

Thisfunctioninitializesthe dave port driver. It setsup the callback tablesfor the different
channels. Thedave port driver can berunin either polling modewhere SPt i ck() must
be called periodically, or ininterrupt mode where an ISR istriggered every time the mas-
ter sends acommand. There aretwo version of interrupt mode. In thefirst, interrupts are
reenabled while the handler function is executing. In the other, the handler function will
execute at the same interrupt priority asthe driver ISR.

PARAMETERS

node 0: For polling
1: For interrupt driven (interruptible handler functions)
2: For interrupt driven (non-interruptible handler functions)

RETURN VALUE

1: Success
0: Failure

LIBRARY
Sl ave_port.lib

Dynamic C User’s Manual 69

SPset Handl er

i nt SPsetHandl er (char address, int (*handler)(), void
*handl er _par ans) ;

DESCRIPTION

Thisfunction sets up a handler function to processincoming commands from the master
for aparticular slave port address.

PARAMETERS
addr ess The8-bit slave port address of the channel that correspondsto
the handler function.
handl er Pointer to the handler function. Thisfunction must have apar-

ticular form, which is described by the function description
for MyHandl er () shown below. Setting this parameter to
NUL L unloads the current handler.

handl er _par ans Pointer that will be saved and passed to the handler function
each timeit iscalled. Thisallows the handler function to be
parameterized for multiple cases.

RETURN VALUE

1: Success, the handler was set.
0: Failure.

LIBRARY
Sl ave _port.lib

70 Dynamic C User’s Manual

My Handl er
int MyHandl er (char command, char data_in, void *paranms);

DESCRIPTION

Thisfunction is adeveloper-supplied function and can have any valid Dynamic C name.
Its purposeisto handle incoming commands from amaster to one of the 256 channelson
the dave port. A handler function must be supplied for every channel that is being used

on the dave port.
PARAMETERS
conmand Thisisthe received command byte.
data_in The optional data byte
par ans The optional parameters pointer.

RETURN VALUE

This function must return an integer. The low byte must contains the response code and
the high byte contains the returned data, if thereis any.

LIBRARY
Thisis a devel oper-supplied function.

Dynamic C User’s Manual

71

SPtick
void SPtick (void);
DESCRIPTION

This function must be called periodically when the slave port is used in polling mode.

LIBRARY
Sl ave _port.lib

SPcl ose
voi d SPcl ose(void);

DESCRIPTION
This function disables the slave port driver and unloads the ISR if one was used.

LIBRARY
Sl ave _port.lib

7.3 Examples

7.3.1 Example of a Simple Status Handler
A function, SPst at usHandl er () , availablein Sl ave_port. | i b,isanexampleof asimple
handler. To set up the function as a handler on slave port address 12, do the following:

SPset Handl er (12, SPstatusHandl er, &status_char);

Sending any command to this handler will causeit to respond with a 1 in the response register and
the current value of st at us_char inthe datareturn register.

72 Dynamic C User’s Manual

7.3.2 Example of a Serial Port Handler

Sl ave_port. | i b containshandlersfor all four seria ports on the slave.

Mast er _seri al . |i b contains code for a master using the slave’s serial port handler. This
library illustrates the general case of implementing the master side of the master/slave protocol.

7.3.2.1 Commands to the Slave

1 Transmit byte, byte value isin data register. Slave responds with 1 if the
byte was processed or O if it was not.

5 Receive byte. Slave responds with 2 if has put a new received byte into
the data return register or O if there were no bytesto receive.
Combined transmit/receive - a combination of the transmit and receive

3 commands. The response will also be alogicol OR of the two command
responses.

4 Set baud factor, byte 1(LSB)?

5 Set baud factor, byte 22

6 Set port configuration bits

7 Open port

8 Close port
Get errors. Slave responds with 1 if the port is open and can return

9 an error bitfield. The error bits are the same as for the function
ser Aget Error s() and are put in the data return register by the
Save.

10 Returns count of free bytesin the serial port write buffer. The two

1 1’ commands return the LSB and the M SB of the count respectively. The
L SB(10) should be read first to latch the count.

12 Returns count of free bytesin the serial port read buffer. The two

1 3’ commands return the LSB and the M SB of the count respectively. The
LSB(12) should be read first to latch the count.

14 Returns count of bytes currently in the seria port write buffer. The two

1 5' commands return the LSB and the M SB of the count respectively. The
LSB(14) should be read first to latch the count.

16 Returns count of bytes currently in the serial port write buffer. The two

17' commands return the L SB and the M SB of the count respectively. The
LSB(16) should be read first to latch the count.

a. The actual baud rate is the baud factor multiplied by 300.

Dynamic C User’s Manual

7.3.2.2 Slave Side of Protocol
To set up the handler to connect seria port A to channel 5, do the following:

SPset Handl er (5, SPserAhandl er, NULL);

7.3.2.3 Master Side of Protocol

Thefollowing functionsarein Mast er _seri al . | i b. They arefor a master using a seria port
handler on aslave.

cof MSget c
int cof Msgetc(char address);
DESCRIPTION

Yieldsto other tasks until abyte isreceived from the serial port on the dave.

PARAMETERS

addr ess Slave channel address of the serial handler.

RETURN VALUE

Value of the received character on success;
- 1: Failure.

LIBRARY

Master _serial.lib

cof _MSputc
voi d cof _MSputc(char address, char ch);

DESCRIPTION
Sends a character to the serial port. Yields until character is sent.

PARAMETER
addr ess Slave channel address of serial handler
ch Character to send

RETURN VALUE

0: Character was sent
- 1: Failure

LIBRARY
Master_serid.lib

74 Dynamic C User’s Manual

cof _Msread

i nt cof _MSread(char address, char *buffer, int |ength, unsigned
| ong tinmeout);

DESCRIPTION

Reads bytes from the serial port on the slave into the provided buffer. Waits until at |east
one character has been read. Returns after buffer isfull, or t i meout has expired be-
tween reading bytes. Yields to other tasks while waiting for data.

PARAMETERS
addr ess Slave channel address of serial handler
buf fer Buffer to store received bytes
I ength Size of buffer
ti meout Timeto wait between bytes before giving up on receiving anymore

RETURN VALUE

Bytesread, or
- 1: Failure

LIBRARY
Master _serial.lib

cof Mswrite
int cof MSwrite(char address, char *data, int |length);

DESCRIPTION

Transmits an array of bytes from the serial port on the slave. Yieldsto other tasks while
waiting for write buffer to clear.

addr ess Slave channd address of serial handler
dat a Array to be transmitted
| ength Size of array

RETURN VALUE

Number of bytes actually written,
- 1if error

LIBRARY

Master _serial.lib

Dynamic C User’s Manual 75

i nt MScl ose(char address);
DESCRIPTION
Closes a serial port on the dave.
PARAMETERS
addr ess Slave channel address of serial handle.

RETURN VALUE

0: Success
- 1: Failure

LIBRARY
Master _serial.lib

int MSgetc(char address);

DESCRIPTION
Receives a character from the serial port.

PARAMETERS
addr ess Slave channel address of seria handler.

RETURN VALUE

Value of recevied character;
- 1: No character available.

LIBRARY
MASTER_SERI AL. LI B

76 Dynamic C User’s Manual

MSget Err or
i nt MSget Error(char address);

DESCRIPTION

Getshitfield with any current error from the specified serial port ontheslave. Error codes
are:

SER_PARI TY_ERROR 0x0O1
SER_OVERRUN_ERROR 0x02

PARAMETERS

addr ess Slave channd address of serial handler.

RETURN VALUE

Number of bytes free: Success
- 1: Failure

LIBRARY
MASTER_SERI AL. LI B

MSi ni t
int MSinit(int io_bank);
DESCRIPTION

Sets up the connection to the dave.

PARAMETERS

i o_bank The 10 bank and chip select pin number for the slave device
(0-7).

RETURN VALUE
1: Success

LIBRARY
Master _serial.lib

Dynamic C User’s Manual

7

MSopen

i nt MSopen(char address, unsigned | ong baud);

DESCRIPTION
Opens a seria port on the slave, given that there is a serial handler at the specified ad-
dress on the slave.
PARAMETERS
addr ess Slave channel address of seria handler.
baud Baud rate for the serial port on the dave.

RETURN VALUE

1: Baud rate used matches the argument.
0: Different baud rate is being used.
- 1: Slave port comm error occured.

LIBRARY
MASTER_SERI AL. LI B

MSput c
i nt MSputc(char address, char ch);

DESCRIPTION
Transmits a single character through the serial port.

PARAMETERS
addr ess Slave channel address of serial handler
ch Character to send

RETURN VALUE

1: Character sent.
0: Transmit buffer isfull or locked.

LIBRARY
MASTER_SERI AL. LI B

78 Dynamic C User’s Manual

MSr dFr ee
i nt MSrdFree(char address);
DESCRIPTION

Gets the number of bytes available in the specified serial port read buffer on the dlave.

PARAMETERS
addr ess Slave channd address of serial handler.

RETURN VALUE

Number of bytes free: Success
- 1: Failure

LIBRARY
Master _serial.lib

MSsendComuand

i nt MSsendConmmand(char address, char conmand, char data, char
*data_returned, unsigned |long timeout);

DESCRIPTION

Sends a single command to the slave and gets aresponse. This function also servesasa
general example of how to implement the master side of the dave protocal.

PARAMETERS
addr ess Slave channel address to send command to.
conmand Command to be sent to the slave (see Section 7.3.2.1).
dat a Data byte to be sent to the dlave.

data_returned Address of variable to place data returned by the dave.

ti meout Timeto wait before giving up on dave response.

RETURN VALUE

=0: Response code
- 1: Timeout occured before response
- 2: Nothing at that address (response = 0xff)

LIBRARY
MASTER_SERI AL. LI B

Dynamic C User’s Manual 79

MSr ead

i nt MSread(char address, char *buffer, int size, unsigned | ong
ti meout);

DESCRIPTION
Receives bytes from the serial port on the dave.

PARAMETERS
addr ess Slave channel address of serial handler.
buf f er Array to put received datainto.
size Size of array (max bytes to be read).
ti meout Timeto wait between characters before giving up on receiving any

more.

RETURN VALUE
The number of bytes read into the buffer (behaveslikeser Xr ead()).

LIBRARY

Master _serial.lib

MSwr Fr ee
i nt MSwr Free(char address)
DESCRIPTION

Gets the number of bytes available in the specified serial port write buffer on the dave.

PARAMETERS
addr ess Slave channd address of seria handler

RETURN VALUE

Number of bytes free: Success
- 1: Failure

LIBRARY

Master _serial.lib

80 Dynamic C User’s Manual

MSwrite
int MSwite(char address, char *data, int |ength);

DESCRIPTION
Sends an array of bytes out the serial port on the slave (behaveslikeser Xwri t e()).

PARAMETERS
addr ess Slave channel address of serial handler.
dat a Array of bytesto send.
| ength Size of array.

RETURN VALUE
Number of bytes actually sent.

LIBRARY
Master _serial.lib

Dynamic C User’s Manual

81

7.3.2.4 Sample Program for Master
This sample program, mast er _deno. c, treats the slave like a serial port.

#use "master_serial.lib"
#defi ne SP_CHANNEL 0x42

char* const test _string = "Hello There"

mai n() {
char buffer[100];
int read_|l ength;

MSi ni t (0) ;

//comment this line out if talking to a stream handl er
printf("open returned: 0x%\ n", Msopen(SP_CHANNEL, 9600));

whi | e(1)
{
costate
{
wfd{cof Mswrite(SP_CHANNEL, test string, strlen(test_string));}
wfd{cof Mswrite(SP_CHANNEL, test string, strlen(test_string));}

}
costate
{
wfd{ read | ength = cof MsSread(SP_CHANNEL, buffer, 99, 10); }
if(read_ |l ength > 0)
buffer[read length] = 0; //null tern nator
printf("Read: %\ n", buffer);
else if(read_length < 0)
{
printf("Got read error: %\ n", read_ | ength);
}
printf("wfree = %\ n", MSw Free(SP_CHANNEL));
}

82 Dynamic C User’s Manual

7.3.3 Example of a Byte Stream Handler

Thelibrary, SP_STREAM LI B, implements a byte stream over the slave port. If the master isa
Rabbit, the functionsin MASTER_SERI AL. LI B can be used to access the stream as though it
came from a serial port on the slave.

7.3.3.1 Slave Side of Stream Channel
To set up the function SPShandl er () asthe byte stream handler, do the following:

SPset Handl er (10, SPShandl er, streamptr);
This sets up the stream to use channel 10 on the slave.

A sample program in Section 7.3.3.2 shows how to set up and initialize the circular buffers. An
internal data structure, SPSt r eam keeps track of the buffers and a pointer to it is passed to
SPset Handl er () and some of the auxilary functions that supports the byte stream handler.
Thisis also shown in the sample program.

7.3.3.1.1 Functions
These are the auxiliary functions that support the stream handler function, SPShandl er () .

cbuf _init
void cbuf _init(char *circul arBuffer, int dataSize);

DESCRIPTION
This function initializes acircular buffer.

PARAMETER
ci rcul arBuf fer The circular buffer to initidize.
dat aSi ze Size availableto data. The size must be 9 bytes more than the
number of bytes needed for data. Thisisfor internal book-
keeping.
LIBRARY
Rs232.1ib

Dynamic C User’s Manual 83

cof SPSread

int cof SPSread(SPStream *stream void *data, int |ength,
unsi gned | ong tnout);

DESCRIPTION

Reads| engt h bytesfrom the dave port input buffer or until t nout milliseconds tran-
spires between bytes after the first byteisread. It will yield to other tasks while waiting
for data. Thisfunction is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
dat a Structure to read from save port buffer.
| ength Number of bytesto read.
t mout Maximum wait in milliseconds for any byte from previous one.

RETURN VALUE
The number of bytes read from the buffer.

LIBRARY
SP_STREAM LI B

cof SPSwrite
int cof SPSwrite(SPStream *stream void *data, int |ength);

DESCRIPTION
Transmits| engt h bytesto slave port output buffer. This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
dat a Structure to write to dave port buffer.
| ength Number of bytesto write.

RETURN VALUE
The number of bytes successfully written to dave port.

LIBRARY
SP_STREAM LI B

84 Dynamic C User’s Manual

SPSi ni t
void SPSinit(void);

DESCRIPTION
Initializes the circular buffers used by the stream handler.

LIBRARY
SP_STREAM LI B

SPSr ead

i nt SPSread(SPStream *stream void *data, int |ength, unsigned
| ong tnout);

DESCRIPTION

Thisfunction reads| engt h bytesfrom the dave port input buffer or until t rout mil-
liseconds transpires between bytes. If no datais available when thisfunction iscalled, it
will return immediately. Thisfunction will call SPt i ck() if thesaveportisin polling
mode. This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure..
dat a Buffer to read received datainto.
| ength Maximum number of bytes to read.
t mout Timeto wait between received bytes before returning.

RETURN VALUE
Number of bytes read into the data buffer

LIBRARY
SP_STREAM LI B

Dynamic C User’s Manual 85

SPSwrite

int SPSwrite(SPSream *stream void *data,

DESCRIPTION

| engt h)

Thisfunction transmits length bytesto dave port output buffer. If the dave portisin poll-
ing mode, thisfunctionwill call SPt i ck() whilewaiting for the output buffer to empty.

This function is non-reentrant.

PARAMETERS
stream Pointer to the stream state structure.
dat a Bytes to write to stream.
| ength Size of write buffer.

RETURN VALUE
Number of bytes written into the data buffer

LIBRARY
SP_STREAM LI B

SPSwr Fr ee
i nt SPSwr Free();

DESCRIPTION

Returns number of free bytesin the stream write buffer.

RETURN VALUE
Space available in the stream write buffer.

LIBRARY
SP_STREAM LI B

86

Dynamic C User’s Manual

i nt SPSrdFree();
DESCRIPTION
Returns the number of free bytesin the stream read buffer.

RETURN VALUE
Space available in the stream read buffer.

LIBRARY
SP_STREAM LI B

int SPSwr Used();
DESCRIPTION
Returns the number of bytes currently in the stream write buffer.

RETURN VALUE
Number of bytes currently in the stream write buffer.

LIBRARY
SP_STREAM LI B

int SPSrdUsed();
DESCRIPTION
Returns the number of bytes currently in the stream read buffer.

RETURN VALUE
Number of bytes currently in the stream read buffer.

LIBRARY
SP_STREAM LI B

Dynamic C User’s Manual 87

7.3.3.2 Byte Stream Sample Program
This program runs on a slave and implements a byte stream over the dave port.
/*
* Slave Port.c
/ *
#use "slave_port.lib"
#use "sp_stream|ib"

#def i ne STREAM BUFFER_SI ZE 31

mai n()

{
char buffer[10];
i nt bytes_read;

SPSt r eam st ream

/1 Crcular buffers need 9 bytes for bookkeeping.
char stream.i nbuf [STREAM BUFFER _SI ZE + 9];

char stream out buf [STREAM BUFFER_SI ZE + 9];
SPStream *stream ptr;

//setup buffers

cbuf _init(stream.inbuf, STREAM BUFFER SI ZE);
stream i nbuf = stream.i nbuf;

cbuf _init(stream outbuf, STREAM BUFFER_SI ZE) ;
st ream out buf = stream out buf;

stream ptr = &stream
SPinit(1);
SPset Handl er (0x42, SPShandl er, streamptr);

whi | e(1)

{
bytes read = SPSread(stream ptr, buffer, 10, 10);
i f (bytes_read)
{

}

SPSwite(streamptr, buffer, bytes read);

88 Dynamic C User’s Manual

Efficiency 8

There are anumber of methods that can be used to reduce the size of a program, or to increase its
speed.

8.1 Nodebug Keyword

When the PC is connected to atarget controller with Dynamic C running, the normal code and
debugging features are enabled. Dynamic C placesan RST 28H instruction at the beginning of
each C statement to provide |ocations for breakpoints. This allows the programmer to single-step
through the program or to set breakpoints. (It is possible to single-step through assembly code at
any time.) During debugging there is additional overhead for entry and exit bookkeeping, and for
checking array bounds, stack corruption, and pointer stores. These “jumps’ to the debugger con-
sume one byte of code space and also require execution time for each statement.

At some point, the Dynamic C program will be debugged and can run on the target controller
without the Dynamic C debugger. This saves on overhead when the program is executing. The
nodebug keyword is used in the function declaration to remove the extra debugging instructions
and checks.

nodebug int myfunc(int x, int z){

}
If programs are executing on the target controller with the debugging instructions present, but
without Dynamic C attached, the function that handles RST 28H instructions will be replaced by
asimpler et instruction. Thetarget controller will work, but its performance will not be as good
as when the nodebug keyword is used.

If the nodebug option is used for the mai n function, the program will begin to execute as soon
asit finishes compiling (as long as the program is not compiling to afile).

Usethenodebug keyword with the #as mdirective.

Usethedirective #nodebug anywhere within the program to enable nodebug for all statements
following the directive. The#debug directive has the opposite effect.

8.2 Static Variables

Using st at i ¢ variableswith nodebug functionswill increase the program speed greatly. Stack
checking is disabled by default.

When there are more than 128 bytes of auto variables declared in afunction, the first 128 bytes
are more easily accessed than later declarations because of the limited 8-bit range of 1X and SP
register addressing. Performance is, therefore, dower for bytes above 128.

Theshar ed and the pr ot ect ed keywordsin data declarations cause slower fetches and stores,
except for one-byte items and some two-byte items.

Dynamic C User’s Manual 89

8.3 Function Entry and EXxit
The following events occur when a program enters a function.

1. The function saves I X on the stack and makes I X the stack frame reference pointer (if
the program isin the usei x mode).

2. Thefunction creates stack space for aut o variables or to saver egi st er variables.
3. The function sets up stack corruption checksif stack checking is enabled (on).

4. The program notifies Dynamic C of the entry to the function so that single-stepping
modes can be resolved (if in debug mode).

Items three and four consume significant execution time and are eliminated when stack checking

isdisabled or if the debug mode is off.

20 Dynamic C User’s Manual

Run-Time Error Processing 9

Compiled code generated by Dynamic C calls an error-handling routine for abnormal situations.
The error handler supplied with Dynamic C printsinternally defined error messages to a Windows
message box when runtime error messages are detected during a debugging session. When soft-
ware runs stand-alone (disconnected from Dynamic C), such an error message will cause a watch-
dog timeout and reset.

The table below lists the ranges of Dynamic C error codes.

Table 6. Ranges of Dynamic C Error Codes

Code Meaning
0-99 User, nonfatal.
100-127 System, nonfatal.
128-227 User, fatal, no return possible.
228-255 System, fatal, no return possible.

Dynamic C User’s Manual 91

Thistableliststhe fatal errors generated by Dynamic C.

Table 7. Dynamic C Fatal Errors

Code Meaning
228 Pointer store out of bounds
229 Array index out of bounds
230 Stack corrupted
231 Stack overflow
232 Aux stack overflow
233 not used
234 Domain error (for example, acos(2))
235 Range error (for example, t an(pi / 2))
236 Floating point overflow
237 Long divide by zero
238 Long modulus, modulus zero
239 not used
240 Integer divide by zero
241 Unexpected interrupt
242 not used
243 Codata structure corrupted
244 Virtual watchdog timeout
245 XMEM allocation failed (xalloc call)
246 Stack allocation failed
247 Stack deallocation failed
248 not used
249 Xmem dlocation initialization failed
250 No virtual watchdog timers available
251 No valid MAC address for board
252 Invalid cofunction instance
253 not used
254 not used
255 not used

92

Dynamic C User’s Manual

9.1 User-defined error handlers

It is possible that a user may want to develop their own runtime error handler. They may want to
add their own runtime errors that would require special treatment, or simply add code that logs the
runtime error data to memory.

Hereis a particular example: the floating-point math libraries included with Dynamic C are writ-
ten to allow for execution to continue after adomain or range error, but the default Dynamic C
action isto halt with aruntime error if that state occurs. If continued execution was desired (the
function in question would return a value of INF or whatever value is appropriate), then a smple
error handler could be written by a user to pass execution back to the program when a domain or
range error occurs, and pass any other runtime errors to Dynamic C.

A runtime error occurs by acall toexcept i on() . The runtime error code is passed to the func-
tion; excepti on() pushes various parameters on the stack, and the installed error handler is
called. The default error handler places information on the stack, disables interrupts, and enters an
endlessloop by callingthe xexi t function in the BIOS. Dynamic C notices this and halts exe-
cution, reporting aruntime error to the user.

To tell the BIOS to use acustom error handler, the following function should be called:

voi d defineErrorHandl er(void *errfcn)
This function sets the BIOS function pointer for runtime errors to the one passed to it. The excep-
tion function provides data on the stack as described in Figure 8..

Table 8. Stack setup for runtime errors

Address Data at address
SP+0 Return address for error handl er
SP+2 Error code
SP+4 Addi ti onal data (user-defined)
SP+6 XPC when exception() called
(upper byte)
SP+8 Addr ess where exception() called

If the runtime error isto be passed to Dynamic C (i.e. it should halt or reset the system), then reg-
isters should be loaded appropriately and the _xexi t function should be called. Dynamic C
expects the following values to be loaded: H should contain the XPC when except i on() was
called, L should contain the runtime error code, and HL' should contain the address where
exception() wascalled.

Dynamic C User’s Manual 93

94

Dynamic C User’s Manual

Memory Management 10

Processor instructions can specify 16-bit addresses, giving alogical address space of 64K (65,536
bytes). Dynamic C supports a 1M physical address space (20-bit addresses).

An on-chip memory management unit (MMU) transates 16-bit addresses to 20-bit memory
addresses. Four MMU registers (SEGSIZE, STACKSEG, DATASEG and XPC) divide and main-
tain the logical sections and map each section onto physical memory.

10.1 Memory Map

A typical Dynamic C memory mapping of logical and physical address space is shown in the fig-
ure below.

RAM

FFFF

D000 Xmem Code
Internal Interrupt T
EO000
Vectors Stack ¢
CF00 D00
C600
External Interrupt l
Vectors
CEOO0 ;
l Root Data !
Watch Data 20000
CA00 6000
Xmem Code
Watch Code
I “ Root Code
C600
.] Root Code
Bios I
0000 OOOOQ;
Logical Address Space Physical Address Space

Figure 3. Dynamic C Memory Mapping

Dynamic C User’s Manual 95

Thisfigureillustrates how the logical address space is divided and where code resides in physical
memory. Both the Static RAM and the Flash Memory are 128K in the diagram. Physical memory
starts at address 0x00000 and Flash Memory is usually mapped to the same address. SRAM typi-
cally begins at address 0x80000.

If BIOS code runs from Flash Memory, the BIOS code starts in the root code section at address
0x00000 and fills upward. The rest of the root code will continue to fill upward immediately fol-
lowing the BIOS code. If the BIOS code runs from SRAM, the root code section along with root
data and stack sections will be place at a starting address 0x80000.

10.1.1 Memory Mapping Control
The advanced user of Dynamic C may control how Dynamic C allocates and maps memory.

For further details on memory mapping, refer to the Rabbit Microprocessor

&S manual.

10.2 Extended Memory Functions

While any C function can call any other C function, no matter where it islocated in memory, call-
ing a function located in extended memory is less efficient than calling a function in root memory.

A program can use many pages of extended memory. Under normal execution, code in extended
memory mapsto the logical address region EOOOH to FFFFH.

Extended memory addresses are 20-bit physical addresses (the lower 20 bits of along integer).
Pointers, on the other hand, are 16-bit machine addresses. They are not interchangeable. How-
ever, there are library functions to convert address formats.

To access extended memory data, use function calls to exchange data between extended memory
and root memory. Use the Dynamic C functions, xnen2r oot , r oot 2xmemand x nen2xnemto
move blocks of data between logical memory and physical memory.

10.2.1 Code Placement in Memory
Using the keywords xmemand r oot , there is some flexibility with regard to code placement in
memory.

Pure Assembly Routines

Pure assembly functions (not inline assembly code) must reside in root memory. The keyword
xmemdoes not apply to these pure assembly functions.

C Functions

C functions can be placed in root memory or extended memory. While accessto variablesin C
statements is not affected by the placement of the function, Dynamic C will automatically place C

functions in extended memory as root memory fills. Short, frequently used functions may be
declared with the keyword r oot to force Dynamic C to load them in root memory.

Inline Assembly in C Functions

Inline assembly code may be written in any C function, regardless of whether it is compiled to
extended memory or root memory.

96 Dynamic C User’s Manual

However, because the stack frame of an extended memory function introduces four more bytes
between the last pushed argument and the return address, the actual offset of arguments from the
stack pointer depends on whether the code is compiled to extended memory or not. Therefore, it
isimportant to use the symbolic names of stack-based variables instead of numeric offsetsto
access the variables. For example, if j isastack variable, @ p+j isthe actua offset of the vari-
able from the stack pointer. Alternatively, if 1X isthe frame reference pointer, i x+j specifiesthe
address of the stack-based variable.

Dynamic C issues awarning when it finds assembly code embedded in an extended memory func-
tion to discourage inline assembly segments that do not use symbolic offsets for stack-based vari-
ables.

All static variables, even those local to extended memory functions, are placed in root memory.
Keep thisin mind if the functions have many variables or large arrays. Root memory can fill up
quickly.

Dynamic C User’s Manual 97

98

Dynamic C User’s Manual

The Flash File System 11

Starting with Dynamic C 7.0, asimple file system has been added that should meet most people’'s
needs. It can be used with a second Flash Memory or in SRAM (recommended for debugging
purposes only).

The Dynamic C file system supports atotal of 127 files. By default, blocks are allocated in 4096
byte chunks. A file, regardless of size, is comprised of at least one block. Files larger than the
block size will be allocated multiple blocks which are not necessarily contiguous in memory.

The low-level Flash Memory access functions should not be used in the same area of the flash
where the flash file system exists.

11.1 General Usage

Some care must be taken when using the file system. Since a Flash Memory is afinite resource,
quickly writing data to the flash could result in using up the its write cycles. For a 256K B flash,
we have 64 blocks. Each write to the flash uses up asingle write. If you are using a flash with a
maximum recommendation of 10,000 write cycles, we are limited in writing 640,000 times to the
file system and 6,400,000 times for a 100,000 write cycle flash.

If you are performing one write to the flash per second, you will quickly use up the recommended
lifetime of the flash within aweek. You can increase the useful lifetime of the flash by buffering
data before you write it to the flash. If you accumulate 1000 single byte writes into one, you can
expand the life of the flash by an average of 750 times.

The main use of aflash file system should be for infrequently changing data or datarates that have
writes on the order of tens of minutes instead of seconds.
Wear Leveling

The current code has a rudimentary form of wear leveling. When you write into an existing block
it selects afree block with the least number of writes. The file system routines copy the old block
into the new block adding in the users new data. This has the effect of evening the wear if thereis
areasonable turnover in the flash files.

L ow-level implementation

For information on the low-level implementation of the flash file system, refer to the beginning of
thelibrary file FI LESYSTEM LI B.

Dynamic C User’s Manual 99

11.2 Application Requirements
To use the file system, a macro that determines which low-level driver isloaded must be defined
in the application program.

#define FS_FLASH // use 2nd flash for file system
#defi ne FS_RAM /1 use SRAM (supported for debug purposes)

The file system library must be compiled with the application.
#use “FI LESYSTEM LI B”

11.3 Functions
These functions are the file system API. For a complete description see “ Function Reference” on
page 153.

Command Description
fs init Initialize the internal data structures for the file system.
fs_for mat g::ji;llijf:'he Flash Memory and the internal data
fs_reserve_bl ocks |Reserveblocks for privileged files.
fsck Verify dataintegrity of files.
fcreate Create afile and open it for writing.
fcreate_unused Create afile with an unused file number.
fopen_rd Open afile for reading.
f open_wr Open afile for writing (also opensit for reading.)
fshift Removes specified number of bytes from file.
fwite Write to the end of afile.
fread Read from the current file pointer.
f seek Move the read pointer.
ftell Return the current offset of the file pointer.
fcl ose Close afile.
fdelete Delete afile.

Table 1. Flash File System API
Thefunctionsfs_init andfs_f ormat aresimilar, inthat they both start the file system. Use
fs_format toeraseall blocksin thefile system. Thisfunction’s third parameter, wear | evel ,
should be 1 for anew Flash Memory; otherwise it should be O to use the current wear leveling.

Usefs_init topreserve blocksthat arein use and to do an integrity check of them. In case of
loss of power, f s_i ni t will delete any blocks that may be partially written and will substitute

100 Dynamic C User’s Manual

the last known good block for that file. This means that any changes to the file that occurred
between the last write and the power outage would be | ost.

Using File Names

To associate a descriptive name with afile, there are several functionsin ZSERVER. LI B that will
be useful for this purpose. The file must already exist in the flash file system before using the aux-
iliary functions listed in the following table. These functions were originally intended for use with
an HTTP or FTP server, which iswhy some of them take a parameter called ser ver mask. To
use these functions for file naming purposes only, this parameter should be SERVER _USER.

For a detailed description of these functions please refer to Dynamic C's TCP/IP User’s Manual,
or use <CTRL- H> in Dynamic C to use the Library L ookup feature.

Command Description

Associate aname with the flash file system file number.
sspec_addfsfile The return valueis an index into an array of structures
associated with the named files.

Read afile represented by the return value of

sspec_readfile sspec_addf sfi | e into abuffer.

sspec_getl ength Get the length (number of bytes) of the file.

Get the file system file number (1-127). Cast return

sspec_getfileloc | 1 oi0F LENUVBER

Find the index (into the array of structures associated
sspec_findnane with named files) of thefile that has the specified
name.

Get file type. For flash file system files this value will

sspec_getfiletype |, sopec FsFiLE

Find the next named file in the flash file system, at or
sspec_findnextfil e |following the specified index, and return the index of
thefile.

sspec_renove Remove the file name association.

Savesto the flash file system the array of structuresthat

SsSpec_save reference the named filesin the flash file system.

Restores the array of structures that reference the

sspec_restore named filesin the flash file system.

Table 2. Flash File System Auxiliary Functions

Dynamic C User’s Manual 101

11.4 Skeleton Program

The following program uses many of the file system commands. It writes several stringsinto a
file, reads the file back and prints the contents to the STDIO window. The macro RESERVE
should be 0 when the file system isin SRAM. When the file system isin Flash Memory you can
adjust where it starts by defining RESERVE to be 0 or a multiple of the block size.

#define FS_FLASH
#use "F| LESYSTEM LI B"

#def i ne FORMAT

#def i ne RESERVE OL
#defi ne BLOCKS 64
#def i ne TESTFI LE 1

mai n()
{
File file;
static char buffer[256];

#i f def FORVAT

fs_format (RESERVE, BLOCKS, 1) ;

if(fcreate(&ile, TESTFILE)) {
printf("error creating TESTFILE\n");
return -1;

}

#el se

fs_init (RESERVE, BLOCKS) ;

i f(fopen_w (&file, TESTFILE) {
printf("error opening TESTFILE\n");
return -1;

}

#endi f

fwite(&file,"hello",6);

fwite(&file,"12345",6);

fwite(&file,"67890", 6);

whil e(fread(&file, buffer,6)>0) {
printf("%\n", buffer);

}

fclose(&file);

}

After running this program at least once, comment out “#def i ne FORMAT”. You will seethat it
runsin asimilar fashion, but now thefileis appended using f open_wr instead of being erased
by f s_format and thenrecreated withf cr eat e.

For a more robust program, more error checking should be included.

102 Dynamic C User’s Manual

Using Assembly Language 12

Dynamic C permits programing in assembly language. Assembly-language statements may either
be embedded in a C function or entire functions may be written in assembly language. C state-
ments may also be embedded in assembly code and refer to C-language variables in the assembly
code.

o For further details on specific assembly instructions, refer to the Rabbit 2000
Microprocessor User’s Manual.

12.1 Program Flow

Use the #asmand #endas mdirectives to place assembly code in Dynamic C programs. For
example, the following function will add two 64-bit numbers together.

voi d ei ghtadd(char *chl, char *ch2){

#asm
I d hl , (sp+ch2) ; get source pointer
ex de, hl ;. save in de
I d hl , (sp+chl) ; get destination pointer
| d b, 8 ; nunber of bytes
Xor a ; clear carry
| oop:
I d a, (de) ; ch2 source byte
adc a, (hl) ; add chl byte
| d (hl),a : store result to chl
addr ess
inc hl ; increnent chl pointer
inc de ; increnent ch2 pointer
dj nz 1 oop ; do 8 bytes
; chl now points to 64 bit
resul t
#endasm
}

The same program could be written in C, but it would be many times slower because C does not
provide an add-with-carry operation (adc).

Dynamic C User’s Manual 103

12.1.1 Embedded C in Assembly

A C statement may be placed within assembly code by placing a Cin column 1. For example, ini-
tialize global variables.

#asm nodebug
I ni t Val ues: :
I d hl , Oxa0;
c start _time = 0;
(o counter = 256;
ret
#endasm

The keyword nodebug can be placed on the same line as#asm The main reason for the node-
bug option isto prevent Dynamic C from running out of debugger table memory, and the option
saves space and unnecessary calls to the debugger kernel. If nodebug is specified for an entire
function, then al the blocks of assembly code within the function are assembled in nodebug
mode. There is no need to place the nodebug directive on each block.

A program may be debugged at the assembly language level by opening the assembly window.
Single-stepping and breakpoints are supported in the assembly window. When the assembly win-
dow is open, single-stepping occurs instruction by instruction rather than statement by statement.

The assembly window shows the memory address on the far left, followed by the code bytes for
the instruction at the address, followed by the mnemonics for the instruction. The last column
shows the number of cycles for the instruction, assuming no wait states. Thetotal cycle time for a
block of instructions will be shown at the lowest row in the block in the cycle-time column, if that
block is selected and highlighted with the mouse. The total assumes one execution per instruction,
s0 the user must take looping and branching into consideration when evaluating execution times.

12.2 Comments

C-style commenting is allowed in embedded assembly code. The assembler will ignore comments
beginning with

; — text from the semicolon to the end of lineisignored.

/1 — text from the double forward slashes to the end of line isignored.
/* ... *| — text between slash-asterisk and asterisk-slash isignored.
12.3 Labels

A label is aname followed by one or two colons. A label followed by asingle colonislocal,
whereas one followed by two colonsis global. A local 1abel is not visible to the code out of the
current embedded assembly segment (i.e., code before the #as mor after the #endas mdirective).

Unlessit isfollowed immediately by the assembly language keyword equ, the label identifies the
current code segment address. If the label isfollowed by equ, the label “equates’ to the value of
the expression after the keyword equ.

Because C preprocessor macros are expanded in embedded assembly code, Z-World recommends
that preprocessor macros be used instead of equ whenever possible.

104 Dynamic C User’s Manual

12.4 Defining Constants

Constants may be created and defined in assembly code. The assembly language keyword db
(“define byte™") places bytes at the current code segment address. The keyword db should be fol-
lowed immediately by numerical values and strings separated by commas as shown here.

Example

Each of the following defines a string " ABC' in code space.
dbo "A, 'B, 'C
db " ABC'
db 0x41, 0x42, 0x43
The numerical values and characters in strings are used to initialize sequential byte locations.

The assembly language keyword dw defines 16-bit words, least significant byte first. The keyword
dw should be followed immediately by numerical values, as shown in the following example.

Example

This example defines three constants. The first two constants are literals, and the third constant is
the address of variable xyz.

dw 0x0123, OxFFFF, xyz

The numerical valuesinitialize sequential word locations, starting at the current code address.

12.5 Expressions

The assembler parses most C language constant expressions. A C language constant expression is one
whose value is known at compile time. All operators except the following are supported.

?: conditional

[] array index
dot

-> pointsto

* dereference

si zeof ()

Dynamic C User’s Manual 105

12.6 Multiline Macros

The Dynamic C preprocessor has a special feature to allow multiline macrosin assembly code.
The preprocessor expands macros before the assembler parses any text. Putting a$\ at the end of
alineinsertsanew linein the text. Thisonly works in assembly code. Labels and comments are
not allowed in multiline macros.

#defi ne SAVEFLAG $\

I d ab $\
push af $\
pop bc
#asm
ld b, 0x32
SAVEFLAG
#endasm

12.7 Special Symbols

Thistable lists special symbolsthat can be used in an assembly language expression.

Table 3. Special Assembly-Language Symbols

Symbol Description

Indicates the amount of stack space (in bytes) used for

@P stack-based variables. This does not include arguments.

Evaluates the offset from the frame reference point to

@RETVAL the stack space reserved for the st r uct function
returns.
@ENGTH Determines the next reference address of avariable

plusit size.

12.8 C Variables

C variable names may be used in assembly language. What a variable name represents (the value
associated with the name) depends on the variable. For aglobal, static local, or register local vari-
able, the name represents the address of the variable in root memory. For an aut o variable or for-
mal argument, the variable name represents its own offset from the frame reference point.

106 Dynamic C User’s Manual

The name of a structure element represents the offset of the element from the beginning of the
structure. In the following structure, for example,

struct s {
int Xx;
int y;
int z;

H

the embedded assembly expression s+x evaluatesto 0, s+y evaluatesto 2, and s+z evaluates to
4, regardless of where structure s may be.

In nested structures, offsets can be composite, as shown here.

struct s {

int x; [l s+x = 0
struct af /[l s+a = 2
int b; [/ a+b = 0 s+atb = 2
int c; [/l a+tc = 2 s+at+tc = 4
}

s

12.9 Stand-alone Assembly Code

A stand-alone assembly function is one that is defined outside the context of a C language func-
tion. It can have no aut o variables and no formal parameters. Dynamic C always places a stand-
alone assembly function in root memory.

When a program calls afunction from C, it puts the first argument into a primary register. If the
first argument hasone or two bytes (i nt, unsi gned i nt, char, pointer),theprimary
register isHL (with register H containing the most significant byte). If the first argument has four
bytes(I ong, unsi gned | ong, fl oat),theprimary register isBCDE (with register B con-
taining the most significant byte). Assembly-language code can use the first argument very effi-
ciently. Only the first argument is put into the primary register, while all arguments—including the
first, pushed last—are pushed on the stack.

C function values return in the primary register, if they have four or fewer bytes, either in HL or
BCDE.

Assembly language allows assumptions to be made about arguments passed on the stack, and

aut o variables can be defined by reserving locations on the stack for them. However, the offsets
of such implicit arguments and variables must be kept track of. If a function expects arguments or
needs to use stack-based variables, Z-World recommends using the embedded assembly tech-
nigues described in the next section.

Dynamic C User’s Manual 107

12.10 Embedded Assembly Code

When embedded in a C function, assembly code can access arguments and local variables (either
aut o or st at i ¢) by name. Furthermore, the assembly code does not heed to manipulate the
stack because the functions pr ol og and epi | og aready do so.

The concept and structure of a stack frame must be understood before correct embedded assembly
code can be written. A stack frame is arun-time structure on the stack that provides the storage for
al aut o variables, function arguments and the return address. The following figure shows the
general appearance of a stack frame.

Stack Frame
higher addresses
: structure return

optional - | space B

| lastargument | stack grows down
optional - . = l

- firstargument

- return address

(2-6 bytes)
IX (optional)
optional { " saved Ix register |« ,
«— (frame reference point)

| first auto variable _|
optional - . =

| last auto variable |

B | lower addresses

| storage for prior |
optional — | contents of register |

| variables |

<«—— SP

Figure 4. General Appearance of Assembly Code Stack Frame

The return address is always necessary. The presence of auto variables and register variables
depends on the definition of the function. The presence of arguments and structure return space
depends on the function call. (The stack pointer may actually point lower than the indicated mark
temporarily because of temporary information pushed on the stack.)

The shaded areain the stack frame is the stack storage allocated for aut o andr egi st er vari-
ables. The assembler symbol @5P represents the size of this area. The meaning of this symbol will
become apparent later.

The following sections describe how to accesslocal variablesin various types of functions.

108 Dynamic C User’s Manual

12.10.1 Not Using the IX Register, Function in Root Memory

Assume this simple function has been called.

int gi;
r oot nousei

X

/1 this is a gl obal

vari abl e

void func(char ch, int i, long Ig){
aut o int Xx;
static int y;
register int z;
#asm
sone assenbly code referencing gi, ch, i, Ig, X, v,
and z
#endasm
}
The following figure shows how the stack frame will appear after the function call.
- 1g (4) T
+6 |
4 [i(2) B
w2 ch (2) -
0 return address (2) 1, (frame reference point)
2 x (2) I
— prior value of z (2) Sp
Figure 5. Assembly Language Stack Frame
No IX, Function in Root Memory
The symbolsfor gi , ch,i,I g, x, Yy, and z will have the following values when used in the

assembly code

lg
i

ch

offset = +6

offset = +4

offset = +2

16-bit address (in root
memory)

offset =-2

16-bit address (in root
memory)

There isacommon method to access the stack-based variables| g, i , ch, and x. Consider, for

example, the case of loading variable x into HL.

Dynamic C User’s Manual

109

The following code (using the symbol @5P) is oneway to doit.

Id hl, @P+x ; hl < the offset fromSP to the variable

add hl, sp . hl < the address of the vari abl e
Id a, (hl) ; a « the LSB of x

i nc hl ; hl now points to the MSB of x
Id h, (hl) ; h « the MSB of x

IdIg,a ; lg « the LSB of x

;; at this point, hl has the val ue of x

For static variables (gi , y, and z), the access is much simpler because the symbol evaluates to the
address directly. The following code shows, for example, how to load variabley into HL.

Id hl,(y) ; load hl with contents of y

12.10.2 Using the IX Register, Function in Root Memory

Access to stack-based local variablesisfairly inefficient. The efficiency improvesif thereisareg-
ister for aframe pointer. Dynamic C can use the register 1X as aframe pointer. The function in the
previous section would then become the following.

int gi; /[l this is a global variable
root usei x
void func(char ch, int i, long Ig){
aut o int Xx;
static int y;
register int z;
#asm
sone assenbly code referencing gi, ch, i, Ig, x, y, and z
#endasm
}

The keyword usei x isthe only change from the previous sample function. The following figure
shows the stack frame for this function. IX points to the frame reference point.

- 1g(4) .
+6
[i(2) .
w2 ch (2) —
o [fetunaddress (2) 4, (frame reference point)
-2 x(2) N
- prior value of z (2) sp

Figure 6. Assembly Language Stack Frame
Using IX, Function in Root Memory

110 Dynamic C User’s Manual

The argumentswill have dightly different offsets because of the additional two bytes for the saved
IX register value.

g offset = +8

i offset = +6

ch offset = +4

Now, access to stack variablesis easier. Consider, for example, how to load ch into register A.

Id a,(ix+ch) ; a « ch

The I X+offset load instruction takes 14 cycles and three bytes. If the program needs to load a four-
byte variable such as| g, the I X+offset instructions are as follows.

Id e, (ix+lg) ; load LSB of Ig
Id d, (ix+l g+l) ;
Idc, (ix+lg+2) ;
Id b, (ix+lg+3) ; load MSB of Ig

Thistakes atotal of 56 cyclesand 12 bytes. Even if I X isthe frame reference pointer, the @P
symbol may still be used.

Id hl,@P+l g ; hl < the offset fromSP to the variable

add hl, sp ; hl « the address of the variable

Id hl,(sp+@P+l g); hl ~ the address of the variable
Id e, (hl) ; € « the LSB of Ig

inc hl :

Id d, (hl) ;

i nc hl ;

Id c, (hl) ;

inc hi :

Id b, (hl) ; b « the MSB of Ig

; A faster way to do it with the Rabbit if
; the offset of Ig < 127

I'd hl, (sp+@P+ g+2): |oad the LSWof |g
Id b, h

Id c,I

Id hl,(sp+@P+lg) ; load the LSWof Ig
ex de, hl

Thistakes 52 cycles and 11 bytes. The two approaches are competitive. Nonetheless, the use of
I X+offset is always beneficial when used to access single- or double-byte variables.

The offset from IX isasigned 8-bit integer. To use | X+offset, the variable must be within +127 or
—128 bytes of the frame reference point. The @P method is the only method for variables out of
thisrange, evenif 1X is used as aframe reference pointer.

Dynamic C User’s Manual 111

12.10.3 Not Using the IX Register, Function in Extended Memory

Functions that are (possibly) compiled to extended memory are not much different from functions
compiled to root memory. Examine this extended memory function.

int gi; /[l this is a global variable
Xmem
void func(char ch, int i, long Ig){
aut o int Xx;
static int y;
register int z;
#asm
sone assenbly code referencing gi, ch, i, Ig, x, y, and z
#endasm

}

If the x memkeyword is present, Dynamic C compiles the function to extended memory. Otherwise,
Dynamic C determines where to compile the function. Note that funcitons compiled to extended memory
have a 3-byte return addressinstead of a 2-byte return address. In this example, the I X register is not used.
Figure 7 shows the stack frame of the function.

B 1g(4) N

+11
L i (2) |

+9
- ch (2) -

+7
- padding (2) —

+5
| return address (3) |

+2
- variables (2)

0 < (frame reference point)

L x (2) _

-2

— prior value of z (2) —
<«— SP

Figure 7. Assembly Language Stack Frame
No IX, Function in Extended Memory

Because of the additional 4 bytes for the return address, the arguments will have slightly different
offsets.

I g offset = +10

i offset = +8

ch offset = +6

112 Dynamic C User’s Manual

Because the compiler maintains the offsets automatically, thereis no need to worry about the
change of offsets. The @5P approach discussed previously as a means of accessing stack-based
variables works whether a function is compiled to extended memory or not, as long as the C-lan-
guage names of local variables and arguments are used.

A function compiled to extended memory can use I X as aframe reference pointer aswell. This
adds an additional two bytes to argument off sets because of the saved I X value. Again, the

| X+offset approach discussed previously.can be used because the compiler maintains the offsets
automatically.

12.11 C Functions Calling Assembly Code

Dynamic C does not assume that registers are preserved in function calls. In other words, the
function being called need not save and restore registers. |f a C-callable assembly function is
expected to return aresult (of primitive type), the function must pass the result in the “ primary
register.” If theresultisani nt, unsigned int, char, orapointer, returntheresultin HL
(register H contains the most significant byte). If theresultisal ong, unsi gned | ong, or
f 1 oat , return theresult in BCDE (register B contains the most significant byte). A C function
containing embedded assembly code may, of course, useaCr et ur n statement to return avalue.
A stand-alone assembly routine, however, must load the primary register with the return value
beforether et instruction.

In contrast, if afunction returns a structure (of any size), the calling function reserves space on the
stack for the return value before pushing the last argument (if any). A C function containing
embedded assembly code may usea Cr et ur n statement to return avalue. A stand-alone assem-
bly routine, however, must store the return value in the structure return space on the stack before
returning.

Aninline assembly code may access the stack areareserved for structure return values by the sym-
bol @RETVAL, which is an offset from the frame reference point.

Dynamic C User’s Manual 113

The following code shows how to clear field f 1 of a structure (as areturned value) of type
struct s.

typedef struct ss {
int fO; [l first field
char f1; /!l second field
}oxyz;
Xyz ny_struct;

nmy_struct = func();

Xyz fij'nc(){
#asm

Xor a ; clear register A
Id hl, @P+@RETVAL+ss+f1 ; hl — the offset from
; SP to the f1 field of
the returned structure.

add hl, sp ; hl now points to f1.
Id (hl),a ; load a (now 0) to f1.
#endasm

}

Itiscrucial that @BP be added to @GRETVAL because @GRETVAL is an offset from the frame refer-
ence point, not from the current SP.

12.12 Assembly Code Calling C Functions

A program may call a C function from assembly code. To make this happen, set up part of the
stack frame prior to the call and “unwind” the stack after the call. The procedure to set up the
stack frameis described here.

1. Save all registers that the calling function wants to preserve. A called C function may
change the value of any register. (Pushing registersvalues on the stack isagood way to
save their values.)

2. If thefunctionreturnisast r uct , reserve space on the stack for the returned structure.
Most functions do not return structures.

Compute and push the last argument, if any.
Compute and push the second to last argument, if any.
Continue to push arguments, if there are more.

o o bk~ w

Compute and push the first argument, if any. Also load the first argument into the pri-
mary register (HL fori nt, unsigned int, char,and pointers, or BCDE for
l ong, unsigned | ong, andfl oat) if itisof aprimitive type.

7. Issue the call instruction.

114 Dynamic C User’s Manual

The caller must unwind the stack after the function returns.

1. Recover the stack storage allocated to arguments. With no more than 6 bytes of argu-
ments, the program may pop data (2 bytes at time) from the stack. Otherwise, it ismore
efficient to compute anew SP instead. The following code demonstrates how to
unwind arguments totaling 36 bytes of stack storage.

; Note that HL is changed by this code!
; Use ex de,hl to save HL if HL has the return val ue

;;;ex de, hl ; save HL (if required)
Id hl, 36 ; want to pop 36 bytes
add hl, sp ; comput e new SP val ue
Id sp,hl ; put val ue back to SP

;o ex de, hl ; restore HL (if required)

2. If thefunction returnsast r uct , unload the returned structure.
3. Restore registers previously saved. Pop them off if they were stored on the stack.
4. If the function return was not ast r uct , obtain the returned value from HL or BCDE.

12.13 Interrupt Routines in Assembly

Dynamic C allows interrupt service routines to be written in C (declared with the keyword

i nt errupt). However, the efficiency of one interrupt routine affects the latency of other inter-
rupt routines. Assembly routines can be more efficient than the equivalent C functions, and there-
fore more suitable for interrupt service routines.

Either stand-alone assembly code or embedded assembly code may be used for interrupt routines.
The benefit of embedding assembly code in a C-language interrupt routine is that there is no need
to worry about saving and restoring registers or reenabling interrupts. The drawback isthat the C
interrupt function does save dl registers, which takes some amount of time. A stand-alone assem-
bly routine needs to save and restore only the registersit uses.

In general, an interrupt routine performs the following actions.
1. Turn off interrupts upon entry.

2. Save al registers (that will be used) on the stack. Interrupt routines written in C save
all registers on the stack automatically. Stand-alone assembly routines must push the
registers explicitly.

3. Determine the cause of the interrupt. Some devices map multiple causes to the same
interrupt vector. An interrupt handler must determine what actually caused the inter-
rupt.

4. Remove the cause of the interrupt.

5. If aninterrupt has more than one possible cause, check for al the causes and remove all
the causes at the same time.

6. When finished, restore registers saved on the stack. Naturally, this code must match the
codethat saved theregisters. Interrupt routineswritten in C perform thisautomatically.
Stand-alone assembly routines must pop the registers explicitly.

Dynamic C User’s Manual 115

7. Reenableinterrupts. Interrupts are disabled for the entire duration of the interrupt rou-
tine (unless they are enabled explicitly). The interrupt handler must reenable the inter-
rupt so that other interrupts can get the attention of the CPU. Interrupt routines written
in C reenableinterrupts automatically when the function returns. Stand-alone assembly
interrupt routines, however, must reenable the interrupt (ipres) explicitly.

The interrupts should be reenabled immediately before the return instructionsr et or
reti. If theinterrupts are enabled earlier, the system can stack up the interrupts. This
may or may not be acceptabl e because there is the potential to overflow the stack.

8. Return. There are three types of interrupt returns: ret, reti,andretn.

12.14 Common Problems

Unbalanced stack. Ensurethe stack is“baanced” when aroutinereturns. In other words, the SP
must be same on exit asit was on entry. From the caller’s point of view, the SP register must be
identical before and after the call instruction.

Using the @P approach after pushing temporary information on the stack. The @P
approach for inline assembly code assumes that SP points to the low boundary of the stack frame.
This might not be the case if the routine pushes temporary information onto the stack. The space
taken by temporary information on the stack must be compensated for.

The following code illustrates the concept.

; SP still points to the | ow boundary of the call frame
push hl ;. save HL
; SP now two bytes bel ow the stack frane!
Id hl, @P+x+2 ; Add 2 to conpensate for altered SP
add hl, sp ; conpute as nor nal
Id a, (hl) ; get the content
pop hl ; restore HL

; SP again points to the | ow boundary of the call frane

Registersnot preserved. In Dynamic C, the caller isresponsible for saving and restoring all reg-
isters. An assembly routine that calls a C function must assume that all registers will be changed.
Unpreserved registersin interrupt routines cause unpredictable and unrepeatable problems. In
contrast to normal functions, interrupt functions are responsible for saving and restoring all regis-
ters themselves.

116 Dynamic C User’s Manual

Keywords 13

A keyword is areserved word in C that represents a basic C construct. The word whi | e repre-
sents the beginning of awhi | e loop. It cannot be used for any other purpose. There are many
keywords, and they are summarized in the following pages.

Jumps out of a costatement.

for(;;){

costate {

|f(condition) abort;

—
- e

The costatement is always active. (Unnamed costatements are always on.)

Allows the compiler to determine in which part of memory a function will be placed.
anymem int func(){

}

#memmap anynmem
#asm anynem

#endasm

A functions'slocal variable islocated on the system stack and exists aslong as the function call
does.

int func(){
auto float x;

Dynamic C User’s Manual 117

Jumps out of aloop, if, or case statement.
whi |l e(expression){

i'f'(condition) break;
switch(expression){
case 3:

br eak;

|

Identifies the next “case” inaswi t ch statement.

swi tch(expression){
case const:

case const:

case const:

|

Declares avariable, or array, as atype character. Thistypeisaso commonly used to declare 8-
bit integers and “Boolean” data.

char ¢, x, *string = "hello";
int i;

c: (char)i;

118 Dynamic C User’s Manual

const

This keyword announces that a variable will not have its value changed and that static and ini-
tiaized global variable will be placed in flash memory. The keyword const isatype qualifier

and may be used with any static or global type specifier (char, int, struct, etc.). The const

qualifier appears before the type unless it is modifying a pointer. When modifying a pointer, the

const keyword appears after the‘* .

In each of thefollowing examples, if const was missing the compiler would generate atrivial

warning. Warnings for const can be turned off by changing the compiler options to report

serious warnings only. Notethat const isnot currently permitted with return types, automatic

locals or parameters and does not change the default storage class for cofunctions.

Example 1:
/1 ptr_to_x is a constant pointer to an integer
int Xx;
int * const cptr_to_x = &x;

Example 2:
/1 cptr_to i is a constant pointer to a constant
const int i = 3;
const int * const cptr_to i = & ;

Example 3:

/1l ax is a constant 2 dinensional integer array
const int ax[2][2] = {{2,3}, {1,2}};

Example 4:

struct rec {
int a;
char b[10];
Ji;
/1l zed is a constant struct
const struct rec zed = {5, “abc"};

Example 5:

/1l cptr is a constant pointer to an integer

typedef int * ptr_to_int;
const ptr_to_int cptr = &i;

/1 this declaration is equivalent to the previous one

int * const cptr = & ;

Dynamic C User’s Manual

119

Skip to the next iteration of aloop.

whi | e(expression){
if(nothing to do) continue;

|

Indicates the beginning of a costatement.
costate [nane [state]] {

}

Name can be absent. If nameispresent, st at e canbeal ways_onorinit_on. Ifstate
is absent, the costatement isinitialy off.

Indicates a function is to be compiled in debug mode.

Library functions compiled in debug mode can be single-stepped into, and breakpoints can be
set in them.

debug int func(){

#asm debug

#endasm

120 Dynamic C User’s Manual

Identifiesthe default “case” inaswi t ch statement. The default case, which is optional, exe-
cutes only when the swi t ch expression does not match any other case.

switch(expression){
case const:

case const:

def aul t:

|

Indicates the beginning of ado loop. A do loops tests at the end and executes at least once.
do

whi |l e(expression);
The statement must have a semicolon at the end.

Indicatesafase branch of ani f statement

i f(expression)
st at enent /| executes when true

el se
st at enent /| executes when fal se

Indicates that a variable is defined in the BIOS, later in alibrary file, or in another library file.
Its main use isin module headers.
[*** Begi nHeader ..., var */

extern int var;

[/ *** EndHeader */
int var;

Dynamic C User’s Manual 121

firsttine

firsttimeinfront of afunction body declares the function to have an implicit * CoDat a
parameter as the first parameter. This parameter should not be specified in the call or the proto-
type, but only in the function body parameter list. The compiler generates the code to automati-
cally pass the pointer to the CoDat a structure associated with the costatement from which the
call ismade. Afi rsti me function can only be called from inside of a costatement, cofunc-
tion, or slice statement. The Del ayTi ck function from COSTATE. LI B below isan example
of af i rstti me function.

firsttime nodebug int Del ayTi cks(CoData *pfb, unsigned int
ticks){
i f(ticks==0) return 1;
if(pfb->firsttime){
fb->firstti me=0;
/* save current ticker */
f b->content. ul =(unsi gned | ong) TI CK_TI MER

}

else if (TICK TIMER - pfb->content.ul >= ticks)
return 1;

return O;

fl oat

Declares avariable, function, or array, as 32-bit IEEE floating point.

int func(){
float x, vy, *p;
float Pl = 3.14159265;

float func(float par){

}

122 Dynamic C User’s Manual

f or

Indicates the beginning of af or loop. A f or loop has an initializing expression, alimiting
expression, and a stepping expression. Each expression can be empty.

for(;;) /1 an endl ess | oop
P _ . _
for(i =0; i <n; i++) /1 counting |oop
}
got o

Causes a program to go to alabeled section of code.

if(condition) goto RED

RED:
Use got o to jump forward or backward in a program. Never use got o to jump into aloop
body or aswi t ch case. The results are unpredictable. However, it is possible to jump out of a
loop body or swi t ch case.

| f
Indicates the beginning of ani f statement.

if(tank _full) shut_off _water();

i f(expression){
statenents

}else if(expression){
statenents

}else if(expression){
statenents

}else if(expression){
statenents

}el sef
statenents

}

If one of the expressionsistrue (they are evaluated in order), the statements controlled by that
expression are executed.

Ani f statement can have zero or moreel sei f parts. Theel se isoptional and executes
only when none of thei f or el se if expressionsare true (non-zero).

Dynamic C User’s Manual 123

init_on

The costatement isinitially on and will automatically execute thefirst time it is encountered in
the execution thread. The costatement becomes inactive after it completes (or aborts).

I nt
Declaresavariable, function, or array to be an integer. If nothing elseis specified, i nt implies
a 16-bit signed integer.

int i, j, *k; /1 16-bit signed
unsigned int x; /1 16-bit unsigned
long int z; /1 32-bit signed
unsigned long int w /1 32-bit unsigned
int funct (int arg){
}

I nterrupt

Indicates that afunction is an interrupt service routine. All registers, including alternates, are
saved when an interrupt function is called and restored when the interrupt function returns.
Writing ISRs in C is not recommended when timing is critical.

interrupt isr (){

}

An interrupt service routine returns no value and takes no arguments.

| ong

Declares avariable, function, or array to be 32-bit integer. If nothing else is specified, | ong
implies asigned integer.

long i, j, *k; /1 32-bit signed
unsigned long int w /1 32-bit unsigned
long funct (long arg){

}

124 Dynamic C User’s Manual

Identifiesthe mai n function. All programs start at the beginning of the mai n function.
(mai n isactualy not akeyword, but is afunction name.)

Indicates a function is not compiled in debug mode.
nodebug int func(){

#asm nodebug
#end.a.s'm
See dso debug and directives#debug #nodebug.

Indicates that a function does not use the RST instruction for breakpoints.
norst void func(){

|

Indicates a function does not use the I X register as a stack frame reference pointer.
nousei x void func(){

|

The null pointer. (Thisisactually amacro, not akeyword.) Sameas(void *) 0.

Dynamic C User’s Manual 125

pr ot ect ed

An important feature of Dynamic C isthe ability to declare variables as protected. Such avari-
ableis protected against loss in case of a power failure or other system reset because the com-
piler generates code that creates a backup copy of a protected variable before the variableis
modified. If the system resets while the protected variable is being modified, the variable’s
value can be restored when the system restarts. Battery-backed RAM isrequired for this opera-
tion.

A system that shares data among different tasks or among interrupt routines can find its shared
data corrupted if an interrupt occurs in the middle of awrite to a multibyte variable (such as
typei nt or f | oat). The variable might be only partially written at its next use.

Declaring a multibyte variable shared means that changes to the variable are atomic, i.e., inter-
rupts are disabled while the variable is being changed.

Declaring avariable to be “ protected” guards against system failure. This means that a copy of
the variable is made before it is modified. If atransient effect such as power failure occurs
when the variable is being changed, the system will restore the variable from the copy.

mai n() { :
protected int statel, state2, state3;

_syslsSoftReset(); [// restore any protected vari abl es

}

Thecal to_sysl sSof t Reset checksto seeif the previous board reset was due to the com-
piler restarting the program (i.e. a“soft” reset). If so, then it initializes the protected variable
flags and callssysReset Chai n() , afunction chain that can be used to initialize any pro-
tected variables or do other initidization. If the reset was due to a power failure or watchdog
timeout, then any protected variables that were being written when the reset occurred are
restored.

return

Explicit return from afunction. For functions that return values, thiswill return the function
result.

void func (){

ii‘(expression) return;
%Ioat func (int x){

fl oat tenp;

return (tenp * 10 + 1);

126 Dynamic C User’s Manual

r oot

Indicates a function isto be placed in root memory. This keyword is semantically meaningful
in function prototypes and produces more efficient code when used. Its use must be consistent

between the prototype and the function definition.
root int func(){

}

#memmap r oot
#asm r oot

#endasm

segchain
Identifies a function chain segment (within a function).
int func (int arg){
i nt vec[10];
segchain _GLOBAL | NI T{

for(i =0; i<10; i++){ vec[i] = 0; }
}

}
This example adds a segment to the function chain _GLOBAL_I NI T. Using segchai n is

equivalent to using the #GLOBAL _| NI T directive. When this function chain executes, this and
perhaps other segments elsewhere execute. The effect in thisexampleisto (re)initializevec.

shar ed

Indicates that changes to a multi-byte variable (such asaf | oat) are atomic. Interrupts are
disabled when the variable is being changed. Local variables cannot be shared.

shared float x, vy, z;
shared int j;

mai n() {
}
If i isashared variable, expressions of theformi ++ (ori = i+ 1) constitute two atomic

referencesto variablei , aread and awrite. Be careful becausei ++ is not an atomic operation.

Dynamic C User’s Manual 127

Declares that avariable or array is short integer (16 bits). If nothing elseis specified, short
implies a 16-bit signed integer.

short i, j, *k; /1 16-bit, signed

unsi gned short int w; /1 16-bit, unsigned

short funct (short arg){

|

Declares afunction to be optimized for size (as opposed to speed).
size int func (){

|

A built-in function that returns the size—in bytes—of avariable, array, structure, union, or of a
data type.

j =2 * sizeof(float);
int list[] ={ 10, 99, 33, 2, -7, 63, 217 };

x = sizeof (Iist);

Declares afunction to be optimized for speed (as opposed to size).
speed int func (){

}

128 Dynamic C User’s Manual

static

Declares alocal variable to have a permanent fixed location in memory, as opposed to aut o,

where the variable exists on the system stack. Global variables are by definitionst ati c.
Local variablesare st at i ¢ by default, unlike standard C.

int func (){
int i /1 static by default
static float x; [l explicitly static
}
struct
Indicates the beginning of a structure definition. Structure definitions can be nested.
struct {
int x;
int y;
} abc; /1 defines a struct object

typedef struct {

int Xx;

int vy;
} xyz; /1 defines a struct type...
Xyz thing; /!l ...and a thing of type xyz

Dynamic C User’s Manual

129

sw tch

Indicates the start of aswi t ch statement.
switch(expression){
case const:
br eak;
case const:
br eak;
case const:
br eak
defaul t

}

Theswi t ch statement may contain any number of cases. It compares a case-constant expres-
sion withthe swi t ch expression. If there is a match, the statements for that case execute.
The default case, if it is present, executes if none of the case-constant expressions match the
swWi t ch expression.

If the statementsfor acase donotincludeabr eak, r et ur n, cont i nue, or some means of
exiting the swi t ch statement, the cases following the selected case will execute, too, regard-
less of whether their constants match the swi t ch expression.

t ypedef

Identifies atype definition statement. Abstract types can be defined in C.
t ypedef struct {

int Xx;

int y;
} xyz; /1 defines a struct type...
xyz thing; /1l ...and a thing of type xyz
t ypedef uint node; /1 meani ngful type nane

node master, slavel, slaveZ2;

130 Dynamic C User’s Manual

uni on

Identifies avariable that can contain objects of different types and sizes at different times.
Itemsinauni on have the same address. The size of auni on isthat of itslargest member.
uni on {

int Xx;

float y;
} abc; /1 overlays a float and an int

unsi gned

Declaresavariable or array to be unsigned. If nothing elseis specified in a declaration,
unsi gned means 16-bit unsigned integer.

unsigned i, j, *Kk; /1 16-bit, unsigned
unsi gned int x; /1 16-bit, unsigned
unsi gned | ong w, /1 32-bit, unsigned
unsi gned funct (unsigned arg){

}

Valuesin a 16-bit unsigned integer range from 0 to 65,535 instead of —32768 to +32767. Val-
uesin an unsigned long integer range from 0to 232 — 1.

usei X

Indicates that afunction uses the I X register as a stack frame pointer.
usei x void func(){

}

Seedsonousei x and directives #usei x #nousei X.

wai t f or

Used in a costatement, this keyword identifies a point of suspension pending the outcome of a
condition, completion of an event, or some other delay.

for(;;){
costate {
...waitfor (input(l) == HGH);
}
}

Dynamic C User’s Manual 131

wai t f ordone
(wf d)

Thewai t f or done keyword can be abbreviated aswf d. It is part of Dynamic C's coopera-
tive multitasking constructs. Used inside a costatement or a cofunction, it executes cofunctions
andfirsttine functions. When all the cofunctionsandfi r stti me functionsinthe wf d
statement are complete, or one of them aborts, execution proceeds to the statement following
wf d. Otherwise ajump is made to the ending brace of the costatement or cofunction where the
wf d statement appears; when the execution thread comes around again, control is given back
to thewf d statement.

This keyword may return an argument.

whi | e
Identifies the beginning of awhi | e loop. A whi | e loop tests at the beginning and may exe-
cute zero or more times.
whi | e(expression){

}

xdat a

Declares ablock of datain extended memory.

xdata name { value_1, ... value_n };

The value list may include constant expressions of typei nt , f | oat , unsi gned i nt,
| ong,unsi gned | ong, char , and (quoted) strings.

The 20-bit physical address of the block is assigned to namne by the compiler.

Xmem

Indicates that afunction isto be placed in extended memory. This keyword is semantically
meaningful in function prototypes. Its use must be consistent between the prototype and the
function definition.

xmemint func(){

}

#memap xnmem

132 Dynamic C User’s Manual

xstring

Declares atable of stringsin extended memory. The table entries are 20-bit physical addresses.
The nane of the table represents the 20-bit physical address of the table; this addressis
assigned to nane by the compiler.

xstring name { string_1, . . . string_n };

yi el d

Used in a costatement, this keyword causes the costatement to pause temporarily, allowing
other costatements to execute. Theyi el d statement does not alter program logic, but merely
postponesit.

for(;;){
costate {
yi el d:
}
}

Dynamic C User’s Manual 133

13.1 Compiler Directives

Directives are special keywords prefixed with the symbol #. They tell the compiler how to pro-
ceed. Only onedirective per lineisallowed, but a directive may span more than one line if a back-
dash (\) is placed at the end of the line(s).

#asm opti ons
#endasm

Begins and ends blocks of assembly code. The following options are available.
nodebugdisables debug code during assembly
debugenables debug code during assembly

#cl ass options

Controlsthe storage class for local variables. The available options are:

aut o - local variables are placed on the stack.
st ati ¢ - local variables have permanent, fixed storage. Thisisthe default storage class.

#debug
#nodebug

Enables or disables debug code compilation.

#def i ne nane text
#defi ne nane(parans...) text

Defines amacro with or without parameters according to ANSI standard. A macro without
parameters may be considered a symbolic constant.

Supports the # and ## macro operators. Macros can have up to 32 parameters and can be
nested to 126 levels.

#fatal ".."

Instructs the compiler to act asif afatal error. The string in quotes following the directive is
the message to be printed

#GLOBAL_INIT { variables }

Only way to initialize global variablesin afunction. For example:

#GLOBAL_INIT{ |k_ticks=0; Ik_fc_bl ock=0;}

134 Dynamic C User’s Manual

Instructs the compiler to act asif an error wasissued. The string in quotes following the direc-
tive is the message to be printed

Adds afunction, or another function chain, to a function chain.

These directives control conditional compilation. Combined, they form a multiple-choicei f .
When the condition of one of the choices is met, the Dynamic C code selected by the choiceis
compiled. Code belonging to the other choicesisignored.

mai n() {
#i f BOARD_TYPE ==
#define product "Ferrari”
#eli f BOARD TYPE ==
#define product "Maserati"
#eli f BOARD TYPE ==
#defi ne product "Lanborghini"
#el se
#defi ne product "Chevy"
#endi f

}

The#el i f and #el se directives are optional. Any code between an #el se and an#endi f
iscompiled if al constant_expressions are false.

Similar tothe #i f above, these directives enable and disable code compilation based on
whether or not name has been defined with a#def i ne directive.

Controls whether Dynamic C will intersperse library functions with the program’s functions
during compilation. #noi nt er | eave forces the user-written functions to be compiled first.

Dynamic C User’s Manual 135

To redefine a symbol found in the BIOS of a controller, first KI LL the prior name.

Creates afunction chain. When a program executes the function chain named in this directive,
all of the functions or segments belonging to that chain execute.

Controls the default memory areafor functions. The following options are available.

anymem NNNNwhen code comes within NNNN bytes of the end of root code space, start put-
ting itin xmem. Default memory usageis #memmp anynem 0x2000.

r oot al functions not declared as x memgo to root memory
xmenall functions not declared asr oot go to extended memory

Removes (undefines) a defined macro.

Activatesalibrary named in LI B. DI R so modulesin the library can be linked with the appli-
cation program. This directive immediately readsin al the headersin the library unless they
have already been read.

Controls whether functions use the I X register as a stack frame reference pointer or the SP
(stack pointer) register.

Instructs the compiler to act asif aseriouswarning (#war ns) wasissued. Thestringin
quotes following the directive is the message to be printed.

Instructs the compiler to act asif atrivial warning wasissued. The string in quotes following
the directive is the message to be printed.

136 Dynamic C User’s Manual

#xi nport <fil ename> <synbol >

This compiler directive placesthe length of <f i | ename> (stored asal ong) and its binary
contents at the next available place in xmem flash. The filenameis assumed to be either relative
to the Dynamic C installation directory or afully qualified path. The symbol isa compiler
macro that gives the physical address where the length and contents were stored.

The sample program xi npor t . ¢ illustrates the use of this compiler directive.

Dynamic C User’s Manual 137

138 Dynamic C User’s Manual

Operators 14

An operator isasymbol such as +, —, or & that expresses some kind of operation on data. Most
operators are binary—they have two operands.

a + 10 /1l two operands with binary operator "add"
Some operators are unary—they have a single operand,
- amount /1 single operand with unary “m nus”

although, like the minus sign, some unary operators can also be used for binary operations.

There are many kinds of operators with operator precedence. Precedence governs which opera-
tions are performed before other operations, when there is a choice.

For example, given the expression
a=>b+c* 10

will the + or the* be performed first? Since* has higher precedence than +, it will be performed
first. The expression is equivalent to

a=>b+ (c* 10);
Parentheses can be used to force any order of evaluation. The expression
a=(b+c¢) * 10;

uses parentheses to circumvent the normal order of evaluation.

Associativity governs the execution order of operators of equal precedence. Again, parentheses
can circumvent the normal associativity of operators. For example,

a=>b+c + d; /1 (b+c) perforned first
a=>b+ (c +d); /1 now c+d is perforned first
int *a(); [l function returning ptr to int
int (*a)(); /[l ptr to function returning int

Unary operators and assignment operators associate from right to left. Most other operators asso-
ciate from left to right.

Certain operators, namely *, & (), [], -> and. (dot), can be used on the left side of an
assignment to construct what is called an Ivalue. For example,

fl oat x;
(char) & = 0x17; /1 1 ow byte of x gets val ue

Dynamic C User’s Manual 139

When the data types for an operation are mixed, the resulting type is the more precise.

float x, vy, z;
int i, j, k;
char c;
5 .

X; /1l same as (float)i / x
j c

; /'l same as k + (int)c

+ ==

[
k

By placing atype namein parenthesesin front of avariable, the program will perform type casting
or type conversion. Inthe example above, theterm (f | oat)i meansthe“thevaueof i con-
verted to floating point.”

The operators are summarized in the following pages.
14.1 Arithmetic Operators

+

Unary plus, or binary addition. (Standard C does not have unary plus.) Unary plus does not really
do anything.

b + 10.5; /1 binary addition
+y; /1 just for enphasis!

a
z

Unary minus, or binary subtraction.

b - 10.5; /! binary subtraction

a
z -Y; /!l z gets the negative of y

140 Dynamic C User’s Manual

*

Indirection, or multiplication. As aunary operator, it indicates indirection. When used in a declara-
tion, * indicates that the following item is a pointer. When used as an indirection operator in an
expression, * provides the value at the address specified by a pointer.

int *p; /[l pis a pointer to integer

const int j = 45;

p = & ; /1l p now points to j.

k = *p; /1l k gets the value to which
/'l p points, nanely 45.

*p = 25; /1 The integer to which p

/1 points gets 25. Same as | = 25,
/1l since p points to j.

Beware of using uninitialized pointers. Also, the indirection operator can be used in complex
ways.

int *list[10] /1 array of 10 ptrs to int
int (*list)[10] /1 ptr to array of 10 ints
float** vy; /1 ptr to a ptr to a float
Z = **y; /'l z gets the value of y
t ypedef char **stp;
stp ny_stuff; /1 my_stuff is typed char**
As abinary operator, the * indicates multiplication.
a=>b* c; /1 a gets the product of b and c
/
Divideis abinary operator. Integer division truncates; floating-point division does not.
const int i =18, const j =7, k; float Xx;
k=i 117j; Il result is 2;
x = (float)i [/ j; /] result is 2.591...
++

Pre- or post-increment is a unary operator designed primarily for convenience. If the ++ precedes
an operand, the operand is incremented before use. If the ++ operator follows an operand, the
operand is incremented after use.

int i, a[1l2];

i = 0;

g = a[i++]; /1 q gets a[0], then i becomes 1
r = a[i++]; /1 r gets a[l], then i becomes 2
S = ++i; /1 i becones 3, then s =i

i ++; /1 i becones 4

If the ++ operator is used with a pointer, the value of the pointer increments by the size of the
object (in bytes) to which it points. With operands other than pointers, the value increments by 1.

Dynamic C User’s Manual 141

Pre- or post-decrement. If the — precedes an operand, the operand is decremented before use. If
the — operator follows an operand, the operand is decremented after use.

int j, a[1l2];
j =12
qg=al—jl; /1 j becones 11, then g gets a[11]
r =al[—jl; /1 j becones 10, then r gets a[10]
S = j—; [l s = 10, then j becones 9
j—; /1 j becones 8
If the — operator is used with a pointer, the value of the pointer decrements by the size of the

object (in bytes) to which it points. With operands other than pointers, the value decrements by 1.

%

Modulus. Thisisabinary operator. The result is the remainder of the |eft-hand operand divided by
the right-hand operand.

const int i = 13;
j =i %10; /1 j gets i mod 10 or 3
const int k = -11;
i =k %7, /1 j gets k nod 7 or -4

14.2 Assignment Operators

Assignment. This binary operator causes the value of the right operand to be assigned to the left
operand. Assignments can be “ cascaded” as shown in this example.

a=10* b + c; /I a getsthe result of the calculation
a=>b=0; //' b getsOand a getsO

+=
Addition assignment.

a += b5; //Add5toa Sameasa=a+5

142 Dynamic C User’s Manual

Subtraction assignment.

a -=b5; /l Subtract 5 froma. Sameasa = a - 5

Multiplication assignment.

a *= b; /[Multiplyaby 5. Sameasa = a * 5

Division assignment.

a /= 5; /I Dividea by 5. Sameasa = a / 5

Modulo assignment.

a % b5; //lamodb5.Sameasa = a %5

L eft shift assignment.
a <<= b; /l Shift a left 5 bits. Sameasa = a << 5

Right shift assignment.
a >>= b; [/ Shift a right 5 bits. Sameasa = a >> 5

Bitwise AND assignment.
a &= b; /Il AND a withb.Sameasa = a & b

Dynamic C User’s Manual 143

Bitwise XOR assignment.
a "= b; / XOR a withb.Sameasa = a * b

Bitwise OR assignment.

A |= B; //ORawithb.Sameasa = a | b

14.3 Bitwise Operators

Shift left. Thisisabinary operator. The result is the value of the left operand shifted by the num-
ber of bits specified by the right operand.

int i = OxFOOF;
j =i << 4 /1l j gets Ox00FO

The most significant bits of the operand are lost; the vacated bits become zero.

Shift right. Thisis a binary operator. The result isthe value of the |eft operand shifted by the num-
ber of bits specified by the right operand:

int i = OxFOOF;

o= >> 4 /1 j gets OxFFOO
The least significant bits of the operand are lost; the vacated bits become zero for unsigned vari-
ables and are sign-extended for signed variables.

Address operator, or bitwise AND. As aunary operator, this provides the address of a variable:

int x;
z = &X; /'l z gets the address of x
Asabinary operator, this performs the bitwise AND of two integer (char, i nt, or | ong) vaues.
int i = OxFFFO;
int j = OxXOFFF;
z =i &j; /1 z gets OxOFFO

144 Dynamic C User’s Manual

Bitwise exclusive OR. A binary operator, this performs the bitwise XOR of two integer (8-bit, 16-
bit or 32-bit) values.

int i = OxFFFO;
int j = OXOFFF;
z =i "Nj; /1 z gets OxFOOF

Bitwiseinclusive OR. A binary operator, this performs the bitwise OR of two integer (8-bit, 16-bit
or 32-bit) values.

int i = OxFFOO;
int j = OxOFFO;
z =il j; /1 z gets OxFFFO

Bitwise complement. Thisisaunary operator. Bitsinachar,i nt, or| ong value are inverted:

int swtches;
swi tches = OxFFFO;
j = ~switches; /1 j becomes 0x000F

14.4 Relational Operators

Lessthan. Thisbinary (relational) operator yields a“Boolean” value. Theresult is 1 if the left
operand < the right operand, and O otherwise.
if(i <j){
body /1l executes if i <|j

}
K = a < b; /! true when a < b

Lessthan or equal. Thisbinary (relational) operator yieldsa“Boolean” value. Theresultis1if the
left operand < the right operand, and O otherwise.

ifCi <=7j){
body /1 executes if i <=]
}

K = a <= b; // true when a <= b

Dynamic C User’s Manual 145

>
Greater than. This binary (relational) operator yields a“Boolean” value. Theresult is 1 if the | eft
operand > the right operand, and O otherwise.
if(i >j){
body /1 executes if i >

}
K =a > b; [/ true when a > b

>=

Greater than or equal. This binary (relational) operator yields a“Boolean” value. Theresultis 1 if
the left operand = the right operand, and O otherwise.

if(i >=j){
body /] executes if i >= |

}
XK = a >= b; /!l true when a >= b

14.5 Equality Operators

Equal. Thisbinary (relational) operator yieldsa“Boolean” value. Theresult is 1 if the left operand
equals the right operand, and O otherwise.

PEC i ==){

body /1l executes if i =
}
K = a == b; /] true when a = b

Note that the == operator is not the same as the assignment operator (=). A common mistake isto
write

i f(
}

Here, i getsthevalueof j ,andthei f conditionistruewheni isnon-zero, not wheni equalsj .

i)A

i =
body

Not equal. This binary (relational) operator yields a“Boolean” value. Theresult is 1 if the left
operand # the right operand, and O otherwise.

PEC T =7)f

body /'l executes if i =]
}

K =a !'= b; /] true when a !'=b

146 Dynamic C User’s Manual

14.6 Logical Operators

Logical AND. Thisisabinary operator that performs the “Boolean” AND of two values. If either
operand is O, theresult is 0 (FALSE). Otherwise, theresult is 1 (TRUE).

Logical OR. Thisisabinary operator that performsthe “Boolean” OR of two values. If either
operand is non-zero, theresult is 1 (TRUE). Otherwise, the result is O (FALSE).

Logical NOT. Thisisaunary operator. Observe that C does not provide a Boolean datatype. In C,
logical falseisequivalent to 0. Logical trueis equivalent to non-zero. The NOT operator resultis 1
if the operand is 0. The result is O otherwise.

test = get_input(...);
if(!'test){

}

14.7 Postfix Expressions

Grouping. Expressions enclosed in parentheses are performed first. Parentheses also enclose func-
tion arguments. In the expression

a=(b+c) * 10;
theterm b + c isevaluated first.

Array subscripts or dimension. All array subscripts count from 0.

int a[12]; /1 array dinension is 12
j = alil]; /1 references the ith el ement

Dynamic C User’s Manual 147

The dot operator joins structure (or union) names and subnames in a reference to a structure (or
union) element.

struct {
int x;
int vy;

} coord,;

m = coord. X;

Right arrow. Used with pointers to structures and unions, instead of the dot operator.
typedef struct{

int Xx;
int y;
} coord,;
coord *p; /1l ptr to structure
m = p- >X; /] ref to structure el enent

14.8 Reference/Dereference Operators

Address operator, or bitwise AND. As aunary operator, this provides the address of avariable:
int x;
Z = &; /'l z gets the address of x

As abinary operator, this performs the bitwise AND of two integer (char, i nt,orl ong) val-
ues.

int i = OXFFFO;
int j = OXOFFF;
z =i &j; /1 z gets OxOFFO

148 Dynamic C User’s Manual

*

Indirection, or multiplication. As aunary operator, it indicates indirection. When used in a declara-
tion, * indicates that the following item is a pointer. When used as an indirection operator in an
expression, * provides the value at the address specified by a pointer.

int *p; /[l pis a pointer to integer

int | = 45;

p = & ; /1l p now points to j.

k = *p; /1l k gets the value to which
/'l p points, nanely 45.

*p = 25; /1 The integer to which p

/1 points gets 25. Same as | = 25,
/1l since p points to j.

Beware of using uninitialized pointers. Also, the indirection operator can be used in complex
ways.

int *list[10] [l array of 10 ptrs to int

int (*list)[10] [l ptr to array of 10 ints

float** vy; /1l ptr to a ptr to a float

Z = **y; /1l z gets the value of y

t ypedef char **stp;

stp ny_stuff; [l nmy stuff is typed char**

As abinary operator, the * indicates multiplication.
a=>b* c; /[l a gets the product of b and c

14.9 Conditional Operators

Conditional operators are athree-part operation unique to the C language. The operation has three
operands and the two operator symbols? and : .

? .
If the first operand evaluates true (non-zero), then the result of the operation isthe second operand.
Otherwise, the result is the third operand.
int i, j, k;
i = i <k ?j : k;
The ? : operator isfor convenience. The above statement is equivalent to the following.
if(j <k)
i =
el se
i = k;
If the second and third operands are of different type, the result of this operation is returned at the
higher precision.

Dynamic C User’s Manual 149

14.10 Other Operators

(type)

Thecast operator converts one data type to another. A floating-point value is truncated when
converted to integer. The bit patterns of character and integer data are not changed with the cast
operator, athough high-order bits will be lost if the receiving value is not large enough to hold the
converted value.

unsigned i; float x = 10.5; char c;

i = (unsigned)Xx; /1 i gets 10;

c = *(char*) &x; /] ¢ gets the | ow byte of x
typedef ... typeA

t ypedef ... typeB;

typeA itent;

typeB iteng;

iten2 = (typeB)itent; /1l forces itenml to be
/]l treated as a typeB

si zeof

Thesi zeof operator isaunary operator that returns the size (in bytes) of avariable, structure,
array, or union. It operates at compiletime asif it were abuilt-in function, taking an object or a
type as a parameter.

t ypedef struct{
int X;
char vy;
float z;
} record;
record array[100];
int a, b, c, d;
char cc[] = "Fourscore and seven";
char *list[] = { "ABC', "DEFG', "H" };
/1 nunber of bytes in array
#define array_size sizeof (record)*100

a = sizeof(record); [7
b = array_si ze; /1 700
c = sizeof(cc); /1 20
d = sizeof (list); /1 6

Why is si zeof (1i st) equal to 6?1 i st isanarray of 3 pointers (to char) and pointers have
two bytes.

Why issi zeof (cc) equa to 20 and not 197 C strings have aterminating null byte appended by
the compiler.

150 Dynamic C User’s Manual

Comma operator. This operator, unique to the C language, is a convenience. It takes two operands:
the left operand—typically an expression—is evaluated, producing some effect, and then dis-
carded. The right-hand expression is then evaluated and becomes the result of the operation.

This example shows somewhat complex initialization and stepping in af or statement.
for(i=0,j=strlen(s)-1; i<j; i++|j3{

}

Because of the comma operator, the initialization has two parts: (1) seti to 0 and (2) get the
length of string s. The stepping expression also has two parts: increment i and decrement j .

The comma operator existsto allow multiple expressionsinloop or i f conditions.
The table below shows the operator precedence, from highest to lowest. All operators grouped
together have equal precedence.

Table 4. Operator Precedence

Operators Associativity Function
O [1 -= left to right member
I~ ++ -- .
(o9 * & sizeof right to left unary
* % left to right multiplicative
+ - left to right additive
<< >> left to right bitwise
< <= > >= left to right relational
= = left to right equality
& left to right bitwise
n left to right bitwise
[left to right bitwise
&& left to right logical
| left to right logical
? right to left conditional
:<=* :»:: &ZG: AJ:_ right to left assignment
(comma) left to right series

Dynamic C User’s Manual

151

152 Dynamic C User’s Manual

15.1 Functional Groups

Function Reference

15

arithmetic

aps
getcrc

bit manipulation

bit
BIT
res
RES
set
SET

character

sal num
sal pha
scntrl
sdigit
sgraph
sl ower
sprint
spunct
sspace
supper
sxdi git

extended memory

r oot ZXxmem
Wit eFl ash2
xal | oc
Xnmen2r oot
Xmen2xnem

fast fourier transforms

fftcplx
fftcpl xinv
fftreal
fftrealinv
hanncpl x

hannr eal

power spect rum

file system

fclose

fcreate
fcreate_unused
fdel ete
fopen_rd
fopen_wr

fread
fs_format

fs init

fs _reserve_bl ocks
fsck

f seek

fshift

ftell

fwite

Dynamic C User’s Manual

153

floating-point math

acos
acot
acsc
asec
asin
at an
at an2
ceil
cos
cosh
deg
exp

f abs
fl oor
f nod
frexp
| abs
| dexp
| og

| 0g10
nmodf
poly
pow
powlO
rad
rand
r andb
randg
sin
si nh
sqrt

t an

t anh

low-level flash access

fTash_erasechip

fl ash_erasesector

| ash_gettype
lash_init

| ash_read

| ash_readsect or

| ash_sect or 2xwi ndow
I

f
f
f
f
f
flash_witesector

/O

Bl t RdPort E
Bi t RdPort |
Bi t WPort E
Bi t W Port |
RdPort E
RdPor t |
W Port E
W Por t |

interrupts

Get Vect Ext ernZ2000
Get VectIntern
Set Vect Ext er n2000
Set Vectlntern

154

Dynamic C User’s Manual

MicroC/OSH |

ool ni t
OSMhoxAccept
OSMhoxCr eat e
OSMhoxPend
OSMWhoxPost
OSMhoxQuery
OSMenCr eat e
OsSMentet
OSMemPut
OSMemuery
OSQAccept

OSQCr eat e

OSQFl ush
OSQPend

OSQPost
OSQPost Fr ont
OSQQuery
OSSchedLock
OSSchedUnl ock
OSSemAccept
OSSenCr eat e
OSSenPend
OSSemPost
OSSemuery
OSSet Ti ckPer Sec
OSSt ar t
OSStatlnit
OSTaskChangePri o
OSTaskCr eat e
OSTaskCr eat eExt
OSTaskCr eat eHook
OSTaskDe
OSTaskDel Hook
OSTaskDel Req
OSTaskQuery
OSTaskResune
OSTaskSt at Hook
OSTaskSt kChk
OSTaskSuspend
OSTaskSwHook
CSTi neDl y
OSTi meDl yHVEM
OSTi meDl yResumne
OSTi meDl ySec
OSTi meGet

OSTi nmeSet
OSTi meTi ckHook
OSVer si on

miscellaneous

rongj mp
gsort

runwat ch
setjmp

Dynamic C User’s Manual

155

multitasking

CoBegr n
CoPause
CoReset
CoResune
Del ayMs

Del aySec
Del ayTi cks
I nt erval Ms
I nt er val Sec
I nt erval Ti ck
i sCoDone

i sCoRunni ng

number-to-string conversion

ftoa
ht oa
i toa
|t oa
| t oan
ut oa

real-time clock

ki1 ne

mkt m

read_rtc
read_rtc_32kHz
tmrd

tmw

wite rtc

serial communication
(interrupt driven functions)

cof _ser Xgetc
cof ser Xgets
cof _ser Xputc
cof _ser Xputs
cof _ser Xread
cof _serXwrite
ser CheckParity
ser Xcl ose

ser Xdat abits
ser Xfl owcont rol O f
ser Xf | owcontr ol On
ser Xget c

ser Xget Error
ser Xopen
serXparity

ser Xpeek

ser Xput c

ser Xput s
ser Xr dFl ush
ser Xr dFr ee
ser Xr dUsed

ser Xr ead

ser Xwr Fl ush
ser Xwr Fr ee
serXwite

156

Dynamic C User’s Manual

STDIO getchar
gets

kbhi t
out chrs
outstr
printf
put char
put s
sprintf

mencthr
mentnp
mencpy
nmenmove
nmenset
strcat
strchr
strcnp
st r cnpi
strcpy
strcspn
strlen
strncat
strncnp
st rncnpi
st rncpy
strpbrk
strrchr
strspn
strstr
strtok
t ol ower
t oupper

at oi
at ol
strtod
strtol

chkHar dReset
chkSof t Reset
chkWDTO

cl ockDoubl er Of f
cl ockDoubl er On
defi neEr r or Handl er
exit

f or ceSof t Reset
i pres

i pset

premain
_sysl sSof t Reset
sysReset Chai n
updat eTi ners
use32HzGOsc
used ockDi vi der
useMai nCsc

string manipulation

string-to-number conversion

system

Dynamic C User’s Manual 157

watchdog

Di sabl €_HW VDI
hi t wd

VdGet Fr eeW
VdHi t Wi

Vdl ni t

VdRel easeWl

158

Dynamic C User’s Manual

15.2 Alphabetical Listing

abs
int abs(int Xx);
DESCRIPTION
Computes the absolute value of an integer argument.

PARAMETERS

X Integer argument

RETURN VALUE
Absolute value of the argument.

LIBRARY
MATH. LI B

SEE ALSO
f abs

acos
float acos(float x);

DESCRIPTION
Computesthe arccosine of real f | oat valuex.

PARAMETERS

X Assumed to be between -1 and 1.

RETURN VALUE
Arccosine of the argument

If x isout of bounds, the function returns 0 and signals a domain error.

LIBRARY
MATH. LI B

SEE ALSO
cos, cosh, asin, atan

Dynamic C User’s Manual

159

float acot(float x);
DESCRIPTION
Computes the arcotangent of real f | oat valuex.

PARAMETERS

X Assumed to be between -INF and +INF.

RETURN VALUE
Arccotangent of the argument.

LIBRARY
MATH. LI B

SEE ALSO
tan, atan

float acsc(float x);

DESCRIPTION
Computes the arccosecant of real f | oat valuex.

PARAMETERS

X Assumed to be between -INF and +INF.

RETURN VALUE
The arccosecant of the argument.

LIBRARY

MATH. LI B
SEE ALSO

sin, asin

160 Dynamic C User’s Manual

float asec(float x);
DESCRIPTION
Computes the arcsecant of real f | oat vauex.

PARAMETERS

X Assumed to be between -INF and +INF.

RETURN VALUE
The arcsecant of the argument.

LIBRARY
MATH. LI B

SEE ALSO

CcOos, acos

float asin(float x);

DESCRIPTION
Computesthe arcsine of rea f | oat valuex.

PARAMETERS

X Assumed to be between -1 and +1.

RETURN VALUE
The arcsine of the argument.

LIBRARY

MATH. LI B
SEE ALSO

sin, acsc

Dynamic C User’s Manual 161

float atan(fl oat x);

DESCRIPTION
Computesthe arctangent of rea f | oat valuex.

PARAMETERS
X Assumed to be between -INF and +INF.

RETURN VALUE
The arctangent of the argument.

LIBRARY

MATH. LI B
SEE ALSO

tan, acot
162

Dynamic C User’s Manual

at an2

float atan2(float y, float Xx);

DESCRIPTION

Computesthe arctangent of real f | oat valuey/ x to find the angle in radians between
the x-axis and the ray through (0,0) and (x,y).

PARAMETERS
y The point corresponding to the y-axis
X The point corresponding to the x-axis

RETURN VALUE
Arctangent of y/ x.

If bothy and x are zero, thefunction returns 0 and signalsadomain error. Otherwisethe
result isreturned as follows:

angle x#0,yz0

PI/2 x=0,y>0

-PI/2 x=0,y<0

0 x>0,y=0

Pl x<0,y=0

LIBRARY
MATH. LI B

SEE ALSO
acos, asin, atan, cos, sin, tan

Dynamic C User’s Manual 163

at of
float atof(char *sptr);
DESCRIPTION
ANSI String to Float Conversion (UNIX compatible)

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted floating value.
If the conversionisinvalid, xt oxErr issetto 1. Otherwise xt oxErr issettoO.

LIBRARY
STRING. LI B

SEE ALSO

atoi, atol, strtod

at oi
int atoi (char *sptr);
DESCRIPTION

ANSI String to Integer Conversion (UNIX compatible).

PARAMETERS

sptr String to convert.

RETURN VALUE
The converted integer value.

LIBRARY
STRING. LI B

SEE ALSO

atol, atof, strtod

164 Dynamic C User’s Manual

at ol
l ong atol (char *sptr);
DESCRIPTION
ANSI String to Long Conversion (UNIX compatible).

PARAMETERS

sptr String to convert.

RETURN VALUE
The converted long integer value.

LIBRARY
STRING. LI B

SEE ALSO
atoi, atof, strtod

bi t

unsigned int bit(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand this call inline

Reads specified bit at memory address. bi t may befrom 0to 31. Thisis equivaent to
thefollowing expression, but more efficient: (* (1 ong *)address >> bit) & 1

PARAMETERS
addr ess Address of byte containing bits 7-0
bi t Bit location where O represents the least significant bit

RETURN VALUE
1 if specified bit is s,
O if bitisclear.

LIBRARY
UTI L. LIB

SEE ALSO
BI'T

Dynamic C User’s Manual

165

BIT
unsigned int BlIT(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand thiscall inline

Reads specified bit at memory address. bi t may befrom 0to 31. Thisis equivaent to
the following expression, but more efficient: (* (1 ong *) address>>bit) &1

PARAMETERS
addr ess Address of byte containing bits 7-0
bi t Bit location where O represents the least significant bit

RETURN VALUE
1 if specified bitisset; O if bitisclear.

LIBRARY
UTI L. LIB

SEE ALSO
bi t

Bi t RdPort E

int BitRdportE(int port, int bitnunber);

DESCRIPTION
Returns 1 or 0 matching the value of the bit read from the specified externa 1/0 port.

PARAMETERS
port Address of external parallel port data register.
bi t nunmber Bit to read (0-7).

RETURN VALUE
Returns an integer equal to 1 or O matching the value of the bit read.

LIBRARY
SYSIO. LI B

SEE ALSO

RdPortl, BitRdPortl, WWPortl, BitWPortl, RdPortE, W PortE,
Bi t WPortE

166 Dynamic C User’s Manual

Bi t RdPor t |
int BitRdl(int port, int bitnunmber);

DESCRIPTION

Returns 1 or O matching the value of the bit read from the specified internal 1/0 port.

PARAMETERS
port Address of internal parallel port data register.
bi t number Bit to read (0-7).

RETURN VALUE
Returns an integer equal to 1 or 0 matching the value of the bit read.

LIBRARY
SYSIO. LI B

SEE ALSO

RdPortl, WPortl, BitWPortl, BitRdPortE, RdPortE, W PortE,
Bi t WPortE

Dynamic C User’s Manual

167

Bit W PortE

void BitWPortE(int port, char *portshadow, int value, int
bi t code) ;

DESCRIPTION
Updates shadow register at bit with value (0 or 1) and copies shadow to register.
WARNING! A shadow register is required for thisfunction.

PARAMETERS
port Address of externa parallel port data register.
port shadow Reference pointer to a variable to shadow the current value of the
register.
val ue Value of 0 or 1 to be written to the bit position.
bi t code Bit position 0—7.
LIBRARY
SYSI O. LI B
SEE ALSO

RdPortl, BitRdPortl, WPortl, BitW Portl, BitRdPortE, RdPortE,
W Port E

168 Dynamic C User’s Manual

Bit W Portl

void BitWPortl(int port, char *portshadow, int value, int
bi t code) ;

DESCRIPTION

Updates shadow register at position bi t code with value (0 or 1); copies shadow to reg-
ister.

WARNING! A shadow register isrequired for thisfunction.

PARAMETERS
port Address of external parallel port data register.
port shadow Reference pointer to a variable to shadow the current vaue of the
register.
val ue Value of 0 or 1 to be written to the bit position.
bi t code Bit position 0—7.
LIBRARY
SYSIO. LI B
SEE ALSO

RdPortl, BitRdPortl, WWPortl, BitRdPortE, RdPortE, W PortE,
Bit WPortE

Dynamic C User’s Manual 169

ceil
float ceil (float x);
DESCRIPTION
Computes the smallest integer greater than or equal to the given number.
PARAMETERS
X Number to round up.

RETURN VALUE
The rounded up number.

LIBRARY
MATH. LI B

SEE ALSO
floor, fnod

chkHar dReset
i nt chkHardReset(void);

DESCRIPTION

Thisfunction determines whether thisrestart of the board is due to ahardware reset. As-
serting the RESET line or recycling power are both considered hardware resets. A watch-
dog timeout is not a hardware reset.

RETURN VALUE

1: The processor was restarted due to a hardware reset,
0: If itwasnat.

LIBRARY
Sys.lib

170 Dynamic C User’s Manual

chkSof t Reset
int chkSoftReset(void);

DESCRIPTION

This function determines whether this restart of the board is due to a software reset from
Dynamic Coracal tof or ceSof t Reset () .

RETURN VALUE

1: The board was restarted due to a soft reset,
O: If it was not.

LIBRARY

Sys.lib

chkWDTO
int chkWDTQ(void);
DESCRIPTION

This function determines whether this restart of the board is due to a watchdog timeout.

RETURN VALUE

1: If the board was restarted due to a watchdog timeout,
0: If it was not.

LIBRARY
Sys.lib

Dynamic C User’s Manual 171

cl ockDoubl er On

voi d cl ockDoubl erOn();

DESCRIPTION

Enables the Rabbit clock doubler. If the doubler is aready enabled, there will be no ef-
fect. Also attemptsto adjust the communication rate between Dynamic C and the board
to compensate for the frequency change. User seria port rates need to be adjusted accord-
ingly. Also notethat single-stepping through this routine will cause Dynamic C to lose
communication with the target.

LIBRARY
SYS.LIB

SEE ALSO
cl ockDoubl er Of f

cl ockDoubl er Of f

voi d cl ockDoubl er Of f () ;

DESCRIPTION

Disables the Rabbit clock doubler. If the doubler is dready disabled, there will be no ef-
fect. Also attemptsto adjust the communication rate between Dynamic C and the board
to compensate for the frequency change. User seria port rates need to be adjusted accord-
ingly. Alsonotethat single-stepping through this routine will cause Dynamic C to lose
communication with the target.

LIBRARY
SYS.LIB

SEE ALSO
cl ockDoubl er On

172 Dynamic C User’s Manual

CoBegi n
voi d CoBegi n(CoData *p);

DESCRIPTION

Initialize a costatement structure so the costatement will be executed next timeit is en-
countered.

PARAMETERS

p Address of costatement

LIBRARY
COSTATE. LI B

cof ser Xgetc
int cof _serXgetc(); /* where X = A|B|C| D */

DESCRIPTION

Thissingle-user cofunction yieldsto other tasksuntil acharacter isread from port X. This
function only returns when a character is successfully written. It is non-reentrant.

RETURN VALUE
Aninteger with the character read into the low byte

LIBRARY
RS232. LI B

EXAMPLE

/'l echoes characters
main() {
int c;
ser Xopen(19200) ;
| copinit();
while (1) {
| oophead() ;
wid ¢ = cof _serAgetc();
wfd cof _serAputc(c);

ser Acl ose() ;

Dynamic C User’s Manual

173

cof _ser Xgets

int cof _serXgets(char *s, int max, unsigned |long tnmout);
/* where X = AB|C|D */

DESCRIPTION

This single-user cofunction reads characters from port X until a NULL terminator, line-
feed, or carriage return character isread, max charactersareread, or until t nout milli-
seconds transpires between charactersread. A timeout will never occur if no characters
have been received. This function is non-reentrant.

It yieldsto other tasks for aslong as the input buffer islocked or whenever the buffer be-
comes empty as characters are read. s will always be NULL terminated upon return.

PARAMETERS
s Character array into which aNULL terminated string is read.
max The maximum number of charactersto read into s.
t mout Millisecond wait period to allow between characters before timing

out.

RETURN VALUE

1if CRor max bytesreadinto s
0 if function times out before reading CR or max bytes

LIBRARY
RS232. LI B

EXAMPLE

/1l echoes NULL term nated character strings

mai n() {
i nt get OK;
char s[16];
ser Aopen(19200) ;
| oopinit();
while (1) {
| oophead() ;
costate {
wfd get Ok = cof _serAgets (s, 15, 20);
if (getk)
wfd cof serAputs(s);
el se { [/ timed out: s null termn nated,
} /1l but inconplete
}

ser Acl ose();

174 Dynamic C User’s Manual

cof _ser Xputc
voi d cof _serXputc(int c); /* where X = A B|C|D */

DESCRIPTION

This single-user cofunction writes a character to serial port X, yielding to other tasks
when the input buffer islocked. Thisfunction is non-reentrant.

PARAMETERS

c Character to write.

LIBRARY
RS232. LI B

EXAMPLE

/'l echoes characters
main() {
int c;
ser Aopen(19200) ;
| oopinit();
while (1) {
| oophead() ;
wid ¢ = cof _serAgetc();
wfd cof serAputc(c);

ser Acl ose();

Dynamic C User’s Manual

175

cof _ser Xputs
voi d cof _ser Xputs(char *str); /* where X = A B|C|D */

DESCRIPTION

This single-user cofunction writesa NULL terminated string to port X. It yieldsto other
tasks for aslong as the input buffer may be locked or whenever the buffer may become
full as characters are written. This function is non-reentrant.

PARAMETERS

str NUL L -terminated character string to write.

LIBRARY
RS232. LI B

EXAMPLE

/[l wites a null-term nated character string, repeatedly
mai n() {
const char s[] = "Hello z-World"
ser Aopen(19200) ;
| oopinit();
while (1) {
| oophead() ;
costate {
wfd cof _serAputs(s);
}
}

ser Acl ose();

176 Dynamic C User’s Manual

cof _ser Xread

int cof _serXread(void* data, int |length, unsigned | ong tnout);
/* where X = AB|C|D */

DESCRIPTION

Thissingle-user cofunction reads| engt h characters from port X or until t rout milli-
secondstranspires between charactersread. It yieldsto other tasksfor aslong astheinput
buffer islocked or whenever the buffer becomes empty as charactersareread. A timeout
will never occur if no characters have been read. This function is non-reentrant.

PARAMETERS
dat a Data structure into which characters are read.
| ength The number of charactersto read into dat a.
t nout Millisecond wait period to alow between characters before timing

out.

RETURN VALUE
Number of charactersread into dat a.

LIBRARY
RS232. LI B

EXAMPLE

/'l echoes a block of characters
mai n() {
int n;
char s[16];
ser Aopen(19200) ;
| oopinit();
while (1) {
| oophead() ;
costate {
wfd n = cof _serAread(s, 15, 20);
wfd cof _serAwrite(s, n);
}
}

ser Acl ose();

Dynamic C User’s Manual 177

cof _serXwrite

void cof _serXwrite(void *data, int
/* where X = A B|C| D */

DESCRIPTION

| ength);

Thissingle-user cofunction writes| engt h bytesto port X. It yieldsto other tasksfor as
long asthe input buffer islocked or whenever the buffer becomes full as characters are

written. This function is non-reentrant.

PARAMETERS

dat a Data structure to write.

| ength Number of bytesin dat a to write.
LIBRARY

RS232. LI B
EXAMPLE

/1 wites a block of characters, repeatedly

main() {
const char s[] = "Hello z-World"
ser Aopen(19200) ;
| oopinit();
while (1) {
| oophead() ;
costate {

}

wfd cof _serAwrite(s, strlen(s));

}

ser Acl ose();

178

Dynamic C User’s Manual

CoPause
voi d CoPause(CoData *p);

DESCRIPTION

Pause execution of a costatement so that it will not run the next timeit is encountered un-
lessand until CoResune(p) or CoBegi n(p) arecalled.

PARAMETERS

p Address of costatement

LIBRARY
COSTATE. LI B

CoReset

voi d CoReset (CoData *p);

DESCRIPTION

Initializes a costatement structure so the costatement will not be executed next timeitis
encountered (unless the costatement is declared to beal ways_on).

PARAMETERS

p Address of costatement

LIBRARY
COSTATE. LI B

Dynamic C User’s Manual 179

voi d CoResune(CoData *p);
DESCRIPTION
Resume execution of a costatement that has been paused.

PARAMETERS
p Address of costatement

LIBRARY
COSTATE. LI B

float cos(float Xx);

DESCRIPTION
Computes the cosine of real float value x (radians).

PARAMETERS
X Radian value to compute

RETURN VALUE
Cosine of the argument.

LIBRARY
MATH. LI B

SEE ALSO

acos, cosh, sin, tan

180 Dynamic C User’s Manual

cosh

float cosh(float x);

DESCRIPTION
Computes the hyperbolic cosine of real FLOAT vauex.

PARAMETERS

X value to compute

RETURN VALUE
Hyperbolic cosine

If [x| >89.8 (approx.), the function returns INF and signals arange error.

LIBRARY
MATH. LI B

SEE ALSO
cos, acos, sin, sinh, tan, tanh

defi neError Handl er

voi d defi neErrorHandl er(void *errfcn)

DESCRIPTION

Setsthe BIOS function pointer for runtime errorsto the function pointedtoby er r f cn.
When aruntime error occurs, the following information is passed to the error handler on
the stack:

SP+0-return address for exceptionRet

SP+2-Error code

SP+4 - 0x0000 (can be used for additional information)
SP+6 - XPC when exception() was cal | ed (upper byte)
SP+8 - addr ess wher e exception() was cal | ed

Theuser-defined function should ALWAY Sbeinroot memory. Specify r oot at thestart
of the function definition to ensure this.

PARAMETERS

errfcn Pointer to user-defined runtime error handler.

LIBRARY
SYS.LIB

Dynamic C User’s Manual

181

deg
float deg(float Xx);
DESCRIPTION
Changesf | oat radiansx to degrees

PARAMETERS

X Radian value to convert

RETURN VALUE
Angleindegrees(af | oat).

LIBRARY
MATH. LI B

SEE ALSO
rad

Del ayMs
int Del ayMs(l ong del ayns) ;

DESCRIPTION

Millisecond time mechanism for the costatement "waitfor" constructs. Theinitial cal to
thisfunction startsthe timing. Thefunction returns zero and continuesto return zero until
the number of milliseconds specified has passed.

PARAMETERS

del ayns The number of milliseconds to wait.

RETURN VALUE
1 if the specified number of milliseconds have elapsed; else 0.

LIBRARY
COSTATE. LI B

182 Dynamic C User’s Manual

Del aySec
int Del aySec(l ong del aysec);

DESCRIPTION

Second time mechanism for the costatement "waitfor" constructs. The initial call to this
function startsthe timing. The function returns zero and continuesto return zero until the
number of seconds specified has passed.

PARAMETERS
del aysec The number of secondsto wait.

RETURN VALUE
1 if the specified number of seconds have elapsed; else 0.

LIBRARY
COSTATE. LI B

Del ayTi cks
int Del ayTi cks(unsigned ticks);

DESCRIPTION

Tick time mechanism for the costatement "waitfor" constructs. Theinitial call to this
function startsthe timing. The function returns zero and continuesto return zero until the
number of ticks specified has passed.

1 tick = 1/1024 second.

PARAMETERS

ticks The number of ticks to wait.

RETURN VALUE
1 if the specified tick delay has elapsed; else 0.

LIBRARY
COSTATE. LI B

Dynamic C User’s Manual 183

Di sabl e HW WDT
voi d Di sabl e HW VWDT() ;

DESCRIPTION

Disables the hardware watchdog timer on the Rabbit processor. Note that the watchdog
will be enabled again just by hitting it. The watchdog is hit by the periodic interrupt,
which is on by default. Thisfunction is useful for special situations such aslow power
“deepy mode”.

LIBRARY
SYS.LIB

exit
void exit(int exitcode);

DESCRIPTION

Stopstheprogramand returnsexi t code to Dynamic C. Dynamic C usesvauesabove
128 for run-time errors. When not debugging, exi t will run aninfinite loop, causing a
watchdog timeout if the watchdog is enabled.

PARAMETERS

exi t code Error code passed by Dynamic C

LIBRARY
SYS.LIB

184 Dynamic C User’s Manual

exp
float exp(float x);
DESCRIPTION
Computes the exponentia of real f | oat valuex.
PARAMETERS
X Value to compute

RETURN VALUE
Returns the value of eX.

If x >89.8 (approx.), the function returns INF and signalsarange error. 1f x <—89.8 (ap-
prox.), the function returns 0 and signals arange error.

LIBRARY
MATH. LI B

SEE ALSO
| og, 10gl0, frexp, |dexp, pow, powlO, sqrt

f abs
float fabs(float x);
DESCRIPTION
Computesthe float absolutevalueof fl oat X.
PARAMETERS
X Value to compute

RETURN VALUE

X, if x >=0,
dse- x.

LIBRARY
MATH. LI B

SEE ALSO
abs

Dynamic C User’s Manual 185

fcl ose
void fclose(File* f);
DESCRIPTION
Closes afile.

PARAMETERS

f The pointer to the file to close.

LIBRARY
FI LESYSTEM LI B

fcreate
int fcreate(File* f, FileNunber fnum;

DESCRIPTION
Thisfunction createsafile. Beforecallingit, avariable of type Fi | e must bedefinedin
the application program.

File file;
fcreate (&file, 1);

PARAMETERS
f The pointer to the created file.
f num Thisisanumber from 1 through 127. Each fileintheflash file sys-
tem is assigned a unique number in this range that is chosen by the
user.

RETURN VALUE

0 - success
1 - failure

LIBRARY
FI LESYSTEM LI B

186 Dynamic C User’s Manual

fcreate_unused

Fi | eNunber fcreate unused(File* f);

DESCRIPTION
Searches for the first unused file number in the range 1 through 127, and creates afile
with that number.

PARAMETERS
f The pointer to the created file.

RETURN VALUE
TheFi | eNunber (1-127) of the new fileif success.

LIBRARY
FI LESYSTEM LI B

SEE ALSO

fcreate

fdel ete
int fdelete(FileNunber fnum;

DESCRIPTION
Deletes afile.

PARAMETERS

f num A number in the range 1 through 127 that identifiesthefile in the
flash file system.

RETURN VALUE

0 - success
1 - failure

LIBRARY
FI LESYSTEM LI B

Dynamic C User’s Manual 187

fftcplx
void ffteplx(int *x, int N, int *blockexp)

DESCRIPTION

Computes the complex DFT of the N-point complex sequence contained in the array x
and returns the complex resultin x. Nmust be apower of 2 and lie between 4 and 1024.
Aninvalid N causes a RANGE exception. The N-point complex sequencein array X is
replaced with its N-point complex spectrum. Thevaueof bl ockexp isincreased by 1
each time array x has to be scaled to avoid arithmetic overflow.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

bl ockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal,
power spectrum

188 Dynamic C User’s Manual

fftcpl xinv
void ffteplxinv(int *x, int N, int *bl ockexp)

DESCRIPTION

Computes the inverse complex DFT of the N-point complex spectrum contained in the
array x and returns the complex result in x. N must be apower of 2 and lie between 4
and 1024. Aninvalid N causes a RANGE exception. Thevalueof bl ockexp isin-
creased by 1 each time array X hasto be scaled to avoid arithmetic overflow. Thevaue
of bl ockexp isalso decreased by logoNto includethe 1/Nfactor in the definition of the
inverse DFT

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

bl ockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftreal, fftrealinv, hanncplx, hannreal,
power spectrum

Dynamic C User’s Manual

189

fftreal

void fftreal (int *x, int N, int *blockexp)

DESCRIPTION

Computes the N-point, positive-frequency complex spectrum of the 2N-point real se-
guencein array X. The 2N-point real sequencein array x isreplaced with its N-point pos-
itive-frequency complex spectrum. Thevaueof bl ockexp isincreased by 1 each
time array X hasto be scaled to avoid arithmetic overflow.

Theimaginary part of the X[0] term (stored in X[1]) is set to the real part of the fmax term.

The 2N-point real sequenceisstored in natural order. The zeroth element of the sequence
isstoredinx[0] , thefirst element in X[1] , and the kth element in x[K].

N must be a power of 2 and lie between 4 and 1024. Aninvalid N causes a RANGE ex-
ception.

PARAMETERS
X Pointer to 2N-point sequence of real fractions.
N Number of complex elements in output spectrum

bl ockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftrealinv, hanncpl x, hannreal,
power spectrum

190 Dynamic C User’s Manual

fftrealinv

void fftrealinv(int *x, int N, int *bl ockexp)

DESCRIPTION

Computes the 2N-point real sequence corresponding to the N-point, positive-frequency
complex spectrum in array x. The N-point, positive-frequency spectrum contained in ar-
ray X isreplaced with its corresponding 2N-point real sequence. Thevalue of blockexp
isincreased by 1 each time array x hasto be scaled to avoid arithmetic overflow. The
valueof bl ockexp isalso decreased by logoNto includethe 1/Nfactor in the definition
of theinverse DFT.

The function expectsto find the real part of the fmax term in the imaginary part of the
zero-frequency X[0] term (stored x[1]).

The 2N-point real sequenceisstored in natural order. The zeroth element of the sequence
isstoredin x[0] , thefirst element in X[1] , and the kth element in x[K] .

N must be apower of 2 and lie between 4 and 1024. Aninvalid N causes aRANGE ex-
ception.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.

bl ockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, hanncplx, hannreal,
power spectrum

Dynamic C User’s Manual 191

flash_erasechip

void flash_erasechi p(Fl ashDescriptor* fd);

DESCRIPTION
Erases an entire Flash Memory chip.

NOTE: f d must have already beeninitiaized withf | ash_i ni t before caling this
function. Seef | ash_i ni t description for further restrictions.

PARAMETERS

fd Pointer to flash descriptor of the chip to erase.

LIBRARY
FLASH. LI B

SEE ALSO

flash_erasesector, flash gettype, flash_ init, flash_read,
flash_readsector, flash_sector2xw ndow, flash writesector

flash_erasesect or
int flash_erasesector(FlashDescriptor* fd, word which);

DESCRIPTION
Erases a sector of a Flash Memory chip.

NOTE: f d must have already beeninitialized withf | ash_i ni t before calling this
function. Seef | ash_i ni t description for further restrictions.

PARAMETERS
fd Pointer to flash descriptor of the chip to erase a sector of.
whi ch The sector to erase.

RETURN VALUE
0 - success

LIBRARY
FLASH. LI B

SEE ALSO

flash_erasechip, flash gettype, flash_ init, flash_read,
flash_readsector, flash_sector2xw ndow, flash writesector

192 Dynamic C User’s Manual

flash_gettype

int flash_gettype(Fl ashDescriptor* fd);

DESCRIPTION
Returns the 16-bit Flash Memory type of the Flash Memory.

NOTE: f d must have already been initiaized withf | ash_i ni t before caling this
function. Seef | ash_i ni t description for further restrictions.

PARAMETERS

fd TheFl ashDescr i pt or of the memory to query.

RETURN VALUE
The integer representing the type of the Flash Memory.

LIBRARY
FLASH. LI B

SEE ALSO

flash_erasechip, flash _erasesector, flash_init, flash_read,
flash_readsector, flash_sector2xw ndow, flash writesector

Dynamic C User’s Manual

193

flash_init
int flash_init(FlashDescriptor* fd, int nb3cr);

DESCRIPTION

Initializes an internal data structure of type FI ashDescr i pt or with information
about the Flash Memory chip. The Memory Interface Unit bank register (MB3CR) will
be assigned the value of nb3cr whenever afunction accesses the Flash Memory refer-
enced by f d. Seethe Rabbit 2000 Users Manual for the correct chip select and wait state
settings.

NOTE: Improper use of thisfunction can cause your program to be overwritten or operate
incorrectly. This and the other Flash Memory access functions should not be used on the
same Flash Memory that your program resides on, nor should they be used on the same
region of asecond Flash Memory where afile system resides.

UseW it eFl ash() towriteto the primary Flash Memory.

PARAMETERS
fd Thisisapointer to an internal data structure that holdsinformation
about a Flash Memory chip.
nmb3cr Thisisthe value to set MB3CR to whenever the Flash Memory is

accessed. Oxc2 (i.e., CS2, /OEQ, /WED, 0WS) isatypica setting for
the second Flash Memory on the TCP/IP Dev Kit, the Intellicom,
the Advanced Ethernet Core, and the RabbitLink.

RETURN VALUE

0 on success
1 if invalid Flash Memory type
- 1 for an attempt to initialize primary Flash Memory

LIBRARY
FLASH. LI B

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype,
flash_read, flash readsector, flash_sector2xw ndow,
flash_witesector

194 Dynamic C User’s Manual

flash_read

int flash_read(Fl ashDescriptor* fd, word sector, word offset,
unsi gned | ong buffer, word | ength);

DESCRIPTION
Reads data from the Flash Memory and storesitin buf f er .

NOTE: f d must have already beeninitialized withf | ash_i ni t before calling this
function. Seethef | ash_i ni t description for further restrictions.

PARAMETERS

fd TheFl ashDescr i pt or of the Flash Memory to read from.

sector The sector of the Flash Memory to read from.

of f set Thedisplacement, in bytes, from the beginning of the sector to start
reading at.

buf f er The physical address of the destination buffer. TIP: A logical ad-
dress can be changed to a physicd with the function paddr .

| ength The number of bytesto read.

RETURN VALUE
0 on success

LIBRARY
FLASH. LI B

SEE ALSO

fl ash_erasechip, flash_erasesector, flash_gettype,
flash_init, flash_ readsector, flash_sector2xw ndow,
flash_writesector, paddr

Dynamic C User’s Manual 195

flash_readsect or

int flash_readsector (Fl ashDescriptor* fd, word sector, unsi gned
| ong buffer);

DESCRIPTION
Reads the contents of an entire sector of Flash Memory into a buffer.

NOTE: f d must have already beeninitialized withf | ash_i ni t before calling this
function. Seef | ash_i ni t description for further restrictions.

PARAMETERS
fd The FlashDescriptor of the Flash Memory to read from.
sect or The source sector to read.
buf f er The physical address of the destination buffer. TIP: A logical ad-

dress can be changed to a physical with the function paddr .

RETURN VALUE
0 on success

LIBRARY
FLASH. LI B

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype,
flash_init, flash_read, flash_sector2xw ndow,
flash_witesector

196 Dynamic C User’s Manual

flash_sect or 2xwi ndow

voi d* flash_sector 2xwi ndow(Fl ashDescri ptor* fd, word sector);

DESCRIPTION

This function setsthe MB3CR and X PC value so the requested sector falls within the
XPC window. The MB3CR isthe Memory Interface Unit bank register. XPC is one of
four Memory Management Unit registers. Seef | ash_i ni t description for restric-

tions.

PARAMETERS
fd The FlashDescriptor of the Flash Memory.
sect or The sector to set the XPC window to.

RETURN VALUE
Thelogica offset of the sector.

LIBRARY
FLASH. LI B

SEE ALSO

flash_erasechip, flash_erasesector, flash _gettype,
flash_init, flash read, flash _readsector, flash witesector

Dynamic C User’s Manual

197

flash_witesector

int flash_writesector(FlashDescriptor* fd, word sector,
unsi gned | ong buffer);

DESCRIPTION

Writesthe contents of buf f er tosect or onthe Flash Memory referenced by f d.
NOTE: f d must have already beeninitialized withf | ash_i ni t before calling this
function. Seef | ash_i ni t description for further restrictions.

PARAMETERS
fd The FlashDescriptor of the Flash Memory to write to.
sect or The destination sector.
buf f er The physical address of the source. TIP: A logical address can be

changed to a physical address with the function paddr

RETURN VALUE
0 on success

LIBRARY
FLASH. LI B

SEE ALSO

flash_erasechip, flash_erasesector, flash_gettype,
flash_init, flash read, flash_readsector,
flash_sect or 2xwi ndow

198 Dynamic C User’s Manual

floor
float floor(float x);

DESCRIPTION

Computes the largest integer less than or equal to the given number.

PARAMETERS

X Value to round down

RETURN VALUE
Rounded down value

LIBRARY
MATH. LI B
SEE ALSO
ceil, fnod
f nod

float frod(float x, float y);

DESCRIPTION
Calculates modulo math.

PARAMETERS
X Dividend
y Divisor

RETURN VALUE

Returnsthe remainder of x/y. Theremaining part of x after all multiples of y have been
removed. For example, if x is22.7 andy is10.3, theintegra divisonresultis2. Then

theremainder =22.7-2x 10.3=2.1.

LIBRARY
MATH. LI B

SEE ALSO

ceil, floor

Dynamic C User’s Manual

199

fopen_rd
in fopen_rd(File* f, FileNunber fnum;

DESCRIPTION
Opens afilefor reading.

PARAMETERS
f A pointer to thefileto read.
f num A number in the range 1 through 127 that identifies the file in the

flash file system.

RETURN VALUE

0 on success
1 onfailure

LIBRARY
FI LESYSTEM LI B

f open_wr
in fopen_ w(File* f, FileNunber fnum;

DESCRIPTION
Opens afilefor writing.

PARAMETERS
f A pointer to thefile to write.
f num A number in the range 1 through 127 that identifiesthefile in the
flash file system.
RETURN VALUE
0 on success
1 onfailure
LIBRARY

FI LESYSTEM LI B

200 Dynamic C User’s Manual

f or ceSof t Reset
voi d forceSoftReset();

DESCRIPTION
Forces the board into a software reset by jumping to the start of the BIOS.

LIBRARY
SYS.LIB

fread
int fread(File* f, char* buf, int len);

DESCRIPTION

Reads| en bytesfrom afilepointedtoby f , starting at the current offset into thefile, into
buffer. Datais read into buffer pointed to by buf .

PARAMETERS
f A pointer to thefileto read from
buf A pointer to the destination buffer.
l en Number of bytesto copy.

RETURN VALUE
Number of bytes read.

LIBRARY
FI LESYSTEM LI B

Dynamic C User’s Manual 201

frexp

float frexp(float x, int *n);

DESCRIPTION
Splits x into afraction and exponent, f*(2**n)

PARAMETERS
X Number to split
n An integer

RETURN VALUE

The function returns the exponent in the integer * n and the fraction between 0.5, inclu-
sveand 1.0.

LIBRARY
MATH. LI B

SEE ALSO
exp, |dexp

202 Dynamic C User’s Manual

fs_formt

int fs format(long reservebl ocks, int num bl ocks, unsi gned | ong
wear | evel) ;

DESCRIPTION

Initializes the interna data structures and file system. All blocksin the file system are
erased.

PARAMETERS

reservebl ocks Starting address of the flash file system. When FS_FLASH s
defined this value should be 0 or amultiple of the block size.
When FS_RAMis defined this parameter isignored.

num bl ocks The number of blocks to allocate for the file system. With ade-
fault block size of 4096 bytes and a 256K Flash Memory, this
value might be 64.

wear | evel Thisvalue should be 1 on anew Flash Memory, and some high-

er value on an unformatted used Flash Memory. If you are re-
formatting a Flash Memory you can set wear | evel to0to
keep the old wear leveling.

RETURN VALUE
0 on success; 1 on failure

LIBRARY
FI LESYSTEM LI B

EXAMPLE
This program can befoundinsanpl es/ fi | esysteni f or mat . c.

#defi ne FS_FLASH
#use "filesystem|lib"
#defi ne RESERVE O
#def i ne BLOCKS 64
#def i ne VEAR 1

mai n() {
i f(fs_format (RESERVE, BLOCKS, V\EAR)) {
printf("error formating flash\n");
} else {
printf("flash successfully formatted\n");

Dynamic C User’s Manual 203

fs init
int fs_ init(long reservebl ocks, int num bl ocks);

DESCRIPTION

Initialize the internal data structures for an existing file system. Blocksthat are used by
afile are preserved and checked for dataintegrity.

PARAMETERS

reservebl ocks Starting address of the flash file system. When FS_FLASH s
defined this value should be 0 or amultiple of the block size.
When FS_RAMis defined this parameter isignored.

num bl ocks The number of blocks that the file system contains. By default
the block size is 4096 bytes.

RETURN VALUE

0 on success
1 onfailure

LIBRARY
FI LESYSTEM LI B

204 Dynamic C User’s Manual

fs reserve_bl ocks
int fs reserve_bl ocks(int bl ocks);

DESCRIPTION

Sets up anumber of blocksthat are guaranteed to be available for privileged files. A priv-
ileged file has an identifying number in the range 128 through 143. This function is not
needed in most cases. If itisused, it should be called immediately afterfs_init or

fs format.

PARAMETERS

bl ocks Number of blocksto reserve.

RETURN VALUE

0 on success
1 onfailure

LIBRARY
FI LESYSTEM LI B

f sck
int fsck(int flash);

DESCRIPTION
Check the filesystem for errors

PARAMETERS
flash A bitmask indicating which checkstoNOT perform. Thefollowing
checksare available:

FSCK_HEADERS - Block headers.
FSCK _CHECKSUNMS - Data checksums.
FSCK_VERSI ON - Block versions, from afailed write.

RETURN VALUE

0 on success;
I 0 onfailure, thisis abitmask indicating which checks failed.

LIBRARY
FI LESYSTEM LI B

Dynamic C User’s Manual 205

f seek
int fseek(File* f, long to, char whence);

DESCRIPTION
Places the read pointer at adesired location in thefile.

PARAMETERS
f A pointer to thefile to seek into.
to The number of bytes to move the read pointer. This can be aposi-
tive or negative number.
whence Thelocation inthe file to offset from. Thisis one of the following
constants.
SEEK_SET - Seek from the beginning of thefile.
SEEK_CUR - Seek from the current read position in the file.
SEEK _END - Seek from the end of thefile.
EXAMPLE

To seek to 10 bytesfrom the end of thefilef ,usef seek(f, -10, SEEK END) ;.
Torewind thefilef by 5 bytes, usef seek(f, -5, SEEK CUR);.

RETURN VALUE

0 on success
1 onfailure

LIBRARY
FI LESYSTEM LI B

206 Dynamic C User’s Manual

ftel
long ftell (File* f);

DESCRIPTION
Gets the offset from the beginning of afile that the read pointer is currently at.

TIP:ftell () canbeusedwithf seek() tofindthelength of afile.

fseek(f, 0, SEEK _END); /* seektotheend of thefile*/
FileLength = ftell (f); /*findthelength of thefile*/

PARAMETERS

f A pointer to thefile to query.

RETURN VALUE

The offset in bytes of the read pointer from the beginning of the file.
- 1 onfailure.

LIBRARY
FI LESYSTEM LI B

fshift

int fshift(File *f, int count, char *buffer);

DESCRIPTION
Removescount number of bytesfrom the beginning of afileand copiesthemtobuf f -
er.
PARAMETERS
f A pointer to thefile.
count Number of bytesto shift out.
buf f er Buffer to store shifted bytes. If thisis NULL, the byteswill be dis-
carded.
RETURN VALUE
Number of bytes shifted out;
0 oneror.
LIBRARY

FI LESYSTEM LI B

Dynamic C User’s Manual 207

fwite
int fwite(File* f, char* buf, int len);

DESCRIPTION
Appends| en bytesfrom the source buffer to the end of thefile.

PARAMETERS
f A pointer to thefile to write to.
buf A pointer to the source buffer.
l en The number of bytesto write.

RETURN VALUE

The number of bytes written if successful;
0 onfailure.

LIBRARY
FI LESYSTEM LI B

ftoa
int ftoa(float f, char *buf);

DESCRIPTION
Converts afloat number to a character string.
The character string only displays the mantissa up to 12 digits, no decimal points. The

function returns the exponent (of 10) that should be used to compensate for the string:
ftoa(1. 0, buf) yieldsbuf ="1000000000", and returns- 10.

PARAMETERS
f Float number to convert
buf Converted string. The string is no longer than 12 characterslong.

RETURN VALUE
The exponent of the number.

LIBRARY
STDI O. LI B

SEE ALSO
utoa, itoa

208 Dynamic C User’s Manual

get char

char getchar(void);

DESCRIPTION

Busy waits for a character to be typed from the stdio window in Dynamic C. The user
should make sure only one process calls thisfunction at atime.

RETURN VALUE
A character typed in the stdio window in Dynamic C.

LIBRARY
STDI O. LI B

SEE ALSO
gets, putchar

getcrc

int getcrc(char *dataarray, char count, int accum;

DESCRIPTION

Computes the Cyclic Redundancy Check (CRC), or check sum, for count bytes (max-
imum 255) of datain buffer. Callstoget cr ¢ can be"concatenated” using accumto
compute the CRC for alarge buffer.

PARAMETERS
dat aarray Data buffer
count Number of bytes. Max is255.
accum Base CRC for the data array.

RETURN VALUE
CRC value.

LIBRARY
MATH. LI B

Dynamic C User’s Manual 209

gets
char *gets(char *s);

DESCRIPTION

Waitsfor astring terminated by <CR> at the stdio window. The string returned is NULL-
terminated without the return. The user should make sure only one process calls this
function at atime.

PARAMETERS

S Theinput string is put to the location pointed to by theargument s.
Thecaller isresponsible to make surethe location pointedto by s is
big enough for the string.

RETURN VALUE
Same pointer passed in, but string is changed to a NUL L-terminated.

LIBRARY
STDI O. LI B

SEE ALSO

puts, getchar

Get Vect Ext er n2000
unsi gned Get Vect Ext er n2000() ;

DESCRIPTION

Reads the address of external interrupt table entry. Thisfunction really just returnswhat is
present inthetable. Thereturn valueis meaninglessif the address of the externa interrupt
has not been written.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
Get Vect I ntern, SetVect Extern2000, SetVectlntern

210 Dynamic C User’s Manual

CGet Vectlntern
unsi gned Get Vectlntern(int vectNum;

DESCRIPTION

Reads the address of the internal interrupt table entry and returns whatever valueis a the
address(i nternal vector table base) + (vectNuntl16) + 1.

PARAMETER

vect Num Interrupt number; should be 0-15.

RETURN VALUE
Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
Get Vect Ext ern2000, Set Vect Ext ern2000, Set Vectlntern

Dynamic C User’s Manual

211

hanncpl x
voi d hanncpl x(int *x, int N, int *blockexp)

DESCRIPTION

Convolves an N-point complex spectrum with the three-point Hann kerndl. The filtered
spectrum replaces the original spectrum.

The function produces the same results as would be obtained by multiplying the corre-
sponding time sequence by the Hann rai sed-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is4 DFT bins.
The adjacent sidelobes are 32 db below themain lobe. Sidelobes decay at an asymptotic
rate of 18 db per octave.

N must be apower of 2 and lie between 4 and 1024. Aninvalid N causes a RANGE ex-
ception.

PARAMETERS
X Pointer to N-dlement array of complex fractions.
N Number of complex elementsin array x.

bl ockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx,
power spectrum

212 Dynamic C User’s Manual

hannr eal

void hannreal (int *x, int N, int *blockexp)

DESCRIPTION

Convolves an N-point positive-frequency complex spectrum with the three-point Hann
kernel. The function produces the same results as would be obtained by multiplying the
corresponding time sequence by the Hann rai sed-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is4 DFT hins.
The adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic
rate of 18 db per octave.

Theimaginary part of thedc term (stored inx[1]) isconsidered to bethereal part of the
fmax term. The dc and fmax spectral componentstake part in the convolution along with
the other spectral components. The real part of fmax component affects the real part of
the X[N-1] component (and vice versa), and should not arbitrarily be set to zero unless
these components are unimportant.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elementsin array x.
bl ockexp Pointer to integer block exponent.

RETURN VALUE
None. Thefiltered spectrum replacesthe original spectrum.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx,
power spectrum

Dynamic C User’s Manual 213

hi t wd
voi d hitwd();

DESCRIPTION

Hitsthewatchdog timer, postponing ahardware reset for 2 seconds. Unlessthewatchdog
timer isdisabled, a program must call thisfunction periodically, or the controller will au-
tomatically reset itself. If the virtual driver isenabled (which it is by default), it will call

hi t wd in the background. The virtual driver also makes additional “virtual” watchdog
timers available.

LIBRARY
VDRI VER. LI B

ht oa

char *htoa(int value, char *buf);

DESCRIPTION
Convertsinteger val ue to hexidecima number and puts result into buf .

PARAMETERS
val ue 16-bit number to convert
buf Character string of converted number

RETURN VALUE
Pointer to end (NULL terminator) of string in buf .

LIBRARY
STDI O. LI B

SEE ALSO
itoa, utoa, |toa

214 Dynamic C User’s Manual

| nt erval Ms
int Interval Ms(long ns);

DESCRIPTION

Similar to Del ayMs but provides a periodic delay based on the time from the previous
cdl. Intended for usewithwai t f or.

PARAMETERS

s The number of milliseconds to wait.

RETURN VALUE
0 if not finished, 1 if delay has expired.

LIBRARY
COSTATE. LI B

I nt erval Sec
int Interval Sec(|ong sec);

DESCRIPTION

Similar to Del ayMs but provides a periodic delay based on the time from the previous
cal. Intended for usewithwai t f or.

PARAMETERS

sec The number of secondsto delay.

RETURN VALUE
0 if not finished, 1 if delay has expired.

LIBRARY
COSTATE. LI B

Dynamic C User’s Manual 215

int Interval Tick(long tick);

DESCRIPTION

Providesaperiodic delay based on the time from the previouscall. Intended for usewith
wai t f or. A tick is1/1024 seconds.

PARAMETERS

tick The number of ticksto delay

RETURN VALUE
0 if not finished, 1 if delay has expired.

LIBRARY
COSTATE. LI B

voi d ipres(void);

DESCRIPTION
Dynamic C expandsthis call inline. Restore previousinterrupt priority by rotating the IP
register.

LIBRARY
UTIL.LIB

SEE ALSO
i pset

216 Dynamic C User’s Manual

I pset
voi d ipset(int priority)

DESCRIPTION

Dynamic C expandsthis call inline. Replaces current interrupt priority with another by
rotating the new priority into the | P register.

PARAMETERS
priority Interrupt priority range 0—3, lowest to highest priority.

LIBRARY
UTI L. LIB

SEE ALSO

i pres

i sal num
int isalnum(int c);
DESCRIPTION

Tests for an a phabetic or numeric character, (Ato Z,atozand 0t0 9).
PARAMETERS
c Character to test.

RETURN VALUE

0 if not an aphabetic or numeric character;
! 0 otherwise.

LIBRARY
STRING. LI B

SEE ALSO
i sal pha,isdigit,ispunct

Dynamic C User’s Manual 217

int isal pha(int c);

DESCRIPTION
Tests for an aphabetic character, (A to Z, or ato z).
PARAMETERS
c Character to test.

RETURN VALUE

0 if not a aphabetic character,
I 0 otherwise.

LIBRARY
STRING. LI B

SEE ALSO
isalnum isdigit, ispunct

int iscntrl(int c);

DESCRIPTION

Tests for a control character: 0 <=c <= 31 or c == 127.
PARAMETERS

c Character to test.

RETURN VALUE

0 if not acontrol character;
I 0 otherwise.

LIBRARY
STRING. LI B

SEE ALSO
i sal pha,isal numisdigit,ispunct

218 Dynamic C User’s Manual

int i sCoDone(CoData *p);

DESCRIPTION
Determine if costatement is initialized and not running.

PARAMETERS
p Address of costatement

RETURN VALUE
1 if costatement isinitialized and not running;
0 otherwise.

LIBRARY
COSTATE. LI B

i nt i sCoRunni ng(CoData *p);

DESCRIPTION
Determineif costatement is stopped or running

PARAMETERS
p Address of costatement

RETURN VALUE

1 if costatement is running
0 otherwise.

LIBRARY
COSTATE. LI B

Dynamic C User’s Manual 219

int isdigit(int c);

DESCRIPTION
Testsfor adecimal digit: 0-9

PARAMETERS

c Character to test.

RETURN VALUE

0 if not adecima digit;
I 0 otherwise.

LIBRARY
STRING. LI B

SEE ALSO
isxdigit, isalpha, isalpha

int isgraph(int c);

DESCRIPTION

Testsfor a printing character other than a space: 33 <= ¢ <= 126

PARAMETERS

c Character to test.

RETURN VALUE
0 if not, ! O otherwise.

LIBRARY
STRING. LI B

SEE ALSO
isprint, isalpha, isalnum

i spunct

220

Dynamic C User’s Manual

int islower(int c);

DESCRIPTION
Tests for lower case character.
PARAMETERS
c Character to test.

RETURN VALUE

0 if not alower case character;
I 0 otherwise,

LIBRARY
STRING. LI B

SEE ALSO
tol ower, toupper, isupper

int isspace(int c);

DESCRIPTION

Testsfor awhite space, character, tab, return, newline, vertical tab, form feed, and space:
9<=c<=13andc ==32.

PARAMETERS

c Character to test.

RETURN VALUE
0 if not, ! O otherwise.

LIBRARY
STRING. LI B

SEE ALSO
i spunct

Dynamic C User’s Manual 221

I sprint
int isprint(int c);
DESCRIPTION
Testsfor printing character, including space: 32 <= ¢ <= 126

PARAMETERS

c Character to test.

RETURN VALUE
0 if not aprinting character, ! O otherwise.

LIBRARY
STRING. LI B

SEE ALSO
isdigit, isxdigit, isalpha, ispunct, isspace, isalnum isgraph

222 Dynamic C User’s Manual

I spunct
int ispunct(int c);

DESCRIPTION
Tests for a punctuation character.

Character Decimal Code
space 32
"#$% &' ()* +,-./ 33<=c <=47
5 <=>7@ 58<=c<=64
N 91<=c<=96
{}~ 123<=¢ <= 126
PARAMETERS

c Character to test.

RETURN VALUE

0 if not acharacter,
I 0 otherwise.

LIBRARY
STRING. LI B

SEE ALSO
i sspace

Dynamic C User’s Manual 223

int isupper(int c);

DESCRIPTION
Testsfor upper case character.
PARAMETERS
c Character to test.

RETURN VALUE
0 if not, ! O otherwise.

LIBRARY
STRING. LI B

SEE ALSO
tol ower, toupper, islower

int isxdigit(int c);
DESCRIPTION
Testsfor ahexidecimal digit: 0-9,A-F a-f
PARAMETERS
c Character to test.

RETURN VALUE
0 if not ahexidecimal digit, ! O otherwise.

LIBRARY
STRING. LI B

SEE ALSO
isdigit, isalpha, isal pha

224 Dynamic C User’s Manual

i toa
char *itoa(int value, char *buf);

DESCRIPTION

Places up to 5 digit character string at * buf , representing value of signed number, with
minus sign in first place, when appropriate.

Suppresses|eading zeros, but leaves one zero digit for val ue = 0. Max = 65535. 73 pro-

gram bytes.
PARAMETERS
val ue 16-bit number to convert
buf Character string of converted number

RETURN VALUE
Pointer to the end (NULL terminator) of the string in buf .

LIBRARY
STDI O. LI B

SEE ALSO
atoi, utoa, |toa

kbhi t
int kbhit();
DESCRIPTION
Detects keystrokes in the Dynamic C STDIO window.

RETURN VALUE
I 0 if akey has been pressed, O otherwise

LIBRARY
UTI L. LI B

Dynamic C User’s Manual 225

I ong | abs(l ong x);
DESCRIPTION
Computes the long integer absolute value of long integer x.

PARAMETERS

X Number to compute.

RETURN VALUE
X,if x >=0, else- x.

LIBRARY

MATH. LI B
SEE ALSO

abs, fabs

float |dexp(float x, int n);

DESCRIPTION
Computes x* (2* * n)

PARAMETERS
X The value between 0.5, inclusive, and 1.0.
n An integer

RETURN VALUE
Theresult of x* (27n)

LIBRARY
MATH. LI B

SEE ALSO
frexp, exp

226 Dynamic C User’s Manual

float |og(float x);

DESCRIPTION
Computes the logarithm, base g, of redl f | oat valuex.

PARAMETERS

X Float value

RETURN VALUE
The function returns—INF and signals a domain error when x < 0.

LIBRARY

MATH. LI B
SEE ALSO

exp, |ogl0

float |10gl0(float x);

DESCRIPTION
Computes the base 10 logarithm of real f | oat vauex.

PARAMETERS

X Value to compute

RETURN VALUE
Thelog base 10 of x.

The function returns —INF and signals adomain error when x < 0.

LIBRARY

MATH. LI B
SEE ALSO

| 0og, exp

Dynamic C User’s Manual 227

| ongj np

voi d [ongj mp(j nmp_buf env, int val);

DESCRIPTION

Restoresthe stack environment savedinarray env[] . Seethedescriptionof set j np
for details of use.

PARAMETERS
env Environment previously saved withset j np.

val Integer result of set j np.

LIBRARY
SYS. LIB

SEE ALSO
setjnp

| t oa
char *ltoa(long num char *ibuf)

DESCRIPTION
This function outputs a signed long number to the character array.

PARAMETERS
num Signed long number
i buf Pointer to character array

RETURN VALUE
Pointer to the same array passed in to hold the resuilt.

LIBRARY
STDI O. LI B

SEE ALSO
|t oa

228 Dynamic C User’s Manual

| t oan
int Itoan(long num;
DESCRIPTION
Thisfunction returns the number of characters required to display a signed long number.

PARAMETERS

num 32-hit signed number

RETURN VALUE
The number of charactersto display signed long number.

LIBRARY
STDIO. LI B

SEE ALSO
|t oa

menchr
void *menchr(void *src, int ch, unsigned int n);

DESCRIPTION
Searches up to n characters at memory pointed to by sr ¢ for character ch.

PARAMETERS
src Pointer to memory source.
ch Character to search for.
n Number of bytesto search.

RETURN VALUE
Pointer to first occurrence of ch if found within n characters. Otherwise returns NULL.

LIBRARY
STRING. LI B

SEE ALSO

strrchr, strstr

Dynamic C User’s Manual 229

mencnp
int mencnp(void *sl1l, void *s2, size_t n);

DESCRIPTION
Performs unsigned character by character comparison of two memory blocks of length n.

PARAMETERS
sl Pointer to block 1.
s2 Pointer to block 2.
n Maximum number of bytes to compare.

RETURN VALUE

< 0 ifstrlislessthanst r 2, meaning that acharacter in st r 1 islessthan the cor-
responding character inst r 2

Oifstrlisidenticatostr?2

> 0 ifstrlisgreaterthanstr 2, meaningthat acharacterinst r 1 isgreater than
the corresponding character inst r 2

LIBRARY
STRING. LI B

SEE ALSO
strncnp

230 Dynamic C User’s Manual

nmencpy
void *mencpy(void *dst, void *src, unsigned int n);

DESCRIPTION
Copies ablock of bytesfrom one destination to another. Overlap is handled correctly.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy.

RETURN VALUE
Pointer to destination.

LIBRARY
STRING. LI B

SEE ALSO

menmove, nenmset

nmenmove
voi d *memmove(void *dst, void *src, unsigned int n);

DESCRIPTION
Copies ablock of bytesfrom one destination to another. Overlap is handled correctly.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of charactersto copy.

RETURN VALUE
Pointer to destination.

LIBRARY
STRING. LI B

SEE ALSO
mencpy, menset

Dynamic C User’s Manual 231

menset
void *menset (void *dst, int chr, unsigned int n);

DESCRIPTION
Setsthefirst n bytes of ablock of memory to byte destination.

PARAMETERS
dst Block of memory to set.
chr Byte destination
n Amount of bytesto set.
LIBRARY
STRING. LI B
mkti me

unsi gned long nktinme(struct tm*timeptr);

DESCRIPTION
Converts the contents of structure pointedto by t i mept r into seconds.

struct tm{

char tm sec; // seconds 0-59
char tmnn; /1 0-59
char tm hour; /1 0-23
char tm nday; /1 1-31
char tm non; /] 1-12
char tm.year; /1 80-147 (1980-2047)
char tm wday; /1 0-6 O0==sunday

b

PARAMETERS
timeptr Pointer to t mstructure:

RETURN VALUE
Time in seconds since January 1, 1980.

LIBRARY
RTCLOCK. LI B

SEE ALSO
nktm tmrd, tmw

232 Dynamic C User’s Manual

nkt m

unsigned int nktm(struct tm *timeptr, unsigned long tine);

DESCRIPTION
Convertsthe seconds (t i me) to date and time and fillsin the fields of thet mstructure
with the resullt.
struct tm{
char tm sec; /] seconds 0-59
char tmnin; /] 0-59
char tm hour; /1 0-23
char tm nday; /1 1-31
char tm non; /1 1-12
char tm.year; /1 80-147 (1980-2047)
char tm wday; /1 0-6 O0==sunday
b
PARAMETERS
timeptr Addressto store date and time into structure:
tinme Seconds since January 1, 1980.

RETURN VALUE
0

LIBRARY
RTCLOCK. LI B

SEE ALSO

nktinme, tmrd, tmw

Dynamic C User’s Manual 233

float nmodf(float x, int *n);

DESCRIPTION
Splitsx into afraction and integer, f + n.

PARAMETERS
X Floating-point integer
n An integer

RETURN VALUE
Theinteger part in * n and the fractional part satisfies| f| < 1.0

LIBRARY

MATH. LI B
SEE ALSO

fmod, |dexp

void OSlnit(void);
DESCRIPTION
Initializes uC/OS-I1 data; must be called before any other uC/OS-11 functions are called.

LIBRARY
UCOS2. LI B

SEE ALSO
OSTaskCreate, OSTaskCreateExt, OSStart

234 Dynamic C User’s Manual

OSMboxAccept

voi d *OSMhoxAccept (OS_EVENT *OSMooxAccept);

DESCRIPTION

Checks the mailbox to see if amessage is available. Unlike OSMooxPend() , OSM
boxAccept () doesnot suspend the calling task if amessageis not available.

PARAMETERS

OSMboxAccept Pointer to the mailbox’s event control block.

RETURN VALUE

Pointer to available message, or aNULL pointer if thereis no available message or an er-
ror condition exigts.

LIBRARY
UCoSs2. LI B

SEE ALSO
OSMboxCr eat e, OSMboxPend, OSMoxPost, OSMboxQuery

OSMooxCr eat e
OS_EVENT *COSMooxCreate (void *msgQ);
DESCRIPTION
Creates a message mailbox if event control blocks are available.
PARAMETERS
nsg Pointer to a message to put in the mailbox.

RETURN VALUE

Pointer to mailbox’s event control block, or NULL pointer if no event control block was
available.

LIBRARY
UCOS2. LI B

SEE ALSO
OSMboxAccept, OSMooxPend, OSMioxPost, OSMooxQuery

Dynamic C User’s Manual 235

OSMbox Pend

voi d *OSMhoxPend(OS_EVENT *pevent, | NT16U ti meout, | NT8U *err);

DESCRIPTION
Waits for a message to be sent to a mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
ti meout Allows task to resume execution if amessage was not received by
the number of clock ticksspecified. Specifying O meansthetaskis
willing to wait forever.
err Pointer to avariable for holding an error code.

RETURN VALUE
Pointer to amessage or, if atimeout or error condition occurs, a NULL pointer.

LIBRARY
UCOS2. LI B

SEE ALSO
OSMboxAccept, OSMioxCreate, OSMioxPost, OSMioxQuery

236 Dynamic C User’s Manual

OSMbox Post

| NTBU OSMhoxPost (OS_EVENT *pevent, void *nsg);

DESCRIPTION
Sends a message to the specified mailbox

PARAMETERS
pevent Pointer to mailbox’s event control block.
nsg Pointer to message to be posted. A NULL pointer must not be sent.

RETURN VALUE

OS_NO _ERR The call was successful and the message was sent.

OS_MBOX_FULL The mailbox aready contains a message. Only one

message at atime can be sent and thus, the message
MUST be consumed before another can be sent.

OS_ERR _EVENT_TYPE Attempting to post to a non-mailbox.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSMboxAccept, OSMooxCreate, OSMioxPend, OSMooxQuery

Dynamic C User’s Manual 237

OSMooxQuery

| NTBU OSMboxQuery (OS_EVENT *pevent, OS_MBOX_DATA *pdata);

DESCRIPTION
Obtains information about a message mailbox.

PARAMETERS
pevent Pointer to message mailbox’s event control block.
pdat a Pointer to a data structure for information about the message mail -
box
RETURN VALUE
OS_NO _ERR The call was successful and the message was sent

OS_ERR _EVENT_TYPE Attempting to obtain data from a non mailbox.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSMboxAccept, OSMooxCreate, OSMioxPend, OSMyoxPost

238 Dynamic C User’s Manual

OSMenCr eat e

OS MEM *OSMenCreate (void *addr, |INT32U nbl ks, | NT32U bl ksi ze,
| NT8U *err);

DESCRIPTION
Creates a fixed-sized memory partition that will be managed by uC/OS-I1.

PARAMETERS
addr Pointer to starting address of the partition.
nbl ks Number of memory blocks to createin the partition.
bl ksi ze The size (in bytes) of the memory blocks.
err Pointer to variable containing an error message.

RETURN VALUE

Pointer to the created memory partition control block if oneisavailable, NULL pointer
otherwise.

LIBRARY
UCoSs2. LI B

SEE ALSO
OSMemGet, OSMerPut, OSMemQuery

Dynamic C User’s Manual 239

OSMenGet
voi d *OSMenGet (OS_MEM *prmem | NT8U *err);

DESCRIPTION
Gets amemory block from the specified partition.

PARAMETERS
pmem Pointer to partition’s memory control block
err Pointer to variable containing an error message

RETURN VALUE
Pointer to amemory block or aNULL pointer if an error condition is detected.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSMenCr eat e, OSMenPut, OSMemQuery

OSMenPut

| NTBU OSMenPut (OS_MEM *pnem void *pbl k) ;

DESCRIPTION
Returns a memory block to a partition.

PARAMETERS
pmem Pointer to the partition’'s memory control block.
pbl k Pointer to the memory block being released.

RETURN VALUE
OS_NO ERR The memory block was inserted into the partition.

OS_MEM FULL If returning amemory block to an already FULL memory partition
(More blocks were freed than allocated!)

LIBRARY
UCOS2. LI B

SEE ALSO
OSMenCr eat e, OSMentet, OSMemQuery

240 Dynamic C User’s Manual

OSMenmQuery
| NTBU OSMemQuery (OS_MEM *pnem OS_MEM DATA *pdata);

DESCRIPTION
Determines the number of both free and used memory blocks in a memory partition.

PARAMETERS
pmem Pointer to partition’s memory control block.
pdat a Pointer to structure for holding information about the partition.

RETURN VALUE

OS_NO ERR This function always returns no error

LIBRARY
UCoSs2. LI B

SEE ALSO
OSMenCr eat e, OSMenGet, OSMenmPut

OSQAccept
voi d *OSQAccept (OS_EVENT *pevent);

DESCRIPTION

Checksthe queue to seeif amessage is available. Unlike OSQPend() , with OSQAc-
cept () thecalingtask is not suspended if amessage is unavailable.

PARAMETERS

pevent Pointer to the message queue’s event control block.

RETURN VALUE
Pointer to message in the queueif oneisavailable, NULL pointer otherwise.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSQCr eat e, OSQFl ush, OSQPend, OSQPost, OSQPostFront, OSQQuery

Dynamic C User’s Manual 241

OSQCr eat e

OS_EVENT *OSQCreate (void **start, |INT16U qgsize);

DESCRIPTION
Creates a message queueif event control blocks are available.

PARAMETERS
start Pointer to the base address of the message queue storage area. The
storage areaMUST be declared an array of pointerstovoid: voi d
*MessageSt or age[gsi ze] .
gsi ze Number of elementsin the storage area.

RETURN VALUE
Pointer to message queue’s event control block or NULL pointer if no event control
blocks were available.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSQAccept, OSQFlush, OSQPend, OSQPost, OSQPost Front, OSQQuery

242 Dynamic C User’s Manual

OSQFIl ush

| NT8BU OSQFI ush (OS_EVENT *pevent);

DESCRIPTION
Flushes the contents of the message queue.

PARAMETERS

pevent Pointer to message queue’s event control block.

RETURN VALUE
OS_NO _ERR Upon success
OS_ERR_EVENT_TYPE A pointer to a queue was not passed
OS_ERR_PEVENT_NULL If '‘pevent’isaNULL pointer

LIBRARY
UCOS2. LI B

SEE ALSO
OSQAccept, OSQCreate, OSQPend, OSQPost, OSQPost Front, OSQQuery

Dynamic C User’s Manual 243

OSQPend

voi d *OSQPend (OS_EVENT *pevent, |INT16U timeout, |INT8U *err);

DESCRIPTION
Waits for a message to be sent to a queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
ti meout Allow task to resume executionif amessagewas not received by the
number of clock ticks specified. Specifying 0 meansthetask is
willing to wait forever.
err Pointer to avariable for holding an error code.

RETURN VALUE
Pointer to amessage or, if atimeout occurs, aNULL pointer.

LIBRARY
UCOS2. LI B

SEE ALSO
OSQAccept, OSQCreate, OSQFl ush, OSQPost, OSQPost Front,
OSQQuery

244 Dynamic C User’s Manual

OSQPost
| NT8BU OSQPost (OS_EVENT *pevent, void *nsg);

DESCRIPTION
Sends a message to the specified queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
nsg Pointer to the message to send. NULL pointer must not be sent.

RETURN VALUE

OS_NO _ERR The call was successful and the message was sent.

OS Q FULL The queue cannot accept any more messages be-
causeitisfull.

OS_ERR_EVENT_TYPE If apointer to a queue not passed.

OS_ERR_PEVENT_NULL If peventisaNULL pointer.

OS _ERR POST_NULL_PTR If attempting to post to a NULL pointer.

LIBRARY
UCOSs2. LI B

SEE ALSO

OSQAccept, OSQCreate, OSQFl ush, OSQPend, OSQPost Front,
osQQuery

Dynamic C User’s Manual

245

OSQPost Fr ont

| NT8BU OSQPost Front (OS_EVENT *pevent, void *msg);

DESCRIPTION

Sends amessage to the specified queue, but unlike OSQPost () , the message is posted
at the front instead of the end of the queue. Using OSQPost Front () alows'priority'

messages to be sent.
PARAMETERS
pevent Pointer to message queue’s event control block.
nsg Pointer to the message to send. NULL pointer must not be sent.

RETURN VALUE

OS_NO _ERR The call was successful and the message was sent.

OS Q FULL The gueue cannot accept any more messages because
itisfull.

OS_ERR_EVENT_TYPE A pointer to a queue was not passed.

OS_ERR_PEVENT_NULL If peventisaNULL pointer.

OS_ERR _POST_NULL_PTR Attempting to post to anon mailbox.

LIBRARY
UCOS2. LI B

SEE ALSO
OSQAccept, OSQCreate, OSQFl ush, OSQPend, OSQPost, OSQQuery

246 Dynamic C User’s Manual

OSQQuery
| NT8BU OSQQuery (OS_EVENT *pevent, OS_Q DATA *pdata);

DESCRIPTION
Obtains information about a message queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
pdat a Pointer to a data structure for message queue information.

RETURN VALUE
OS_NO _ERR The call was successful and the message was sent.
OS_ERR _EVENT_TYPE Attempting to obtain datafrom a non queue.
OS_ERR_PEVENT_NULL If peventisaNULL pointer.

LIBRARY
UCoSs2. LI B

SEE ALSO
OSQAccept, OSQCreate, OSQFl ush, OSQPend, OSQPost, OSQPost Front

OSSchedLock
voi d OSSchedLock(voi d);

DESCRIPTION

Prevents task rescheduling. This allows an application to prevent context switches until
it isready for them. There must beamatched call to OSSchedUnl ock () for every call
to OSSchedLock() .

LIBRARY
UCOSs2. LI B

SEE ALSO
OSSchedUnl ock

Dynamic C User’s Manual 247

OSSchedUnl ock
voi d OSSchedUnl ock(voi d);

DESCRIPTION

Allow task rescheduling. There must be amatched call to OSSchedUnl ock() forev-
ery cal to OSSchedLock() .

LIBRARY
ucos2. LI B

SEE ALSO
OSSchedLock

OSSemAccept

| NT16U OSSemAccept (OS_EVENT *pevent);

DESCRIPTION

This function checks the semaphore to seeif aresource is available or if an event oc-
curred. Unlike OSSenPend() , OSSemAccept () doesnot suspend the calling task if
the resource is not available or the event did not occur.

PARAMETERS

pevent Pointer to the desired semaphore’s event control block

RETURN VALUE

Semaphore value:

If >0, semaphore value is decremented; value is returned before the decrement.

If O, then either resource is unavailable, event did not occur, or NULL or invalid pointer
was passed to the function.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSSentCreat e, 0OSSenPend, OSSenPost, OSSenQuery

248 Dynamic C User’s Manual

OSSenCr eat e
OS_EVENT *OSSentCreate (I NT16U cnt);
DESCRIPTION
Creates a semaphore.

PARAMETERS

cnt Theinitial value of the semaphore.

RETURN VALUE

Pointer to the event control block (OS_EVENT) associated with the created semaphore,
or NULL if no event control block is available.

LIBRARY
UCoSs2. LI B

SEE ALSO
OSSemAccept, OSSemPend, OSSenPost, OSSemQuery

OSSenfPend
voi d OSSenPend (OS_EVENT *pevent, |INT16U tineout, |NT8U *err);

DESCRIPTION
Waits on a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
ti meout Timein clock ticksto wait for the resource. |If O, the task will wait
until the resource becomes available or the event occurs.
err Pointer to error message.
LIBRARY
UCOS2. LI B
SEE ALSO

OSSemAccept, OSSenCreate, OSSemPost, OSSemQuery

Dynamic C User’s Manual 249

OSSenPost
| NT8BU OSSenmPost (OS_EVENT *pevent);

DESCRIPTION
Thisfunction signals a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
RETURN VALUE
OS_NO ERR The call was successful and the semaphore was signaled.

OS_SEM OvF If the semaphore count exceeded itslimit. In other words,
you have signalled the semaphore more often than you
waited on it with either OSSemAccept () or OSSem
Pend().

OS_ERR_EVENT_TYPE If a pointer to a semaphore not passed.
OS_ERR _PEVENT_NULL If 'pevent' isaNULL pointer.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSSemAccept, OSSenCreate, OSSenPend, OSSemQuery

250 Dynamic C User’s Manual

OSSenmQuery
| NT8BU OSSemQuery (OS_EVENT *pevent, OS_SEM DATA *pdata);

DESCRIPTION
Obtains information about a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
pdat a Pointer to adatastructure that will hold information about the sema-
phore.
RETURN VALUE
OS_NO _ERR The call was successful and the message was sent.

OS_ERR _EVENT_TYPE Attempting to obtain data from a non semaphore.
OS_ERR_PEVENT_NULL If pevent isaNULL pointer.

LIBRARY
UCOS2. LI B

SEE ALSO
OSSemAccept, OSSenCreate, OSSenPend, OSSemPost

Dynamic C User’s Manual

251

OSSet Ti ckPer Sec

| NTL6U OSSet Ti ckPer Sec(| NT16U Ti cksPer Sec) ;

DESCRIPTION

Sets the amount of ticks per second (from 1 - 2048). Ticks per second defaults to 64. If
thisfunctionisused, the#def i ne OS_TI CKS_PER_SEC needsto be changed so that
the time delay functions work correctly. Since this function uses integer division, the ac-
tual ticks per second may be dightly different that the desired ticks per second.

PARAMETERS

Ti cksPer Sec Unsigned 16-bit integer.

RETURN VALUE
The actual ticks per second set, as an unsigned 16-bit integer.

LIBRARY
UCOS2. LI B

SEE ALSO
OSSt art

OSSt ar' t
void CSStart(void);

DESCRIPTION

Starts the multitasking process, allowing pC/OS-11 to manage the tasks that have been
created. BeforeOSSt art () iscalled, OSI ni t () MUST have been called and at least
onetask MUST have been created. Thisfunction callsOSSt ar t Hi ghRdy which cals
OSTaskSwHook and sets OSRunni ng to TRUE.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSTaskCreat e, OSTaskCr eat eExt

252 Dynamic C User’s Manual

CSStatlnit
void GCSStatlnit(void);

DESCRIPTION
Determines CPU usage.

LIBRARY
UCOSs2. LI B

OSTaskChangePri o

| NT8BU OSTaskChangePri o (I NT8U ol dpri o, |NT8U newpri o);

DESCRIPTION
Allowsatask's priority to be changed dynamically. Notethat the new priority MUST be
available.
PARAMETERS
ol dprio The priority level to change from.
newprio The priority leve to changeto.

RETURN VALUE
OS_NO _ERR The call was successful.

OS_PRI O_| NVALI D The priority specified is higher that the maximum allowed
(i.e.>= OS_LONEST_PRI O).

OS_PRI O EXI ST The new priority aready exist.
OS PRI O ERR Thereis no task with the specified OLD priority (i.e. the
OLD task does not exist).
LIBRARY
UCOS2. LI B

Dynamic C User’s Manual 253

OSTaskCr eat e

| NT8BU OSTaskCreate(void (*task)(), void *pdata, INT16U stk_size, | NT8U

prio);

DESCRIPTION

Creates atask to be managed by uC/OS-11. Tasks can either be created prior to the start
of multitasking or by arunning task. A task cannot be created by an ISR.

PARAMETERS
t ask
pdat a
stk _size
pri or
RETURN VALUE
0OS_NO _ERR
OS PRIO EXIT

Pointer to the task’s starting address.
Pointer to atask’sinitial parameters.
Number of bytes of the stack.

The task’s unique priority number.

The call was successful.

Thetask priority already exists (each task MUST have a
unigue priority).

OS_PRI O_I NVALI D The priority specified is higher than the maximum allowed

LIBRARY
UCOSs2. LI B

SEE ALSO
OSTaskCr eat eExt

(i.e. >=0S_LOWEST_PRI O).

254

Dynamic C User’s Manual

OSTaskCr eat eExt

| NTBU OSTaskCreat eExt (void (*task) (), void *pdata, |NT8U
prio, INT16U id, INT16U stk _size, void *pext, |INT16U opt);

DESCRIPTION

Creates atask to be managed by uC/OS-11. Tasks can either be created prior to the start
of multitasking or by arunning task. A task cannot be created by an ISR. Thisfunction
issimilar to OSTaskCr eat e() except that it allows additional information about a

task to be specified.
PARAMETERS

t ask Pointer to task’s code.

pdat a Pointer to optional data area; used to pass parameters to the task at
start of execution.

prio Thetask’s unique priority number; the lower the number the higher
the priority.

id Thetask’sidentification number (0..65535).

stk _size Size of the stack in number of elements. If OS_STKisset to

I NT8U, st k_si ze correspondsto the number of bytes available.
If OS_STKissettol NT16U, st k_si ze contains the number of
16-bit entries available. Finaly, if OS_STKissetto | NT32U,

st k_si ze contains the number of 32-bit entries available on the

stack.

pext Pointer to a user-supplied Task Control Block (TCB) extension.

opt Thelower 8 bitsarereserved by pC/OS-I1. The upper 8 bitscontrol
application-specific options. Select an option by setting the corre-
sponding bit(s).

RETURN VALUE
OS_NO ERR The call was successful.
CS PROEXIT Thetask priority aready exists (each task MUST have a

unigue priority).

OS PRI O | NVALI D The priority specified ishigher than the maximum allowed
(i.e.>=0OS_LOWEST_PRI O).

LIBRARY
UCOS2. LI B

SEE ALSO
OSTaskCr eat e

Dynamic C User’s Manual 255

OSTaskCr eat eHook

voi d OSTaskCr eat eHook(OS_TCB *ptch);

DESCRIPTION

Called by pC/OS-11 whenever atask iscreated. This call-back function residesin
UCGS2. LI B and extends functionality during task creation by allowing additional in-
formation to be passed to the kernel, anything associated with atask. Thisfunction can
also be used to trigger other hardware, such as an oscilloscope. Interrupts are disabled
during this call, therefore, it is recommended that code be kept to aminimum.

PARAMETERS

ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSTaskDel Hook

256 Dynamic C User’s Manual

OSTaskDel

| NTBU OSTaskDel (1 NT8U prio);

DESCRIPTION

Deletesatask. Thecalling task can deleteitself by passing either itsown priority number
or OS_PRI O _SELF if it doesn't know its priority number. The deleted task is returned
to the dormant state and can be re-activated by creating the deleted task again.

PARAMETERS

prio Task’s priority number.

RETURN VALUE
0S_NO_ERR
OS_TASK_DEL_I DLE
OS_PRI O | NVALI D

OS_TASK_DEL_ERR
OS_TASK_DEL_I SR

LIBRARY
UCOSs2. LI B

SEE ALSO
OSTaskDel Req

The call was successful.
Attempting to delete uC/OS-I'sidle task.

The priority specified is higher than the maximum allowed
(i.e.>= OS_LOWEST_PRI O) or, 0S_PRI O _SELF not

specified.
The task to delete does not exist.

Attempting to delete atask from an ISR.

Dynamic C User’s Manual

257

OSTaskDel Hook
voi d OSTaskDel Hook(OS_TCB *ptch);

DESCRIPTION

Called by pC/OS-11 whenever atask isdeleted. This call-back function residesin
UCGS2. LI B. Interruptsare disabled during thiscall, therefore, it isrecommended that
code be kept to a minimum.

PARAMETERS

ptcb Pointer to TCB of task being deleted.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSTaskCr eat eHook

258 Dynamic C User’s Manual

OSTaskDel Req

| NT8U OSTaskDel Req (1 NT8U prio0);

DESCRIPTION

Notifiesatask to deleteitself. A well-behaved task is deleted when it regains control of
the CPU by calling OSTaskDel Req (OSTaskDel Req) and monitoring thereturn

value.
PARAMETERS
prio The priority of thetask that is being asked to delete itself.
OS_PRI O _SELF isused when asking whether another task wants
the current task to be deleted.
RETURN VALUE
OS_NO ERR Thetask exists and the request has been registered.

OS_TASK _NOT_EXI ST Thetask hasbeen deleted. Thisallowsthe caller to know
whether the request has been executed.

OS _TASK DEL | DLE If requesting to delete uC/OS-II'sidletask.

OS PRI O I NVALI D The priority specified is higher than the maximum al-
lowed (i.e.>= OS_LOWEST_PRI O) or,
OS_PRI O_SELF isnaot specified.

OS_TASK DEL REQ A task (possibly another task) requested that the running
task be deleted.
LIBRARY
UCOS2. LI B
SEE ALSO
OSTaskDel

Dynamic C User’s Manual

259

OSTaskQuery
| NT8BU OSTaskQuery (I NT8U prio, OS_TCB *pdata);

DESCRIPTION
Obtains a copy of the requested task's TCB.

PARAMETERS
prio Priority number of the task.
pdat a Pointer to task’s TCB.

RETURN VALUE
OS_NO _ERR The requested task is suspended.

OS PRI O I NVALI D The priority you specify is higher than the maximum al-
lowed(i.e.>=0S_LOWNEST_PRI Oy or,S_PRI O_SELF

is not specified.
OS PRI O ERR The desired task has not been created.
LIBRARY
UCOS2. LI B

260 Dynamic C User’s Manual

OSTaskResune

| NT8BU OSTaskResume (1 NT8U prio);

DESCRIPTION
Resumesa suspended task. Thisistheonly call that will remove an explicit task suspen-
son.

PARAMETERS
prio The priority of the task to resume.

RETURN VALUE
OS_NO ERR The requested task is resumed.

OS PRI O I NVALI D The priority specified ishigher than the maximum al-
lowed (i.e. >= OS_LOWEST_PRI O).

OS_TASK _NOT_SUSPENDED Thetask to resume has not been suspended.

LIBRARY
UCoSs2. LI B

SEE ALSO
OSTaskSuspend

OSTaskSt at Hook
voi d OSTaskSt at Hook() ;

DESCRIPTION

Called every second by uC/OS-II's statistics task. Thisfunction residesin UCOS2. LI B
and allows an application to add functionality to the statistics task.

LIBRARY
UCoSs2. LI B

Dynamic C User’s Manual 261

OSTaskSt kChk
| NT8U OSTaskSt kChk (1 NT8U prio, OS_STK _DATA *pdata);

DESCRIPTION
Check the amount of free memory on the stack of the specified task.

PARAMETERS
prio Thetask’s priority.
pdat a Pointer to a data structure of type OS_STK_DATA.

RETURN VALUE
OS_NO ERR The call was successful.

OS PRI O | NVALI D The priority you specify is higher than the maximum al-
lowed (i.e.> OS_LOWEST PRI O) or,
OS_PRI O_SELF not specified.

OS _TASK NOT_EXI ST The desired task has not been created.

OS _TASK OPT_ERR If OS_TASK_OPT_STK_CHKwasNOT specified
when the task was created.
LIBRARY
UCOS2. LI B
SEE ALSO

OSTaskCr eat eExt

262 Dynamic C User’s Manual

OSTaskSuspend

| NT8BU OSTaskSuspend (I NT8U prio);

DESCRIPTION

Suspendsatask. Thetask can bethe cdling task if the priority passed to OSTask Sus-
pend() isthepriority of thecalingtask or OS_PRI O_SELF. Thisfunction should be
used with great care. If atask issuspended that iswaiting for an event (i.e. amessage, a
semaphore, aqueue ...) the task will be prevented from running when the event arrives.

PARAMETERS

prio The priority of the task to suspend.

RETURN VALUE
OS_NO _ERR The requested task is suspended.
OS_TASK_SUS | DLE Attempting to suspend the idle task (not allowed).

OS PRI O | NVALI D The priority specified is higher than the max alowed (i.e.
>=0OS_LOVWEST_PRI O) or, OS_PRI O_SELF isnot

specified .
OS_TASK_SUS PRI O Thetask to suspend does not exist.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSTaskResune

OSTask SwHook
voi d OSTaskSwHook() ;

DESCRIPTION

Called whenever a context switch happens. The TCB for the task that isready to runis
accessed viathe global variable OSTCBHI ghRdy, and the TCB for thetask that isbeing
switched out is accessed viathe global variable OSTCBCur .

LIBRARY
UCoSs2. LI B

Dynamic C User’s Manual 263

OSTi neDl y
void OSTinmeDly (INT16U ticks);

DESCRIPTION

Delaysexecution of the task for the specified number of clock ticks. No delay will result
ifti cksisO. Ifticks is>0, then acontext switch will result.

PARAMETERS

ticks Number of clock ticksto delay the task.

LIBRARY
UCOSs2. LI B

SEE ALSO
OSTi meDl yHMSM ~ OSTi nmeDl yResune, OSTi meDl ySec

264 Dynamic C User’s Manual

OSTi meDl yHVBM

| NT8U OSTi meDl yHMSM (| NT8U hour s, | NT8U mi nutes, | NT8U seconds,
I NT16U milli);

DESCRIPTION

Delays execution of the task until specified amount of time expires. Thiscall allowsthe
delay to be specified in hours, minutes, seconds and millisecondsinstead of ticks. The
resolution on the milliseconds dependson thetick rate. For example, a10 msdelay isnot
possibleif the ticker interrupts every 100 ms. In this case, the delay would be set to 0.
The actual delay isrounded to the nearest tick.

PARAMETERS
hour s Number of hours that the task will be delayed (max. is 255)
nm nut es Number of minutes (max. 59)
seconds Number of seconds (max. 59)
molli Number of milliseconds (max. 999)

RETURN VALUE
0S_NO_ERR
OS_TI ME_I NVALI D_M NUTES
OS_TI ME_I NVALI D_SECONDS
OS_TI ME_I NVALI D_MS
OS_TI ME_ZERO DLY

LIBRARY
UCOS2. LI B

SEE ALSO
OSTi meDl y, OSTi neDl yResune, OSTi meDl ySec

Dynamic C User’s Manual 265

OSTi neDl yResune

| NT8U OSTi neDl yResume (1 NT8U prio);

DESCRIPTION

Resumes atask that has been delayed through a call to either OSTi nmeDl y() or OS-
Ti meDl yHMSM) . Notethat thisfunction MUST NOT be called to resume atask that
iswaiting for an event with timeout. This situation would make the task look like atim-
eout occurred (unlessthisisthe desired effect). Also, atask cannot be resumed that has
caled OSTi meDl yHVBM) with acombined time that exceeds 65535 clock ticks. In
other words, if the clock tick runs at 100 Hz then, a delayed task will not be able to be
resumed that called OSTi mreDl yHMSM 0, 10, 55, 350) or higher.

PARAMETERS

prio Priority of the task to resume.

RETURN VALUE
OS_NO _ERR Task has been resumed.

OS PRI O | NVALI D The priority you specify is higher than the maximum al-
lowed (i.e. >= OS_LOWEST_PRI O).

OS TI ME_NOT_DLY Task is not waiting for time to expire.
OS _TASK _NOT_EXI ST Thedesired task has not been created.

LIBRARY
UCOS2. LI B

SEE ALSO
OSTi meDl y, OSTi neDl yHMSM OSTi neDl ySec

266 Dynamic C User’s Manual

OSTi neDl ySec

| NTBU OSTi neDl ySec (I NT16U seconds);

DESCRIPTION

Delays execution of the task until seconds expires. Thisis alow-overhead version of

OSTi meDl y HVBSMfor seconds only.

PARAMETERS

seconds The number of secondsto delay.

RETURN VALUE

OS_NO _ERR The call was successful.

OS TI ME_ZERO DLY A dday of zero seconds was requested.

LIBRARY
UCoSs2. LI B

SEE ALSO
OSTi meDl y, OSTi meDl yHMSM OSTi neDl yResune

OSTiI meGet
| NT32U OSTi meGet (void);

DESCRIPTION

Obtain the current value of the 32-bit counter that keeps track of the number of clock

ticks.

RETURN VALUE
The current value of OSTi me

LIBRARY
UCOSs2. LI B

SEE ALSO
OSTi meSet

Dynamic C User’s Manual

267

OSTi neSet

voi d OSTi neSet (I NT32U ticks);

DESCRIPTION
Sets the 32-bit counter that keeps track of the number of clock ticks.

PARAMETERS

ticks Thevalueto set OSTi ne to.

LIBRARY
UCOS2. LI B

SEE ALSO
OSTi neGet

OSTi neTi ckHook

voi d OSTi meTi ckHook() ;

DESCRIPTION

Thisfunction, asincluded with Dynamic C, isa stub that does nothing except return. Itis
called every clock tick. If the user chooses to rewrite this function, code should be kept
to aminimum asit will directly affect interrupt latency. This function must preserve any
registersit uses, other than the onesthat are preserved prior tothe call to OSTi meTi ck-
Hook at the beginning of theperiodicinterrupt (peri odi c_i sr inVDRI VER. LI B).
Therefore, OSTi meTi ckHook should be written in assembly. The registers saved by
periodi c_i sr are: ARIP, HL,DE and I X.

LIBRARY
UCOSs2. LI B

268 Dynamic C User’s Manual

OSVer si on
| NTL6U OSVer si on (voi d)

DESCRIPTION

Returns the version number of uC/OS-11. The returned value corresponds to pC/OS-II's
version number multiplied by 100; i.e., version 2.00 would be returned as 200.

RETURN VALUE
Version number multiplied by 100.

LIBRARY
UCOSs2. LI B

outchrs
char outchrs(char c, int n, int (*putc) ());

DESCRIPTION
Use put c to output n times the character c.

PARAMETERS
c Character to output
n Number of timesto output
put c Routine to output one character. The function pointed to by put ¢

should take a character argument.

RETURN VALUE
The character in parameter c.

LIBRARY
STDI O. LI B

SEE ALSO
outstr

Dynamic C User’s Manual

269

outstr
char *outstr(char *string, int (*putc)());

DESCRIPTION

Output the string pointed to by st r i ng viacalsto put c. put ¢ should take a one-
character parameter.

PARAMETERS
string String to output
put c Routine to output one character. The function pointed to by put ¢

should take a character argument.

RETURN VALUE
Pointer to NULL at end of string.

LIBRARY
STDI O. LI B

SEE ALSO

outchrs

paddr
unsi gned | ong paddr (voi d* poi nter)

DESCRIPTION

Convertsalogical pointer into its physical address. Use caution when converting address
in the EOOO-FFFF range. Returns the address based on the X PC on entry.

PARAMETERS

poi nt er The pointer to convert.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM LI B

270 Dynamic C User’s Manual

poly

float poly(float x, int n, float c[]);

DESCRIPTION

Computes polynomia value by Horner's method. For example, for the fourth-order poly-
nomial 10x* — 3x? + 4x + 6, n would be 4 and the coefficients would be

c[4] 10.0
c[3] 0.0
c[2]
c[1]
c[0]

I n nn
o b |
T

o

o o

PARAMETERS
X Variable of the polynomial.
n The order of the polynomial

c Array containing the coefficients of each power of x.

RETURN VALUE
The polynomial value.

LIBRARY
MATH. LI B

Dynamic C User’s Manual

271

float pow(float x, float y);

DESCRIPTION
Raises x to the yth power.

PARAMETERS
X Value to be raised
y Exponent

RETURN VALUE
X to the yth power

LIBRARY
MATH. LI B

SEE ALSO
exp, powl0, sqgrt

float powlO(float x);
DESCRIPTION
10 to the power of x.
PARAMETERS
X Exponent

RETURN VALUE
10 raised to power X

LIBRARY
MATH. LI B

SEE ALSO
pow, exp, sqrt

272 Dynamic C User’s Manual

power spect rum
voi d powerspectrum(int *x, int N, *int bl ockexp)

DESCRIPTION
Computes the power spectrum from a complex spectrum according to

Power[K] = (Re X[K])? + (Im X[K])2

The N-point power spectrum replaces the N-point complex spectrum. The power of each
complex spectral component iscomputed asa 32-bit fraction. Itsmoresignificant 16-bits
replace the imaginary part of the component; its less significant 16-bits replace the real
part.

If the complex input spectrum is a positive-frequency spectrum computed by f ft r e-

al (), theimaginary part of the X[0] term (stored x[1]) will contain thereal part of the
fmax term and will affect the calculation of the dc power. If the dc power or the fmax pow-
er isimportant, thefmax term should beretrieved fromx[1] andx[1] settozerobefore
caling power spect run() .

The power of the kth term can be retrieved via
P[k] =* (I ong*) &x[2k] *2"bl ockexp.

Thevalueof bl ockexp isfirst doubled to reflect the squaring operation applied to al
elementsin array x. Thenitisfurther increased by 1 to reflect an inherent division-by-
two that occurs during the squaring operation.

PARAMETERS
X pointer to N-element array of complex fractions.
N number of complex elementsin array X.

bl ockexp pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO
fftcplx, fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal

Dynamic C User’s Manual 273

premain
voi d premain();

DESCRIPTION

Dynamic C callspr enai n to start initialization functions such asvdl ni t . Thefina
thing pr emai n doesiscal mai n. Thisfunction should never be called by an applica-
tion program. It isincluded here for informationa purposes only.

LIBRARY
PROGRAM LI B

printf
void printf(char *fnmt, ...);

DESCRIPTION

Outputs the formatted string to the Stdio window in Dynamic C. It will work only when
the controller isin program mode and is connected to the PC running Dynamic C. Unlike
spri nt f, only one process should use thisfunction at any time.

PARAMETERS
f or mat String to be formatted.

Format arguments.

LIBRARY
STDI O. LI B

SEE ALSO
sprintf

274 Dynamic C User’s Manual

put char
voi d putchar(int ch);

DESCRIPTION

Puts asingle character to STDOUT. The user should make sure only one process calls
thisfunction at atime.

PARAMETERS

ch Character to be displayed.

LIBRARY
STDI O. LI B

SEE ALSO

puts, getchar

put s
int puts(char *s);

DESCRIPTION

Thisfunction displaysthe string on the stdio window in Dynamic C. The STDIO window
isresponsible for interpreting any escape code sequences contained in the string. Only
one process at atime should call thisfunction.

PARAMETERS

S Pointer to string argument to be displayed.

RETURN VALUE
1 if successful.

LIBRARY
STDIO. LI B

SEE ALSO
put char, gets

Dynamic C User’s Manual 275

gsort

int gsort(char *base, unsigned n, unsigned s, int (*cnp) ());

DESCRIPTION

Quick sort with center pivot, stack control, and easy-to-change comparison method. This
version sorts fixed-length dataitems. It isideal for integers, longs, floats and packed
string data without delimiters.

Can sort raw integers, longs, floats or strings. However, the string sort is not efficient.

PARAMETERS
base Base address of the raw string data
n Number of blocks to sort
S Number of bytesin each block
cnp User-supplied compareroutine for two block pointers, p and g, that

returns an int with the same rulesused by Unix st rcnp(p, Q) :

=0 Blocksp and q are equal

<0 p<q

>0 p>q

Beware of using ordinary st r cnp() —it requiresaNULL at the
end of each string.

RETURN VALUE
0 if the operation is successful.

LIBRARY
SYS.LIB

276 Dynamic C User’s Manual

EXAMPLE

/] Sort an array of integers.
int mycnp(p,q) int *p,*q; { return (*p - *q);}

const int g[10] = {12,1,3,-2,16,7,9, 34,-90, 10};
const int p[10] = {12,1,3,-2,16,7,9, 34,-90, 10};
mai n() {

int i;

gsort (p, 10, 2, mycnp) ;
for(i=0;i<10;++i) printf("%l. %, %\n",i,p[i]l,q[i]);

}
Qut put fromthe above sanpl e program
0. -90, 12
1. -2, 1
2. 1, 3
3. 3, -2
4. 7, 16
5. 9, 7
6. 10, 9
7. 12, 34
8. 16, -90
9. 34, 10
r ad

float rad(float Xx);
DESCRIPTION
Convert degrees (360 for one rotation) to radians (2rtfor a rotation).

PARAMETERS

X Degree value to convert

RETURN VALUE
The radians equivalent of degree.

LIBRARY
SYS.LIB

SEE ALSO
deg

Dynamic C User’s Manual 277

rand
float rand(void);

DESCRIPTION

Usesagorithmrand = (5*rand) nodul o 2732. Therandom seed isaglobal un-
signedlong, r an_seed, sethyinitialization (GLOBAL_I NI T). It may be modified by
the user. Thisfunction is not task reentrant.

RETURN VALUE
A uniformly distributed random number: 0.0 <=v < 1.0.

LIBRARY
MATH. LI B

SEE ALSO
randb, randg

randb
float randb(void);

DESCRIPTION

Usesagorithmrand = (5*rand) nodul o 2732. Therandom seed isaglobal un-
signedlong, r an_seed, sethyinitialization (GLOBAL_I NI T). It may be modified by
the user. Thisfunction is not task reentrant.

RETURN VALUE
Returns a uniformly distributed random number: -1.0 <=v < 1.0.

LIBRARY
MATH. LI B

SEE ALSO
rand, randg

278 Dynamic C User’s Manual

randg

float randg(void);

DESCRIPTION

Digtribution is made by adding 16 random numbers uniformly distributed as-1.0 <v <
1.0. Standard deviation is approximately 2.6, mean 0. Algorithmused isr and =
(5*rand) nodul o 2732. Therandom seedisaglobal unsignedlong, r an_seed,
set by initidization (GLOBAL_| NI T). It may be modified by theuser. Thisfunctionis
not task reentrant.

RETURN VALUE
A gaussian distributed random number: -16.0 <= v <16.0.

LIBRARY
MATH. LI B

SEE ALSO
rand, randb

RdPort E
int RdPortE(int port);

DESCRIPTION
Reads an external 1/0 register specified by the argument.

PARAMETERS

port Address of externa parallel port data register.

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port speci-
fied by the argument. Upper byte contains zero.

LIBRARY
SYSIO. LI B

SEE ALSO

RdPortl, BitRdPortl, WPortl, BitW Portl, BitRdPortE, W PortE,
Bi t WPortE

Dynamic C User’s Manual 279

RdPor t |

int RdPortl (int port);

DESCRIPTION
Reads an interna /O port specified by the argument.

PARAMETERS

port Address of internal parallel port data register.

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port speci-
fied by the argument. Upper byte contains zero.

LIBRARY
SYSIO. LI B

SEE ALSO

RdPort E, Bit RdPortl, W Portl, BitWPortl, BitRdPortE, W PortE,
Bit WPortE

read rtc
unsi gned long read _rtc(void);

DESCRIPTION

Readsthe RTC directly - use with caution! In most cases uselong variable SEC_TI MER
which contains the same result, unless the RTC has been changed since the start of the
program. If you are running the processor off the 32kHz crystal, use the
read_rtc_32kHz() functioninstead.

RETURN VALUE
Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK. LI B

SEE ALSO
wite rtc

280 Dynamic C User’s Manual

read rtc_32kHz

unsigned long read rtc_32kHz(void);

DESCRIPTION

Readsthereal-time clock directly when the Rabbit processor is running off the 32kHz os-
cillator. Seer ead_rt ¢ for more details.

RETURN VALUE
Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK. LI B

res

void res(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand this call inline

Clears specified bit at memory addressto 0. bit may befrom 0to 31. Thisisequivaent
to the following expression, but more efficient:
*(long *)address &= ~(1L << bit)

PARAMETERS
addr ess Address of byte containing bits 7-0

bi t Bit location where 0 represents the least significant bit

LIBRARY
UTI L. LIB

SEE ALSO
RES

Dynamic C User’s Manual

281

RES

void RES(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand thiscall inline.

Clears specified bit at memory addressto 0. bit may befrom 0to 31. Thisisequivaent
to the following expression, but more efficient:
*(long *)address &= ~(1L << bit)

PARAMETERS
addr ess Address of byte containing bits 7-0

bi t Bit location where O represents the least significant bit

LIBRARY
UTI L. LIB

SEE ALSO
res

282 Dynamic C User’s Manual

root 2xnmem
i nt root2xnmenm(unsi gned | ong dest, void *src, unsigned |en);

DESCRIPTION
Stores| en characters from logical addresssr ¢ to physical addressdest .

PARAMETERS
dest Physicd address
src Logical address
l en Numbers of bytes

RETURN VALUE

0O—success
1—attempt to write Flash Memory area, nothing written
2—source not al in root

LIBRARY
XMEM LI B

SEE ALSO
xal l oc, xmen2r oot

runwat ch
void runwatch();

DESCRIPTION

Runs and updateswatch expressionsif Dynamic C hasrequested it witha Ctrl-U. Should
be called periodicaly in user program.

LIBRARY
SYS.LIB

Dynamic C User’s Manual 283

ser CheckParity

i nt serCheckParity(char rx_byte, char parity);

DESCRIPTION

Thisfunction is different from the other serial routinesin that it does not specify a partic-
ular serial port. Thisfunction takes any 8-bit character and testsit for correct parity. It
will return trueif the parity of r x_byt e matchesthe parity specified. Thisfunctionis
useful for checking individual characters when using a 7-bit data protocol.

PARAMETERS
rx_hyte The 8 bit character being tested for parity.
parity Thecharacter ‘O’ for odd parity, or the character ‘E’ for even parity.

RETURN VALUE

1 - if the parity of the byte being tested matches the parity supplied as an argument.
0 - if the parity of the byte does not match.

LIBRARY
RS232. LI B

ser Xcl ose
voi d serXclose(); /* where X = A B|C|D */

DESCRIPTION
Disables serial port X. Thisfunction is non-reentrant.

LIBRARY
RS232. LI B

284 Dynamic C User’s Manual

ser Xdat abi ts
voi d serXdatabits(state); /* where X = A B|CD */

DESCRIPTION

Setsthe number of data bitsin the serial format for this channel. Currently seven or eight
bit modes are supported. This function is non-reentrant.

PARAMETERS

state Aninteger indicating what bit mode to use. It is best to use one of
the macros provided for this:

PARAM 7BI T Configures serial port to use seven bit data

PARAM 8BI T Configures serial port to use eight bit data (default)

LIBRARY
RS232. LI B

ser Xfl owcontrol O f
voi d serXflowcontrol OFf(); /* where X = A B|C/D */

DESCRIPTION
Turns off hardware flow control for seria port X. Thisfunction is non-reentrant.

LIBRARY
RS232. LI B

Dynamic C User’s Manual

285

ser Xf|l owcont r ol On

voi d serXflowcontrol On(); /* where X = Al B|C|D */

DESCRIPTION

Turns on hardware flow control for channel X. This enablestwo digital linesthat handle
flow control, CTS (clear to send) and RTS (ready to send). CTSisan input that will be
pulled active low by the other system when it isready to receive data. The RTSsignal is
an output that the system usesto indicate that it is ready to receive data; it is driven low
when data can be received.

This function is non-reentrant.

If pinsfor the flow control lines are not explicitly defined, defaultswill be used and com-
piler warnings will be issued. The locations of the flow control lines are specified using
aset of 5 macros (X isA|B|C|D).

SERX_RTS_PORT Dataregister for the parallel port that the RTSlineison. e.g.
PCDR

SERA RTS_SHADOW Shadow register for the RTS line's parallel port. e.g.
PCDRShadow

SERA RTS BIT The bit number for the RTSline

SERA CTS_ PORT Data register for the parallel port that the CTSlineison

SERA CTS BIT The bit number for the CTSline

LIBRARY
RS232. LI B

286 Dynamic C User’s Manual

ser Xget c
int serXgetc(); /* where X = A|B|C|D */

DESCRIPTION
Get next available character from serial port X read buffer. Thisfunction is non-reentrant.

RETURN VALUE

Success: the next character inthe low byte, 0 in the high byte
Failure: - 1

LIBRARY
RS232. LI B

EXAMPLE

/'l echoes characters
mai n() {
int c;
ser Aopen(19200) ;
while (1) {
if ((c = serAgetc()) !'=-1) {
ser Aputc(c);
}

ser Acl ose()

Dynamic C User’s Manual 287

ser Xget Err or
int serXgetError(); /* where X = A B|C|D */

DESCRIPTION

Returns abyte of error flags, with bits set for any errorsthat occurred since the last time
this function was called. Any bits set will be automatically cleared when thisfunctionis
caled, so aparticular error will only be reported once. This function is non-reentrant.

Theflags are checked with bitmasks to determine which errors occurred. Error bitmasks.
SER _PARI TY_ERROR
SER_OVERRUN_ERROR

RETURN VALUE
The error flags byte.

LIBRARY
RS232. LI B

288 Dynamic C User’s Manual

ser Xopen
i nt ser Xopen(long baud); /* where X = A B|C|D */

DESCRIPTION
Opens serid port X. Thisfunction is non-reentrant.

Defining Buffer Sizes: XI NBUFSI ZE and XOUTBUFSI ZE

The user must define the buffer sizesfor each port being used to be apower of 2 minus 1
with amacro, e.g.

#define XINBUFSIZE 63
#defi ne XOUTBUFSI ZE 127

Defining the buffer sizesto 2" - 1 makesthe circular buffer operations very efficient. If a
valuenot equal to 2"- 1 isdefined, adefault of 31 isused and acompiler warning isgiven.

PARAMETERS

baud Bits per second of datatransfer. Note that the baud rate must be
greater than or equal to the peripheral clock frequency + 8192.

RETURN VALUE

1, if the baud rate achieved on the Rabbit is the same as the input baud rate.
0, if the baud rate achieved on the Rabbit does not match the input baud rate.

LIBRARY
RS232. LI B

SEE ALSO

ser Xgetc, ser Xpeek, serXputs, serXwite, cof_serXgetc,
cof serXgets, cof _serXread, cof_serXputc, cof_serXputs,
cof _serXwrite, serXclose

Dynamic C User’s Manual 289

serXparity
voi d serXparity(int parity_node); /* where X = A B|CI D */

DESCRIPTION
Sets parity mode for channd X. This function is non-reentrant.
Parity generation for 8 bit data can be unusually slow due to the current method for gen-
erating high 9th bits. Whenever, a 9th high bit is needed, the UART is disabled for ap-
proximately 5 baud times to create along stop bit that should be recognized by the
receiver asa9th high bit. The long delay is needed if we are using the serial port itself to
handletiming for the delay. Creating a shorter delay would the require use of some other
timer resource. Additionally, transmitting these long stops interferes with the receiver,
since the baud rate istemporarily increased. Thus, 9th bit formats can only be used in
half-duplex mode.

PARAMETERS

parity_node An integer indicating what parity modeto use. It is best to use
one of the macros provided:

PARAM NOPARI TY Disables parity handling (default)

PARAM_OPARI TY Configures serial port to check/generate for odd parity
PARAM_EPARI TY Configures serial port to check/generate for even parity
PARAM 2STOP Configures serial port to generate 2 stop bits

LIBRARY
RS232. LI B

290 Dynamic C User’s Manual

ser Xpeek
int serXpeek(); /* where X = [AB|C D */

DESCRIPTION

Returns 1st character ininput buffer X, without removing it from the buffer. Thisfunction

iS non-reentrant.

RETURN VALUE

An integer with 1st character in buffer in the low byte
- 1 if the buffer isempty

LIBRARY
RS232. LI B

ser Xput c
int serXputc(char c); /* where X = A/ B|C/D */

DESCRIPTION

Writes acharacter to serial port X write buffer. This function is non-reentrant.

PARAMETERS

c Character to writeto seria port X write buffer.

RETURN VALUE
O if buffer locked or full, 1 if character sent.

LIBRARY
RS232. LI B

EXAMPLE

mai n() { /'l echoes characters
int c;
ser Aopen(19200) ;
while (1) {
if ((c = serAgetc()) !'=-1) {
ser Aputc(c);
}

ser Acl ose();

Dynamic C User’s Manual

291

ser Xput s
int serXputs(char* s); /* where X = AB|C|D */
DESCRIPTION
Cdlsser Xwrite(s, strlen(s)).Thisfunctionisnon-reentrant.

PARAMETERS

s NUL L -terminated character string to write

RETURN VALUE
The number of characters actually sent from serial port X.

LIBRARY
RS232. LI B

EXAMPLE

/[l wites a null-term nated string of characters, repeatedly
mai n() {
const char s[] = "Hello zZ-World"
ser Aopen(19200) ;
while (1) {
ser Aput s(s);

ser Acl ose();

ser XrdFl ush
voi d ser XrdFl ush(); /* where X = A B|C| D */

DESCRIPTION
Flushes seria port X input buffer. This function is non-reentrant.

LIBRARY
RS232. LI B

292 Dynamic C User’s Manual

ser Xr dFr ee
int serXrdFree(); /* where X = A/ B|C/ D */

DESCRIPTION

Calculates the number of characters of unused data space. This function is non-reentrant.

RETURN VALUE
The number of charsit would taketofill input buffer X.

LIBRARY
RS232. LI B

ser XrdUsed
int serXrdUsed(); /* where X = A B|C|D */

DESCRIPTION

Calculatesthe number of charactersready to read from the serial port receive buffer. This
function is non-reentrant.

RETURN VALUE
The number of characters currently in serial port X receive buffer.

LIBRARY
RS232. LI B

Dynamic C User’s Manual

293

ser Xr ead

int serXread(void *data, int length, unsigned |ong tnout);
/* where X = AB|C|D */

DESCRIPTION

Reads| engt h bytesfrom serial port X or until t rout millisecondstranspiresbetween
bytes. The countdown of t mout doesnot begin until abyte hasbeen received. A timeout
occursimmediately if there are no charactersto read. This function is non-reentrant.

PARAMETERS
dat a Data structure to read from serial port X
I ength Number of bytesto read
t mout Maximum wait in milliseconds for any byte from previous one

RETURN VALUE
The number of bytes read from serial port X.

LIBRARY
RS232. LI B

EXAMPLE

/'l echoes a blocks of characters
mai n() {
int n;
char s[16];
ser Aopen(19200) ;
while (1) {
if ((n = serAread(s, 15, 20)) > 0) {
serAwrite(s, n);
}

}

ser Acl ose();

294 Dynamic C User’s Manual

ser Xwr Fl ush
voi d ser Xwr Flush(); /* where X = A B|C| D */

DESCRIPTION
Flushes seria port X transmit buffer. This function is non-reentrant.

LIBRARY
RS232. LI B

ser Xwr Fr ee
int serxwfree(); /* where X = A/ B|C|D */

DESCRIPTION
Calculates the free space in the seria port transmit buffer. This function is non-reentrant.

RETURN VALUE
The number of charactersthe seria port transmit buffer can accept before becoming full.

LIBRARY
RS232. LI B

serXwrite
int serXxwite(void *data, int length); /* where X = A B|C D */

DESCRIPTION
Transmits| engt h bytesto seria port X. Thisfunction is non-reentrant.

PARAMETERS
dat a Data structure to write to serial port X.
| ength Number of bytesto write

RETURN VALUE
The number of bytes successfully written to the serial port.

LIBRARY
RS232. LI B

EXAMPLE

Dynamic C User’s Manual 295

/1 wites a block of characters, repeatedly

main() {
const char s[] = "Hello zZ-World";
ser Aopen(19200) ;
while (1) {

serAwrite(s, strlen(s));

}

ser Acl ose();

}

set

voi d set(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand thiscall inline

Sets specified bit at memory addressto 1. bit may be from 0 to 31. Thisis equivaent to

the following expression, but more efficient:
*(long *)address | = 1L << bit

PARAMETERS
addr ess Address of byte containing bits 7-0
bi t Bit location where O represents the least significant bit
LIBRARY
UTI L. LIB
SEE ALSO
SET
296 Dynamic C User’s Manual

SET

void SET(void *address, unsigned int bit);

DESCRIPTION
Dynamic C may expand this call inline

Sets specified bit at memory addressto 1. bit may be from 0 to 31. Thisis equivaent to
the following expression, but more efficient:
*(long *)address | = 1L << bit

PARAMETERS
addr ess Address of byte containing bits 7-0

bi t Bit location where O represents the least significant bit

LIBRARY
UTI L. LIB

SEE ALSO
set

Dynamic C User’s Manual 297

setjm
int setjnp(jnp_buf env);

DESCRIPTION

Store the PC (program counter), SP (stack pointer) and other information about the cur-
rent state into env. The saved information can be restored by executing longjmp.

Typical usage:
switch (setjnp(e)) {
case O: [l first time
f(); /1l try to execute f(), may call |ongjnp
br eak; /1 if we get here, f() was successful
case 1: /1l to get here, f() called |ongjnp
do exception handling
br eak;
case 2: /1 1ike above, different exception code
}
f() {
a()
}
a() A
| ongj mp(e, 2); /1 exception code 2, junmp to setjnp state
/1 ment, but causes setjnp to return 2,
/1l so execute case 2 in the switch
/] statement
}
PARAMETERS
env Information about the current state

RETURN VALUE

Returnszeroif it isexecuted. After longjmp is executed, the program counter, stack point-
er and etc. are restored to the sate when set j np was executed the first time. However,
thistimeset j np returns whatever value is specified by thel ongj np statement.

LIBRARY

SYS. LI B
SEE ALSO

| ongj np

298 Dynamic C User’s Manual

Set Vect Ext er n2000
unsi gned Set Vect Ext ern2000(int priority, void *isr);

DESCRIPTION

Sets up the external interrupt table vectors for external interrupts 0 and 1. This function
is presently used for Rabbit 2000 microprocessors because of the way they handle inter-
rupts. Oncethisfunctioniscalled, both interrupts 0 and 1 should be enabled with priority
3; the actual priority used by the interrupt service routine is passed to this function.

PARAMETERS
priority Priority the ISR should run at. Valid values are 1-3.
i sr ISR handler address. Must be aroot address.

RETURN VALUE
Address of vector table entry, or zero if the priority is not valid.

LIBRARY
SYS.LIB

SEE ALSO
Get Vect Ext ern2000, Set Vectlntern, GetVectlntern

Dynamic C User’s Manual

299

Set Vectlntern
unsi gned Set Vectlntern(int vect Num void *isr);

DESCRIPTION

Setsaninternal interrupt tableentry. All Rabbit interrupts usejump vectors. Thisfunction
writesaj p instruction (0xC3) followed by the 16 bit ISR address. It is perfectly permis-
sible to have ISRsin xmem and do long jumps to them from the vector table. It iseven
possibleto place the entire body of the | SR in the vector tableif it is 16 byteslong or less,
but this function only sets up jumpsto 16 bit addresses.

PARAMETERS
vect Num Interrupt number: 015 are the only valid vaues.
i sr ISR handler address. Must be aroot address.

RETURN VALUE
Address of vector table entry, or zero if vect numis not valid.

LIBRARY
SYS. LIB

SEE ALSO
Get Vect Ext ern2000, Set Vect Ext ern2000, Get Vectlntern

sin
float sin(float Xx);
DESCRIPTION

Computesthe sine of x.

PARAMETERS

X Value to compute

RETURN VALUE
Sineof x.

LIBRARY
MATH. LI B

SEE ALSO
sinh, asin, cos, tan

300 Dynamic C User’s Manual

si nh
float sinh(float x);

DESCRIPTION

Computes the hyperbolic sine of x.
PARAMETERS

X Value to compute
RETURN VALUE

The hyperbolic sine of x.

If x >89.8 (approx.), the function returns INF and signalsarange error. If x < —89.8
(approx.), the function returns—INF and signals arange error.

LIBRARY
MATH. LI B

SEE ALSO
sin, asin, cosh, tanh

Dynamic C User’s Manual 301

sprintf

void sprintf(char *buffer, char *format, ...);

DESCRIPTION

Thisfunction takesaf or mat string (pointed to by f or mat), arguments of the format,
and output the formatted string to buf f er (pointed to by buf f er). The user should
make sure that:

* there are enough arguments after f or mat to fill in the format parametersin the
format string.

* thetypes of arguments after f or mat match the format fieldsinf or mat .

» the buffer is large enough to hold the longest possible formatted string.

Thefollowing isashort list of possible format parametersin the format string. For more
details, refer to any C language book.

%d
%u
%X
%s
%f

decimal integer (expectstypeint)

decimal unsigned integer (expects type unsigned int)
hexidecimal integer (expects type signed int or unsigned int)
adtring (not interpreted, expects type (char *))

afloat (expectstype float)

Forexample, spri ntf (buffer, " %=%", "vari abl e x", 256); shouldput
thestring var i abl e x=100 into buf f er.

This function can be called by processes of different priorities.

PARAMETERS
buf f er Result string of the formatted string.
f or mat String to be formatted.
Format arguments.
LIBRARY
STDI O. LI B
SEE ALSO
printf
302 Dynamic C User’s Manual

float sqrt(float x);

DESCRIPTION
Calculate the square root of x.
PARAMETERS
X Value to compute

RETURN VALUE
The square root of x.

LIBRARY
MATH. LI B

SEE ALSO
exp, pow, powlO

char *strcat(char *dst, char *src);

DESCRIPTION
Appends one string to another

PARAMETERS
dst Pointer to location to destination string.
src Pointer to location to source string.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING. LI B

SEE ALSO
strncat

Dynamic C User’s Manual 303

strchr
char *strchr(char *src, char ch);

DESCRIPTION

Scans astring for the first occurrence of a given character.

PARAMETERS
src String to be scanned.
ch Character to search

RETURN VALUE

Pointer to thefirst occurrenceof ch insrc.
NULL if ch isnot found.

LIBRARY
STRING. LI B

SEE ALSO
strrchr, strtok

304

Dynamic C User’s Manual

strcnp

int strcnp(char *strl, char *str?2)

DESCRIPTION
Performs unsigned character by character comparison of two NUL L-terminated strings.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0 if strlislessthanstr?2
charinst r 1 islessthan corresponding charinst r 2
st r 1 isshorter than but otherwise identical tost r 2

=0 strlisidentica tostr2
>0 if st rlisgreaterthanstr 2
char inst r 2 isgreater than corresponding char inst r 2
st r 2 isshorter than but otherwiseidentical tost r 1
LIBRARY
STRING. LI B
SEE ALSO

strncnmp, strcnpi, strncnpi

Dynamic C User’s Manual 305

strcnpi

int *strcnpi (char *strl, char *str2);

DESCRIPTION
Performs case-insensitive unsigned character by character comparison of two null termi-
nated strings.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0 if strlislessthanstr 2
char inst r 1 islessthan corresponding charinst r 2
st r 1 is shorter than but otherwiseidentical tost r 2

=0 strlisidenticatostr?2
>0 if str1isgreaterthanstr 2
char inst r 2 isgreater than corresponding char inst r 2
st r 2 isshorter than but otherwiseidentical tost r 1
LIBRARY
STRING. LI B
SEE ALSO

strncnpi, strncnp, strcnp

306 Dynamic C User’s Manual

strcpy

char *strcpy(char *dst, char *src);

DESCRIPTION
Copies one string into another string including the NULL terminator.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING. LI B

SEE ALSO
st rncpy

strcspn
unsi gned int strcspn(char *sl1l, char *s2);

DESCRIPTION
Scans a string for the occurrence of any of the charactersin ancther string.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Returns the position (less one) of the first occurrence of a character in s 1 that matches
any character ins2.

LIBRARY
STRING. LI B

SEE ALSO
strchr, strrchr, strtok

Dynamic C User’s Manual 307

strlen
int strlen(char *s);

DESCRIPTION
Calculate the length of a string.

PARAMETERS

s Character string

RETURN VALUE
Number of bytesin astring.

LIBRARY
STRING. LI B

strncat

char *strncat(char *dst, char *src, unsigned int n);

DESCRIPTION

Appends one string to another up to and including the NULL terminator or until n char-
acters are transferred, followed by a NULL terminator.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytesto copy. If equal to zero, thisfunction

has no effect.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING. LI B

SEE ALSO

strcat

308 Dynamic C User’s Manual

strncnp

int strncnp(char *strl, char *str2, n)

DESCRIPTION
Performs unsigned character by character comparison of two strings of length n.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n M aximum number of bytesto compare. If zero, both strings are con-
sidered equal.
RETURN VALUE
<0 if strlislessthanstr 2

charinst r 1 islessthan corresponding charinst r 2

=0 if str1isidentica tostr2
>0 if st rlisgreaterthanstr2
char inst r 2 isgreater than corresponding char inst r 2
LIBRARY
STRING. LI B
SEE ALSO

strcnp, strcnpi, strncnpi

Dynamic C User’s Manual 309

st r ncnpi

int strncnpi (char *strl, char *str2, unsigned n)

DESCRIPTION
Performs case-insensitive unsigned character by character comparison of two strings of
length n.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n M aximum number of bytesto compare, if zero then strings are con-

sidered equal

RETURN VALUE

<0 if strlislessthanstr?2

charinst r 1 islessthan corresponding charinst r 2
=0 if strlisidenticatostr2

>0 if st rlisgreaterthanstr2
char inst r 2 isgreater than corresponding char inst r 2

LIBRARY
STRING. LI B

SEE ALSO
strcnpi, strcnp, strncnp

310 Dynamic C User’s Manual

st rncpy

char *strncpy(char *dst, char *src, unsigned int n);

DESCRIPTION

Copies agiven number of characters from one string to another and padding with NULL
characters or truncating as necessary.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytes to copy. If equal to zero, thisfunction

has no effect.

RETURN VALUE
Pointer to destination string.

LIBRARY
STRING. LI B

SEE ALSO
strcpy

Dynamic C User’s Manual

311

strpbrk

char *strpbrk(char *sl1, char *s2);

DESCRIPTION
Scans astring for the first occurrence of any character from another string.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Pointer pointing to the first occurrence of a character containedins2 ins1. Returns
NULL if not found.

LIBRARY
STRING. LI B

SEE ALSO
strchr, strrchr, strtok

strrchr

char *strrchr(char *s, int c);

DESCRIPTION
Similar to st r chr , except thisfunction searches backward from the end of s to the be-
ginning.
PARAMETERS
S String to be searched
C Search character

RETURN VALUE
Pointer to last occurrence of c ins. If ¢ isnot found ins, return NULL.

LIBRARY
STRING. LI B

SEE ALSO
strchr, strcspn, strtok

312 Dynamic C User’s Manual

strspn
size_t strspn(char *src, char *brk);

DESCRIPTION
Scansastring for thefirst segment in sr ¢ containing only characters specified inbr k.

PARAMETERS
src String to be scanned
brk Set of characters

RETURN VALUE
Returns the length of the segment.

LIBRARY
STRING. LI B

strstr
char *strstr(char *sl, char *s2);

DESCRIPTION
Finds a substring specified by s2 instring s 1.

PARAMETERS
sl String to be scanned
s2 Substring

RETURN VALUE

Pointer pointing to thefirst occurrence of substring s2 ins 1. ReturnsNULL if s2 isnot
foundins1.

LIBRARY
STRING. LI B

SEE ALSO
strcspn, strrchr, strtok

Dynamic C User’s Manual 313

strtod
float strtod(char *s, char **tailptr);

DESCRIPTION
ANSI String to Float Conversion.

PARAMETERS
S String to convert
tailptr Pointer to a pointer of character. The next conversion may resume

at the location specifiedby *t ai | ptr.

RETURN VALUE
The float number.

LIBRARY
STRING. LI B

SEE ALSO
at of

314 Dynamic C User’s Manual

strtok

char *strtok(char *src, char *brk);

DESCRIPTION
Scanssr ¢ for tokens separated by delimiter characters specified in br k.
First call with non-NULL for sr c. Subsequent callswith NULL for sr ¢ continueto

search tokensin the string. If atokenisfound (i.e., delineators found), replace the first
deimiterinsr ¢ withaNULL terminator sothat sr ¢ pointsto aproper NUL L-terminated

token.
PARAMETERS
src String to be scanned, must bein SRAM, cannot be a constant. In
contrast, strings initialized when they are declared are stored in
Flash Memory, and are treated as constants.
brk Character delimiter

RETURN VALUE
Pointer to atoken. If no delimiter (therefore no token) is found, returns NULL.

LIBRARY
STRING. LI B

SEE ALSO
strchr, strrchr, strstr, strcspn

Dynamic C User’s Manual

315

strtol

| ong strtol (char

DESCRIPTION

*sptr,

ANSI String to Long Conversion.

PARAMETERS
sptr

tailptr

base

RETURN VALUE

Thelong integer.

LIBRARY

STRING. LI B
SEE ALSO

atoi, atol

_sysl sSof t Reset

String to convert

char **tailptr,

i nt

base);

Assigned the last position of the conversion. The next conversion
may resume at the location specified by *t ai | ptr.

Indicates the radix of conversion.

void _syslsSoftReset();

DESCRIPTION

This function determines whether thisrestart of the board is due to a software reset from
Dynamic Cor acal tof or ceReset () . If it was a soft reset, thisfunction then does

the following:

Cdls_prot _init () toinitializethe protected variable mechanisms. It isup to the
user to initialize protected variables.

CalssysReset Chai n() . Theuser my attach functionsto this chain to perform addi-
tiona startup actions (for example, initializing protected variables). If a soft reset did not
take place, thisfunction calls_pr ot _recover () torecover any protected variables.

LIBRARY
SYS.LIB

316

Dynamic C User’s Manual

sysReset Chai n

voi d sysReset Chain (void);

DESCRIPTION

Thisisafunction chain that should be used to initiaize protected variables. By defaullt,
it's empty.

LIBRARY
SYS.LIB

tan
float tan(float x);

DESCRIPTION
Compute the tangent of the argument.

PARAMETERS

X Value to compute

RETURN VALUE

Returnsthetangent of x, where—8 x Pl < x < +8 x PI. If x isout of bounds, the function
returns 0 and signals adomain error. If the value of x istoo close to amultiple of 90°
(P1/2) the function returns INF and signals arange error.

LIBRARY
MATH. LI B

SEE ALSO
atan, cos, sin, tanh

Dynamic C User’s Manual 317

t anh
float tanh(float x);

DESCRIPTION
Computes the hyperbolic tangent of argument.

PARAMETERS

X Value to compute

RETURN VALUE

Returns the hyperbolic tangent of x. If x >49.9 (approx.), the function returns INF and
signalsarangeerror. If x <—49.9 (approx.), thefunction returns— NF and signalsarange
error.

LIBRARY
MATH. LI B

SEE ALSO
atan, cosh, sinh, tan

318 Dynamic C User’s Manual

tmrd
int tmrd(struct tm*t);

DESCRIPTION

Reads the current system time into the structuret . WARNING: The variable

SEC_TI MERIsinitialized when aprogram isfirst started. If you change the Rea Time
Clock (RTC), thisvariablewill not be updated until you restart aprogram, andthet m r d
function will not return thetimethat the RTC hasbeenreset to. Ther ead_rt ¢ function

will read the actual RTC and can be used if necessary.

PARAMETERS
t Address of structure to store time data
struct tm{
char tm sec; /1l seconds 0-59
char tmnn; /1 0-59
char tm hour; /1 0-23
char tm nday; /1 1-31
char tm non; [l 1-12
char tm.year; /1 80-147 (1980-2047)
char tm wday; /1 0-6 0==Sunday
1
RETURN VALUE
0 if successful,

- 1 if clock read failed.

LIBRARY
RTCLOCK. LI B

SEE ALSO
nktm nktine, tmw

Dynamic C User’s Manual

319

tmwr

i nt

tmw (struct tm*t);

DESCRIPTION

Setsthe system time from at mstruct. It isimportant to note that althought m_r d()

readsthe SEC _TI MERvariable, notthe RTC,t m wr () writesto the RTC directly, and
SEC_TI MER s not changed until the program isrestarted. The reason for thisis so that
theDel aySec() functioncontinuestowork correctly after setting the systemtime. To
maket m r d() match the new time written to the RTC without restarting the program,
the following should be done:

tmw (tm;

SEC TIMER = nktine(tm;

But this could cause problemsif awai t f or (Del aySec(n)) ispending completion
in acooperative multitasking program or if the SEC_TI MERvariableisbeing used in an-

other way the user, so user beware.

PARAMETERS

t

Pointer to structure to read date and time from.

struct tm{

char
char
char
char
char
char
char

b

RETURN VALUE

0 if successful,
- 1 if clock write failed.

LIBRARY
RTCLOCK. LI B

SEE ALSO
nktm nktine, tmrd

t m sec;
tmnin;
t m_hour;
t m nday;
t m_non;
tmyear;
t m wday;

seconds 0-59

80- 147 (1980-2047)
0- 6 0==Sunday

320

Dynamic C User’s Manual

int tolower(int c);
DESCRIPTION
Convert alphabetic character to lower case.

PARAMETERS

c Character to convert

RETURN VALUE
Lower case aphabetic character.

LIBRARY
STRING. LI B

SEE ALSO
t oupper, isupper, islower

int toupper(int c);
DESCRIPTION
Convert alphabetic character to uppercase.

PARAMETERS

c Character to convert

RETURN VALUE
Upper case alphabetic character.

LIBRARY
STRING. LI B

SEE ALSO
tol ower, isupper, islower

Dynamic C User’s Manual 321

updat eTi mer s
voi d updateTi mers();

DESCRIPTION

Updatesthevaluesof TI CK_TI MER, M5_TI MER, and SEC_TI MERwhile running off
the 32kHz oscillator. Since the periodic interrupt is disabled when running at 32kHz,
these values will not updated unless this function is called.

LIBRARY
SYS. LIB

SEE ALSO
useMni nOsc, use32HzOsc

use32HzOsc
voi d use32kHzOsc();

DESCRIPTION

Setsthe Rabbit processor to usethe 32kHz real time clock oscillator for both the CPU and
peripheral clock, and shuts off the main oscillator. If thisis already set, thereisno effect.
This mode should provide greatly reduced power consumption. Serial communications
will be lost sincetypical baud rates cannot be made from a 32kHz clock. Also note that
this function disables the periodic interrupt, so waitfor and related statements will not
work properly (although costatements in general will still work). In addition, the values
inTI CK_TI MER, M5_TI MER, and SEC_TI MERwill not be updated unlessyou call the
functionupdat eTi mer s() frequently in your code. In addition, you will need to call
hi t wd() periodically to hit the hardware watchdog timer since the periodic interrupt
normally handlesthat, or disable the watchdog timer beforecallingthisf uncti on. The
watchdog can be disabled with Di sabl e HW WDT() .

use32kHzOsc() isnottask reentrant.

LIBRARY
SYS. LIB

SEE ALSO

useMai nOsc, useCl ockDi vi der, updateTi ners

322 Dynamic C User’s Manual

useC ockDi vi der
voi d useCl ockDi vi der ();

DESCRIPTION

Setsthe Rabbit processor to use the main oscillator divided by 8 for the CPU (but not the
peripheral clock). If thisisaready set, thereis no effect. Because the peripheral clock is
not affected, serial communications should till work. This function aso enablesthe pe-
riodicinterrupt in caseit wasdisabled by acall touser 32kHzGsc () . Thisfunctionis
not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO
useMni nOsc, use32HzOsc

useMai nGsc
voi d useMai nGCsc();

DESCRIPTION

Sets the Rabbit processor to use the main oscillator for both the CPU and periphera
clock. If thisisaready set, thereis no effect. This function also enables the periodic in-
terrupt in case it was disabled by acall touser 32kHzOsc() , and updates the

TI CK_TI MER, M5_TI MER, and SEC_TI MERVvariablesfromthereal-timeclock. This
function is not task reentrant.

LIBRARY
sys.lib

SEE ALSO
use32HzOsc, useCl ockDi vi der

Dynamic C User’s Manual 323

ut oa
char *utoa(unsi gned val ue, char *buf);

DESCRIPTION

Placesup to 5 digit character string at * buf representing value of unsigned number. Sup-
presses leading zeros, but leaves one zero digit for value = 0. Max = 65535. 73 program

bytes.
PARAMETERS
val ue 16-bit number to convert
buf Character string of converted number

RETURN VALUE
Pointer to NULL at end of string.

LIBRARY
STDI O. LI B

SEE ALSO

itoa, htoa, |toa

324 Dynamic C User’s Manual

VdGet FreeW

i nt vdGet FreeWd(char count);

DESCRIPTION
Returns afreevirtual watchdog and initializes that watchdog so that the virtual driver be-
gins counting it down from count . The number of virtual watchdogs availableis deter-
mined by N WATCHDOG which is 5 by default, but can be defined by the user:

#defi ne N_WATCHDOG 10. Thevirtual driver is called every 0.00048828125 sec.
Onevery 128th call toit (62.5 ms), thevirtua watchdogs are counted down. If any virtual
watchdog reaches O, thisisafatal error. Once avirtual watchdog isactive, it should reset
periodically with acal to VdHi t Wi to prevent this. The count is decremented, tested

and, if O, afatal error occurs.

PARAMETERS

count 1<count <=255

RETURN VALUE
Integer id number of an unused virtual watchdog timer.

LIBRARY
VDRI VER. LI B

VdHi t W

int VdHi tWi(int ndog);

DESCRIPTION

Resets virtua watchdog counter to N counts where N isthe argument to the call to
VdGet Fr eeWd () that obtained the virtual watchdog ndog. The virtual driver counts
downwatchdogsevery 62.5 ms. If avirtua watchdog reaches0, thisisafatal error. Once
avirtual watchdog is active it should reset periodically withacall to VdHi t Wi to pre-
vent this. If count = 2 the VdHi t Wi will need to be called again for virtual watchdog
ndog within62.5ms. If count =255, VdHi t Wi will need to be called again for virtua
watchdog ndog within 15.9375 seconds.

PARAMETERS
ndog Id of virtual watchdog returned by VdGet Fr eeWd ()

LIBRARY
VDRI VER. LI B

Dynamic C User’s Manual

325

voi d Vdl nit(void);

DESCRIPTION

Initializes virtual driver for all Rabbit boards. SupportsDel ayMs, Del ay Sec, Del ay-
Ti ck. VdI ni t iscalled by the BIOS unless disabled.

LIBRARY
VDRI VER. LI B

326 Dynamic C User’s Manual

VdRel easeW

i nt VdRel easeWd(i nt ndog);

DESCRIPTION
Deactivates a virtual watchdog and makesit available for VdGet Fr eeWl() .

PARAMETERS

ndog Handle returned by VdGet Fr ee\W

RETURN VALUE

0 - ndog out of range
1 - success

LIBRARY
VDRI VER. LI B

EXAMPLE

/1 VdRel easeWd virtual watchdog exanpl e
main() {

int wd; /1 handle for a virtual watchdog

unsi gned | ong tm

tm = SEC TI MER;

wd = VdGet FreeWd(255);// wd activated, 9 virtual watchdogs now
avai |l abl e

/1 wd nust be hit at |east every 15.875
seconds

whil e(SEC TIMER - tm < 60) { [/l let it run for a mnute
VdHi t Wi(wd) ; // decrements counter corresponding to wd
reset to 12
}
VdRel easeWd(wd) ; /!l now there are 10 virtua
/1 wat chdogs avail abl e

Dynamic C User’s Manual 327

WiteFl ash2

int WiteFlash2(unsigned | ong flashDst, void* rootSrc, int
l en);

DESCRIPTION
Write len bytes to physical address flashDt on the 2nd

flash device from rootSrc. The source must beinroot. The flashDstaddress must bein
the range 0x00040000-0x0007FFFF, sincethetopmost memory quadrant will be mapped
to the 2nd flash (256kb isthe maximum size visible on the second flash by thisfunction).
Thisfunction is not reentrant.

NOTE: thisfunction should NOT be used if you are using the second flash device for a
flash file system, e.q. if you are writing a TCP/IP-based application!

PARAMETERS
fl ashDst Physica address of the flash destination
root Src Pointer to the root source
I en Number of bytesto write

RETURN VALUE

0: Success

-1: Attenpt to wite non-2nd flash area, nothing witten
-2: Rootsrc not in root

-3: Tineout while witing flash

LIBRARY
XMEM LI B

328 Dynamic C User’s Manual

wite rtc
void wite rtc(unsigned long int tine);

DESCRIPTION

Writes a 32 bit seconds value to the RTC, zeros other bits. This function does not stop or
delay periodic interrupt. It does not affect the SEC_TI MERor M5_TI MER variables.

PARAMETERS

time 32-hit value representing the number of seconds since January 1,
1980.

LIBRARY
RTCLOCK. C

SEE ALSO
read rtc

Dynamic C User’s Manual 329

W Port E
void WPortE(int port, char *portshadow, int data_val ue);

DESCRIPTION

Writes an external 1/0 register with 8 bits and updates shadow for that register. The vari-
able names must be of theform por t and por t shadowfor the most efficient opera-
tion. A NULL pointer may be substituted if shadow support is not desired or needed.

PARAMETERS
port Address of external data register.

port shadow Reference pointer to avariable shadowing the register data. Substi-
tute with NULL pointer (or 0) if shadowing is not required.

dat a_val ue Value to be written to the data register

LIBRARY
SYSIO. LI B

SEE ALSO

RdPortl, BitRdPortl, W Portl, BitWPortl, RdPortE, BitRdPortE,
Bit WPortE

W Por t |
void WPortl(int port, char *portshadow, int data_val ue);

DESCRIPTION
Writes an internal 1/0 register with 8 bits and updates shadow for that register.

PARAMETERS
port Address of data register.

port shadow Reference pointer to avariable shadowing the register data. Substi-
tute with NULL pointer (or O) if shadowing is not required.

dat a_val ue Value to be written to the data register

LIBRARY
SYSIO. LI B

SEE ALSO

RdPortl, BitRdPortl, BitRdPortE, BitWPortl, RdPortE, W PortE,
Bi t WPortE

330 Dynamic C User’s Manual

xal | oc
| ong xal l oc(l ong sz)
DESCRIPTION
Allocates the specified number of bytesin extended memory.

PARAMETERS

sz Number of bytesto allocate.

RETURN VALUE

The 20-bit physical address of the allocated data on success;
0 onfailure.

LIBRARY
SYS.LIB

SEE ALSO

root 2xmem Xxnmen2r oot

Xmen2r oot

i nt xmen2root (void *dest, unsigned long int src, unsigned int
l en);

DESCRIPTION
Stores| en characters from physical addresssr ¢ to logical addressdest .

PARAMETERS
dest Logical address
src Physicd address
I en Numbers of bytes

RETURN VALUE

0 - success
1 - attempt to write Flash Memory area, nothing written
2 - destination not all in root
LIBRARY
XMEM LI B

SEE ALSO
root 2xmem xal | oc

Dynamic C User’s Manual 331

XMENM2Xmem

i nt xmen2xmen(unsi gned | ong dest, unsigned |ong src, unsigned
l en);

DESCRIPTION
Stores| en characters from physical addresssr ¢ to physical addressdest .

PARAMETERS
dest Physica address of destination
src Physicd address of source data
I en Length of source datain bytes

RETURN VALUE

0 - success
1 - attempt to write Flash Memory area, nothing written

LIBRARY
XMEM LI B

332 Dynamic C User’s Manual

User Interface 16

Dynamic C can be used to edit source files, compile and programs, or choose options for these
activities. There are two modes: edit mode and run mode. The run mode can be also called the
debug mode. Compilationiis, in effect, the transition between the edit mode and the run mode.
Developers work with Dynamic C by editing text, issuing menu commands (or keyboard shortcuts
for these commands), and viewing various debugging windows.

Multiple instances of Dynamic C may be run simultaneously. This means multiple debugging ses-
sions are possible over different serial ports. Thisis useful for debugging multiple boards that are
communicating among themselves

Programs can compile directly to atarget controller for debugging in RAM or flash. Programs can
also be compiledto a. bi n file.

In order to compile or run a program, a controller must be connected to the PC. Dynamic C
includes editing options and compiler options. Most of the options arein the OPTIONS menu.

16.1 Editing

Once afile has been created or has been opened for editing, the file is displayed in atext window.
It is possible to open or create more than one file and one file can have several windows. Dynamic
C supports normal Windows text editing operations.

Use the mouse (or other pointing device) to position the text cursor, select text, or extend a text
selection. Scroll bars may be used to position text in awindow. Dynamic C will, however, work
perfectly well without a mouse, athough it may be a bit tedious.

It isalso possible to scroll up or down through the text using the arrow keys or the PageUp and
PageDown keys or the Home and End keys. The left and right arrow keys allow scrolling left
and right.

16.1.0.1 Arrows
Use the up, down, left and right arrow keys to move the cursor in the corresponding direction.

The Ctrl key works in conjunction with the arrow keys this way.

CTRL-Left Move to previous word
CTRL-Right Move to next word
CTRL-Up Scroll up one line (text moves down)
CTRL-Down Scroll down oneline

16.1.0.2 Home

Moves the cursor backward in the text to the start of theline.
Home Move to beginning of line
CTRL-Home Move to beginning of file
SHIFT-Home Select to beginning of line

SHIFT-CTRL-Home Select to beginning of file

Dynamic C User’s Manual 333

16.1.0.3 End
Moves the cursor forward in the text.

End Moveto end of line
CTRL-End Moveto end of file
SHIFT-End Select to end of line

SHIFT-CTRL-End Select to end of file

Sections of the program text can be “cut and pasted” (add and delete) or new text may be typed in
directly. New text isinserted at the present cursor position or replaces the current text selection.

The Replace command in the EDIT menu is used to perform search and replace operations either
forwards or backwards.

16.2 Menus

bE* Dynamic C =]
File Edit Compile Bun Inspect Options Window Help

Dynamic C has eight command menus, as well as the standard Windows system menus. An avail-
able command can be executed from amenu by clicking the menu and then clicking the command,
or by (1) pressing the Alt key to activate the menu bar, (2) using the left and right arrow keysto
select amenu, (3) and using the up or down arrow keys to select a command, and (4) pressing
Enter. It isusually more convenient to type keyboard shortcuts (such as<CTRL-H> for HELP)
once they are known. Pressing the Esc key will make any visible menu disappear. A menu can be
activated by holding the Alt key down while pressing the underlined letter of the menu name (use
the space bar and minus key to access the system menus). For example, press <ALT-F> to activate
the FILE menu.

Click the menu title or press <ALT-F> to select the FILE menu.

Y Edit Compile Run

| New
Open... |
Save
Save As__.
Close

Print Preview...
Erint._..
Print Setup__.

Exit Alt+F4

334 Dynamic C User’s Manual

16.2.1 New
Creates anew, blank, untitled program in a new window.

16.2.2 Open

Presents a dialog in which to specify the name of afileto open. Unlessthere is a problem,
Dynamic C will present the contents of the file in atext window. The program can then be edited
or compiled.

To select afile, typein the desired file name, or select one from the list. Thefile's directory may
also be specified.

16.2.3 Save
The Save command updates an open file to reflect the latest changes. If the file has not been
saved before (that is. the file is a new untitled file), the Save As dialog will appear.

Use the Save command often while editing to protect against |oss during power failures or system
crashes.

16.2.4 Save As
Allows anew name to be entered for afile and saves the file under the new name.

16.2.5 Close

Closes the active window. The active window may also be closed by pressing <CTRL-F4> or by
double-clicking on its system menu. If there is an attempt to close afile before it has been saved,
Dynamic C will present adialog similar to one of these two dialogs.

Thefileissaved when Yes (or type“y”) isclicked. If thefileis untitled, there will be a prompt for
afilenameinthe Save As dialog. Any changesto the document will be discarded if No is
clicked or “n” istyped. Cancel resultsin areturn to Dynamic C, with no action taken.

16.2.6 Print Preview

Shows approximately what printed text will 1ook like. Dynamic C switches to preview “mode”
when this command is selected, and allows the programmer to navigate through images of the
printed pages.

16.2.7 Print

Text can be printed from any Dynamic C window. There is no restriction to printing source code.
For example, the contents of the assembly window or the watch window can be printed. Dynamic
C displays the following type of dialog when the Print command is selected.

At present, printing all pagesisthe only option.

As many copies of the text as needed may be printed. If more than one copy is requested, the
pages may be collated or uncollated.

If the Print to File option is selected, Dynamic C creates afile (it will ask for a pathname) in the
format suitable to send to the specified printer. (If the selected printer is a PostScript printer, the
filewill contain PostScript.)

Dynamic C User’s Manual 335

To choose a printer, click the Setup button in the Print dialog, or choose the Print Setup... com-
mand from the FILE menu.

16.2.8 Print Setup

Allows choice of which printers to use and to set them up to print text.

There is a choice between using the computer system’s default printer or selecting a specific
printer. Depending on the printer selected, it may be possible to specify paper orientation (portrait
or tall, vs. landscape or wide), and paper size. Most printers have these options. A specific printer
may or may not have more than one paper source.

The Options button alows the print options dialog to be displayed for a specific printer. The
Network button allows printers to be added or removed from the list of printers.

16.2.9 Exit

To exit Dynamic C. When thisis done, Windows will either return to the Windows Program Man-
ager or to another application. The keyboard shortcut is <ALT-F4>.

16.3 Edit Menu
Click the menu title or press <ALT-E> to select the EDIT menu.

pE: Dynamic C

File Qumpile Bun Inspect Option

D|15[Undo Alt+Bksp
— Redo Shift+Alt+Bksp

Cut Cirl+X

Copy Ctrl+C
Paste Ctrl+¥
Find__. Ctrl+F
Replace... Fb
Find Next F3

Goto.__ Ctrl+G

Erevious Error. EtrixE
MNexd Error EtriEN

EditMode =4

16.3.1 Undo

This option undoes recent changes in the active edit window. The command may be repeated sev-
eral times to undo multiple changes. The amount of editing that may be undone will vary with the
type of operations performed, but should suffice for afew large cut and paste operations or many

336 Dynamic C User’s Manual

lines of typing. Dynamic C discards all undo information for an edit window when thefileis
saved. The keyboard shortcut is <ALT-backspace>.

16.3.2 Redo

Redoes modifications recently undone. This command only works immediately after one or more
Undo operations. The keyboard shortcut is <ALT-SHIFT-backspace>.

16.3.3 Cut

Removes selected text from a sourcefile. A copy of the text is saved on the “ clipboard.” The con-
tents of the clipboard may be pasted virtually anywhere, repeatedly, in the same or other source
files, or even in word processing or graphics program documents. The keyboard shortcut is
<CTRL-X>.

16.3.4 Copy

Makes a copy of selected text in afile or in one of the debugging windows. The copy of thetext is
saved on the “clipboard.” The contents of the clipboard may be pasted virtually anywhere. The
keyboard shortcut is <CTRL-C>.

16.3.5 Paste

Pastes text on the clipboard as aresult of a copy or cut (in Dynamic C or some other Windows
application). The paste command places the text at the current insertion point. Note that nothing
can be pasted in a debugging window. It is possible to paste the same text repeatedly until some-
thing elseis copied or cut. The keyboard shortcut is <CTRL-V>.

16.3.6 Find
Finds specified text.

Type the text to be found in the Find box. The Find command (and the Find Next command,
too) will find occurrences of the word “switch.” If case sensitive isclicked, the search will find
occurrences that match exactly. Otherwise, the search will find matches having upper- and lower-
case letters. For example, “switch,” “Switch,” and “SWITCH” would all match. If reverse is
clicked the search will occur inreverse, that is, the search will proceed toward the beginning of the
file, rather than toward the end of the file. Usethe From cursor checkbox to choose whether to
search the entire file or to begin at the cursor location. The keyboard shortcut is<CTRL F>.

16.3.7 Replace
Replaces specified text.

Type the text to be found in the Find text box (there is a pulldown list of previously entered
strings). Then type the text to subgtitute in the Change to text box. If Case sensitive is
selected, the search will find an occurrence that matches exactly. Otherwise, the search will find a
match having upper- and lower-case letters. For example, “reg7,” “REG7,” and “Reg7” al match.

If Reverse isclicked, the search will occur in reverse, that is, the search will proceed toward the
beginning of the file, rather than toward the end of the file. The entire file may be searched from

Dynamic C User’s Manual 337

the current cursor location by clicking the From cursor box, or the search may begin at the cur-
rent cursor location.

The Selection only box allows the substitution to be performed only within the currently
selected text. Use thisin conjunction with the Change All button. This box is disabled if no text
is selected.

Normally, Dynamic C will find the search text, then prompts for whether to make the change. This
isan important safeguard, particularly if the Change All button is clicked. If No prompt is
clicked, Dynamic C will make the change (or changes) without prompting.

The keyboard shortcut for Replace is<F6>.

16.3.8 Find Next

Once search text has been specified with the Find or Replace commands, the Find Next com-
mand (F3 for short) will find the next occurrence of the same text, searching forward or in reverse,
case sensitive or not, as specified with the previous Find or Replace command. If the previous
command was Replace, the operation will be areplace.

16.3.9 Goto
Positions the insertion point at the start of the specified line.

Type the line number (or approximate line number) to which to jump. That line, and linesin the
vicinity, will be displayed in the source window.

16.3.10 Previous Error

L ocates the previous compilation error in the source code. Any errors will be displayed in alistin
the message window after a program is compiled. Dynamic C selects the previous error in the list
and positions the offending line of code in the text window when the Previous Error command
(<CTRL-P> for short) is made. Use the keyboard shortcuts to |ocate errors quickly.

16.3.11 Next Error

L ocates the next compilation error in the source code. Any errorswill be displayed in alistinthe
message window after a program is compiled. Dynamic C selects the next error in the list and
positions the offending line of code in the source window when the Next Error command
(<CTRL-N> for short) is made. Use the keyboard shortcuts to locate errors quickly.

16.3.12 Edit Mode

Switches Dynamic C back to edit mode from run mode (a so called debug mode). After a program
has been compiled or executed, Dynamic C will not allow any modification to the program unless
the Edit Mode is selected. The keyboard shortcut is F4.

338 Dynamic C User’s Manual

16.4 Compile Menu
Click the menu title or press <ALT-C> to select the COMPILE menu.

WL ValEW Fun Inspect Options wWindow Help

Compile ta Target F& l P R
Compile to .bin file Uze attached target
Bezet Target/Compile BIOS Chrl+7" Diefing target configuration

v |nclude debug codedBST 23 instructions v |nclude BIOS |

16.4.1 Compile to Target
Compiles aprogram and loads it in the target controller’s memory. The keyboard shortcut is F5.

Dynamic C determines whether to compile to RAM or flash based on the current compiler options
(set with the Options menu). Any compilation errors are listed in the automatically activated mes-
sage window. Hit <F1> to obtain a more descriptive message for any error message that is high-
lighted in this window.

16.4.2 Compile to .bin file

Compiles a program and writestheimageto a. bi n file. The. bi n file can then be used with a
device programmer to program multiple chips; or the Rabbit Field Utility can load the . bi n files
to thetarget. The Include BIOS option should normally be checked. It just causesthe BIOS as
well asthe user program to beincluded in the BIN file. If you are creating special program such as
acold loader that starts at address 0x0000, then this option should be unchecked. This type of use
isfor advanced users.

When compiling to a. bi n file, choose Use attached target to use the parameters of the con-
troller board connected to your system. If there is no controller board connected to your system or
if thereisbut you want to define a different configuration, choose Define target configuration.
The Targetless Compilation Parameters menu will appear, as shown below. You can specify board
type and parameters and save the information in a Remote Target Information (RT]1) file.

Dynamic C User’s Manual 339

T argetlezs Compilation Parameters |

" Use Remaote Target (BT File
" Specify Board Parameters
& Select Board Type:

Board ID: 00100
| 14MHz Jackrabbit, 128k SRAM, 128k Flash 7]

Cryztal Speed [MHz]

| 147456 =
Rk Size [KEuptes]
128 "

Flazh Size [KBytez]

125 ¥

Save az ATI | & Compile| X Cancel

16.4.3 Reset Target/Compile BIOS
This option rel oads the BIOS to RAM or flash, depending on the BIOS memory setting chosen in
Options->Compiler Options. The default option is flash.

The following box will appear upon successful compilation and loading of BIOS code.

BIOS Successfully Compiled and Loaded
Ready to Compile User Programs

16.4.4 Include Debug Code/RST 28 Instructions

If thisis checked, debug code will be included in the program even if #nodebug precedes the
main function in the program. Debug code consists mainly of RST 28h instructionsinserted after
every C statement. At an RST 28h instruction, program execution is transferred to the debug ker-
nel where communication between Dynamic C and the target is tended to before returning to the
user program. There are certain loop optimizationsthat are not generated when code is compiled
as debug. This option also controls the definition of a compiler-defined macro symbol,
DEBUG_RST. If the menu item is checked then DEBUG RST isset to 1, otherwiseitisO.

340 Dynamic C User’s Manual

If the option is not checked, the compiler marks all code asnodebug and debugging is not pos-
sible. The only reason to check this option if debugging is finished and the program is ready to be
deployed isto allow some current (or planned) diagnostic capability of the Rabbit Field Utility
(RFU) to work in adeployed system. This option effects both code compiled to . bi n files and
code compiled to the target . In order to run the program after compiling to the target with this
option, disconnect the target from the programming port and reset the target CPU.

16.5 Run Menu
Click the menu title or press <ALT-R> to select the RUN menu.

aile m Inspect Options Window Help
¢ I N

siop Cirl+=£
Run w{ No Folling Alt+F9

Trace into F7
Step over F&

Toggle Breakpoint F2
Toggle Hard Breakpoint Alt+F2

Toggle Interrupt Flag Ctrl+I
Toggle Polling Cirl+0

Reset Program Ctrl+F2
Close Serial Port

16.5.1 Run
Starts program execution from the current breakpoint. Registers are restored, including interrupt
status, before execution begins. The keyboard shortcut is F9.

16.5.2 Run w/ No Polling

Thiscommand isidentical to the Run command, with an important exception. When running in
polling mode (F9), the development PC polls or interrupts the target system every 100 msto
obtain or send information about target breakpoints, watch lines, keyboard-entered target input,
and target output from pri nt f statements. Polling createsinterrupt overhead in the target, which
can be undesirable in programs with tight loops. The Run w/ No Polling command allows the
program to run without polling and its overhead. (Any pri nt f callsin the program will cause
execution to pause until polling is resumed. Running without polling also prevents debugging until
polling is resumed.) The keyboard shortcut for this command is <ALT-F9>.

16.5.3 Stop
The Stop command places a hard breakpoint at the point of current program execution. Usually,
the compiler cannot stop within ROM code or in nodebug code. On the other hand, the target can

Dynamic C User’s Manual 341

be stopped at ther st 028h instruction if r st 028h assembly code is inserted asinline assem-
bly codein nodebug code. However, the debugger will never be ableto find and place the execu-
tion cursor in nodebug code. The keyboard shortcut is <CTRL-Z>.

16.5.4 Reset Program

Resets program to itsinitial state. The execution cursor is positioned at the start of the main func-
tion, prior to any global initialization and variable initialization. (Memory locations not covered by
normal program initialization may not be reset.) The keyboard shortcut is<CTRL-F2>.

Theinitial state includes only the execution point (program counter), memory map registers, and
the stack pointer. The Reset Program command will not reload the program if the previous exe-
cution overwrites the code segment.

16.5.5 Trace Into

Executes one C statement (or one assembly language instruction if the assembly window isdis-
played) with descent into functions. Execution will not descend into functions stored in ROM
because Dynamic C cannot insert the required breakpoints in the machine code. If nodebug isin
effect, execution continues until code compiled without the nodebug keyword is encountered.
The keyboard shortcut isF7.

16.5.6 Step over
Executes one C statement (or one assembly language instruction if the assembly window is dis-
played) without descending into functions. The keyboard shortcut is F8.

16.5.7 Toggle Breakpoint
Toggles aregular (“soft”) breakpoint at the location of the execution cursor. Soft breakpoints do
not affect the interrupt state at the time the breakpoint is encountered, whereas hard breakpoints
do. The keyboard shortcut is F2.

16.5.8 Toggle Hard Breakpoint

Toggles a hard breakpoint at the location of the execution cursor. A hard breakpoint differs from a
soft breakpoint in that interrupts are disabled when the hard breakpoint is reached. The keyboard
shortcut is<ALT-F2>.

16.5.9 Toggle Interrupt Flag
Toggles interrupt state. The keyboard shortcut is<CTRL-I>.

16.5.10 Toggle Polling

Toggles polling mode. When running in polling mode (F9), the devel opment PC polls or inter-

rupts the target system every 100 msto obtain or send information regarding target breakpoints,
watch lines, keyboard-entered target input, and target output from pri nt f statements. Polling
creates interrupt overhead in the target, which can be undesirable in programs with tight loops.

This command is useful to switch modes while a program is running. The keyboard shortcut is
<CTRL-O>.

342 Dynamic C User’s Manual

16.5.11 Reset Target
Tellsthe target system to perform a software reset including system initializations. Resetting a tar-
get always brings Dynamic C back to edit mode. The keyboard shortcut is <CTRL-Y>.

16.5.12 Close Serial Port

Disconnects the programming seria port between PC and target so that the target serial portis
accessible to other applications.

16.6 Inspect Menu
Click the menu title or press <ALT-I> to select the INSPECT menu.

n Options Window Help
Eé Add/Del Watch Expression Ctrl+W
Clear Watch Window

Update Watch Window Ctrl+U

Disassemble at Cursor Ctrl+F10
Disassemble at Address Alt+F10
Dump at Address

The INSPECT menu provides commands to manipul ate watch expressions, view disassembled
code, and produce hexadecimal memory dumps. The INSPECT menu commands and their func-
tions are described here.

16.6.1 Add/Del Watch Expression
This command provokes Dynamic C to display the following dialog.

Watch Expressions E3
IH Aidd to bop |

IE! o b
Help

Cloze

ddi

This dialog worksin conjunction with the Watch window. The text box at the top is the current
expression. An expression may have been typed here or it was selected in the source code. This
expression may be evaluated immediately by clicking the Evaluate button or it can be added to
the expression list by clicking the Add to top button. Expressionsin thislist are evaluated, and
the results are displayed in the Watch window, every time the Watch window is updated. Items are
deleted from the expression list by clicking the Del from top button.

Dynamic C User’s Manual 343

An example of the results displayed in the Watch window appears below.

B Watch M=l 3
—————————— -
PCE1a12

dy int L2243 (BxCGC13)

%1 int 1 {8x00081)

xh int 6205 {(0x183D)

L: 23 C:h

dy int L2243 (BxCC13)

®x1 int 1 (8x8881)

Eh int 62085 (Bx183D)

A 1y

16.6.2 Clear Watch Window
Removes entries from the Watch dialog and removes report text from the Watch window. Thereis
no keyboard shortcut.

16.6.3 Update Watch Window

Forces expressions in the Watch Expression list to be evaluated and displayed in the Watch win-
dow only when the functionr unwat ch() iscalled from the application program. r unwat ch()
monitors for watch update requests and should be called periodically if watch expressions are
used. Normally the Watch window is updated every time the execution cursor is changed, that is
when asingle step, abreakpoint, or a stop occurs in the program. The keyboard shortcut is
<CTRL-U>.

16.6.4 Disassemble at Cursor

L oads, disassembles and displays the code at the current editor cursor. This command does not
work in user application code declared asnodebug. Also, this command does not stop the execu-
tion on the target. The keyboard shortcut is<CTRL-F10>.

16.6.5 Disassemble at Address

L oads, disassembles and displays the code at the specified address. This command produces adia-
log box that asks for the address at which disassembling should begin. Addresses may be entered
in two formats: a 4-digit hexadecimal number that specifies any location in the root space, or a 2-
digit page number followed by a colon followed by a 4-digit logical address, from 00 to FF. The
keyboard shortcut is <ALT-F10>.

344 Dynamic C User’s Manual

16.6.6 Dump at Address
Allows blocks of raw valuesin any memory location (except the BIOS 0—2000H) to be looked at.
Values can be displayed on the screen or written to afile.

Dump at Address

|

Hex Address |annnn

[~ Dwump to File

|

HEntes (Mee.| I

e |

i~ Logical Address
= Physical Address
" Save Entire Flash ta File

Ok

Cancel

=

The option Dump to File requires a file pathname and the number of bytes to dump.

The option Save Entire Flash to File requires afile pathname. If you are running in RAM, then
it will be RAM that is saved to afile, not Flash, because this option simply starts dumping physi-

cal memory at address 0.

A typical screen display appears below.

Memory Dump

ogoooon
agoo1o
agoozo
ogooz0n
agoo4n
ogoo0so
og00e0
agoovo

]|

c3
oo
32
co
oo
D3
og
3IE

as
3E
11
D3
3E
CZ
21
20

oo
DE
oo
3Z
oo
T
oa
3Z

L N * - B * | |
Tz | Wz | T

! x| ! 3
> 2 = I = 2

The Memory Dump window can be scrolled. Scrolling causes the contents of ather memory
addresses to appear in the window. The window always displays 128 bytes and their ASCII equiv-
alent. Valuesin the Dump window are updated only when Dynamic C stops, or comes to a break-

point.

Dynamic C User’s Manual

345

16.7 Options Menu
Click the menu title or press <ALT-O> to select the OPTIONS menu.

Options AN T =
Editar...
Compiler...
Debuager...
Dizplay...
Communications. ..

v Show Tool Bar

5 ave envirohment

16.7.1 Editor
The Editor command gets Dynamic C to display the following dialog.

E ditor Options |

Tab Stops IE

v auto-ndent
¥ Femove Trailing ‘Whitespace

] 4 Help | Eancell

Use this dialog box to change the behavior of the Dynamic C editor. By default, tab stops are set
every three characters, but may be set to any value greater than zero. Auto-Indent causes the edi-
tor to indent new lines to match the indentation of previous lines. Remove Trailing
Whitespace causes the editor to remove extra space or tab characters from the end of aline.

346 Dynamic C User’s Manual

16.7.2 Compiler

The Compiler command gets Dynamic C to display the following dialog, which allows compiler
operations to be changed.

Compiler Options
— Bun-Time Checking ———— — W aming Beparts ——
_ Lo
¥ Painters " Senouz Orly
" Mone
— BIOS Memomy Setting ——— — Twpe Checking ——
' [Code and BIOS in Flash ¥ Prototype
 Code and BIOS in R&M ¥ Demation
¥ Painter
— Us=er Defined BIOS File ——— — Optimize For
[T Use " Size
I J ¥ Speed
— Watch Code
% Allow any expressions in watch expressions
' Restrict watch expressions [May zave oot code space]

k. Help Cancel

Warning Reports tell the compiler whether to report all warnings, no warnings or serious warn-
ings only. It isadvisable to let the compiler report all warnings because each warning is a potential
run-time bug.

Demotions (such as converting al ong toani nt) are considered non-serious with regard to
warning reports.

The Run-Time Checking options, if checked, cause afatal error message at run-time. These
options increase the amount of code and cause slower execution, but they can be valuable debug-
ging tools. The options are described in bel ow.

Array Indices—Check array bounds. This feature adds code for every array reference.

Pointers—Check for invalid pointer assignments. A pointer assignment isinvalid if the code
attempts to write to a location marked as not writable. Locations marked not writable include the
entire root code segment. This feature adds code for every pointer reference.

16.7.2.1 Optimize For
Optimizesthe program for size or for speed. When the compiler knows more than one sequence of
instructions that perform the same action, it selects either the smallest or the fastest sequence,
depending on the programmer’s choice for optimization.

Dynamic C User’s Manual 347

The difference made by this option is less obvious in the user application (in which most codeis
not marked nodebug). The speed gain by optimizing for speed is most obvious for functions that
are marked nodebug and have no auto local (stack-based) variables.

16.7.2.2 Type Checking

Prototypes—Performs strict type checking of arguments of function calls against the function
prototype. The number of arguments passed must match the number of parametersin the proto-
type. In addition, the types of arguments must match those defined in the prototype. Z-World rec-
ommends prototype checking because it identifies likely run-time problems. To use this feature
fully, dl functions should have prototypes (including functions implemented in assembly).

Demotion—Detects demotion. A demotion automatically converts the value of alarger or more
complex typeto the value of asmaller or less complex type. Theincreasing order of complexity of
scaar typesis:

char

unsi gned i nt

i nt

unsi gned | ong
| ong

fl oat

A demotion deserves awarning because information may be lost in the conversion. For example,
when al ong variable whose value is 0x10000 is convertedto ani nt value, theresulting valueis
0. The high-order 16 bits are lost. An explicit type casting can €iminate demotion warnings. All
demotion warnings are considered non-serious as far as warning reports are concerned.

Pointer—Generates warnings if pointers to different types are intermixed without type casting.
While type casting has no effect in straightforward pointer assignments of different types, type
casting does affect pointer arithmetic and pointer dereferences. All pointer warnings are consid-
ered non-serious as far as warning reports are concerned.

16.7.2.3 BIOS Memory Setting
A single, default BIOS source file that is defined in the system registry when installing Dynamic C
isused for both compiling to RAM and compiling to flash. Dynamic C defines a preprocessor
macro, FLASH_ or RAM , depending on which of the following optionsis selected. This macro
is used to determine the relevant sections of code to compile for the corresponding memory type.

Code and BIOS in Flash—If you select this option, the compiler will load the BIOS to flash
when cold-booting, and will compile the user program to flash where it will normally reside.

Code and BIOS in RAM—If you select this option, the compiler will load the BIOS to RAM on
cold-booting and compile the user program to RAM. This option is useful if you want to use
breakpoints while you are debugging your application, but you don’t want interrupts disabled
while the debugger writes a breakpoint to flash (this can take 10 msto 20 ms or more, depending
on the flash type used). Note that when you single step through code, the debugger is writing
breakpoints at the next point in code you will step to. It is also possible to have atarget that only
has RAM for use as a dave processor, but this requires more than checking this option because
hardware changes are necessary that in turn require a special BIOS and col dloader.

348 Dynamic C User’s Manual

16.7.2.4 User Defined BIOS File

Use this option to change from the default BIOS to a user-specified file. Enter or select the file
using the browse button/text box undernesth this option. The check box labeled use must be
selected or else the default file BIOS defined in the system registry will be used. Note that asingle
BIOS file can be made for compiling both to RAM and flash by using the preprocessor macros
_FLASH_or _RAM . These two macros are defined by the compiler based on the currently
selected radio button in the BIOS Memory Setting group box.

16.7.2.5 Watch Code
Allow any expressions in watch expressions. This option causes any compilation of a user
program to pull in all the utility functions used for expression evaluation.

Restricting watch expressions (may save root code space) Choosing this option means
only utility code already used in the application program will be compiled.

16.7.3 Debugger
The Debugger command gets Dynamic C to display the following dialog.

Debugger Options

IV iuta Open STOIO Windows

[T Legs5TDOUT

Log file: IDE.EILIT

[T AppendLog

k. Help | Eancell

The options on this dialog box may be helpful when debugging programs. In particular, they allow
printf statements and other STDIO output to be logged to afile. Check the box labeled Log STD-
OUT to send acopy of al standard output to the log file. The name of the log file can also be spec-
ified along with whether to append or overwrite if the file already exists. Normally, Dynamic C
automatically opens the STDIO window when a program first attempts to print to it. This can be
changed with the checkbox labeled Auto Open STDIO Window.

Dynamic C User’s Manual 349

16.7.4 Display
The Display command gets Dynamic C to display the following dialog.

Display Options

Wfindow Attribute

Err Editar
Debug Editar

Background Colo
Faoreground Calar

Mesrzage Selection Bg
W atich Selection Fg
Stefio =l

LChange Help | Cloze |

Use the Display Options dialog box to change the appearance of Dynamic C windows. First
choose the window from the window list. Then select an attribute from the attribute list and click
the change button. Another dialog box will appear to make the changes. Note that Dynamic C
allows only fixed-pitch fonts and solid colors (if a dithered color is selected, Dynamic C will use
the closest solid color).

The Editor window attributes affect all text windows, except two special cases. After an attempt
is made to compile a program, Dynamic C will either display alist of errorsin the message win-

dow (compilation failed), or Dynamic C will switch to run mode (compilation succeeded). In the
case of afailed compile, the editor will take on the Error Editor attributes. In the case of a suc-

cessful compile, the editor will take on the Debug Editor attributes.

350 Dynamic C User’s Manual

16.7.5 Communications

The Communications command displays the following dialog box. Useit to tell Dynamic C
how to communicate with the target controller.

Communications Options

— TCR/F Optionz

¥ Llze TCP/IP Connection Dizcover |

Metwaork, Addreszs I

Cantraller Mame I
Contral Part IEI

— Seral Optionz

" Use Serial Connection

I Made————
Eart IEEIME: "I -
%) o background T

Eaud Fate |'|'|52|:||:| "'I 01 Sune, Eland /T
) Eull Speed Blhgnd T
St Bits |'| "'I B 2

] 4 Help | Cancel |

16.7.5.1 TCP/IP Option

In order to program and debug a controller across a TCP/IP connection, the Network Address
field must have the |P Address of the Z-World RabbitLink that is attached to the controller. To
accept control commands from Dynamic C, the Control Port field must be set to the port used by
the RabbitLink. The Controller Name isfor informational purposes only. The Discover button
makes Dynamic C broadcast a query to any RabbitLinks attached to the network. Any Rab-
bitLinks that respond to the broadcast can be selected and their information will be placed in the
appropriate fields.

16.7.5.2 Serial Options
The COM port, baud rate, and number of stop bits may be sdlected. The transmission mode radio
buttons also affect communication by controlling the overlap of compilation and downloading.
With No Background TX, Dynamic C will not overlap compilation and downloading. Thisis
the most reliable mode, but a so the slowest—the total compile time is the sum of the processing
time and the communication time. With Full Speed Bkgnd TX, Dynamic C will almost entirely
overlap compilation and downloading. This mode is the fastest, but may result in communication
failure. The Sync. Bkgnd TX mode provides partial overlap of compilation and downloading.
Thisisthe default mode used by Dynamic C.

16.7.6 Show Tool Bar
The Show Tool Bar command toggles the display of the tool bar:

Dynamic C remembers the toolbar setting on exit.

Dynamic C User’s Manual 351

16.7.7 Save Environment

The Save Environment command gets Dynamic C to update the registry and DCW CFGinitial-
ization filesimmediately with the current options settings. Dynamic C aways updates these files
on exit. Saving them while working provides an extra measure of security against Windows
crashes.

16.8 Window Menu
Click the menu title or press <ALT-W> to select the WINDOW menu.

]
; Help

c, LCascade

Tile Horizontally

Tile Yertically

Arrange icons

Watch

Stdio

Assembly F10
Reqgisters

Stack

Information

v 1 CADCRABBITASAMPLESV\PONG.C

Thefirst group of itemsis a set of standard Windows commands that allow the application win-
dows to be arranged in an orderly way.

The second group of items presents the various Dynamic C debugging windows. Click on one of
these to activate or deactivate the particular window. It is possible to scroll these windows to view
larger portions of data, or copy information from these windows and paste the information as text
anywhere. The contents of these windows can be printed.

Thethird group isalist of current windows, including source code windows. Click on one of these
items to bring that window to the front.

16.8.1 Cascade
The Cascade command gets Dynamic C to display windows “on top of each other,” as shown.
The window being worked inis displayed in front of the rest.

16.8.2 Tile Horizontally

The Tile Horizontally command gets Dynamic C to display windows in horizontal (landscape)
orientation, although the windows are stacked vertically.

352 Dynamic C User’s Manual

16.8.3 Tile Vertically

The Tile Vertically command gets Dynamic C to display windowsin avertical (portrait) orienta-
tion.

16.8.4 Arrange lcons

When one or more Dynamic C windows have been minimized, they are displayed asicons. The
Arrange Icons command arranges them neatly.

16.8.5 Message

Click the Message command to activate or deactivate the Message window. A compilation with
errors a so activates the message window because the message window displays compilation
errors.

16.8.6 Watch

The Watch command activates or deactivates the watch window. The Add/Del ltems command
on the INSPECT menu will do this too. The watch window displays the results whenever
Dynamic C evaluates watch expressions.

16.8.7 STDIO

Click the STDIO command to activate or deactivate the STDIO window. The STDIO window dis-
plays output from callsto pri nt f . If the program callspr i nt f , Dynamic C will activate the
STDIO window automatically, unless another request was made by the programmer. (See the
Debugger Options under the OPTIONS menu.)

Dynamic C User’s Manual 353

16.8.8 Assembly
Click the Assembly command to activate or deactivate the Assembly window. The Assembly
window displays machine code generated by the compiler in assembly language format.

The Disassemble at Cursor or Disassemble at Address commands also activate the
Assembly window.

Disassembled Code - |O] =]

1a15 325AC2 1d {C25A) ,a 18

B

The Assembly window shows the memory address on the far left, followed by the code bytes for
the instruction at the address, followed by the mnemonics for the instruction. The last column
shows the number of cycles for the instruction, assuming no wait states. Thetotal cycle time for a
block of instructions will be shown at the lowest row in the block in the cycle-time column, if that
block is selected and highlighted with the mouse. The total assumes one execution per instruction,
so the user must take looping and branching into consideration when evaluating execution times.

Use the mouse to select severa lines in the Assembly window, and the total cycle time for the
instructions that were selected will be displayed to the lower right of the selection. If the total
includes an asterisk, that means an instruction such as| di r orr et nz with an indeterminate
cycle time was selected.

354 Dynamic C User’s Manual

16.8.9 Registers

Click the Registers command to activate or deactivate the Register window. The Register win-
dow displays the processor register set, including the status register. Letter codes indicate the bits
of the status register (F register). The window also shows the source-code line and column at
which the register “snapshot” was taken. It is possible to scroll back to see the progression of suc-
cessive register snapshots. Registers may be changed when program execution is stopped by click-
ing the right mouse button over the name or value of the register to be changed. Registers PC,
XPC, and SP may not be edited as this can adversely effect program flow and debugging.

= Registers IMI=] E3

E@19 5P DFF3

AF' 088088
BC* FFFF
DE" 3FALE
HL® €131
I¥ EBBC
SP DFF3|

16.8.10 Stack

Click the Stack command to activate or deactivate the Stack window. The Stack window displays
the top 8 bytes of the run-time stack. It also shows the line and column at which the stack “snap-
shot” wastaken. It is possible to scroll back to see the progression of successive stack snapshots.

[Top of Stack M=]E3

F

Dynamic C User’s Manual 355

16.8.11 Information

Click the Information command to activate the |nformation window.

Information

Root code;
HMEM code:
Watch code:

Stack:

Root data:

E
Baze Top Size
1800 1FDD OFDE Total code zize: 22739 bytes
03000 030F4 050F5 Total data size: 260 bytes
CEO0 CAOO 0401 Linez compiled: 3843
BYFC EBFFEB 0300 Compile time: 1 zeconds
BFFD COFF o3 Compile speed: 143332 linez/minute

Bytes generated: 0

The Information window displays how the memory is partitioned and how well the compilation
went. In this example, no space has been allocated to the heap or free space.

16.9 Help Menu

Click the menu title or press <ALT-H> to select the HEL P menu.

a8 Help

Online D ocumentation
Kepwords

Operators

HTHML Function Beference

Function Lookup/lneert Chrl+H

FKevstokes
Search for Help on....
LContents

About..

The HELP menu commands and their functions are described here.

16.9.1 Online Documentation
Opens a browser page and displays afile with links to other manuals. When installing Dynamic C
from CD, this menu item points to the hard disk; after a Web upgrade of Dynamic C, this menu

item points to the Web.

356

Dynamic C User’s Manual

16.9.2 Keywords

Opens a browser page and displays an HTML file of Dynamic C keywords, with links to their
descriptionsin this manual.

16.9.3 Operators

Opens a browser page and displays an HTML file of Dynamic C operators, with links to their
descriptionsin this manual.

16.9.4 HTML Function Reference

Opens a browser page and displays an HTML file that has two links, one to Dynamic C functions
listed alphabetically, the other to the functions listed by functional group. Each function listed is
linked to its description in this manual.

16.9.5 Function Lookup/Insert

Obtains help information for library functions. When a function nameis clicked (or the function
name is selected) in source code and then the help command isissued, Dynamic C displays help
information for that function. The keyboard shortcut is <CTRL-H>.

If Dynamic C cannot find a unique description for the function, it will display the following dialog
box.

Library Lookup
Typez I armes
it in C:ADCRABBITALIBVYDRIVER.LIE
uzetdainlec in C:ADCRABBITAWLIEYSYS LIB ;l

YdGetFreew'd in CADCRABEITSLIEYWDRIMER.LIE
"-.-"dHIt"-.-'-.-"d
Ydlnit in C

‘VdReleaseh/d in C: '\DEHAEEIT&LIEWDHNEH LIE
WiPortE in CADCRABBITALIBNBIOSASYSIO.LIE j
wiPaortl in CADCRABBITALIBAEIOSMSYSI10.LIE bl

] Help | Eancell

Click Lib Entries to display alist of the library functions currently available to the program.
(These arethefilesnamed inthe file LI B. DI R) Then select a function name from the list to
receive information about that function.

Dynamic C User’s Manual 357

Dynamic C displays adialog box like this one when afunction is selected to display help informa-
tion.

unction Lookup/lnsert

Ok, | Eancell Helpl itk | % View Oy
" Inzert Cal

Function Descriphion:
strncmp =E3TRING.LIE=

BYNTAX: int strncmp (char *strl, char *strZ, n)

LDESCEIPTION: Performs unsigned character by character comparison of two
strings of length "n"

PARAMETERL: Pointer Lo string 1.
PARAMETERZ: Pointer o string 2.
PAPARMETERZ: Maximum rmamber of bytes to compare

if mero, both strings are considered equal

£

BETURN WALUE: 0 if strl is less than strE
char in strl i=s less than corresponding char in strz
=0 if strl is equal to strl
strl is identical to strE
= 0 if strl is greater than strZ

char in strZ is greater than corresponding char in strz

EETWORDE: =string, compare

Although this may be sufficient for most purposes, the Insert Call button can be clicked to turn
the dialog into a “function assistant.”

Function Lookup/Inzert

Br-:nwsel ak. I Eancell He|p| Pritat | ::View Only
* |nzert Call

Function Description:

strncmp =5TRING.LIE=
ETNTAN: int strrncwp (char *strl, char *strz, nl

DESCEIPTION: Per forms unsigned character by character comparison of two
strings of length "n"

PARAMETEERL: Pointer to string 1.
PABAMETERE: Pointer to string 2.
PARRMETERZ: Maximum number of bytes to compare

if =zero, both strings are considered ecuaal

RETURN VALUE: = 0 if strl is less than strz

Aliar dnm sl d= lass tharn orrashorndineg chay dnm s F
|
Expr. in Call: Mame in Description;
strl s strl
.
Farameter # : I'I Type:
7 -
L char *
Deszcription: 4 I I LIJ

Pointer to string 1.

358 Dynamic C User’s Manual

The function assistant will place acall to the function displayed at the insertion point in the source
code. The function call will be prototypical if OK is clicked; the call needs to be edited for it to
make sense in the context of the code.

Each parameter can be specified, one-by-one, to the function assistant. The function assistant will
return the name and data type of the parameter. When parameter expressions are specified in this
diaog, the function assistant will use those expressions when placing the function call.

If the text cursor is placed on avalid C function call (and one that is known to the function assis-
tant), the function assistant will analyze the function call, and will copy the actual parametersto
the function lookup dialog. Compare the function parametersin the Expr. in Call box in the dia-
log with the expected function call arguments.

Consider, for example, the following code.
X = strepy(comment, " Lower tray needs paper.");

If the text cursor isplaced on st r cpy and the Function Lookup/Insert command is issued,
the function assistant will show the comment as parameter 1 and “Lower tray needs paper.” as

parameter 2. The arguments can then be compared with the expected parameters, and the argu-
mentsin the dialog can then be modified.

16.9.6 Keystrokes
Invokes the on-line help system and displays the keystrokes page.

16.9.7 Search for Help on
Select this item to search for help on a particular topic. Type in akeyword and press Enter to see
alist of related topics. Then select atopic from the list and press Enter again to view the topic.

16.9.8 Contents
Invokes the on-line help system and displays the contents page.

16.9.9 About
The About command displays the Dynamic C version number and the copyright notice.

Dynamic C User’s Manual 359

360 Dynamic C User’s Manual

{C/OS-Il 17

Not available with SE versions of Dynamic C.

MC/OS-I1 isasimple, clean, efficient, easy-to-use real-time operating system that runs on the Rab-
bit microprocessor and is fully supported by the Dynamic C development environment. uC/OS-|
is capable of intertask communication and synchronization viathe use of semaphores, mailboxes,
and queues. User-definable system hooks are supplied for added system and configuration control
during task creation, task deletion, context switches, and time ticks.

For more information on uC/OS-I1, please refer to Jean J. Labrosse’s book, MicroC/OS-I 1, The
Real-Time Kernel (ISBN: 0-87930-543-6). The data structures (e.g. Event Control Block) refer-
enced in the uC/OS-11 function descriptions in Chapter 15 are fully explained in Labrosse’s book.
It can be purchased at the Z-World store, www.zworld.com/store/home.html, or at
http://www.ucos-ii.com/.

17.1 Changes

To take full advantage of services provided by Dynamic C, minor changes have been made to
HC/OSHI.

17.1.1 Ticks per Second

In most implementations of pC/OS-11, OS_TI CKS_PER_SEC informs the operating system of
therate at which OSTi meTi ck is called; this macro is used as a constant to match the rate of the
periodic interrupt. In uC/OS-11 for the Rabbit, however, changing this macro will change the tick
rate of the operating system set up during OSI ni t . Usually, areal-time operating system has a
tick rate of 10 Hz to 100 Hz, or 10-100 ticks per second. Since the periodic interrupt on the Rabbit
occurs at arate of 2 kHz, it isrecommended that the tick rate be a power of 2 (e.g., 16, 32, or 64).
Keep in mind that the higher the tick rate, the more overhead the system will incur.

In the Rabbit version of pC/OS-11, the number of ticks per second defaults to 64. The actual num-
ber of ticks per second may be dightly different than the desired ticks per second if Ti cksPer -
Sec does not evenly divide 2048. To change the default tick rate to 32, do the following:

#define OS_TI CKS_PER SEC 32
CSlnit();
OSSet Ti cksPer Sec(0S_TI CKS_PER_SEC) ;

Csstart();

Dynamic C User’s Manual 361

http://www.zworld.com/store/home.html
http://www.ucos-ii.com/

17.1.2 Task Creation

In apC/OS-11 application, stacks are declared as static arrays, and the address of either the top or
bottom (depending on the CPU) of the stack is passed to OSTaskCr eat e. In a Rabbit-based
system, the Dynamic C development environment provides a superior stack allocation mechanism
that uC/OS-11 incorporates. Rather than declaring stacks as static arrays, the number of stacks of
particular sizes are declared, and when atask is created using either OSTaskCr eat e or
OSTaskCr eat eExt, only the size of the stack is passed, not the memory address. This mecha-
nism allows alarge number of stacks to be defined without using up root RAM.

There arefive macros located in ucos2.lib that define the number of stacks needed of five different
sizes. In order to have three 256 byte stacks, one 512 byte stack, two 1024 byte stacks, one 2048
byte stack, and no 4096 byte stacks, the following macro definitions would be used:

#defi ne STACK CNT_256 3 /1l nunber of 256 byte stacks
#define STACK CNT_512 1 /1 nunber of 512 byte stacks
#defi ne STACK CNT_1K 2 /1 nunmber of 1K stacks
#define STACK CNT_2K 1 /1 nunber of 2K stacks
#defi ne STACK CNT_4K 0 /1 nunber of 4K stacks

These macros can be placed into each uC/OS-11 application so that the number of each size stack
can be customized based on the needs of the application. Suppose that an application needs 5
tasks, and each task has a consecutively larger stack. The macros and callsto OSTaskCr eat e
would look asfollows

#defi ne STACK _CNT_256
#defi ne STACK CNT_512
#defi ne STACK CNT_1K
#defi ne STACK CNT_2K
#defi ne STACK CNT_4K

/1 nunber of 256 byte stacks
/1 nunber of 512 byte stacks
/1 nunber of 1K stacks
/'l nunber of 2K stacks
/1 nunber of 4K stacks

PR RN

OSTaskCreat e(taskl, NULL, 256, 0);
OSTaskCreat e(task2, NULL, 512, 1);
OSTaskCreat e(task3, NULL, 1024, 2);
OSTaskCreat e(task4, NULL, 2048, 3);
OSTaskCreat e(t ask5, NULL, 4096, 4);

Note that the macro STACK _CNT_256 isset to 2 instead of 1. uC/OS-I1 always creates an idle
task which runs when no other tasks are in the ready state. Note also that there are two 512 byte
stacks instead of one. Thisis because the program is given a512 byte stack. |If the application uti-
lizesthe uC/OS-I| statistics task, then the number of 512 byte stacks would have to be set to 3.
(Statistic task creation can be enabled and disabled viathe macro OS_ TASK _STAT_ENwhichis
locatedinucos?2. | i b). If only 6 stacks were declared, one of the callsto OSTaskCr eat e
would fail.

362 Dynamic C User’s Manual

If an application uses OSTask Cr eat eExt , which enables stack checking and allows an exten-
sion of the Task Control Block, fewer parameters are needed in the Rabbit version of uC/OS-1.
Using the macrosin the example above, the tasks would be created as follows:

OSTaskCr eat eExt (t askl, NULL, 0, 0, 256, NULL, OS_TASKOPTSTK_CHK |
OS_TASKOPTSTK_CLR);

OSTaskCr eat eExt (t ask2, NULL, 1, 1, 512, NULL, OS_TASKOPTSTK_CHK |
OS_TASKOPTSTK_CLR);

OSTaskCr eat eExt (t ask3, NULL, 2, 2, 1024, NULL, OS_TASKOPTSTK_CHK |
0S_TASKOPTSTK_CLR) ;

OSTaskCr eat eExt (t ask4, NULL, 3, 3, 2048, NULL, OS_TASKOPTSTK_CHK |
0OS_TASKOPTSTK_CLR) ;

OSTaskCr eat eExt (t ask5, NULL, 4, 4, 4096, NULL, OS_TASKOPTSTK_CHK |
0OS_TASKOPTSTK_CLR) ;

17.1.3 Restrictions

At thetime of thiswriting, uC/OS-11 for Dynamic C is not compatible with the use of Dynamic C's
dlice statements. Also, see the function description for OSTi meTi ckHook for important infor-
mation about preserving registersif that stub function is replaced by a user-defined function.

17.2 Tasking Aware Interrupt Service Routines (TA-ISR)

Special care must be taken when writing an interrupt service routine (1SR) that will be used in con-
junction with pC/OS-11 so that pC/OS-11 scheduling will be performed at the proper time.

17.2.1 Interrupt Priority Levels

HC/OS-1 for the Rabbit reserves interrupt priority levels 2 and 3 for interrupts outside of the ker-
nel. Since the kernel is unaware of interrupts above priority level 1, interrupt service routines for
interrupts which occur at interrupt priority levels 2 and 3 should not be written to be tasking
aware. Also, apuC/OS-11 application should only disable interrupts by setting the interrupt priority
level to 1, and should never raise the interrupt priority level above 1.

Dynamic C User’s Manual 363

17.2.2 Possible ISR Scenarios

There are several different scenarios that must be considered when writing an ISR for use with
MUC/OS-I1. Depending on the use of the ISR, it may or may not have to be written so that it is task-
ing aware. Consider the scenario in the Figure below. In this situation, the ISR for Interrupt X does
not have to be tasking aware since it does not re-enable interrupts before completion and it does
not post to a semaphore, mailbox, or queue.

lask 1

Interrupt X

Interrupt X ISR
ipres

Task 1

Figure 8. Type 1 ISR

If, however, an ISR needs to signal atask to the ready state, then the ISR must be tasking aware. In
the example in the Figure below, the TA-I SR increments the interrupt nesting counter, does the
work necessary for the ISR, readies a higher priority task, decrements the nesting count, and
returns to the higher priority task.

Task 2

Interrupt X
™ Nesting=1
Interrupt X TA-ISR | Tasx Lisreadied
Nesting =0
ipres

Task 1

Figure 9. Type 2 ISR

364 Dynamic C User’s Manual

It may seem as though the I SR in this Figure does not have to increment and decrement the nesting
count. Thisis, however, very important. If the ISR for Interrupt X is called during an ISR that re-
enabl es interrupts before completion, scheduling should not be performed when Interrupt X com-
pletes; scheduling should instead be deferred until the least nested | SR completes. The next Figure

shows an example of this situation.

Task 2

Interrupt Z

Nesting =1

Do critical code
ipres

Interrupt X

Interrupt Z TA-ISR

Task 1

» Nesting =2
Interrupt X TA-ISR | Task lisreadied
Nesting=1
- ipres
Finish ISR
Nesting = 0
<

Figure 10. Type 2 ISR Nested Inside Type 3 ISR

As can be seen here although the ISR for interrupt Z does not signal any tasks by posting to a

semaphore, mailbox, or queue, it must increment and decrement the interrupt nesting count sinceit

re-enablesinterrupts (i pr es) prior to finishing al of its work.

17.2.3 General Layout of a TA-ISR

A TA-ISRisjust like astandard I SR except that it does some extra checking and house-keeping.

The following table summarizes when to use a TA-ISR.

Table5: Useof TA-ISR

UC/OS-II Application

Type 1" Type 27

Type 3*

TA-ISR Required? No Yes

Yes

*. Type 1—L eaves interrupts disabled and does not signal task to ready state
T. Type 2—Leavesinterrupts disabled and signals task to ready state
t. Type 3—Reenables interrupts before completion

Dynamic C User’s Manual

365

The following Figure shows the logical flow of a TA-ISR.

Save registers used by TA-ISR

¢

Clear interrupt source

¢

Increment nesting count

¢

Do work necessary for interrupt

¢

Reenable interrupts (optional)

¢

Call OSIntExit

¢

Decrement Nesting Count

'

IsNesting==07?

Yes

Is switch pending ?

No

.

Restore Registers used by TA-ISR

Yes

¢

Switch to new task

Return from interrupt

Figure 11. Logical Flow of a TA-ISR

366

Dynamic C User’s Manual

17.2.3.1 Sample Code for a TA-ISR

Fortunately, the Rabbit BIOS and libraries provide all of the necessary flags to make TA-ISRs
work. With the code found in Li st i ng 1, minimal work is needed to make a TA-ISR function
correctly with uC/OS-11. TA-1SRs dlow uC/OS-I1 the ability to have | SRs that communicate with
tasks as well asthe abhility to let ISRs nest, thereby reducing interrupt latency.

Just like a standard ISR, the first thing a TA-ISR doesisto save the registersthat it is going to use
(1). Oncethe registers are saved, the interrupt source is cleared (2) and the nesting counter is
incremented (3). Note that bi os_i nt nest i ng isaglobal interrupt nesting counter provided in
the Dynamic C libraries specifically for tracking the interrupt nesting level. If ani pr es instruc-
tion is executed (4) other interrupts can occur before this ISR is completed, making it necessary
for thisISR to be a TA-ISR. If it is possible for the ISR to execute before uC/OS-I1 has been fully
initialized and started multi-tasking, a check should be made (5) to insure that uC/OS-Il isina
known state, especialy if the TA-ISR signals atask to the ready state (6). After the TA-ISR has
doneits necessary work (which may include making a higher priority task than is currently run-
ning ready to run), OSI nt Exi t must be called(7). This uC/OS-11 function determines the high-
est priority task ready to run, setsit as the currently running task, and sets the global flag

bi os_swpend if acontext switch needs to take place. If the TA-1SR decrements the nesting
counter (8) and the count does not go to zero, then the nesting level issaved in

bi os_i nt nesti ng (9), theregisters used by the TA-ISR are restored, interrupts are re-enabled
(if not already donein (4)), and the TA-ISR returns (12). However, if decrementing the nesting
counter in (8) causes the counter to become zero, then bi os_swpend must be checked to seeif a
context switch needs to occur (10). If acontext switch is not pending, then the nesting level is set
(9) and the TA-ISR exits (12). If acontext switch is pending, then the remaining context of the
previous task is saved and along call, which insures that the x pc is saved and restored properly, is
madetobi os_i nt exit (11). bi os_i nt exi t isresponsible for switching to the stack of the
task that is now ready to run and executing along call to jump into the new task. The remainder of
(12) is executed when a previously preempted task is allowed to run again.

Listing 1
#asm
taskaware_isr::
push af ; push regi sters needed by isr
(1)
push hl ;clear interrupt source
(2)
Id hl , bi os_intnesting ;increase the nesting count
(3)
i nc (hl)

; ipres (optional)
(4)

; do processing necessary for interrupt

I d a, (OSRunni nQ) ; has MCOS started rmul titasking yet?
(5)

or a

jr z,taisr_decnesting

; possibly signal task to becone ready
(6)
call OSIntExit ;sets bios _swpend if higher prio

Dynamic C User’s Manual 367

ready(7)

t ai sr_decnesting:

| d a, (bios_intnesting) ;nesting counter == 17
(8)

dec a

jr z,taisr_intexit

tai sr_setnesting:

| d (bios_intnesting), a
(9)

jr tai sr_done
taisr_intexit:

I d a, (bi os_swpend) ; SwWi tch pend-
i ng? (10)

or a

jr z,taisr_setnesting

push de
(11)

push bc

ex af , af

push af

exx

push hl

push de

push bc

push iy

lcall bios_intexit

pop iy

pop bc

pop de

pop hl

exx

pop af

ex af , af

pop bc

pop de
tai sr_done:

pop hli
(12)

pop af

i pres

ret
#endasm

368 Dynamic C User’s Manual

17.3 Library Reentrancy

When writing auC/OS-I1 application, it isimportant to know which Dynamic C library functions
are non-reentrant. If afunction is non-reentrant, then only one task may access the function at a
time, and access to the function should be controlled viaa uC/OS-11 semaphore. The following is
alist of Dynamic C functions that are non-reentrant.

Library Non-reentrant Functions

MATH. LI B randg, randb, rand

RS232. LI B All

RTCLOCK. LI B |write rtc, tm_wr

STDio LI g | bhit getchar, gets, getswf, selectkey

STRING LI B | atof*, atoi*, strtok

clockDoublerOn, clockDoublerOff, useMainOsc,

SYS.LIB useClockDivider, use32kHzOsc

VDRI VER. LI B | VdGetFreeWd, VdReleaseWd

XMVEM LI B root2xmem, xmem2root, WriteFlash

digOut, digOn, digOff, jriolnit, analn, anaOut,

JRIO LIB cof_anain

JR485. LI B All

*reentrant but setsthe global _xt oxEr r flag

The serial port functions (RS232. LI B functions) should be used in arestricted manner with
MC/OS-I1. Two tasks can use the same port as long as both are not reading, or both are not writing;
i.e., onetask can read from serial port X and another task can write to serial port X at the same
time without conflict.

Dynamic C User’s Manual 369

17.4 How to Get a HC/OS-1l Application Running

HC/OS-I1 isahighly configureable, rea-time operating system. It can be customized using as
many or as few of the operating system'’s features as needed. This section outlines:

» The configuration constants used in uC/OS-Il,
* How to override the default configuration supplied in UCOS2. LI B.

* The necessary steps to get an application running.
It is assumed that the reader has a familiarity with uC/OS-I1 or has a uC/OS-l1 reference
(MicroC/OS-11, The Real Time Kernel by Jean J. Labrosseis highly recommended).

Default Configuration

HC/OS-I1 usually relieson theincludefileos_cf g. h to get values for the configuration con-
stants. Since Dynamic C does not use this header file, these constants, along with their default
values, arein UCOS2. LI B. A default stack configurationisalso suppliedin UCOS2. LI B.
HC/OS-1 for the Rabbit uses a more intelligent stack allocation scheme than other pC/OS-11
implementations to take better advantage of unused memory.

The default configuration allows up to 10 normally created application tasks running at 64 ticks
per second. Each task has a 512-byte stack. There are 2 queues specified, and 10 events. An
event is aqueue, mailbox or semaphore. You can define any combination of these three for atotal
of 10. If you want more than 2 queues, however, you must change the default value of
OS_MAX_(S.

Some of the default configuration constants are:

/1 Maxi mum nunber of events (semaphores, queues, mail boxes)
#defi ne OS_MAX EVENTS 10

/1 Maxi mum nunber of tasks (less stat and idle tasks)
#defi ne OS_MAX TASKS 10

/1 Maxi mum nunber of queues in system
#define OS MAX S 2

/1 Maxi mum nunber of nenory partitions
#def i ne OS_MAX_MEM PART 0

/! Enable normal task creation
#define OS_TASK CREATE EN 1

// Di sabl e extended task creation
#defi neCS_TASK CREATE EXT EN O

// Disable task del etion
#define OS TASK DEL _EN O

// Disable statistics task creation
#define OS TASK STAT EN O

/1 Enabl e queue usage
#define OS Q EN 1

/1 Disabl e nenory manager
#define OS_ MEM EN O

/! Enabl e mail boxes
#define OS_MBOX EN 1

370 Dynamic C User’s Manual

#// Enabl e semaphores
define OS_SEM EN 1

/] # of ticks in one second
#define OS_TI CKS_PER SEC 64

/1 # of 256 byte stacks (idle task stack)
#define STACK CNT_256 1

/1# of 512-byte stackstask stacks + initial program stack

#defi ne STACK CNT_512 OS_MAX_TASKS+1
If aparticular portion of uC/OS-I1 is disabled, the code for that portion will not be compiled, mak-
ing the overall size of the operating system smaller. Take advantage of thisfeature by customizing
UC/OS-11 based on the needs of each application.

Custom Configuration

In order to customize uC/OS-I1 by enabling and disabling components of the operating system,
simply redefine the configuration constants as necessary for the application.

#defi ne OS_MAX_EVENTS 2
#defi ne OS_MAX TASKS 20
#define OS_ MAX S 0
#def i ne OS_MAX_MEM PART 15
#defi ne OS_TASK_STAT_EN 1
#define OS_Q EN 0
#define OS_MEM EN 1
#defi ne OS_MBOX_EN 0
#define OS_TI CKS_PER _SEC 64

If acustom stack configuration is needed also, define the necessary macros for the counts of the
different stack sizes needed by the application.

#define STACK CNT_256 1 // idle task stack

#define STACK CNT_512 2 // initial program+ stat task stack
#define STACK CNT_1K 10 // task stacks

#define STACK CNT_2K 10 // nunber of 2K stacks

In the application code, follow the pC/OS-11 and stack configuration constants with a#use
“ucos?2. i b” statement. This ensures that the definitions supplied outside of the library are
used, rather than the defaultsin the library.

This configuration uses 20 tasks, two semaphores, up to 15 memory partitions that the memory
manager will control, and makes use of the statisticstask. Note that the configuration constants
for task creation, task deletion, and semaphores are not defined as the library defaults will suf-
fice. Also, notethat 10 of the application tasks will each have a 1024 byte stack, 10 will each have
a 2048 byte stack, and an extra stack is declared for the statistics task.

Dynamic C User’s Manual 371

Examples

The following sample programs demonstrate the use of the default configuration supplied in
UCGS2. LI B and a custom configuration which overrides the defaults.

Example 1

In this application, ten tasks are created and one semaphore is created. Each task pends on the
semaphore, gets arandom number, posts to the semaphore, displays its random number, and
finally delays itself for three seconds.

Looking at the code for this short application, there are several thingsto note. First, since uC/OS-
Il and slice statements are mutually exclusive (both rely on the periodic interrupt for a*“heart-
beat”), #use “ucos2.1i b” must beincludedin every pC/OS-11 application (1). In order for
each of the tasks to have access to the random number generator semaphore, it is declared asaglo-
bal variable (2). In most cases, al mailboxes, queues, and semaphores will be declared with glo-
bal scope. Next, OSI ni t must be called before any other uC/OS-11 function to ensure that the
operating system is properly initialized (3). Before uC/OS-I1 can begin running, at least one appli-
cation task must be created. In this application, all tasks are created before the operating system
begins running (4). It is perfectly acceptable for tasks to create other tasks. Next, the semaphore
each task usesis created (5). Onceall of theinitialization isdone, OSSt ar t iscalled to start
UC/OS-11 running (6). In the code that each of the tasks run, it isimportant to note the variable
declarations. The default storage classin Dynamic C is static, so to ensure that the task code is
reentrant, all are declared auto (7). Each task runs as an infinite loop and once this applicationis
started, LC/OS-I1 will run indefinitely.

372 Dynamic C User’s Manual

/1 1. Explicitly use uCGCS- Il library
#use "ucos2.lib"

voi d RandomNunber Task(voi d *pdat a) ;

/1 2. Declare semaphore gl obal so all tasks have access
OS_EVENT* Randontem

voi d nain()

{ . .
int i;
/1l 3. Initialize OS internals
GcSinit();
for(i = 0; i < OS_MAX TASKS; i ++)
/1l 4. Create each of the systemtasks
OSTaskCr eat e(RandomNunber Task, NULL, 512, i);
/1 5. semaphore to control access to random nunber generator
RandonSem = OSSenCreate(1);
/1 6. Begin nultitasking
CSStart();
}
voi d RandomNunber Task(voi d *pdat a)
{
/1 7. Declare as auto to ensure reentrancy.
auto OS_TCB dat a;
auto INT8U err;
auto | NT16U RNum
OSTaskQuery(OS PRI O SELF, &data);
whi | e(1)
{
/1 Rand is not reentrant, so access nust be controlled
/1 via a senmaphore.
CSSenPend(RandonSem 0, &err);
RNum = (int)(rand() * 100);
OSSenPost (Randonen) ;
printf("Task%l' s random #: %\ n", data. OSTCBPri o, RNum ;
/1 Wait 3 seconds in order to view output fromeach task.
OSTi meDl ySec(3);
}
}

Dynamic C User’s Manual 373

Example 2

This application runs exactly the same code as Example 1, except that each of the tasks are created
with 1024 byte stacks. The main difference between the two is the configuration of pC/OS-11.

First, each configuration constant that differs from the library default is defined. The configuration
in this example differs from the default in that it allows only two events (the minimum needed
when using only one semaphore), 20 tasks, no queues, no mailboxes, and the system tick rateis set
to 32 ticks per second (1). Next, since this application uses tasks with 1024 byte stacks, it is neces-
sary to define the configuration constants differently than the library default (2). Notice that one
512 byte stack is declared. Every Dynamic C program starts with an initial stack, and defining
STACK _CNT_512 iscrucia to ensure that the application has a stack to use during initialization
and before multi-tasking begins. Finally ucos2. | i b isexplicitly used (3). This ensures that the
definitionsin (1 and 2) are used rather than the library defaults. Thelast step ininitializationisto
set the number of ticks per second via OSSet Ti cksPer Sec (4).

Therest of this application isidentical to example 1 and is explained in the previous section.
/1 1. Define necessary configuration constants for uC Cs-11

#defi ne OS_MAX EVENTS 2
#defi ne OS_MAX TASKS 20
#defi ne OS_MAX S 0
#define OS_Q EN 0
#defi ne OS_MBOX_EN 0
#defi ne OS Tl CKS_PER SEC 32

/1 2. Define necessary stack configuration constants

#defi ne STACK CNT 512 1 /1l initial program stack
#defi ne STACK CNT_1K OS MAX TASKS // task stacks

// 3. This ensures that the above definitions are used
#use "ucos2.1ib"
voi d RandonmNunber Task(voi d *pdat a);

/1 Decl are semaphore gl obal so all tasks have access
OS_EVENT* Randonem

void main(){

int i;
// Initialize OS internals
CSlnit();

for(i = 0; i < OS_MAX TASKS; i++){
/1l Create each of the systemtasks
OSTaskCr eat e(RandomNunber Task, NULL, 1024, i);
}
/1l semaphore to control access to random number generator
RandonSem = OSSenCreate(1);

/1l 4. Set nunber of systemticks per second
OSSet Ti cksPer Sec(OS_TI CKS_PER _SEQ) ;

/1l Begin multi-tasking
Csstart();

374 Dynamic C User’s Manual

voi d RandomNunber Task(voi d *pdat a)

{
/1 Declare as auto to ensure reentrancy.
auto OS TCB dat a;
auto I NT8U err;
auto I NT16U RNum
OSTaskQuery(OS_PRI O SELF, &data);
whi | e(1)
{
/! Rand is not reentrant, so access nust be controlled
/1 via a senmaphore.
OCSSenPend(RandonSem 0, &err);
RNum = (int)(rand() * 100);
OSSenPost (Randonen) ;
printf("Task%®2d' s random #: %\ n", data. OSTCBPri o, RNum ;
/1 Wait 3 seconds in order to view output fromeach task.
OSTi meDl ySec(3);
}
}

17.5 Compatibility with TCP/IP
The TCP/IP stack is reentrant and may be used with the uC/OS real-time kernel. Theline
#use ucos2.1ib
must appear before the line
#use dcrtcp.lib.

Dynamic C User’s Manual 375

376 Dynamic C User’s Manual

Software License Agreement
Z-WORLD SOFTWARE END USER LICENSE AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING, COPYING OR OTHERWISE USING
THE ENCLOSED Z-WORLD,INC. ("Z-WORLD") DYNAMIC C SOFTWARE, WHICH
INCLUDES COMPUTER SOFTWARE ("SOFTWARE") AND MAY INCLUDE ASSOCIATED
MEDIA, PRINTED MATERIALS, AND "ONLINE" OR ELECTRONIC DOCUMENTATION
("DOCUMENTATION"), YOU (ON BEHALF OF YOURSELF OR AS AN AUTHORIZED
REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE TOALL THE TERMS OF THIS
END USER LICENSE AGREEMENT ("LICENSE") REGARDING YOUR USE OF THE
SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS LICENSE,
DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDIATELY
CONTACT Z-WORLD FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyerstell us we need to
include to protect our legal rights. If You have any questions, write or call Z-World at (530) 757-
4616, 2900 Spafford Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capital-
ized words used in this License shall have the following meanings:

“Qualified Applications’ means an application program devel oped using the Software and that
links with the development libraries of the Software.

“Qualified Systems’ means a microprocessor-based computer system which is either (i) manu-
factured by, for or under license from Z-WORLD, or (ii) based on the Rabbit 2000 micropro-
cessor. Qualified Systems may not be (a) designed or intended to be re-programmable by your
customer using the Software, or (b) competitive with Z-WORLD products, except as otherwise
stated in awritten agreement between Z-World and the system manufacturer. Such written
agreement may require an end user to pay run time royalties to Z-World.

2. License. Z-WORLD grantsto You a honexclusive, nontransferable license to (i) use and repro-
duce the Software, solely for internal purposes and only for the number of users for which You
have purchased licenses for (the "Users") and not for redistribution or resale; (ii) use and repro-
duce the Software solely to develop the Qualified Applications; and (iii) use, reproduce and
distribute, the Qualified Applications, in object code only, to end users solely for use on Quali-
fied Systems; provided, however, any agreement entered into between You and such end users
with respect to a Qualified Application is no less protective of Z-Worldis intellectual property
rights than the terms and conditions of this License. (iv) use and distribute with Qualified
Applications and Qualified Systems the program files distributed with Dynamic C named
RFU. EXE, PI LOT. BI N, and COLDLOADER. Bl Nin their unaltered forms.

3. Redtrictions. Except as otherwise stated, You may not, nor permit anyone else to, decompile,
reverse engineer, disassemble or otherwise attempt to reconstruct or discover the source code
of the Software, alter, merge, modify, translate, adapt in any way, prepare any derivative work
based upon the Software, rent, lease network, loan, distribute or otherwise transfer the Software
or any copy thereof. You shall not make copies of the copyrighted Software and/or documenta-
tion without the prior written permission of Z-WORLD; provided that, You may make one (1)
hard copy of such documentation for each User and a reasonable number of back-up copies for

Dynamic C User’s Manual 377

Your own archival purposes. You may hot use copies of the Software as part of abenchmark or
comparison test against other similar productsin order to produce results strictly for purposes
of comparison. The Software contains copyrighted material, trade secrets and other proprietary
materia of Z-WORLD and/or its licensors and You must reproduce, on each copy of the Soft-
ware, al copyright notices and any other proprietary legends that appear on or in the original
copy of the Software. Except for the limited license granted above, Z-WORLD retains all
right, title and interest in and to all intellectual property rights embodied in the Software,
including but not limited to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other techni-
cal datareceived from Z-WORLD, nor the direct product thereof, will be exported outside the
United States or re-exported except as authorized and as permitted by the laws and regulations
of the United States and/or the laws and regul ations of the jurisdiction, (if other than the United
States) in which You rightfully obtained the Software. The Software may not be exported to
any of the following countries. Cuba, Iran, Iraq, Libya, North Korea, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of
the United States Government, the following provisions apply. The Government agrees: (i)if
the Software is supplied to the Department of Defense ("DOD"), the Software is classified as
"Commercial Computer Software" and the Government is acquiring only "restricted rights" in
the Software and its documentation as that term is defined in Clause 252.227-7013(c)(1) of the
DFARS; and (ii) if the Softwareis supplied to any unit or agency of the United States Govern-
ment ather than DOD, the Government'srightsin the Software and its documentation will be as
defined in Clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-
86(d) of the NASA Supplement to the FAR.

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software and
its documentation is at Your solerisk. THE SOFTWARE, DOCUMENTATION, AND TECH-
NICAL SUPPORT ARE PROVIDED ON AN "ASIS' BASISAND WITHOUT WAR-
RANTY OF ANY KIND. Information regarding any third party services included in this
package is provided as a convenience only, without any warranty by Z-WORLD, and will be
governed solely by the terms agreed upon between You and the third party providing such ser-
vices. Z-WORLD AND ITSLICENSORS EXPRESSLY DISCLAIM ALL WARRANTIES,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. Z-WORLD
DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE
WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTSIN THE
SOFTWARE WILL BE CORRECTED. FURTHERMORE, Z-WORLD DOES NOT WAR-
RANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS
OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY
OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY Z-
WORLD OR ITSAUTHORIZED REPRESENTATIVES SHALL CREATE A WARRANTY
ORIN ANY WAY INCREASE THE SCOPE OF THISWARRANTY. SOME JURISDIC-
TIONSDO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUDING
NEGLIGENCE, SHALL Z-WORLD BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR

378 Dynamic C User’s Manual

CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE
LIKE) ARISING OUT OF THE USE AND/OR INABILITY TO USE THE SOFTWARE,
EVEN IF Z-WORLD OR ITSAUTHORIZED REPRESENTATIVE HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW
THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSE-
QUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT
APPLY TOYOU. IN NO EVENT SHALL Z-WORLDiSTOTAL LIABILITY TO YOU FOR
ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CONTRACT,
TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID
BY YOU FOR THE SOFTWARE.

8. Termination. ThisLicenseis effective for the duration of the copyright in the Software unless
terminated. You may terminate this License at any time by destroying all copies of the Soft-
ware and its documentation. This License will terminate immediately without notice from Z-
WORLD if You fail to comply with any provision of this License. Upon termination, You must
destroy all copies of the Software and its documentation. Except for Section 2 ("License"), all
Sections of this Agreement shall survive any expiration or termination of this License.

9. Genera Provisions. No delay or failure to take action under this License will constitute a
waiver unless expressly waived in writing, signed by a duly authorized representative of Z-
WORLD, and no single waiver will constitute a continuing or subsequent waiver. This License
may not be assigned, sublicensed or otherwise transferred by You, by operation of law or other-
wise, without Z-WORLD's prior written consent. This License shall be governed by and con-
strued in accordance with the laws of the United States and the State of California, exclusive of
the conflicts of laws principles. The United Nations Convention on Contracts for the Interna-
tional Sale of Goods shall not apply to this License. If for any reason a court of competent
jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so asto affect the
intent of the parties, and the remainder of this License shall continue in full force and effect.
This License constitutes the entire agreement between the parties with respect to the use of the
Software and its documentation, and supersedes al prior or contemporaneous understandings
or agreements, written or oral, regarding such subject matter. There shall be no contract for
purchase or sale of the Software except upon the terms and conditions specified herein. Any
additional or different terms or conditions proposed by You or contained in any purchase order
are hereby rejected and shall be of no force and effect unless expressly agreed to in writing by
Z-WORLD. No amendment to or modification of this License will be binding unlessin writing
and signed by a duly authorized representative of Z-WORLD.

Copyright 2000 Z-World, Inc. All rights reserved.

Dynamic C User’s Manual 379

380 Dynamic C User’s Manual

Index 343, 344 BIOS ... 121
address operator (&) 26 body
Symbols address Spacecovvevvevenenn. 4 MOAUIEoveverrcrrnees 37,38
addressesoovvvveveneseeeeeene 95 branchingccccceevvvennnns 31, 32
OPEXAAOT wovvvvvveensens 16,17, 18 addresses in assembly language break 29, 30, 32, 118, 130
144 OPEYBLON .eovvvc..o 16,17, 18 106, 109 EXANPIE oo 30
BT e 89,103, 104, 134 aggregate data types 24 break points...89, 104, 125, 342,
ﬁ;?s ------------------------------------ 134 ALTKEY wooeoeeeoeen 334 344
e UG e 89,125,134 A| T_.Back§pace 336 hard eeeveeeeeeeeeerene 341, 342
e f' NE v, 16,17,18,134 A1 TC oo 339 interrupt status 341, 342
po 135 ALT-CTRLF3 oo 339 SOt s 341, 342
sde """""""""""""""""""" 135 ALT-F10 .o 344 breaking out of aloop 30
en ASM v 103, 104, 134 ALT-F2 v, 341,342 breaking out of aswitch state-
BN o 135 ALT-F4 oo 336 S 30
HOIION o 135 ALT-FO oo 341 buttons, toolbar 351
Hatal .o 134
; ALT-H oo 356
Zlf;‘”"c“a' Mersssressnissnnss 32 gg NI X R us C
#If(j'ér. 135 ALT'R 341 C fUnCtIOﬂS Cal | I ng amnbly
------------------------------------ ALT_SHI FT_bmk$me ““.“337 d 113
#Ifndef 135 ALT_W 352 COOE oo
#incl ude C |ar]guage 3’ 4' 5' 13’ 19' 23’ 28’
aAways 0Nccoeeieenieniennens 117 32 105. 107
absence ofcoceevvenirieenen 35 ' '
Hinterlaveooveeevveeneeennee. 135 AYMEM oo 17 ¢ statements embedded in as-
BKILL oo 136 HOUTLPENNG ~28, 108, 113, sembly code 104
i ' Cvariablesin assembly language
#makechain 32,136 MOGifying Value oo 8 106 ylanguag
HFMEMMAP oo 4,136 arrangeicons)
#nodebug 89, 125, 134, 340 cascaded windows 352
) commandc.cceeereernencns 352 32 118 121
#nointerleaveccocvee... 135 ranaed icons gpg CEE s o, 110,
#nouseix 136 GEAICONS oo case-sensitive searching 337,
"""""""""""""""" ATAYS .o 24, 25, 28 338
#undef ... 18, 136
characters ..., 19
HUSE e 35, 38, 136 : CRA 23,118,132
, 1O SUDSCIIPES oo 24 h
TG QO 136 cnaracters
arow Keyscceeeveeneene 333,334 19
#WamS 136 A bl Lan uage 103 arrays """"""""""""""""""
LI (3| 136 y ZENIUAEE e embedded qUOLES 20
#ximport 137 assembly language3, 38, 89, nonprinting values 20
------------------------------- 104, 105' 113' 114, 115, al al 20
& (address operator) 26 116, 342 hSPEF' VAUES ..o
* (indirecti ' checkin
(indirection operator) 26 embedding C statements ..104 ¢ tg -
@RETVAL 113, 114 . poInters ...,
assembly window ...3, 104, 352, stack 89 90
@SP108, 110, 111, 113, 114, 354 ACK i E
116 assianment operators 143 type e 22
GLOBAL INIT 127 gnment Operators Clear Watch Window 344
- — T aSSOCIAIVILY ..ooeeeevereeeieniene 139 lioboard 337
{ } Curly brmes 21 auto 90 106 107 108 117 C |p 0T ..ovviiiiiiiic e
"""" ' P ' Close<CTRL-F4>335
A Auto Open STDIO Window 349 (yoqing afile ...vooveerree 335
b B CoData Structurec...... 46
Ort oo R 117 POINEEN 10 .vvovvrrrreeerrerre 48
About DynamicC 359 backdash Cofunctionsccccceeeeeiennenne. 50
abstract dat_atypes """"""""" 23 continuation in directives .134 abandon ..., 54
adc (add-with-carry) 103 packdash () calling restrictions 51
Addto Top button 343 character literals 16, 20 eVErytimecooceveeeeneieenne 54
Add/Dd Items <CTRL-W> 344, basic unit of aC program 22 indexedccooevireeiienennene 52
353 - baud ratecocoveiiiiiees 351 SINGIE USEY ..o 52
Add/Del Watch Expression BCDE 107,113,114, 115 SYNAX weovrereeeemerereer e 50
 <CTRL-W>343 BedinHeader ..o 37,38 COM POIt oooorrrrerreeerrrrrne 351
adding watch window items ... binary operatorsc.cc..... 139 communication
Dynamic C User’s Manual 381

seria .o 351 NAMES ... 15 declarationsccccc..... 21,37
compilation .. 333, 339, 353, 356 statementsccoeeeevreiennns 21 defaultccoooveeieeeeees 32,121
direct to controller 3 CONSt oo 119 storage classoocceveeevveennnns 5
(< 0] = T 338 Contents Del from Top button 343
SPEED e 3 [[= 1 I 359 deleting watch window items
targetlesscoveevveeciee 339 continue 29, 30, 120, 130 343, 344
Compile EXaMPIe ..cveeeeereee 30 demotioncccceeevereeiennnne 347
toflash coveeeeeieeeee 339 copying text <CTRL-C> 336, direct
tORAM ..cooveecee s 339 337 compilationcccevvveveeeennne. 3
toTarget ..occccvevvececeennnn, 339 coStat ...cccvvererieeeee 120 directivesccccvveveeecececeeen, 4
COMPILE menu 339 Costatementscccoeeveerene. 44 #aSM oo 89, 103, 104
Compileto File<CTRL-F3> LS Y 17 G 45 #debug 89, 125, 134
339 costatements 117, 120, 131, 133 #defineccceeenee. 16, 17,18
Compileto Filewith *.RTI File Create *.RTI File for Targetless #endasmccceeeeee. 103, 104
<ALT-CTRL-F3> 339 Compileccceevrernnnnne 339 #funcchain ..o 32
Compileto Target <F3> 339 CTRLKEY .o 333 #makechaincccoeeneee. 32
compiler directives 134 CTRL-F10 ...coceviiiieen, 344 #nodebug 89, 125, 340
222 15 0 [134 CTRL-F2 ... 342 £2201010 (= 18
HCIBSS ..o 134 CTRL-F3 ..o 339 HUSE oot 35,38
#AEbUG ..o, 134 CTRL-G ..o 338 Disassemble at Address<ALT-
HAEfING ..o, 134 CTRL-H 357, 358, 359 F10> ..o 344, 354
HElf e 135 CTRLA v 341,342 Disassemble at Cursor <CTRL-
HEISE oo 135 CTRL-N ..o 338 F10> .o 344, 354
#endasmccceeveneennnns 134 CTRL-O ..o 341, 342 disassembled code 343
#endif ..o, 135 CTRL-P ..o 338 display
HEITO o 135 CTRL-U ..o, 344 OptioNnscccceeeeneenens 346, 350
Hatal .o, 134 CTRL-V . 337 dOlOOP v 29
#funcchaincccoeeeeenens 135 CTRL-W ..o, 344 dot operatorcceeenee 15,25
#GLOBAL_INIT 134 CTRL-X .o 337 dump windowccccceuene. 345
21 135 CTRL-Y . 341,343 OW e 105
#fdef . 135 CTRL-Z oo, 341 dynamic
#fndef ..o 135 curlybraces{ }ccccorinenn. 21 storage alocation 25
#interleavecccoceeeenens 135 cursor Dynamic Ccccooeeevercenennenn 3
AKILL o 136 EXECULION ..o, 342 differences 4,5, 32
#makechaincccceeeeene 136 POSItiONING ...ceeveeveeeieanne 338 EXIt o 336, 352
H#MEMMAP ...ooovverirerenens 136 EEXE e 359 installation 5,116
#nodebugoocoeeeeinenennns 134 cutting text <CTRL-X> 337 support filescceeeerenee 36
#nointerleave 135
HNOUSEIX ..ooveeeeeneiriencaens 136 D E
AUNDES ovvvevssssnnsssinies 136 At types ..o 24 EDIT menu ... 336, 337, 338
AU oo 136 e Lt Y 24 editmode.......... 333, 338, 343
FUSBIX covvvsssssssssssssssssssssss 136 Primitiveccccoveeeveeeeene 14 editing .cccooeveieeeieeeee, 3
NS oo 136 DATASEG ..ooooovccercee T 1 SR 3
#V\{arnt """"""""""""""""" 136 AD e 105 OPLiONS ...ooveeereeriiie e 346
AXIMPOMT v 137 DCW.CFG oo 352 ESB oo 121
line continuation 134 DOWLINI oo 352 embedded assembly code 3,108,
Compiler options .. 27,346,347, qetyg o 120, 134 113, 114, 115, 116
348 editor ..., 350 embedded quotes 20
COMPINING oo 3 MOCE oo 90,338,341 ENAKEY ooorerrrresreerrerrrne 333
(O o 333,339 GebUGQRr e 3 EndHeader ..o 37,38
ORAM oo 339 OPLiONS <.ooereeerreee 346,349 EPROM ..ooocoorescceersssen 4,5
OROM oo 339 Gebugging . 3,89, 134, 341,342, €QU ..eorrrerceemserecnere e 104
totargetccoeeeeeee 333,339 344, 345 errors
compound assembly-level view 3 COdES ... 91, 92
382 Dynamic C User’s Manual

editor ..o 350 359 ftell o 207
fatal oo 92 function chains .32, 33, 127, 136 fWIite oo 208
locatingcvvveevereriecnnne 338 function groups floating-point math
FUN-TIME ..o 91 arithmetic BCOS e 159
ESC key abs .o, 159 ACOL i 160
toclosemenu 334 [0S, 0! { o 209 =01 160
Evaluate button 343 bit manipulation oS 161
examples BIT woieeeveeceeien 166 2] 161
Break ..o 30 DIt o 165 AN o 162
CONLINUE ..o 30 RES ..o 282 aAAN2 .o 163
fOr 100P .oovvvevvevrereeee 29 (=SS 281 (o0] 170
MOAUIES ... 38 SET o 297 (000 SR 180
Of &TAY wvevveieere e 24 (SS (296 (o0 o [N 181
UNION oo 25 character deg .o 182
EXECULION ..o 341, 344 isalnum ..o, 217 EXP et 185
(o015 SRR 342 isalphacccceeverinene, 218 fabS .o 185
Exit <ALT-F4>ccceeeueene. 336 15’601 A 218 1[0 o] RN 199
Expr.inCallcccceoivnenens 359 (15’ [To) U 220 fmod ... 199
extended memory4,112, 113, isgraphcccceeneninene, 220 FrEXp oo 202
132 15 [olTY7= R 221 [ADS ..o, 226
EXLEIN i 38,121 1 o) 1] o | R 222 [0 [=>°d o IR 226
ISPUNCE ..o 223 [oTe [P 227
F ISYDACE oo 221 10G10 oo 227
F (SatuS register) ... 355 @suppe_r 224 MOdf ..o, 234
F10 . 352 [155°C0 (o] AU 224 POIY e 271
P 341, 342 extended memory POW ..o 272
B 339 paddrcccoeiniiiiee 270 POWI0 ..o 272
= R 338 root2Xxmemc.cceueeee. 283 (=0 [P 277
6. 337,338 WriteFlash2 ... 328 randccoceevvvvenvrenenenns 278
o 341, 342 XaAlOC oo 331 randb ..., 278
= 341, 342 XMEM2raotcccceeuene 331 (#2190 [0 EUU 279
= N 31 Xmemzxmem 332 SIN e 300
file commands fast fourier transforms SINN e 301
dosefile 335 FRECPIX o 188 (S0 | RN 303
createfile .. 335 L1 o] (] o V2R 189 T8N .o 317
OPEN FIl€ oo 335 fftreal .o 190 tanh .o 318
savefile . 335 FIrEaliny oo 191 /0
FILE Menu oo 335, 336 hanncplXcccceenene 212 BitRdPortE 166
Find next <SHIFT-F5> ... 338 hannreal ... 213 BitRdPortl 167
firsttime oo 122 powerspectrum 273 BitWrPortE 168
float oo 23 122, 132 file system BitWrPortlcc....... 169
vaues .. 19 [{o[01 IR 186 RAPOrtEcoovrinen. 279
for ... 21,123 fereate .oooveeeeciicies 186 RdPortlccooeeeeiinnen. 280
character literals ... 20 fcreate unused 187 WrPOrtEcoocvene. 330
1 R 29 fdelete ...covvvvreirieien, 187 WIPOItl o 330
L1 L 29 fopen_rd ... 200 interrupts
frame fopen_Wrccceeeeeens 200 GetVectExtern2000210
reference point 113, 114 freadoccooviiiiniiis 201 GetVectintern 211
reference pointer 90, 111, 113, fs formatcccceeeeeee. 203 SetV ectExtern2000 299
125 fsinit .o, 204 SetVectintern 300
free SPACE ..vvveeeeveereerriene 356 fs_reserve blocks.......... 205 low-level flash access
Full Speed Bkgnd TX 351 FSCK o 205 flash_erasechip 192
function calls22, 28, 90, 108, fse_ek 206 flash_erasesector 192
113, 114, 115, 116, 117, fohift .o 207 flash_gettype 193
Dynamic C User’s Manual 383

FlaSh NIt cooroeerrereeees 194

flash_readccccenue. 195
flash_readsector 196
flash_sector2xwindow . 197
flash writesector 198
MicroC/OS-|
OSINit .o 234
OSMboxAccept 235
OSMboxCreste 235
OSMboxPend 236
OSMboxPost 237
OSMboxQuery 238
OSMemCregte 239
OSMemGetccceuee 240
OSMemPUtcccecenee 240
OSMemQuery 241
OSQACCERL ..o 241
OSQCreatecccceeennene 242
OSQFlUshcocvrieee 243
OSQPendccceeeennee 244
OSQPOStovveeeeirinen 245
OSQPostFront 246
OSQQUENY ...oeveereennen. 247
OSSchedLock 247
OSSchedUnlock 248
OSSemAccept 248
OSSemCresate 249
OSSemPend 249
0OSSemPostcccceuee 250
OSSemQuery 251
OSSetTickPerSec 252
OSStart ...ooeeeeeereeeeiene 252
OSStatlnitcccceeeeeene 253
OSTaskChangePrio 253
OSTaskCreate 254
OSTaskCreateExt 255
OSTaskCreateHook 256
OSTaskDeélccccuue. 257
OSTaskDelHook 258
OSTaskDelReq 259
OSTaskQuery 260
OSTaskResume 261
OSTaskStatHook 261
OSTaskStkChk 262
OSTaskSuspend 263
OSTaskSwHook 263
OSTimeDly ... 264
OSTimeDIyHMSM 265
OSTimeDlyResume...... 266
OSTimeDIlySec 267
OSTimeGetcceceuee 267
OSTimeSetcccecenee 268
OSTimeTickHook 268
OSVersion ... 269

miscellaneous
TolpTo [4] o I 228
(0150] 1 S 276
runNWatchccoceveevenee 283
1SS 1110] o J 298
multitasking
CoBegin ...ccvevvvveeeienne 173
CoPausecccoceevniennnne 179
CoResel ..o 179
CoResumecccoeeeee 180
DelayMscccvvvveriennnne 182
DelaySeccovvvrereenenn 183
DelayTicKS .ooovvvreriennne 183
IntervaMscccevenene 215
IntervalSeccceueuee. 215
Interval Tickc...... 216
iSCoDONEcccceereenenne 219
isCoRuUNNINgc..... 219
number-to-string conversion
floa ..o 208
htoaccocoevieiiiiiee 214
(107= RAURTUURURURURI 225
] o= NN 228
[t0aN ...ooeeiririiiiee 229
UEOA oo 324
real-time clock
MKHMEe ..o 232
MKEM e 233
read rcccoeeeeeenenns 280
read_rtc 32kHz 281
tmrd e 319
M WE s 320
T gL (=30 ¢ (oS 329
serial communication
cof_SerAgetc 173
cof_SerAgets 174
cof_serAputc 175
cof_SerAputs 176
cof serAread 177
cof_serAwrite 178
cof_serBgetc 173
cof_serBgets 174
cof_serBputc 175
cof_serBputs 176
cof serBread 177
cof_serBwrite 178
cof_serCgetcc.e... 173
cof_serCgets ... 174
cof_serCputc 175
cof_serCputs 176
cof serCread 177
cof_serCwrite 178
cof_serDgetc 173
cof_serDgets 174

cof_serDputc 175
cof_serDputs................. 176
cof_serDread 177
cof_serDwrite 178
SErACIOSE ..o 284
serAdatabits 285
serAflowcontrol Off 285
serAflowcontrolOn 286
SEFAQELC ..o 287
serAgetError 288
SEFAOPEN ..o 289
SErAPAtY .cooveeeerienennee 290
SErAPEEK ..o 291
SEFAPULC ... 291
SEFAPULS ... 292
serArdFlush 292
serArdFree ... 293
serArdUsed 293
serAreadcoccveeneee. 294
serAwrFlush 295
serAwrFree 295
SETAWNILE ..o, 295
serBceloseocveenee 284
serBdatabits 285
serBflowcontrol Off 285
serBflowcontrolOn 286
SerBgetC ..o 287
serBgetError 288
serBopenccceeeeennee 289
serBparityccccoeeennee 290
serBpeeK ..oooiiiiiiienee 291
SErBPULC ... 291
SErBPULS ... 292
serBrdFlush 292
serBrdFree 293
serBrdUsed 293
serBreadcocueeneee 294
serBwrFlush 295
serBwrFree 295
serBwritecoeveeneee 295
SerCclosecovveeveeenenne 284
serCdatabits 285
serCflowcontrol Off 285
serCflowcontrolOn 286
SerCgetC ...ovvvveeeece 287
serCgetError 288
serCheckParity 284
serCopenoceeeeeeene 289
SerCparityccceveeeennee 290
SErCpeek ..ooovveeeereeeennes 291
SErCPULC ... 291
SErCPULS ... 292
serCrdFlush 292
serCrdFree ..o 293

384

Dynamic C User’s Manual

serCrdusedccoovevee. 293 (S 11 (o] QR 315 header
serCreadccoveevveenenen. 294 (6 [ol11V/= SR 321 functioncocovveeeeniinenns 39
serCwrFlush 295 17010]0] 0= (RN 321 (10700 (0] 37,38
SErCWIFreeocovevveeeenen. 295 string-to-number conversion heap storageccccvevvvvenenne 356
SErCWIILE oo 295 > (o) S 164 Help
SerDCloSeocovvrvenne. 284 (o S 164 (010111 0= R 359
serDdatabits 285 A0l v 165 HELPmenu .356, 357, 358, 359
serDflowcontrol Off 285 (S04 (oo 314 HL 107, 109, 110, 113, 114, 115
serDflowcontrolOn 286 (S0 (o] I 316 Homekeyccovvvvvcevnnnennn, 333
(S 1 D]0 T (o 287 system horizontal tiling 352, 353
serDgetError ... 288 _syslsSoftReset 316
serDopenooeeveveeeennns 289 chkHardReset 170 |
serDparity .oocooeeeeeeeenns 290 chkSoftReset 171 IBMPC . 3,341, 351
serDpeek ...eveveererieenen 291 ChkWDTOcoocvrveeenen. 171 icons
SErDPULC ..o 291 clockDoublerOff 172 arranged ... 352, 353
SerDpULS ... 292 clockDoublerOn 172 |EEE floating point 122
serDrdFlush 292 defineErrorHandler 181 i 121
serDrdFreeccooeeee. 293 EXIt e 184 multichoice ... 31
serDrdUsed ... 293 forceSoftReset 201 SIMPIE oo 31
serDreadcccoovevenenee. 294 GetVectExtern2000210 withelse ... 31
serDwrFlush 295 ?pres 216 indirection OPErator (*) 26
seerrFree 295 ipset e 217 information window352, 356
serDWIIte ..o, 295 premainccccoceeeeene 274 init on o 124
STDIO Y SRmCha Mo 317 insertion point 337, 338
getcharccoceoeeeeieenne 209 updateTimers................. 322 INSPECT menu ..343, 344, 345,
OELS i 210 Use32HzOsCc....... 322 353
(0] 1] S 225 useClockDivider 323 install ation
OULCHIS ..o 269 useMainOSCccceuene 323 DYNaMIC C wovvrreeeeee 5 116
(o111 £ | g 270 watchdog int .. 23 124, 132
Printf ..ooeveeieeeee 274 Disable HW_WDT184 e £ T 19
putcharcccceevenuene 275 hitwd ..o 214 hexadecimal ... 19
PULS ..o 275 VdGetFreeWwd 325 1o s 19
SPrintf ..o 302 V2 [57} 326 octal o 19
string manipulation VdReleaseWd 327 UNSIGNED . ovooveerereeereerre 19
memchr ... 229 function headerscccc...... 39 IAEITUDE <evvereeeeeeereeeee e 124
MEMCMP e 230 funct!on help e 39 interrupt service routines 3, 115,
MEMCPY veverveneeerneenennes 231 function libraries 3,35,37 116, 124
MEMMOVEcceereenenne. 231 function lookup <CTRL-H> interrupt status
(10150115 232 _357, 358, 359 and break points 341 342
SUCEL ..o 303 function returns90, 113, 114, INErTUDLS .vvvvvoeevvereeee, 115, 116
Strehr s 304 115 T 342
SIICMP e 305 functionscccoeveevineininnne 22 [LENCY rroeeeeereesseeenee 115
SICMPI ., 306 entry and exitc.ccoeeeuene. NV |x (index register) .89, 90, 111,
SUCPY e 307 prototypes............... 22,24, 37 112, 113, 125, 131
SICSPN e, 307
SHTIEN oo 8 G K
SUNCE o 308 generatedocooeieieniiiiennne. 2 yernd
SUCMP v 309 Globa Initialization 3 i
SNCMPI oo, 310 lobal variables o5 real-timeccoceevvevennnenn 90
SNCDY oo 311 goto """" o ipe Y MOGUIE 37
S 170)014 QU T A T keystrokes
SUTCHr v 312 GOto <CTRL-G o 338 <ALT R> select RUN menu .
STSPN v 33 H 341 _
SUSHT oo 313 <ALT-Backspace> undoing
hard break points 341, 342 changescccoevvvrnenen. 336
Dynamic C User’s Manual 385

<ALT-C> select COMPILE

<SHIFT-F5> Find next ...338

L

MENU ...vveveeeeesieeeseeneens 339 keywords4, 32, 89,112, 117,
<ALT-F> select FILE menu .. 121, 125, 127, 131 language elements ... 13,15, 19,
334 0o R 117 117
<ALT-F10> Disassemble at aAWaYS ON ..o, 117 OPEXatorscoouuvvvsnisinieaes 139
AdAressooooovvvereneenn. 344 ANYMEM oo 117 latency interrupts 115
<ALT-F2> Toggle hard break BULO v 117 LiDENtries .o, 357
pointcccceeerene 341, 342 breakoooovvevireeereee 118 '—! B-D_| R, 38, 136, 357
<ALT-F4> EXit ..ooovr.... 336 < 118 Librares ... 35
<AL T-F4> Quitting Dynamic 2= TS 118 libraries. ..., 3,35
(SR 334 CONtINUE .vovveeererveere 120 MOdUIEScovveve. e 37
<ALT-F9> Runw/ No Polling COSALE ..overererr e, 120 real-time programming 3
341 12 o 1 [T 120 library functions 357
<ALT-H> select HELP menu S S 1 L 121 Library Helplookup 39
356 (o T 121 Library Helplookup <CTRL-H>
<ALT-O> select OPTIONS I <R 121 357, 358, 359
1170 U [P 346 EXEEMN e 121 NIOK s 336
<ALT-SHIFT-backspace> re- firsttimecoooooeeevvvrerrnnne. 122 NinKING oo 3
doing changes.............. 337 1167 S 122 locatingerrors 338
<ALT-W> select WINDOW 1o 123 oG 124,132
110= S 352 70100 JORN 123 lookup function <CTRL-H>
<CTRL-F> Compileto File ..] USRI 123 357, 358, 359
339 INIE 0N cvvveeeeeeee e 124 loops e 29
<CTRL-F10> Disassemble at T2 124 breaking out Of 30
(OIT12= o QO 344 INtETUPE ovveecveveee e 124 O s 121
<CTRL-F2> Reset Program .. 16127 FO 124 FOr 123
341, 342 NOdebugovvveereeeieeen. 125 skipping to next pass 30
<CTRL-F3> Compileto File (00] 55 AR 125 M
with * RTI File 339 NOUSEIX .vecvveeecrienreeneevenes 125
<CTRL-G> Goto 338 NULL e, 125 macros 16, 17, 18, 104, 106, 134
<CTRL-H> Library Help protectedcoceeenrieenene 126 FESLrictionsS oo, 18
lookup . 334, 357, 358, 359 FELUM v 126 with parameters 16
<CTRL-I> Toggleinterrupt .. (070 AR 127 main function 22, 35, 89, 125
341, 342 segchaj N, 127 memory
<CTRL-N> next error 338 sharedcccoeevvvvieieen. 127 AUMP e 343
<CTRL-O> Toggle palling ... LS (0] A 128 dump at address 345
341, 342 SIZE e 128 dump Flashccccuvveee.. 345
<CTRL-P> previous error 338 S0) 128 dump tofilecoveevveee. 345
<CTRL-U> Update Watch SPEED i 128 extended 4, 95, 112, 113, 132
WINAOWveevvveeveenens 344 SAC v 129 10GICal .evoveereeeeeeeeeeeeeeeeeen, 95
<CTRL-V> pasting text ..337 SIUCE e, 129 management 117, 127
<CTRL-W> Add/D€l Items .. SWItCh oo, 130 PhYSICaAl ..o 95
344 typedefcccooeniiiiine 130 random accessovvi... 4,5
<CTRL-X> cutting text ... 337 UNION .o 131 read-onlyc.cccoevevrevnnn 4,5
<CTRL-Y> Reset target . 341, unsignedoocoeeeenneenene 131 root .4, 95,97, 106, 107, 109,
343 USEIX teveereereeereeerreeseeennens 131 110, 112, 127
<CTRL-Z> Stopccceueee. 341 Wailtforcocevveviiieciee 131 memory management unit
<F10> Assembly window 352 While ..o, 132 (MMU) ..o 4,95
<F2> Toggle break point 341, Xdata .veeveeeeeeecee 132 Memory options 346
342 XMEM .. 132 menus
<F3> Compileto Target .. 339 XSUING e 133 COMPILE oo 334, 339
<F7> Traceinto 341, 342 Vield o 133 EDIT ... 334, 336, 337, 338
<F8> Step over 341, 342 FILE .o 334, 335, 336
<F9>RUNccoccviieiens 341 HELP 334, 356, 357, 358, 359
386 Dynamic C User’s Manual

INSPECT 334, 343, 344, 345, modulus (%)ccceeene 142 address (&) .oooevveeriennne 148
353 multiplication (*) 141 bitwise AND (&) 148
OPTIONS ..27, 334, 346, 347, PIUS (+) woreveveeireeereeen 140 indirection (*)cccoee... 149
348, 349, 350, 351 010141 (= ¢ 141 multiplication (*) 149
RUN 334, 341, 342, 343 post-decrement (--) 142 relational operators 145
SYES (1 334 post-increment (++)141 greater than (>) 146
WINDOW 334, 352, 353, 354, pre-decrement (--) 142 greater than or equal (>=) ..
355, 356 pre-increment (++) 141 146
message window ..338, 352, 353 assignment operators 142 lessthan (<) ocveevrevveenen. 145
minimized windows 353 add assign (+=) .cceveeee. 142 lessthan or equal (<=) .145
MMU (memory management AND assign (&=) 143 SIZEOF e 150
(01971 4 S|t I) I 142 0] 97 Y 139
modes divideassign (/=) 143 Optimize For (size or speed) 347
debugccccverneene 90, 338, 341 modulo assign (%=)143 options
edit .o 338, 343 multiply assign (*=)143 compiler 346, 347, 348
Previewceveeeecenenenn 335 OR assign (=) veeeeeeen 144 debuggercceeu.e. 346, 349
FUN e 338, 341 shift left (<<=) ... 143 display ..cccooveveineenne 346, 350
module shift right (>>=) 143 editoroccoeoeviiiieiee 346
headerscccoovveeinenene 121 subtract assign (-=) 143 (10150010 VAR 346
MOAUIEScovvreiiene 35, 37,38 XOR assign (M=) ... 144 Serial oo 346, 351
body ..o, 37,38 assOCialiVIty ...occevevcreennene 139 OPTIONS menu ...27, 346, 347,
EXaMPIe ..o 38 binaryccocoooniinie 139 348, 349, 350, 351
headerccoovveiinennn. 37,38 bitwise operators
KEY wooreeeeer oo 37 2ddress (&) weovrrerreeern s P
1] o = YA 37 b!tw!se AND (_&) 144 PageDOWN KEY ...ovvrrrrrreee 333
MOUSE ... seeeeeseee e 333 bitwise exclusive OR (%) eUp k 333
Multitaskin 145 Pag_ PKeY .
9 Ao passing arguments .28, 108, 113,
COOPEratiVecccoerveeereenene 41 bitwise inclusive OR (|) 145 114. 115
preemptiveccccccveeeeennene 57 complement (=) 145 Paste ... e 337
N poi NEEMS ..o 144 pasting text <CTRL-V/> ... 337
SOt IEft (<<) v 144 be 3,341,351
NAMES ... 15 St gt (>>) -..ooovv 144 pointer checkingcccccee.ee. 27
#AEfINE ..o 16 comma 9151 POINLENS ...covvvveerrrenenns 19, 26, 28
Next error <CTRL-N>338 ~ conditiondl operators (?:) 149 *initigized 26
No Background TX 351 equality o_p_erators """"""" 146 [o10]1 174 o IR 341, 342
nOdebUg 89, 104, 125' 134' 341' equal (——)|_ 146 ports
342, 344, 348 _ hotequal (15) oo 146 orial oo 351
(010] 5 AU 125 n qssembly language 105 positioning textc.cee... 338
NOUSEIX ..ceuereerereenieneene 109, 125 lOQ'C"‘_‘I operalors.............. 147 power fallurecccccceveenee 126
NS R 125 logical AND (&&)147 yrecering registers114, 115,
logical NOT (1) ..ocovenee 147 116
O logical OR (|) 147 review modecccoceeene. 335
] operator precedence 151 Erevi ous error <CTRL-P> .. 338
offsets in assembly language ... postfix expressions 147 : :
106, 109, 111, 112, 113 () parentheses 147 primary register ...107, 113, 114,
onlinehelpcovvenens 39, 359 [] aay indices 147) _1_15
39 Yy TID e primitive datatypes 14
OPEratorsScoveeverrerererrennnens 1 array subscripts or dimen-)
&y P T3 335
#(Macros) 16,17,18 1o 31 0 [147 : :
(MACrog) ... 16, 17, 18 dot () 148 Pr!nt Previewcccccoeeene 335
; ; W e Print Setup ..o 336
arithmetic operators 140 arentheses () 147 _
- PArentneses () w............ printf 20, 24, 341, 342, 349, 353
decrement (--) ..ocoovvevnene 142 -~
cLlIe right arrow (->) 148 roaram
diviSION (/) e 141 recedence 139 o9
increment (+4) ... 141 fdamcddééé S EXAMPIE ..o 23
A P program flow .28, 29, 30, 31, 32
indirection (%) 141 10/ £-JN 148
MINUS (-) oo 140 programmable ROM 4.5
Dynamic C User’s Manual 387

programming return address 108,112 single stepping 90, 104, 344
real-timeccoceevvveevnneenn 3 reversesearching 337, 338 in assembly language 89
Promotioncccceeevveereereene 140 ROM ..o 341, 342 with descent <F7> 342
protectedccoeveeeeiereennn, 126 programmable 4,5 without descent <F8> 342
protected variables3,89,126 rootccccvvervreerinennenn 97,127 SIZE e 128
prototypes memory 4, 97,106, 107, 109, SIZEOF v 128
functioncccoce..... 22,24, 37 110, 112, 127 skipping to next loop pass 30
inheadersccovvernenens 37 rst028h e 342 Slice Statementsccoeueneee. 57
punctuationcccceeeeveenrnenn 14 RST28H ...ccoocvvvvvvveece 89 soft break points 341, 342
RTI (remote target information) software
Q TS 339 libranies ..o 35,37
quitting Dynamic C <AL T-F4> RTK (rea-timekerndl) 3,90 reset e 343
336 RUunN<F9> ..o 341 source Windowee..... 352
RUN menu 341,342,343 SP (stack pointer) 108, 114, 115,
R run modecoeeene. 338, 341 116, 136
. Run w/ No Polling <ALT-F9> .. special characters 20
Rabbit reset 341 special symbols
_sysIsSoftReset 316 yunni ng in assembly language 106
chkHardReset 170 aprogramc.eeeeeeeen. 341 PEEU e, 128
ChkSOftRESEtocovvvvvvvvevve 171 in polling mode 341 stack 28,90, 108, 109, 110, 111,
ChKWDTO oooovvvvinnns 171 with no polling 341 112, 113, 114, 115, 116,
Rabbit restart run-time 117, 125
protected variables........... 126 checkingocceveeveveeene. 347 checkingc.cocecenene. 89, 90
wsResetCham 317 frame 108, 110, 112, 113, 114,
RAM S 115,116
rextonly memory -4’ sampleprograms ame reference poie .. 113
real-time basic C constructs 23 ; o int %0
e (RTK) o 3,00 SAVE s s framereference pointer ... %0
PrOGraMMINGoeeeevereeeen. 3 SAVEES ..o 335 o nter’ SP' 108.114. 115
redoing changes Save Environment 352 p 116 (136) P S
<ALT-SHIFT-backspace> ... saving afile ... 335 sh . 355
337 SCIOING v 355 sn_a% OIS ovvreeenne o
FEgiSterscvvvvveeeererenes 90, 108 Search for Help ...ocooocccv. 359 STV'X\IEKO;YEG ’ ’ 95
SNAPSNOLS ..o 3s5 Searchingfortext........ 337,338 dlone
variablesccoovvvvennnn, 26 Searchinginreverse...... 337, 338 X OE? d 107
window 3 350 355 SeOChAN s R127 m h?’nzo SRRURURE
remote target information (RTI) ;F;ﬁlrng """"""""""""""""" % (NG 113 [43
Repl;:lee<F6>334, ggg COMPILE menu <ALT-C> .. :iie(r:nents 1;;.
replacing text o aa7 385 339 RAM 129
oot HELP menu <ALT-H> ... 356 Mo 5106 1,08
SOFtWAI'E ..o, 343 OPTIONS menu <ALT-O> ... St;l'i'r ier(ﬂ """ T e
Reset program <CTRL-F2> 341, 340 STDIOev%i ndow 3, 349, 352, 353
342 RUN menu <ALT-R> 341 Step over <F8> ' ' 341’ 342
Reset target <CTRL-Y> 341, W'%[Z)OW MeNU <ALT-W> - Sop <CTRL-Z> ... 341
reeett?r?gg DIOGEAM o 4o Serial communication 351 :gp li:s ——— gi
restarting seria options 346, 351 < PP gl 9 prog 1 108
DrOGEAM ooooeerreeeeeeen 342 serial POortcoeeeeeeverccnienienn 351 O;ua?()e CIaSS v ' e
target controller 343 shared e 127 defau.llt. """""""""""""""""" c
= S 113,116 ~ Sharedvariables......... 3,89, 126 er 25 26
i g SHIFTFS i Rg U
S 1 116 SOME oo 128 o € s ésg
T 118, 196, 180 Show Tool Bar ... 351 (o: o)V
388 Dynamic C User’s Manual

strings........ 19, 20, 132, 134, 135
fuNCLioNSccoevvevciees 19
terminating null byte 19

struct ...21, 24, 25, 28, 107, 108,
113, 114, 115, 129

structures .24, 25, 107, 108, 113,
114, 115

return space108, 113, 114,
115

subscripts

2 - Y 24
support filesocccveveveceeene 36
SWItCh . 32,121, 130

breaking out of 30

CSE .ttt 130
switching to edit mode 338
symbolic constant 134
Sync. Bkgnd TXccoveeeee 351
T
targetless compilation 339
tEXE CUISOr ..o 359
Tile Horizontally 352, 353
tiling windows 352, 353

Toggle break point <F2>341,
342

Toggle hard break point <ALT-
F2> i 341, 342

Toggleinterrupt <CTRL-1> 341,
342

Toggle polling <CTRL-0> .341,
342

1(070]1 o7 | (N 351
Traceinto <F7> 341, 342
type

checkingcccceeeeene 22,348

CONVErSIONcccvveveerernennn. 140

definitionsooceeeeeeeiene, 23
type castingccccveeeriennenn 140
typedef ... 23,130
types

function ..., 22
U
unary operatorscoceeeeene. 139
unbalanced stack 116
undoing changes <AL T-Back-

SPACE> ..o 336

uninitialized

0101411 ¢ J 26
UNION v 21, 25,131

unpreserved registers ..114, 115,
116

untitled filesoovevevrerereenen. 335
Update Watch window <CTRL-

U> e 344
USEIX weveererreereeseeneens 90, 110, 131
\Y
variables

global ..o, 25
vertical tilingcoeeeveenee. 352
W
(122 11 (o] SN 131
waitfordonec.ccoceeevrenns 132
warning reportsc.cceeeee.. 347
watch

didog ...cccovrverrrinnnn 343, 344

EXPressions 344, 353

11 344

window .3, 343, 344, 352, 353

adding items 343, 344

clearingcoceeeevveennn, 344

deleting items 343, 344

updatingcceeeeveenienene 344
WED e 132
while ..o, 21, 29, 132
WINDOW menu .352, 353, 354,

355, 356
WINAOWS ...ovvveviineieniniennieae 352

assembly 3,104, 352, 354

cascadedcoovvvinieiinnne 352

information 352, 356

MESSAJE ...covvvereerernn 352, 353

minimizedcccocveerenene 353

register ..o 3,352, 355

stack v 3,352, 355

STDIO 3, 349, 352, 353

tiled horizontaly 352, 353

tiled vertically 352

watch3, 343, 344, 352, 353

Do - - R 132
bd1.015 1 1 112, 132
XPC e 95
XSUING i 133
Y

Vield o 133
Z

Z180 ..o 89, 95, 355

Dynamic C User’s Manual

389

390 Dynamic C User’s Manual

	Installing Dynamic C �1
	1.1� Requirements
	1.2� Assumptions

	Introduction to Dynamic C �2
	2.1� The Nature of Dynamic C
	2.1.1� Speed

	2.2� Dynamic C Enhancements and Differences
	2.2.1� Dynamic C Enhancements
	2.2.2� Dynamic C Differences

	2.3� Dynamic C Differences Between Rabbit and Z180

	Quick Tutorial �3
	3.1� Run DEMO1.C
	3.1.1� Single-Stepping
	3.1.2� Watch Expression
	3.1.3� Breakpoint
	3.1.4� Editing the Program

	3.2� Run DEMO2.C
	3.2.1� Watching Variables Dynamically

	3.3� Run DEMO3.C
	3.3.1� Cooperative Multitasking

	3.4� Summary of Features
	3.4.1� Development Functions
	3.4.2� Single-stepping
	3.4.3� Setting breakpoints
	3.4.4� Watch expressions
	3.4.5� Costatements

	Language �4
	4.1� C Language Elements
	4.2� Punctuation and Tokens
	4.3� Data
	4.4� Names
	4.5� Macros
	4.5.1� Restrictions

	4.6� Numbers
	4.7� Strings and Character Data
	4.8� Statements
	4.9� Declarations
	4.10� Functions
	4.11� Prototypes
	4.12� Type Definitions
	4.13� Aggregate Data Types
	4.13.1� Array
	4.13.2� Structure
	4.13.3� Union
	4.13.4� Composites

	4.14� Storage Classes
	4.15� Pointers
	4.16� Pointers to Functions, Indirect Calls
	4.17� Argument Passing
	4.18� Program Flow
	4.18.1� Loops
	4.18.2� Continue and Break
	4.18.3� Branching

	4.19� Function Chaining
	4.20� Global Initialization
	4.21� Libraries
	4.22� Support Files
	4.23� Headers
	4.24� Modules
	4.24.1� The Key
	4.24.2� The Header
	4.24.3� The Body
	4.24.4� Function Description Headers

	Multitasking with Dynamic C �5
	5.1� Cooperative Multitasking
	5.2� A Real-time Problem
	5.2.1� Solving the Real-time Problem With�a�State�Machine

	5.3� Costatements
	5.3.1� Solving the Real-time Problem With�Costatements
	5.3.2� Costatement Syntax
	5.3.3� Control Statements

	5.4� Advanced Costatement Topics
	5.4.1� The CoData Structure
	5.4.2� CoData Fields
	5.4.3� Pointer to CoData Structure
	5.4.4� Library Extensions for Use With Named Costatements
	int isCoDone(CoData* p)
	int isCoRunning(CoData* p)
	void CoBegin(CoData* p)
	void CoPause(CoData* p)
	void CoReset(CoData* p)
	void CoResume(CoData* p)

	5.4.5� Firsttime Functions
	5.4.6� Shared Global Variables

	5.5� Cofunctions
	5.5.1� Syntax
	5.5.2� Calling Restrictions
	5.5.3� CoData Structure
	5.5.4� Firsttime functions
	5.5.5� Types of Cofunctions
	5.5.6� Types of Cofunction Calls
	5.5.7� Special Code Blocks
	5.5.8� Solving the Real-time Problem With�Cofunctions

	5.6� Patterns of Cooperative Multitasking
	5.7� Timing Considerations
	5.7.1� waitfor Accuracy Limits

	5.8� Overview of Preemptive Multitasking
	5.9� Slice Statements
	5.9.1� Syntax
	5.9.2� Usage
	5.9.3� Restrictions
	5.9.4� Slice Data Structure
	5.9.5� Slice Internals

	5.10� Summary

	The Virtual Driver �6
	Initialization Services
	Periodic Interrupt Services
	6.1� Default Operation
	6.2� Calling _GLOBAL_INIT()
	6.3� Global Timer Variables
	6.4� Watchdog Timers
	Hardware Watchdog
	Virtual Watchdogs

	6.5� Preemptive Multitasking Drivers

	The Slave Port Driver �7
	7.1� Slave Port Driver Protocol
	7.1.1� Overview
	7.1.2� Registers on the Slave
	7.1.3� Polling and Interrupts
	7.1.4� Communication Channels

	7.2� Functions
	SPinit
	SPsetHandler
	MyHandler
	SPtick
	SPclose

	7.3� Examples
	7.3.1� Example of a Simple Status Handler
	7.3.2� Example of a Serial Port Handler
	cof_MSgetc
	cof_MSputc
	cof_MSread
	cof_MSwrite
	MSclose
	MSgetc
	MSgetError
	MSinit
	MSopen
	MSputc
	MSrdFree
	MSsendCommand
	MSread
	MSwrFree
	MSwrite
	7.3.3� Example of a Byte Stream Handler

	cbuf_init
	cof_SPSread
	cof_SPSwrite
	SPSinit
	SPSread
	SPSwrite
	SPSwrFree
	SPSrdFree
	SPSwrUsed
	SPSrdUsed

	Efficiency �8
	8.1� Nodebug Keyword
	8.2� Static Variables
	8.3� Function Entry and Exit

	Run-Time Error Processing �9
	9.1 User-defined error handlers

	Memory Management �10
	10.1� Memory Map
	10.1.1� Memory Mapping Control

	10.2� Extended Memory Functions
	10.2.1� Code Placement in Memory

	The Flash File System �11
	11.1� General Usage
	Wear Leveling
	Low-level implementation

	11.2� Application Requirements
	11.3� Functions
	Using File Names

	11.4� Skeleton Program

	Using Assembly Language �12
	12.1� Program Flow
	12.1.1� Embedded C in Assembly

	12.2� Comments
	12.3� Labels
	12.4� Defining Constants
	12.5� Expressions
	12.6� Multiline Macros
	12.7� Special Symbols
	12.8� C Variables
	12.9� Stand-alone Assembly Code
	12.10� Embedded Assembly Code
	12.10.1� Not Using the IX Register, Function in Root Memory
	12.10.2� Using the IX Register, Function in Root Memory
	12.10.3� Not Using the IX Register, Function in Extended Memory

	12.11� C Functions Calling Assembly Code
	12.12� Assembly Code Calling C Functions
	12.13� Interrupt Routines in Assembly
	12.14� Common Problems

	Keywords �13
	abort
	always_on
	anymem
	auto
	break
	case
	char
	const
	continue
	costate
	debug
	default
	do
	else
	extern
	firsttime
	float
	for
	goto
	if
	init_on
	int
	interrupt
	long
	main
	nodebug
	norst
	nouseix
	NULL
	protected
	return
	root
	segchain
	shared
	short
	size
	sizeof
	speed
	static
	struct
	switch
	typedef
	union
	unsigned
	useix
	waitfor
	waitfordone (wfd)
	while
	xdata
	xmem
	xstring
	yield
	13.1� Compiler Directives
	#asm options #endasm
	#class options
	#debug #nodebug
	#define name text #define name(params...) text
	#fatal "…"
	#GLOBAL_INIT { variables }
	#error "…"
	#funcchain chainname name
	#if constant_expression #elif constant_expression #else #endif
	#ifdef name #ifndef name
	#interleave #nointerleave
	#KILL name
	#makechain chainname
	#memmap options
	#undef name
	#use pathname
	#useix #nouseix
	#warns "…"
	#warnt "…"
	#ximport <filename> <symbol>

	Operators �14
	14.1� Arithmetic Operators
	+
	–
	*
	/
	++
	––
	%

	14.2� Assignment Operators
	=
	+=
	-=
	*=
	/=
	%=
	<<=
	>>=
	&=
	^=
	|=

	14.3� Bitwise Operators
	<<
	>>
	&
	^
	|
	~

	14.4� Relational Operators
	<
	<=
	>
	>=

	14.5� Equality Operators
	==
	!=

	14.6� Logical Operators
	&&
	||
	!

	14.7� Postfix Expressions
	()
	[]
	. (dot)
	->

	14.8� Reference/Dereference Operators
	&
	*

	14.9� Conditional Operators
	? :

	14.10� Other Operators
	(type)
	sizeof
	,

	Function Reference �15
	15.1� Functional Groups
	arithmetic
	bit manipulation
	character
	extended memory
	fast fourier transforms
	file system
	floating-point math
	low-level flash access
	I/O
	interrupts
	MicroC/OS-II
	miscellaneous
	multitasking
	number-to-string conversion
	real-time clock
	serial communication
	STDIO
	string manipulation
	string-to-number conversion
	system
	watchdog

	15.2� Alphabetical Listing
	abs
	acos
	acot
	acsc
	asec
	asin
	atan
	atan2
	atof
	atoi
	atol
	bit
	BIT
	BitRdPortE
	BitRdPortI
	BitWrPortE
	BitWrPortI
	ceil
	chkHardReset
	chkSoftReset
	chkWDTO
	clockDoublerOn
	clockDoublerOff
	CoBegin
	cof_serXgetc
	cof_serXgets
	cof_serXputc
	cof_serXputs
	cof_serXread
	cof_serXwrite
	CoPause
	CoResume
	cos
	cosh
	defineErrorHandler
	deg
	DelayMs
	DelaySec
	DelayTicks
	Disable_HW_WDT
	exit
	exp
	fabs
	fclose
	fcreate
	fcreate_unused
	fdelete
	fftcplx
	fftcplxinv
	fftreal
	fftrealinv
	flash_erasechip
	flash_erasesector
	flash_gettype
	flash_init
	flash_read
	flash_readsector
	flash_sector2xwindow
	flash_writesector
	floor
	fmod
	fopen_rd
	fopen_wr
	forceSoftReset
	fread
	frexp
	fs_format
	fs_init
	fs_reserve_blocks
	fsck
	fseek
	ftell
	fshift
	fwrite
	ftoa
	getchar
	getcrc
	gets
	GetVectExtern2000
	GetVectIntern
	hanncplx
	hannreal
	hitwd
	htoa
	IntervalMs
	IntervalSec
	IntervalTick
	ipres
	ipset
	isalnum
	isalpha
	iscntrl
	isCoDone
	isCoRunning
	isdigit
	isgraph
	islower
	isspace
	isprint
	ispunct
	isupper
	isxdigit
	itoa
	kbhit
	labs
	ldexp
	log
	log10
	longjmp
	ltoa
	ltoan
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	mktm
	modf
	OSInit
	OSMboxAccept
	OSMboxCreate
	OSMboxPend
	OSMboxPost
	OSMboxQuery
	OSMemCreate
	OSMemGet
	OSMemPut
	OSMemQuery
	OSQAccept
	OSQCreate
	OSQFlush
	OSQPend
	OSQPost
	OSQPostFront
	OSQQuery
	OSSchedLock
	OSSchedUnlock
	OSSemAccept
	OSSemCreate
	OSSemPend
	OSSemPost
	OSSemQuery
	OSSetTickPerSec
	OSStart
	OSStatInit
	OSTaskChangePrio
	OSTaskCreate
	OSTaskCreateExt
	OSTaskCreateHook
	OSTaskDel
	OSTaskDelHook
	OSTaskDelReq
	OSTaskQuery
	OSTaskResume
	OSTaskStatHook
	OSTaskStkChk
	OSTaskSuspend
	OSTaskSwHook
	OSTimeDly
	OSTimeDlyHMSM
	OSTimeDlyResume
	OSTimeDlySec
	OSTimeGet
	OSTimeSet
	OSTimeTickHook
	OSVersion
	outchrs
	outstr
	paddr
	poly
	pow
	pow10
	powerspectrum
	premain
	printf
	putchar
	puts
	qsort
	rad
	rand
	randb
	randg
	RdPortE
	RdPortI
	read_rtc
	read_rtc_32kHz
	res
	RES
	root2xmem
	runwatch
	serCheckParity
	serXclose
	serXdatabits
	serXflowcontrolOff
	serXflowcontrolOn
	serXgetc
	serXgetError
	serXopen
	serXparity
	serXpeek
	serXputc
	serXputs
	serXrdFlush
	serXrdFree
	serXrdUsed
	serXread
	serXwrFlush
	serXwrFree
	serXwrite
	set
	SET
	setjmp
	SetVectExtern2000
	SetVectIntern
	sin
	sinh
	sprintf
	sqrt
	strcat
	strchr
	strcmp
	strcmpi
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncmpi
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	_sysIsSoftReset
	sysResetChain
	tan
	tanh
	tm_rd
	tm_wr
	tolower
	toupper
	updateTimers
	use32HzOsc
	useClockDivider
	useMainOsc
	utoa
	VdGetFreeWd
	VdHitWd
	VdInit
	VdReleaseWd
	WriteFlash2
	write_rtc
	WrPortE
	WrPortI
	xalloc
	xmem2root
	xmem2xmem

	User Interface �16
	16.1� Editing
	16.2� Menus
	16.2.1� New
	16.2.2� Open
	16.2.3� Save
	16.2.4� Save As
	16.2.5� Close
	16.2.6� Print Preview
	16.2.7� Print
	16.2.8� Print Setup
	16.2.9� Exit

	16.3� Edit Menu
	16.3.1� Undo
	16.3.2� Redo
	16.3.3� Cut
	16.3.4� Copy
	16.3.5� Paste
	16.3.6� Find
	16.3.7� Replace
	16.3.8� Find Next
	16.3.9� Goto
	16.3.10� Previous Error
	16.3.11� Next Error
	16.3.12� Edit Mode

	16.4� Compile Menu
	16.4.1� Compile to Target
	16.4.2� Compile to .bin file
	16.4.3� Reset Target/Compile BIOS
	16.4.4� Include Debug Code/RST 28�Instructions

	16.5� Run Menu
	16.5.1� Run
	16.5.2� Run w/ No Polling
	16.5.3� Stop
	16.5.4� Reset Program
	16.5.5� Trace Into
	16.5.6� Step over
	16.5.7� Toggle Breakpoint
	16.5.8� Toggle Hard Breakpoint
	16.5.9� Toggle Interrupt Flag
	16.5.10� Toggle Polling
	16.5.11� Reset Target
	16.5.12� Close Serial Port

	16.6� Inspect Menu
	16.6.1� Add/Del Watch Expression
	16.6.2� Clear Watch Window
	16.6.3� Update Watch Window
	16.6.4� Disassemble at Cursor
	16.6.5� Disassemble at Address
	16.6.6� Dump at Address

	16.7� Options Menu
	16.7.1� Editor
	16.7.2� Compiler
	16.7.3� Debugger
	16.7.4� Display
	16.7.5� Communications
	16.7.6� Show Tool Bar
	16.7.7� Save Environment

	16.8� Window Menu
	16.8.1� Cascade
	16.8.2� Tile Horizontally
	16.8.3� Tile Vertically
	16.8.4� Arrange Icons
	16.8.5� Message
	16.8.6� Watch
	16.8.7� STDIO
	16.8.8� Assembly
	16.8.9� Registers
	16.8.10� Stack
	16.8.11� Information

	16.9� Help Menu
	16.9.1� Online Documentation
	16.9.2� Keywords
	16.9.3� Operators
	16.9.4� HTML Function Reference
	16.9.5� Function Lookup/Insert
	16.9.6� Keystrokes
	16.9.7� Search for Help on
	16.9.8� Contents
	16.9.9� About

	µC/OS-II �17
	17.1� Changes
	17.1.1� Ticks per Second
	17.1.2� Task Creation
	17.1.3� Restrictions

	17.2� Tasking Aware Interrupt Service Routines (TA-ISR)
	17.2.1� Interrupt Priority Levels
	17.2.2� Possible ISR Scenarios
	17.2.3� General Layout of a TA-ISR

	17.3� Library Reentrancy
	17.4� How to Get a µC/OS-II Application Running
	Default Configuration
	Custom Configuration
	Examples
	Example 1
	Example 2

	17.5� Compatibility with TCP/IP

	Software License Agreement
	Index

