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1. Introduction

Rabbit Semiconductor was formed expressly to design a a better microprocessor for usein
small and medium-scale controllers. Thefirst product is the Rabbit 2000 microprocessor.

The Rabbit 2000 designers have had years of experience using Z80, Z180 and HD64180

microprocessors in small controllers. The Rabbit shares a similar architecture and a high
degree of compatibility with these microprocessors, but it is a vast improvement.

The Rabbit has been designed in close cooperation with Z-World, Inc., along-time manu-
facturer of low-cost single-board computers. Z-World’s products are supported by anin-
novative C-language development system (Dynamic C). Z-World is providing the
software development tools for the Rabbit.

The Rabbit is easy to use. Hardware and software interfaces are as uncluttered and are as
foolproof as possible. The Rabbit has outstanding computation speed for a microproces-
sor with an 8-hit bus. Thisis because the Z80-derived instruction set is very compact and
the design of the memory interface allows maximum utilization of the memory bandwidth.
The Rabbit races through instructions.

Traditional microprocessor hardware and software development is simplified for Rabbit
users. In-circuit emulators are not needed and will not be missed by the Rabbit devel oper.
Software development is accomplished by connecting a simple interface cable from aPC
serial port to the Rabbit-based target system.

1.1 Featuresand Specifications

» 100-pin PQFP package. Operating voltage 2.7V to 5V. Clock speed to 30 MHz. All
specifications are given for both industrial and commercial temperature and voltage
ranges. Rabbit microprocessors cost under $10 in moderate quantities.

Industrial specifications are for avoltage variation of 10% and a temperature range
from —40°C to +85°C. Commercia specifications are for avoltage variation of 5% and
atemperature range from 0°C to 70°C.

» 1-megabyte code space allows C programs with up to 50,000+ lines of code. The
extended Z80-style instruction set is C-friendly, with short and fast instructions for
most common C operations.

e Four levels of interrupt priority make afast interrupt response practical for critical
applications. The maximum time to the first instruction of an interrupt routine is about
1 psat aclock speed of 25 MHz.

» Accessto I/O devicesis accomplished by using memory accessinstructionswith an 1/0
prefix. Accessto I/0O devicesisthusfaster and easier compared to processors with a
restricted 1/O instruction set.
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e The hardware design rules are ssimple. Up to six static memory chips (such as RAM
and flash EPROM) connect directly to the microprocessor with no glue logic. Even
larger amounts of memory can be handled by using parallel 1/0 lines as high-order
addresslines. The Rabbit runswith no wait states at 24 MHz with amemory having an
accesstime of 70 ns. There are two clocks per memory access. Most 1/0 devices may
be connected without glue logic.

The memory cycleistwo clockslong. A clean memory and 1/0 cycle completely avoid
the possibility of tri-state fights. Peripheral 1/0 devices can usually be interfaced in a
glueless fashion using pins programmable as 1/0O chip selects, 1/O read strobes or 1/0
write strobe pins. A built-in clock doubler allows ¥2-frequency crystalsto be used to
reduce radiated emissions.

» The Rabbit may be cold-booted via a serial port or the parallel access lave port. This
means that flash program memory may be soldered in unprogrammed, and can be
reprogrammed at any time without any assumption of an existing program or bios. A
Rabbit that is slaved to a master processor can operate entirely with volatile RAM,
depending on the master for a cold program boot.

* Thereare 40 paralle 1/0 lines (shared with serial ports). Some1/O lines are timer syn-
chronized, which permits precisely timed edges and pulses to be generated under com-
bined hardware and software control.

» Therearefour serial ports. All four serial ports can operate asynchronoudly in avariety
of customary operating modes; two of the ports can also be operated synchronously to
interface with serial 1/0 devices. The baud rates can be very high—1/32 the clock
speed for asynchronous operation, and 1/6 the clock speed externally or 1/4 the clock
speed internally in synchronous mode. In asynchronous mode, the Rabbit, like the
Z180, supports sending flagged bytes to mark the start of a message frame. The
flagged bytes have 9 data bits rather than 8 data bits; the extra bit is located after the
first 8 bits, where the stop bit is normally located, and marks the start of a message
frame.

A dlave port allows the Rabbit to be used as an intelligent peripheral device laved to a
master processor. The 8-bit slave port has six 8-hit registers, 3 for each direction of
communication. Independent strobes and interrupts are used to control the slave port in
both directions. Only a Rabbit and a RAM chip are needed to construct a complete
slave system if the clock and reset are shared with the master processor

The built-in battery-backabl e time/date clock uses an external 32.768 kHz crystal. The
time/date clock can aso be used to provide periodic interrupts every 488 pus. Typical
battery current consumption is 25 pA with the suggested battery circuit. Analternative
circuit provides means for substantially reducing this current.

Numerous timers and counters (six all together) can be used to generate interrupts,
baud rate clocks, and timing for pulse generation.
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» The built-in main clock oscillator uses an external crystal or more usually a ceramic
resonator. Typical resonator frequencies are in the range of 1.8 MHz to 29.5 MHz.
Since precision timing is available from the separate 32.768 kHz oscillator, alow-cost
ceramic resonator with ¥z percent error is generally satisfactory. The clock can be dou-
bled or divided by 8 to modify speed and power dynamically. The I/O clock, which
clocks the serial ports, is divided separately so as not to affect baud rates and timers
when the processor clock is divided or multiplied. For ultralow power operation, the
processor clock can be driven from the separate 32.768 kHz oscillator and the main
oscillator can be powered down. Thisallows the processor to operate at approximately
100 pA and still execute instructions at the rate of approximately 10,000 instructions
per second. Thisisapowerful alternative to sleep modes of operation used by other
processors. The current is approximately 65 mA at 25 MHz and 5V. Thecurrent is
proportional to voltage and clock speed—at 3.3 V and 7.68 MHz the current would be
13 mA, and at 1 MHz the current is reduced to lessthan 2 mA. Flash memory with
automatic power down (from AMD) should be used for operation at the lowest power.

» The excellent floating-point performance is dueto atightly coded library and powerful
processing capability. For example, a25 MHz clock takes 14 usfor afloating add,
13 psfor amultiply, and 40 ysfor asquare root. In comparison, a 386EX processor
running with an 8-bit bus at 25 MHz and using Borland C is about 10 times slower.

e Thereisabuilt-in watchdog timer.

» The standard 10-pin programming port eliminates the need for in-circuit emulators. A
very simple 10 pin connector can be used to download and debug software using
Z-World's Dynamic C and a simple connection to a PC serial port. The incremental
cost of the programming port is extremely small.
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Figure 1 shows ablock diagram of the Rabbit.
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Figure 1. Block Diagram of the Rabbit Microprocessor
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1.2 Summary of Rabbit Advantages

The glueless architecture makesit is easy to design the hardware system.
There are alot of seria ports and they can communicate very fast.
Precision pulse and edge generation is a standard feature.

Interrupts can have multiple priorities.

Processor speed and power consumption are under program control.

The ultralow power mode can perform computations and execute logical tests sincethe
processor continues to execute, abeit at 32 kHz.

The Rabbit may be used to create an intelligent peripheral or a slave processor. For
example, protocol stacks can be off loaded to a Rabbit slave. The master can be any
processor.

The Rabbit can be cold booted so unprogrammed flash memory can be soldered in
place.

You can write serious software, be it 1,000 or 50,000 lines of C code. Thetools are
there and they are low in cost.

If you know the Z80 or Z180, you know most of the Rabbit.

A simple 10-pin programming interface replaces in-circuit emulators and PROM pro-
grammers.

The battery backable time/date clock is included.
The standard Rabbit chip is made to industrial temperature and voltage specifications.
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2. Rabbit Design Features

The Rabbit is an evolutionary design. The instruction set and the register layout is that of
the Z80 and Z180. The instruction set has been augmented by a substantial number of
new instructions. Some obsolete or redundant Z180 instructions have been dropped to
make available efficient 1-byte opcodes for important new instructions. (see “ Differences
Rabbit vs. Z80/Z180 Instructions’ on page 173.) The advantage of this evolutionary ap-
proach isthat users familiar with the Z80 or Z180 can immediately understand the Rabbit.
Existing source code can be assembled or compiled for the Rabbit with minimal changes.

Changing technology has made some features of the Z80/2180 family obsolete, and these
have been dropped. For example, the Rabbit has no special support for dynamic RAM but
it has extensive support for static memory. Thisis because the price of static memory has
decreased to the point that it has become the preferred choice for medium-scale embedded
systems. The Rabbit has no support for DMA (direct memory access) because most of the
uses for which DMA istraditionally used do not apply to embedded systems, or they can
be accomplished better in other ways, such as fast interrupt routines, external state ma-
chines or slave processors.

Our experience in writing C compilers has revea ed the shortcomings of the Z80 instruc-
tion set for executing the C language. The main problem is the lack of instructions for
handling 16-bit words and for accessing data at a computed address, especially when the
stack contains that data. New instructions correct these problems.

Another problem with many 8-bit processorsistheir slow execution and alack of number-
crunching ability. Good floating-point arithmetic is an important productivity featurein
smaller systems. It iseasy to solve many programming problems if an adequate floating-
point capability isavailable. The Rabbit’s improved instruction set provides fast floating-
point and fast integer math capabilities.

The Rabbit supports four levels of interrupt priorities. Thisisan important feature that al-
lows the effective use of super fast interrupt routines for real-time tasks.

2.1 The Rabbit 8-bit Processor vs. 16-bit and 32-bit Processor s

The Rabbit isan 8-bit processor with an 8-bit external data bus and an 8-bit internal data
bus. Becauses the Rabbit makes the most of its external 8-bit bus and because it has a
compact instruction set, its performance is as good as many 16-bit processors. Thusthe
Rabbit can handle many 16-bit operations.

We hesitate to compare the Rabbit to 32-bit processors, but there are undoubtedly occa-
sions where the user can use a Rabbit instead of a 32-bit processor and save a vast amount
of money. Many Rabbit instructionsare 1 bytelong. In contrast, the minimum instruction
length on most 32-bit RISC processorsis 32 hits.
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2.2 Overview of On-Chip Peripherals

The on-chip peripherals were chosen based on our experience as to what types of periph-
eral devices are most useful in small embedded systems. The major on-chip peripherals

are the seria ports, system clock, time/date oscillator, parallel 1/0, slave port, and timers.
These are described below.

2.2.1 Serial Ports

There are four serial ports designated ports A, B, C, and D. All four serial ports can oper-
ate in an asynchronous mode up to the baud rate of the system clock divided by 32. The
asynchronous ports can handle 7 or 8 data bits. A 9th bit address scheme, where an addi-
tional bit is sent to mark the first byte of a message, is aso supported. The software can
tell when the last byte of a message has finished transmitting from the output shift register
- correcting an important defect of the Z180. Thisisimportant for RS-485 communication
because the line driver cannot have the direction of transmission reversed until the last bit
has been sent. 1n many UARTS, including those on the Z180, it is difficult to generate an
interrupt after the last bit is sent. Parity bits and multiple stop bits are not supported di-
rectly by the Rabbit, but can be accomplished with appropriate driving software.

Serial ports A and B can be operated alternately in the clocked serial mode. In this mode,
aclock line synchronously clocksthe datain or out. Either device of the two devices com-
municating can supply the clock. When the Rabbit provides the clock, the baud rate can
be up to 1/4 of the system clock frequency, or more than 7,375,000 bps for a29.5 MHz
clock speed.

Serial port A has special features. It can be used to cold boot the system after reset. Serial
port A isthe normal port that is used for software development under Dynamic C.

2.2.2 System Clock

The main oscillator uses an external crystal with afrequency typically in the range from
1.8 MHz to 29.5 MHz. The processor clock is derived from the oscillator output by either
doubling the frequency, using the frequency directly, or dividing the frequency by 8. The
processor clock can also be driven by the 32.768 kHz oscillator for very low power opera-
tion, in which case the main oscillator can be shut down under software control.

Table 1 provides preliminary estimates of the operating power for selected clock speeds.

Table 1. Preliminary Operating Power Estimates at Selected Clock Speeds

Clock Speed | Voltage Current Power Clock Speed | Voltage Current Power
(MHz) V) (MA) (mWw) (MHz) V) (mA) (mW)
250 5.0 80 400 6.0 25 10 25
12,5 50 40 200 30 25 5 12
125 33 26 87 15 25 25 6

6.0 33 13 42 0.032 25 0.054 0.135
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2.2.3 Time/Date Oscillator

The 32.768 kHz oscillator drives an external 32.768 kHz quartz crystal. The 32.768 kHz
clock is used to drive a battery-backable (there is a separate power pin) internal 48-bit
counter that serves as area-time clock (RTC). The counter can be set and read by soft-
ware and is intended for keeping the date and time. There are enought bits to keep the date
for more than 100 years. The 32.768 kHz oscillator is also used to drive the watchdog
timer and to generate the baud clock for seria port A during the cold boot sequence.

2.2.4 Parallel 1/0

There are 40 parallel input/output lines divided among five 8-bit ports designated A
through E. Most of the port lines have alternate functions, such as serial data or chip se-
lect strobes. Parallel ports D and E have the capability of timer-synchronized outputs.
The output registers are cascaded.

Load Data

Load Clock Port Output

Timer Clock

Figure 2. Cascaded Output Registers for Parallel Ports D and E

Storesto the port areloaded in thefirst-level register. That register inturnistransferred to
the output register on a selected timer signal. Thetimer signal can also cause an interrupt
that can be used to set up the next bit to be output on the next timer pulse. Thisfeature can
be used to generate precisely controlled pulses whose edges are positioned with high accu-
racy intime. Applicationsinclude communications signaling, pulse width modulation and
driving stepper motors.

2.25 SavePort

The slave port is designed to alow the Rabbit to be a slave to another processor, which
could be another Rabbit. The port is shared with parallel port A and isabidirectional data
port. The master can read any of three registers selected viatwo select lines that form the
register address and aread strobe that causes the register contentsto be output by the port.
These same registers can be written as 1/0 registers by the Rabbit slave. Three additional
registers transmit data in the opposite direction. They are written by the master by means
of the two select lines and a write strobe.
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Figure 3 shows the data paths in the slave port.

Ir I = -] o) 7|

| |

| > > > > |

Master | _ |
Processor | Input Register CPU |
| Output Registers :

| |

| - -] || |- |

| |

|

Control % »  SaveInterface Registers

L—_ e e e e e = -

Figure 3. Slave Port Data Paths

The dave Rabbit can read the same registers as 1/0 registers. When incoming data bits are
written into one of the registers, status bits indicate which registers have been written, and
an optional interrupt can be programmed to take place when the write occurs. When the
slave writes to one of the registers carrying data bits outward, an attention line is enabled
so that the master can detect the data change and be interrupted if desired. Onelinetells
the master that the slave has read all the incoming data. Another line tells the master that
new outgoing data bits are available and have not yet been read by the master. The slave
port can be used to direct the master to perform tasks using a variety of communication
protocols over the Slave port.

2.26 Timers

The Rabbit has several timer systems. The periodic interrupt is driven by the 32.768 kHz
oscillator divided by 16, giving an interrupt every 488 usif enabled. Thisisintended to be
used as a general-purpose clock interrupt. Timer A consists of five 8-bit countdown and
reload registers that can be cascaded up to two levels deep. Each countdown register can
be set to divide by any number between 1 and 256. The output of four of thetimersis
used to provide baud clocks for the seria ports. Any of these registers can also cause in-
terrupts and clock the timer-synchronized parallel output ports. Timer B consists of a 10-
bit counter that can be read but not written. There are two 10-bit match registers and com-
parators. If the match register matches the counter, apulse is output. Thus the timer can
be programmed to output a pulse at a predetermined count in the future. This pulse can be
used to clock the timer-synchronized parallel-port output registers aswell as cause an in-
terrupt. Timer B is convenient for creating an event at a precise time in the future under
program control.
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Figure 4 illustrates the Rabbit timers.
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Figure 4. Rabbit Timers
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2.3 Design Sandards

The same functionality can be accomplished in many ways using the Rabbit. By publish-
ing design standards, or standard ways to accomplish common objectives, software and
hardware support become easier.

2.3.1 Programming Port

Rabbit Semiconductor publishes a specification for a standard programming port (see:
“Rabbit Programming Port” on page 183) and provides a converter cable that may be used
to connect a PC serial port to the standard programming interface. Theinterfaceisimple-
mented using a 10-pin connector with two rows of pinson 2 mm. centers. The port is con-
nected to Rabbit serial port A, to the startup mode pins on the Rabbit, to the Rabbit reset
pin, and to a programmable output pin that is used to signal the PC that attention is
needed. With proper precautions in design and software, it is possible to use serial port A
as both a programming port and as a user-defined serial port, although thiswill not be nec-
essary in most cases.

Rabbit Semiconductor supports the use of the standard programming port and the standard
programming cable as a diagnostic and setup port to diagnosis problems or set up systems
inthefield.

2.3.2 Sandard BIOS

Rabbit Semiconductor provides a standard BIOS for the Rabbit. The BIOS is a software
program that manages startup and shutdown, and provides basic services for software run-
ning on the Rabbit.

2.4 Dynamic C Software Support for the Rabbit

Dynamic C is Z-World'sinteractive C language devel opment system. Dynamic C runson
a PC under Windows 95/98 or Windows NT. It provides a combined compiler, editor and
debugger. The usual method for debugging atarget system based on the Rabbit isto im-
plement the 10-pin programming connector that connects to the PC serial port via a stan-
dard converter cable. Dynamic C libraries contain highly perfected software to control the
Rabbit. Theseincludes drivers, utility and math routines and the debugging BIOS for Dy-
namic C.

In addition, the internationally known real-time operating system uC/OS-1 is being
ported to the Rabbit and will be available with some versions of Dynamic C.
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3. Detailson Rabbit Microprocessor Features

3.1 Processor Registers

The Rabbit’sregisters are nearly identical to those of the Z180 or the Z80. Figure 5 shows
theregister layout. The XPC and IPregistersare new. The EIR register isthe same asthe
Z80 | register, and is used to point to atable of interrupt vectors for the externally gener-
ated interrupts. ThellR register occupiesthe samelogical position in the instruction set as
the Z80 R register, but its function isto point to an interrupt vector table for internally gen-
erated interrupts.

A [ F | [ |
| H ] L 8/ 16 hit | Y |
(o [ E | jeoses | & |
'8 [ ¢ | | e |
=E

A | P
H ] U A- 8-bit accumulator
‘ D’ ‘ E ‘ F - flags register

’ HL- 16-bit accumulator
| B | < | IX, 1Y - Index registers/alt accum’s

SP - stack pointer

PC- program counter

[sTz]x]x]x]v]x]c] XPC - extension of program counter
IIR - internal interrupt register

ElIR-external interrupt register

IP - interrupt priority register

Alternate Registers

F - flag register layout
S-sign, Z-zero, V-overflow, C-carry
Bits marked "Xx" are read/write.

Figure 5. Rabbit Registers

The Rabbit (and the Z80/2180) processor has two accumulators—the A register serves as
an 8-bit accumulator for 8-bit operations such as ADD or and. The 16-bit register HL reg-
ister serves as an accumulator for 16-bit operations such as ADD HL, DE, which adds the
16-bit register DE to the 16-bit accumulator HL. For many operations X or 1Y can substi-
tute for HL as accumulators.

Theregister marked F isthe flags register or status register, and it holds a number of flags
that provide information about the last operation performed. The flag register cannot be
accessed directly except by using the POP AF and PUSH AF instructions. Normally the
flags are tested by conditional jump instructions. The flags are set to mark the results of
arithmetic and logic operations according to rules that are specified for each instruction.
There are four unused read/write bitsin the flag register that are available to the user via
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the PUSH AF and POP AF instructions. These bits should be used with caution since new-
generation Rabbit processors could use these bits for new purposes.

Theregisters|X, Y and HL can also serve asindex registers. They point to memory ad-
dresses from which data bits are fetched or stored. Although the Rabbit can address a
megabyte or more of memory, the index registers can only directly address 64K of mem-
ory (except for certain extended addressing LDP instructions). The addressing rangeis
expanded by means of the memory mapping hardware (see “Memory Mapping” on

page 14) and by special instructions. For most embedded applications, 64K of data mem-
ory (as opposed to code memory) is sufficient. The Rabbit can handle a megabyte of code
space in an efficient manner.

The register SP points to the stack that is used for subroutine and interrupt linkage as well
as general-purpose storage.

A feature of the Rabbit (and the Z80/2180) is the alternate register set. Two special in-
structions swap the alternate registers with the regular registers. The instruction ex af ,af’
exchanges the contents of AF with AF. The instruction EXX exchanges HL, DE, and BC
withHL’, DE’, and BC'. Communication between the regular and alternate register set in
the original Z80 architecture was difficult because the exchange instructions provided the
only means of communication between the regular and aternate register sets. The Rabbit
has new instructions that greatly improve communication between the regular and alter-
nate register set. This effectively doubles the number of registersthat are easily available
for the programmer’s use. It isnot intended that the alternate register set be used to pro-
vide a separate set of registers for an interrupt routine, and Dynamic C does not support
this usage because it uses both registers sets freely.

The IP register isthe interrupt priority register. It contains four 2-bit fields that hold a his-
tory of the processor’sinterrupt priority. The Rabbit supports four levels of processor pri-
ority, something that exists only in avery restricted form in the Z80 or Z180.

3.2 Memory Mapping

Except for ahandful of special instructions (see” 16-bit Load and Store 20-bit Address’ on
page 163), the Rabbit instructions directly address a 64K data memory space. This means
that the addressfieldsin the instructions are 16 bitslong and that the registers that may be
used as pointers to memory addresses (index registers (I X, | Y), program counter and stack
pointer (SP)) are also 16 bits long.

Because Rabbit instructions use 16-bit addresses, the instructions are shorter and can exe-
cute much faster than, for example, 32-bit addresses. The executable code isalso very
compact. Even though these 16-bit addresses are a valuabl e asset, they do create some
complications because a memory-mapping unit is needed in order to access areasonable
amount of memory for modern C programs.
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The Rabbit memory-mapping unit is similar to, but more powerful than, the Z180 mem-
ory-mapping unit. Figure 6 illustrates the relationship among the major components re-
lated to addressing memory.

Memory Memory
Processor @ M apping <% |nterface <% gﬁrssory
16 | Unit 20 | Unit
bits bits 20 bits plus control

Figure 6. Addressing Memory Components

The memory-mapping unit receives 16-bit addresses asinput and outputs 20-bit addresses.
The processor (except for certain LDP instructions) seesonly a 16-bit address space. That
is, it sees 65536 distinctly addressable bytes that its instructions can manipulate. Three
segment registers are used to map this 16-bit space into a 1-megabyte space. The 16-bit
space is divided into four separate zones. Each zone, except the first or root zone, has a
segment register that is added to the 16-bit address within the zone to create a 20-bit ad-
dress. The segment register has eight bits and those eight bits are added to the upper four
bits of the 16-bit address, creating a 20-bit address. Thus, each separate zone in the 16-bit
memory becomes awindow to a segment of memory in the 20-bit address space. The rel-
ative size of the four segmentsin the 16-bit space is controlled by the SEGSIZE register.
Thisisan 8-bit register that contains two 4-bit registers. This controls the boundary be-
tween the first and the second segment and the boundary between the second and the third
segment. The location of the two movable segment boundaries is determined by a 4-bit
value that specifies the upper four bits of the address where the boundary is located.
These relationships areillustrated in Figure 7.

The names given to the segments in the figure are evocative of the common uses for each
segment. The root segment is mapped to the base of flash memory and contains the star-
tup code aswell as other code that may happen to be stored there. The data segment usage
varies depending on the overall strategy for setting up memory. It may be an extension of
the root segment or it may contain data variables. The stack segment isnormally 4K long
and it holds the system stack. The XPC segment is normally used to execute code that is
not stored in the root segment or the data segment. Special instructions support executing
code that is visible in the X PC segment.
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Figure 7. Example of Memory Mapping Operation
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The memory interface unit receives the 20-bit addresses generated by the memory-map-
ping unit. The memory interface unit conditionally modifies address lines A16, A18 and
A19. The other address lines of the 20-bit address are passed unconditionally. The mem-
ory interface unit provides control signals for external memory chips. These interface sig-
nals are chip selects (/CS0, /CS1, /CS2), output enables (/OEO, /OEL), and write enables
(AWEQ, /WE1). These signals correspond to the normal control linesfound on static mem-
ory chips (chip select or /CS, output enable or /OE, and write enable or /WE). In order to
generate these memory control signals, the 20-bit address space is divided into four quad-
rants of 256K each. A bank control register for each quadrant determines which of the
chip selects and which pair of output enables, and write enables (if any) isenabled when a
memory read or write to that quadrant takes place. For example, if a512K x 8 flash mem-
ory isto be accessed in thefirst 512K of the 20-bit address space, then /CS0, /WEOQ, /OEQ
could be enabled in both quadrants.

Figure 8 shows a memory interface unit.

Optional Al16inversion
(not presently supported by Dynamic C)

. A16in Al6 .
Axxin—from processor >D— Address lines output
Axx—out from memory .

control unit Al19in A19
i ) —>$ A18, Al9invertible
Addresslme_s not shown A18in A18 by quadrant
are passed directly. ’7)%
Al9in A19in’ L /CSO
memory
. /JCS1  control
A18in lines
/CS2
Optional A19inversion memory L JOEO
L /WEO
Read/Write I (o] =X
Synchronization WEL

Figure 8. Memory Interface Unit
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3.2.1 Extended Code Space

A crucia element of the Rabbit memory mapping scheme is the ability to execute pro-
grams containing up to amegabyte of code in an efficient manner. Thisability isabsentin
apure 16-bit address processor, and it is poorly supported by the Z180 through its memory
mapping unit. On paged processors, such as the 8086, this capability is provided by pag-
ing the code space so that the code is stored in many separate pages. On the 8086 the page
sizeis 64K, so al the code within a given page is accessible using 16-bit addressing for
jumps, callsand returns. When paging is used, a separate register (CS on the 8086) isused
to determine where the active page currently resides in the total memory space. Special
instructions make it possible to jump, call or return from one page to another. These spe-
cia instructions are called long calls, long jumps and long returns to distinguish them
from the same operations that only operate on 16-bit variables.

The Rabbit also uses a paging scheme to expand the code space beyond the reach of a 16-
bit address. The Rabbit paging scheme uses the concept of a sliding page, which is 8K
long. Thisisthe XPC segment. The 8-bit XPC register serves as apage register to specify
the part of memory where the window points. When a program is executed in the XPC
segment, normal 16-bit jJumps, calls and returns are used for most jumps within the win-
dow. Normal 16-bit jumps, calls and returns may also be used to access code in the other
three segmentsin the 16-bit address space. If atransfer of control to code outside the win-
dow isrequired, then along jump, long call or long return isused. Theseinstructions
modify both the program counter (PC) and the XPC register, causing the X PC window to
point to adifferent part of memory where the target of the long jump, call or returnislo-
cated. The XPC segment isaways 8K long. The granularity with which the XPC seg-
ment can be positioned in memory is 4K. Because the window can be slid by one-half of
its size, it is possible to compile continuously without unused gaps in memory.

Asthe compiler generates code resident in the X PC window, the window is slid down by
4K when the code goes beyond FO00. Thisisaccomplished by along jump that reposi-
tions the window 4K lower. Thisisillustrated by Figure 9 on page 19. The compiler is
not presented with a sharp boundary at the end of the page because the window does not
run out of space when code passes FO00 unless 4K more of code is added before the win-
dow isdlid down. All code compiled for the XPC window has a 24-bit address consisting
of the 8-bit XPC and the 16-bit address. Short jumps and calls can be used, provided that
the source and target instructions both have the same X PC address. Generally this means
that each instruction belongs to a window that is approximately 4K long and has a 16-bit
address between EO00+n and FOOO+m, where n and m are on the order of afew dozen
bytes, but can be up to 4096 bytesin length. Since the window is limited to no more than
8K, the compiler isunable to compile asingle expression that requires more than 8K or so
of code space. Thisisnot apractical consideration since expressions longer than afew
hundred bytes are in the nature of stunts rather than practical programs.

Program code can reside in the root segment or the XPC segment. Program code may also
be resident in the data segment. Code can be executed in the stack segment, but thisis
usually restricted to special situations. Code in the root, meaning any of the segments
other than the XPC segment, can call other code in the root using short jumps and calls.
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Code in the XPC segment can also call code in the root using short jumps and calls. How-
ever, along call must be used when code in the XPC segment is called. Functions located
in the root have an efficiency advantage because along call and along return require 32
clocksto execute, but ashort call and ashort return require only 20 clocksto execute. The
differenceis small, but significant for short subroutines.

Compiler noticesthat  Compiler inserts
code has passed F000. longjump in code.

10000
XPC segment
EOQ0O0 N 4 F000
DO0O Stack segment \ P
I short \
| cals
Data segment ,  returns 4
k- E0QO0
XPC=N XPC=N+1
PC=F000+K PC=E000+K +4
Root segment Ilustration of sliding XPC window

Figure 9. Use of XPC Segment

3.2.2 Extending Data Memory

In the norma memory model, the data space must share a 64K space with root code, the
stack, and the XPC window. Typically, thisleavesapotential data space of 40K or less. The
XPC requires 8K, the stack requires 4K, and most systems will require at least 12K of root
code. Thisamount of data space is more than sufficient for most embedded applications.

One approach to getting more data space is to place datain RAM or in flash memory that
is not mapped into the 64K space, and then access this data using function calls or in as-
sembly language using the LDP instructions that can access memory using a 20-bit ad-
dress. Thisissatisfactory for accessing ssmple data structures or buffers.

Another approach to extending data memory is to use the stack segment to access data,
placing the stack in the data segment so as to free up the stack segment. This approach
works well for a software system that uses data groupings that are self-contained and are
accessed one at atime rather than randomly between all the groupings. An example
would be the software structures associated with a TCP/IP communication protocol con-
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nection where the same code accesses the data structures associated with each connection
in a pattern determined by the traffic on each connection.

The advantage of this approach is that normal C data access techniques, such as 16-bit
pointers, may be used. The stack segment register has to be modified to bring the data
structure into view in the stack segment before operations are performed on a particular
data structure. Since the stack hasto be moved into the data area, it isimportant that the
number of stacks required be kept to a minimum when using the stack segment to view
data. Of course, tasks that don’t need to see the data structures can have their stack lo-
cated in the stack segment. Another possibility is to have a data structure and a stack lo-
cated together in the stack segment, and to use a different stack segment for different
tasks, each task having its own data area and stack bound to it.

These approaches are shown in Figure 10.

Stack Seg-
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== window
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Root RAM has both
Code root code and Root
(flash) data. Code
(RAM)
Using Stack Segment Using Data Segment for
for a Data Window a Data Window (Code must
be copied to RAM on startup.)

Figure 10. Schemes for Data Memory Windows
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A third approach isto place the data and root codein RAM in the root segment, freeing the
data segment to be awindow to extended memory. Thisrequires copying the root code to
RAM at startup time. Copying root codeto RAM is not necessarily that burdensome since
the amount of RAM required can be quite small, say 12K for example.

The XPC segment at the top of the memory can also be used as a data segment by pro-
grams that are compiled into root memory. Thisis handy for small programs that need to
access alot of data.

3.2.3 Practical Memory Consider ations

The simplest Rabbit configurations have one flash memory chip interfaced using /CS0 and
one RAM memory chip interfaced using /CS1. The smallest practical amount of flashis
128K and the smallest practical amount of RAM is 32K. Smaller chips could be sup-
ported, but such small static memories are obsolete parts, so no support is offered.

Although the Rabbit can support code size approaching a megabyte, it is anticipated that
the great majority of applications will use less then 250K of code, equivalent to approxi-
mately 10,000-20,000 C statements. Thisreflects both the compact nature of Rabbit code
and the typical size of embedded applications.

Directly accessible C variables are limited to approximately 44K of memory, split be-
tween data stored in flash and RAM. Thiswill be more than adequate for many embedded
applications. Some applications may require large data arrays or tables that will require
additional data memory. For this purpose Dynamic C supports atype of extended data
memory that allows the use of additional data memory, even extending far beyond amega-
byte.

Requirements for stack memory depend on the type of application and particularly
whether preemptive multitasking is used. If preemptive multitasking is used, then each
task requiresits own stack. Since the stack hasits own segment in 16-bit address space, it
IS easy to use available RAM memory to support alarge number of stacks. When apre-
emptive change of context takes place, the STACKSEG register can be changed to map
the stack segment to the portion of RAM memory that contains the stack associated with
the new task that isto be run. Normally the stack segment is 4K, which istypically large
enough to provide space for severa (typically four) stacks. It ispossibleto enlarge the
stack segment if stacks larger than 4K are needed. If only one stack is needed, theniitis
possible to eliminate the stack segment entirely and place the single stack in the data seg-
ment. Thisoption is attractive for systems with only 32K of RAM that don’t need multi-
ple stacks.

User’s Manual 21



3.3 Instruction Set Outline

“Instructions to Load Immediate Data To a Register” on page 23

“Instructions to Load or Store Data from or to a Constant Address’ on page 23
“Instructions to Load or Store Data Using an Index Register” on page 23

“Register to Register Move Instructions’ on page 25

“Register Exchanges’ on page 25

“Push and Pop Instructions’ on page 26

“16-bit Arithmetic and Logical Operations’ on page 26

“Input/Output Instructions” on page 29—these include afix for abug that manifestsitself
if an I/O instruction (prefix | A or | OE) isfollowed by one of 12 single-byte op codes that
use HL as an index register.

In the discussion that follows, we give afew example instructionsin each general category
and contrast the Z80/ Z180 with the Rabbit. For a detailed description of every instruc-
tion, See “Rabbit Instructions’ on page 159.

The Rabbit executes instructionsin fewer clocks then the Z80 or Z180. The Z180 usually
requires aminimum of four clocks for 1-byte opcodes or three clocks for each byte for
multi-byte op codes. In addition, three clocks are required for each data byte read or writ-
ten. Many instructionsin the Z180 require a substantial number of additional clocks. The
Rabbit usually requires two clocks for each byte of the op code and for each data byte
read. Three clocks are needed for each data byte written. One additional clock isrequired
if amemory address needs to be computed or an index register is used for addressing.
Only afew instructions don’t follow this pattern. An exampleismul, a16 x 16 bit signed
two's complement multiply. mul is a 1-byte op code, but requires 12 clocks to execute.
Compared to the Z180, not only does the Rabbit require fewer clocks, but in atypical situ-
ation it has a higher clock speed and its instructions are more powerful.

The most important instruction set improvements in the Rabbit over the Z180 are in the
following areas.

» Fetching and storing data, especially 16-bit words, relative to the stack pointer or the
index registers| X, 1'Y, and HL.

» 16-bit arithmetic and logical operations, including 16-bit and’s, or’s, shifts and 16-bit
multiply.

» Communication between the regular and aternate registers and between the index reg-
isters and the regular registersis greatly facilitated by new instructions. Inthe Z180 the
aternate register set is difficult to use, while in the Rabbit it iswell integrated with the
regular register set.

e Long calls, long returns and long jumps facilitate the use of 1M of code space. This
removes the need in the Z180 to utilize inefficient memory banking schemes for larger
programs that exceed 64K of code.

 Input/output instructions are now accomplished by normal memory access instructions
prefixed by an op code byte to indicate accessto an 1/O space. There aretwo I/O
spaces, internal peripherals and external 1/0 devices.
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Some Z80 and Z180 instructions have been deleted and are not supported by the Rabbit
(see Section 19, “Differences Rabbit vs. Z80/Z180 Instructions,” on page 173). Most of
the deleted instructions are obsolete or are little-used instructions that can be emulated by
severa Rabbit instructions. It was necessary to remove some instructions to free up
1-byte op codes needed to implement new instructions efficiently. The instructions were
not re-implemented as 2-byte op codes so as not to waste on-chip resources on unimpor-
tant instructions. Except for the instruction EX ( SP), HL, the original Z180 binary encod-
ing of op codesisretained for all Z180 instructions that are retained.

3.3.1 Instructionsto Load Immediate Data To a Register

A constant that follows the op code in the instruction stream can generally be loaded to
any register, except PC, AF, IPand F. (Load tothe PCisajump instruction.) Thisin-
cludes the alternate registers on the Rabbit, but not on the Z180. Some example instruc-
tions appear below.

LD A 3

LD HL, 456

LD BC , 3567 ; not possible on Z180
LD H , 4Ah ; not possible on Z180
LD I X, 1234

LD C, 54

Byte loads require four clocks, word loads require six clocks. Loadsto IX, 1Y or the alter-
nate registers generally require two extra clocks because the op code has a 1-byte prefix.

3.3.2 Instructionsto Load or Sore Data from or to a Constant Address

LD A, (mm) ; loads 8 bits from address m

LD A, (m) ; not possible on 7180

LD (m), A

LD HL, (m) ; load 16 bits fromthe address specified by m
LD H.',(mm) ; to alternate register, not possible 7180

LD (m), HL

Similar 16-bit loads and stores exist for DE, BC, SP, IX and I Y.

It ispossible to load data to the alternate registers, but it is not possible to store the datain
the aternate register directly to memory.

LD A, (m) ; all owed
** LD (m),D ; **** not a |legal instruction!
** LD (m),DE ; **** not a |legal instruction!

3.3.3 Instructionsto Load or Store Data Using an Index Register

Anindex register is a 16-bit register, usualy 1X, 1Y, SP or HL, that is used for the address
of abyte or word to be fetched from or stored to memory. Sometimes an 8-bit offset is
added to the address either as a signed or unsigned number. The 8-bit offset isabytein
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theinstruction word. BC and DE can serve asindex registers only for the special cases be-

[ow.

LD A, (BO)
LD A, (BO)
LD (BO), A
LD A, ( DE)
LD A, (DE)
LD (DE), A

Other 8-bit loads and stores are the following.

LD r, (HL) ; r is any of 7 registers A, B, C D E H L
LD r’, (HL) ; same but alternate register destination
LD (HL),r ; r is any of the 7 registers above

;0r an immedi ate data byte
** LD (HL),r" ;**** not a legal instruction

LD r, (1 X+d) ; r is any of 7 registers, dis -128 to +127 offset
LD r’, (I X+d) ; sanme but alternate destination

LD (I X+d),r ; r is any of 7 registers or an i mediate data byte
LD (1Y+d),r ; I X or I'Y can have offset d

Thefollowing are 16-bit indexed loads and stores. None of these instructions exists on the
Z180 or Z80. Theonly sourcefor astoreisHL. The only destination for aload is HL or

HL .
LD HL, ( SP+d) ; dis an offset fromO to 255.
; 16-bits are fetched to HL or HL’
LD (SP+d), HL ; correspondi ng store
LD HL, (HL+d) ; dis an offset from-128 to +127,
; uses original HL value for addressing
;| =(HL+d), h=(HL+d+1)
LD HL’, (HL+d)
LD (HL+d), HL
LD (I X+d), HL ; store HL at address pointed to
; by I X plus -128 to +127 of fset
LD HL, (I X+d)
LD HL', (I X+d)
LD (1Y+d), HL ; store HL at address pointed to
; by 1Y plus -128 to +127 of fset
LD HL, (I Y+d)
LD HL', (I Y+d)
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3.3.4 Register to Register Move Instructions

Any of the 8-hit registers, A, B, C, D, E, H, and L, can be moved to any other 8-hit regis-
ter, for example:

LD A ¢
LD d, b
LD e, |

The alternate 8-bit registers can be a destination, for example:

LD a’',c
LD d,b

These instructions are unique to the Rabbit and require 2 bytes and four clocks because of
the required prefix byte. InstructionssuchasLD A, d’ orLD d’, e’ arenot allowed.

Several 16-bit register-to-register move instructions are available. Except as noted, these
instructions all require 2 bytes and four clocks. Theinstructions are listed below.

LD dd’,BC ; where dd’ is any of H.’, DE, BC (2 bytes, 4 clocks)
LD dd’', DE

LD I X, HL

LD 1Y, HL

LD HL, 'Y

LD HL, I X

LD SP, HL ; 1-byte, 2 clocks

LD SP, I X

LD SP, I Y

Other 16-hit register moves can be constructed by using 2-byte moves,

3.3.5 Register Exchanges

Exchange instructions are very powerful because two (or more) moves are accomplished
with one instruction. The following register exchange instructions are implemented.

EX af, af’ ; exchange af with af’
EXX ; exchange HL, DE, BCwith H.', DE, BC
EX DE, HL ; exchange DE and HL

The following instructions are unique to the Rabbit.

EX DE , HL ; 1 byte, 2 clocks
EX DE, HLU ; 2 bytes, 4 clocks
EX DE', H.' ; 2 bytes, 4 clocks
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The following special instructions (Rabbit and Z180/Z280) exchange the 16-bit word on
the top of the stack with the HL register. These three instructions are each 2 bytes and 15
clocks.

EX (SP), H
EX (SP), I X
EX (SP), 1Y

3.3.6 Push and Pop Instructions

There are instructions to push and pop the 16-bit registers AF, HL, DC, BC, IX, and Y.
Theregisters AF', HL', DE’, and BC’ can be popped. Popping the alternate registersis
exclusive to the Rabbit, and is not allowed on the Z80 / Z180.

Examples

POP HL

PUSH BC
PUSH | X
PUSH af
POP DE

POP DE
POP HL’

3.3.7 16-bit Arithmetic and L ogical Operations

The HL register is the primary 16-bit accumulator. 1X and I'Y can serve as aternate accu-
mulators for many 16-bit operations. The Z180/Z80 has aweak set of 16-bit operations,
and as a practical matter the programmer has to resort to combinations of 8-bit operations
in order to perform many 16-bit operations. The Rabbit has many new op codes for 16-bit
operations, removing some of this weakness.

The basic Z80/2180 16-bit arithmetic instructions are

ADD HL, w ; where ww is HL, DE, BC, SP

ADC HL,w ; ADD and ADD carry

SBC HL,w ; sub and sub carry

I NC ww ; increment the register (without affecting flags)

In the above op codes, I1X or I'Y can be substituted for HL. The ADD and ADC instructions
can be used to left-shift HL with the carry. An alternate destination prefix (ALTD) may be
used on the above instructions. This causes the result and its flags to be stored in the cor-
responding alternate register. If the ALTD flag isused when IX or 1Y isthe destination
register, then only the flags are stored in the alternate flag register.
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The following new instructions have been added for the Rabbit.

;Shifts
RR HL ; rotate HL right with carry, 1 byte, 2 clocks
; note use ADC HL,HL for left rotate, or add HL, HL if
no carry in is needed.
RR DE ;1 byte, 2 clocks
RL DE ; rotate DE left with carry, 1-byte, 2 clocks
RR 1X ; rotate I X right with carry, 2 bytes, 4 clocks
RR 1Y ; rotate 1Y right with carry

; Logi cal Operations
AND HL,DE ; 1 byte, 2 clocks
AND | X, DE ; 2 bytes, 4 clocks

AND 1Y, DE
OR HL,DE ; 1 byte, 2 clocks
ORIX,DE ; 2 bytes, 4 clocks
OR 1Y, DE

The BOOL instruction is a special instruction designed to help test the HL register. BOOL
setsHL to thevalue 1 if HL isnon zero, otherwise, if HL is zero its value is not changed.
The flags are set according to the result. BOOL can also operateon| Xand | Y.

BOOL HL ; set HL to 1 if non- zero, set flags to match HL
BOOL I X

BOOL |Y

ALTD BOOL HL ; set HI' an f’' according to HL

ALTD BOOL IY ; nodify IY and set f' with flags of result

The SBC instruction can be used in conjunction with the BOOL instruction for performing
comparisions. The SBC instruction subtracts one register from another and also subtracts
the carry bit. The carry out isinverted compared to the carry that would be expected if the
number subtracted was negated and added. The following examplesillustrate the use of
the SBC and BOOL instructions.

; Test if HL>=DE - HL and DE unsi gned nunbers 0-65535
R a ; clear carry
SBC HL,DE ; if C==0 then HL>=DE else if C==1 then HL<DE

; convert the carry bit into a boolean variable in HL

SBC HL, HL ; sets HL==0 if C==0, sets HL==0ffffh if C==1
BOOL HL ; HL==1 if C was set, otherw se HL==0

; convert not carry bit into boolean variable in HL
SBC HL,HL ; HL==0 if C==0 else HL==ffff if C=1
I NC HL ; HL==1 if C==0 else HL==0 if C==1

; note carry flag set, but zero / sign flags reversed

In order to compare signed numbers using the SBC instruction, the programmer can map
the numbers into an equivalent set of unsigned numbers by inverting the sign bit of each
number before performing the comparison. This maps the most negative number 08000h
to the smallest unsigned number 0000h, and the most positive signed number 07FFFh to
the largest unsigned number OFFFFh. Once the numbers have been converted, the compa-
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rision can be done as for unsigned numbers. This procedureis faster than using a jump
tree that requires testing the sign and overflow bits.

exanple - test for HL>=DE where HL and DE are signed numbers
invert sign bits on both
ADD HL, HL ; shift left

CCF ; invert carry

RR HL ; rotate right

RL DE

CCF

RR DE ; invert DE sign

SBC HL,DE ; no carry if HL>=DE

; generate bool ean variable true if HL>=DE
SBC HL,HL ; zero if no carry else -1
I NC HL ; 1 if no carry, else zero
BOCL ; use this instruction to set flags if needed

The SBC instruction can also be used to perform a sign extension.

extend sign of | to HL

LD A |

rla ; sign to carry

SBC A a ; ais all 1's if sign negative
LD h, a ; sign extended

The multiply instruction performs a signed multiply that generates a 32-bit signed resullt.

MUL ; signed multiply of BC and DE
result in HL: BC - 1 byte, 12 cl ocks

If a16-bit by 16-bit multiply with a 16-bit result is performed, then only the low part of
the 32-bit result (BC) isused. This (counter intuitively) is the correct answer whether the
terms are signed or unsigned integers. The following method can be used to perform a 16
x 16 bit multiply of two unsigned integers and get an unsigned 32-bit result. Thisusesthe
fact that if a negative number is multiplied the sign causes the other multiplier to be sub-
tracted from the product. The method shown below adds double the number subtracted so
that the effect is reversed and the sign bit istreated as a positive bit that causes an addi-
tion.

LD BC, n1
LD H.’,BC ; save BCin H
LD DE, n2
LD A b ; save sign of BC
MUL ; formproduct in HL: BC
OR a ; test sign of BC nultiplier
JR p, x1 ; if plus continue
ADD HL, DE ; adjust for negative sign in BC
x1:
RL DE ; test sign of DE
JR nc,x2 ; if not negative
; subtract other multiplier fromHL
EX DE, HL’
ADD HL, DE
X2:

; final unsigned 32 bit result in HL:BC
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This method can be modified to multiply asigned number by an unsigned number. In that
case only the unsigned number has to be tested to seeif the signison, and in that case the
signed number is added to the upper part of the product.

The multiply instruction can also be used to perform left or right shifts. A left shift of n
positions can be accomplished by multiplying by the unsigned number 2*n. Thisworks
for n# 15, and it doesn’'t matter if the numbers are signed or unsigned. In order to do a
right shift by n (0 < n < 16), the number should be multiplied by the unsigned number
2""\(16 —n), and the upper part of the product taken. If the number issigned, then asigned
by unsigned multiply must be performed. If the number isunsigned or isto be treated as
unsigned for alogical right shift, then an unsigned by unsigned multiply must be per-
formed. The problem can be simplified by excluding the case where the multiplier is
2/\N\15.

3.3.8 Input/Output Instructions

The Rabbit uses an entirely different scheme for accessing input/output devices. Any
memory access instruction may be prefixed by one of two prefixes, one for internal 1/0
space and one for external 1/0O space. When so prefixed, the memory instruction is turned
into an /O instruction that accesses that 1/0 space at the I/O address specified by the 16-
bit memory address used. For example

IO LD A (85h) ; loads A register with contents
; of internal 1/Oregister at |ocation 85h.

LD 1Y, 4000h
|CE LD HL, (1 Y+5) ; get word fromexternal 1/0O | ocation 4005h

By using the prefix approach, all the 16-bit memory access instructions are available for
reading and writing 1/0 locations. The memory mapping is bypassed when I/O operations
are executed.

[/O writesto the internal 1/0 registers require only two clocks, rather than the minimum of
three clocks required for writes to memory or external 1/O devices.

In certain conditions where an I/O operation is followed by a special one-byte instruction,
abug in the Rabbit 2000 causes an |/O access to take place instead of a memory access op-
eration. Thebug ismanifested if an1/O instruction (prefix 1 O or | CE) isfollowed by one
of 12 single-byte op codes that use HL as an index register. The 12 instructions are:

ADC A, (HL) SUB (HL)
ADD A, (HL) XOR (HL)
AND ( HL) DEC (HL)
CP (HL) I NC (HL)
OR (HL) LD r, (HL)
SBC A, (HL) LD (HL),r

wherer , an 8-byteregister, isoneof A, B, C,D, E, H, or L.
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The only combination that is very likely to occur in user written assembly language pro-
gramsisan I/O instruction followed by LD (HL), r.

The nature of the failure is that the memory address trand ation does not take place and so
the appropriate memory chip select will not be enabled for the second instruction. Inthe
case of external 1/O operations where the 1/0O strobes on Port E may be enabled, an 1/0
“chip select” (/O strobe) will take place instead of a memory chip select. If one of the
above instructions follows an internal 1/0 operation and the memory access takes placein
the base region where address trand ation does not take place, the memory operation will
take place properly because the appropriate memory chip select is enabled for interna 1/0
operations.

The bug may be easily avoided by placing a NOP between the 1/O instruction and a follow-
ing instruction from the above list.

Rabbit users are unlikely to encounter this problem because the sequence of instructions
that exhibit the bug is never generated by the Dynamic C compiler or in any of the stan-
dard libraries.

Beginning with the 6.57 release, the Dynamic C compiler and assembler will correct for
this anomaly by inserting NOPs where necessary in generated code.

3.4 How to Dot in Assembly Language—Tipsand Tricks

3.4.1 ZeroHL in 4 Clocks

BOOL HL ; 2 clocks, clears carry, HLis 1 or O
RR HL ; 2 clocks, 4 total - get rid of possible 1

This sequence requires four clocks compared to six clocksfor LD HL, 0.
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3.4.2 Exchanges Not Directly | mplemented

HL<->HL’ - eight clocks

EX DE , HL ;2 clocks
EX DE , HL’ ;4 cl ocks
EX DE , HL ; 2 clocks, 8 total

DE<->DE’ - six clocks

EX DE ,HL ; 2 clocks
EX DE, HL ;2 clocks
EX DE,HL ; 2 clocks, 6 total

BC<->BC' - 12 clocks

EX DE , HL ; 2 clocks
EX DE, HL’ ;4
EX DE, HL ;2
EXX ;2
EX DE, HL ;2

Move between IX, 1Y and DE, DE’

IX/IY->DE / DE->IX/Y

X I X --> DE

EX DE, HL

LD HL, IX/IY [/ LD IX1Y, H

EX DE, HL ; 8 clocks total
DE -->IX 1Y

EX DE, HL

LD I X/ 1Y, HL

EX DE, HL ; 8 clocks total

3.4.3 Manipulation of Boolean Variables

Logica operationsinvolving HL when HL isalogical variable with avalue of 1 or 0—
thisisimportant for the C language where the |least bit of a 16-bit integer is used to repre-
sent alogical result

Logica not operator—invert bit O of HL in four clocks (also worksfor X, 1Y in eight
clocks)

DEC HL ; 1 goes to zero, zero goes to -1
BOOL HL ; -1 to l, zero to zero. 4 clocks total

Logical xor operator—xor HL,DE when HL/DE are 1 or O.

ADD HL, DE
RES 1, | ;. 6 clocks total, clear bit 1 result of if 1+1=2
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3.4.4 Comparisions of Integers

Unsigned integers may be compared by testing the zero and carry flags after a subtract op-
eration. The zero flag is set if the numbers are equal. With the SBC instruction the carry
cleared is set if the number subtracted is less than or equal to the number it is subtracted
from. 8-bit unsigned integers span the range 0-255. 16-hit unsigned integers span the
range 0—65535.

R a ; clear carry
SBC HL, DE ; HL=A and DE=B
A>=B IC
A<B C

==B Z
A>B IC&!Z

A<=B Cv Z

If Aisin HL and B isin DE these operations can be performed as follows assuming that the
object isto set HL to 1 or 0 depending on whether the compare istrue or false.

conmput e HL<DE
unsi gned integers
EX DE, HL ; uncomment for DE<HL

ORa ; clear carry

SBC HL, DE ; Cset if HL<DE

SBC HL, HL ; HL-HL-C -- -1 if carry set
BOOL HL ; set to 1 if carry, else zero

; else result ==
;unsigned integers
; conpute HL>=DE or DE>=HL - check for !C
; EX DE,HL ; uncomment for DE<=HL
OR a; clear carry

SBC HL, DE ; 1Cif HL>=DE

SBC HL, HL ; HL-HL-C - zero if no carry, -1 if C

I NC HL ; 14/ 16 clocks total -if C after first SBCresult 1
else O

0if c, 1if I1C

conput e HL==DE

OR a ; clear carry
SBC HL,DE ; zero is equa
BOOL HL ; force to zero, 1
DEC HL ; invert logic
; 12 clocks total -logical not, 1 for inputs equa

BOOL HL
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Some simplifications are possible if one of the unsigned numbers being compared isa

constant. Note that the carry has areverse sense from SBC.

;test for HL>B B is constant
LD DE, (65535- B)

ADD HL,DE ; carry set if HL>B
SBC HL, HL ; HL-HL-C - result -1 if carry set, else zero
BOOL HL ; 14 total clocks - true if HL>B

;. HL>=B B is constant not zero
LD DE, (65536- B)

ADD HL, DE

SBC HL, HL

BOOL HL ; 14 cl ocks

; H.>=B and B is zero
LD HL, 1 ; 6 clocks

; HL.<B B is a constant, not zero (if B==0 always fal se)
LD DE, (65536- B)

ADD HL,DE ; not carry if HL<B
SBC HL, HL ; -1 if carry, else O
I NC HL ; 14 clocks --0 if carry, else 1 if no carry

; HL <= B B is constant not zero
LD DE, (65535- B)

ADD HL, DE ;. ~Cif HL<=B
CCF ; Cif true
SBC HL, HL ; if C-1else O

I NC HL : 16 clocks -- 1 if true, else O

HL. <= B Bis zero - true if HL==0
BOOL HL ; result in HL

HL==B and B is a constant not zero
LD DE, (65536- B)

ADD HL,DE ; zero if equa
BOOL HL

I NC HL

RES 1, | ; 16 cl ocks

; HL==B and B==0

BOOL HL

I NC HL

RES 1, I ; 8 clocks

For signed integers the conventional method to look at the zero flag, the minus flag and

the overflow flag. Signed 8-bit integers span the range—128 to +127 (80h to 7Fh). Signed

16-bit integers span the range —32768 to + 32767 (8000h to 7FFFh). The sign and zero
flag tell which isthe larger number after the subtraction unless the overflow is set, in

which case the sign flag needs to be inverted in the logic, that is, it iswrong.
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AB  (1S&!V&!Z) v (S&V)
AB (S &!'V) v (IS&V&!2)
==B
A>=B
A<=B

Another method of doing signed compare isto first map the signed integers onto unsigned
integers by inverting bit 15. Thisisshown in Figure 11 on page 34. Once the mapping
has been performed by inverting bit 15 on both numbers, the comparisions can be done as
if the numbers were unsigned integers. This avoids having to construct a jump tree to test
the overflow and sign flags. An example is shown below.

; test HL>5 for signed integers
LD DE, 65535- (5+08000h) ; 5 mapped to unsigned integers
LD BC, 08000h

ADD HL,BC ; invert high bit
ADD HL, DE ; 16 clocks to here
; carry now set if HL>5 - opportunity to junp on carry
SUBC HL,HL ; HL-HL-C ; if Conresult is -1, else zero
BOOL HL ; 22 clocks total - true if HL>5 else fal se

0111... 1111...

—>

000... 100...

111... 011...

100... 000...

Figure 11. Mapping Signed Integers to Unsigned Integers by Inverting Bit 15

3.4.5 Atomic Movesfrom Memory to |/O Space

To avoid disabling interrupts while copying a shadow register to itstarget register, it isde-
sirable to have an atomic move from memory to 1/O space. This can be done using LDD
or LDI instructions.

LD HL, sh_PDDDR ; point to shadow register
LD DE, PDDDR ; set DEto point to I/Oreg
SET 5, (HL) ; set bit 5 of shadow register
; use ldd instruction for atomi c transfer
I 1dd ; (io DE)<-(HL) HL--, DE--

When the LDD instruction is prefixed with an 1/O prefix, the destination becomes the 1/0
address specified by DE. The decrementing of HL and DE is a side effect. If the repeat-
ing instructions LDIR and LDDR are used, interrupts can take place between successive
iterations. Word stores to /O space can be used to set two 1/0 registers at adjacent ad-
dresses with a single noninterruptable instruction.
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3.5 Interrupt Structure

When an interrupt occurs on the Rabbit, the return addressis pushed on the stack, and con-
trol istransferred to the address of the interrupt service routine. The address of the inter-
rupt service routine has two parts: the upper byte of the address comes from a special
register and the lower byteisfixed by hardware for each interrupt. There are separate reg-
isters for internal interrupts (11R) and external interrupts (EIR) to specify the high byte of
the interrupt service routine address. These registers are accessed by special instructions.

LD A IIR
LD IR A
LD A EIR
LD EIR A

Interrupts are initiated by hardware devices or by certain 1-byte instructions called reset
instructions.

RST 10
RST 18
RST 20
RST 28
RST 38

The RST instructions are similar to those on the Z80 and Z180, but certain ones have been
removed from the instruction set (00, 08, 30). The RST interrupts are not inhibited regard-
less of the processor priority. The user is advised to exercise caution when using these in-
structions as they are mostly reserved for the use of Dynamic C for debugging. Unlike the
Z80 or Z180, the IR register contributes the upper byte of the service routine address for

RST interrupts.

Since interrupt routines do not affect the XPC, interrupt routines must be located in the
root code space. However, they can jump to the extended code space after saving the XPC
on the stack.

3.5.1 Interrupt Priority

The Z80 and Z180 have two levels of interrupt priority: maskable and nonmaskable. The
nonmaskabl e interrupt cannot be disabled and has a fixed interrupt service routine address
of 66h. The Rabbit, in contrast, has three levels of interrupt priority and four priority lev-
els at which the processor can operate. If an interrupt is requested, and the priority of the
interrupt is higher than that of the processor, the interrupt will take place after the execu-
tion of the current instruction is complete (except for privileged instructions)

Multiple interrupt priorities have been established to make it feasible for the embedded
systems programmer to have extremely fast interrupts available. Interrupt latency refers
to thetimerequired for an interrupt to take place after it has been requested. Generally, in-
terrupts of the same priority are disabled when an interrupt service routine is entered.
Sometimes interrupts must stay disabled until the interrupt service routine is completed,
other times the interrupts can be re-enabled once the interrupt service routine has at |east
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disabled its own cause of interrupt. Inany case, if several interrupt routines are operating
at the same priority, thisintroduces interrupt latency while the next routine is waiting for
the previous routine to allow more interrupts to take place. 1f anumber of devices havein-
terrupt service routines, and all interrupts are of the same priority, then pending interrupts
can not take place until at least the interrupt service routine in progressis finished, or at
least until it changes the interrupt priority. Asarule of thumb, Z-World usually suggests
that 100 us be allowed for interrupt latency on Z180-based controllers. This can result if,
for example, there are five active interrupt routines, and each turns off the interrupts for at
most 20 ps.

The intention in the Rabbit is that most interrupting devices will use priority 1 level inter-
rupts. Devicesthat need extremely fast response to interrupts will use priority level 2 or 3
interrupts. Since code that runs at priority level 0 or 1 never disableslevel 2 and level 3
interrupts, these interrupts will take place within about 20 clocks, the length of the longest
instruction or longest sensible sequence of privileged instructions followed by an unprivi-
leged instruction. It isimportant that the user be careful not to overdisable interruptsin
critical code sections. The processor priority should not be raised above level 1 except in
carefully considered situations.

The effect of the processor priority on interrupts is shown in Table 2. The priority of the
interrupt is usually established by bitsin an I/O control register associated with the hard-
ware that createsthe interrupt. The 8-bit interrupt register (IR) holds the processor priority
in the least significant 2 bits. When an interrupt takes place the IR register is shifted left 2
positions and the lower 2 bits are set to equal the priority of the interrupt that just took
place. This means that an interrupt service can only be interrupted by an interrupt service
routine for an interrupt of higher priority (unlessthe priority isexplicitly set lower by the
programmer). The | Rregister serves as a4-word stack to save and restore interrupt prior-
ity. It can be shifted right, restoring the previous priority by a special instruction (I PRES).
Since only the current processor priority and 3 previous priorities can be saved in IPin-
structions are also provided to PUSH and POP | P from using the regular stack. A new pri-
ority can be pushed into the IP register with special instructions (I PSET 0, | PSET 1,

| PSET 2,1 PSET 3).

Table 2. Effect of Processor Priorities on Interrupts

Processor .
. Effect on interrupts
Priority

0 All interrupts, priority 1,2 and 3 take place after
execution of current non privileged instruction.

1 Only interrupts of priority 2 and 3 take place.

2 Only interrupts of priority 3 take place.
All interrupt are suppressed (except RST

3 . i
instruction).
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3.5.2 Multiple External Interrupting Devices

The Rabbit has two distinct external interrupt request lines. If there are more than two ex-
ternal causes of interrupts, then these lines must be shared between multiple devices. The
interrupt line is edge sensitive, meaning that it requests an interrupt only when arising or
falling edge, whichever is specified in the setup registers, takes place. The state of the in-
terrupt line(s) can aways be read by reading parallel port E since they share pins with par-
alel port E.

If several lines are to share interrupts with the same port, the individual interrupt requests
would normally be or’ ed together so that any device can cause an interrupt. If several de-
vices are requesting an interrupt at the same time, only one interrupt results because there
will be only one transition of the interrupt request line. To resolve the situation and make
sure that the separate interrupt routines for the different devices are called, a good method
isto have ainterrupt dispatcher in software that is aided by providing separate attention
request linesfor each device. The attention request lines are basically the interrupt request
linesfor the separate devices before they are or’ ed together. Theinterrupt dispatcher calls
the interrupt routines for all devices requesting interruptsin priority order so that al inter-
rupts are serviced.

3.5.3 Privileged Instructions, Critical Sectionsand Semaphores

Normally an interrupt happens at the end of the instruction currently executing. However,
if the instruction executing is privileged, the interrupt cannot take place at the end of the
instruction and is deferred until a nonprivileged instruction is executed, usually the next
instruction. Privileged instructions are provided as a handy way of making a certain oper-
ation atomic because there would be a software problem if an interrupt took place after the
instruction. Turning off the interrupts explicitly may be too time consuming or not possi-
ble because the purpose of the privileged instruction is to manipulate the interrupt con-
trols. For additional information on privileged instructions, see Section 18.19, “Privileged
Instructions,” on page 171.

The privileged instructions to load the stack are listed below.

LD SP, HL
LD SP, 1Y
LD SP, I X

The following instructions to load SP are privileged because they are frequently followed
by an instruction to change the stack segment register. If an interrupt occurs between
these two instructions and the following instruction, the stack will be ill-defined.

LD SP, HL
IO LD sseg,a
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The privileged instructions to manipulate the I P register are listed below.

IPO shift IP left and set priority 00 in bits 1,0

IP1

P 2

IP 3

| PRES ; rotate IP right 2 bits, restoring previous priority
RETI ; pops I P fromstack and then pops return address
POP | P ; pop I P register fromstack

3.5.4 Critical Sections

Certain library routines may need to disable interrupts during a critical section of code.
Generally these routines are only legal to call if the processor priority iseither Oor 1. A
priority higher than thisimplies custom hand-coded assembly routines that do not call
general-purpose libraries. The following code can be used to disable priority 1 interrupts.

IP 1 ; save previous priority and set priority to 1
....critical section...

IPRES ; restore previous priority

Thiscodeissafeif it isknown that the code in the critical section does not have an embed-
ded critical section. If this codeis nested, there is the danger of overflowing the IP regis-
ter. A different version that can be nested is the following.

PUSH | P
IP 1 ; save previous priority and set priority to 1

....critical section...

POP IP ; restore previous priority

The following instructions are also privileged.

LD A xpc
LD xpc, a
BIT B, (HL)

3.5.5 Semaphores Using Bit B,(HL)

Thebit B, (HL) ingtructionis privileged to allow the construction of a semaphore by the
following code.

BIT B, (HL) ; test a bit in the byte at (HL)

SET B, (HL) ; make sure bit set, does not affect flag
; if zero flag set the senmmphore bel ongs to us;

; otherw se sonmeone else has it
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A semaphoreis used to gain control of aresource that can only belong to one task or pro-

gram at atime. Thisisdone by testing abit to seeif itison, in which case someoneelseis
using the resource, otherwise setting the bit to indicate ownership of the resource. Noin-

terrupt can be allowed between the test of the bit and the setting of the bit as this might al-
low two different program to both think they own the resource.

3.5.6 Computed Long Callsand Jumps

Theinstruction to set the XPC is privileged to so that a computed long call or jump can be
made. Thiswould be done by the following sequence.

LD xpc, a
JP (HL)

Inthiscase, A hasthe new XPC, and HL hasthe new PC. This code should normally be

executed in the root segment so as not to pull the memory out from under the JP (HL) in-
struction.

A call to acomputed address can be performed by the following code.

; A=xpc, | Y=address

LD A, newxpc

LD 1Y, newaddr ess

LCALL DOCALL ; call utility routine in the root
; The DOCALL routine
DOCALL:

LD xpc, a ; SET xpc

JP (1Y) ; go to the routine
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4. Rabbit Capabilities

This section describes the various capabilities of the Rabbit that may not be obvious from
the technical description.

4.1 Precisely Timed Output Pulses

The Rabbit can output precise pulses under software control. The effect of interrupt la-
tency is avoided because the interrupt always prepares a future pulse edge that is clocked
into the output registers on the next clock. Thisisshown in Figure 12.

L [ 1T __ T Timer Output
A B

C Parallel Port Output

b b

Parallel Port Output

Latency |
nterrupt
. " —
routine sets
up B edge. Timer Output
Setup Register _

Figure 12. Timed Output Pulses

The timer output in Figure 12 is periodic. Aslong as the interrupt routine can be com-
pleted during one timer period, an arbitrary pattern of synchronous pulses can be output
from the paralld port.

The interrupt latency depends on the priority of the interrupt and the amount of time that
other interrupt routines of the same or higher priority inhibit interrupts. The first instruc-
tion of the interrupt routine will start executing within 30 clocks of the interrupt request
for the highest priority interrupt routine. Thisincludes 19 clocksfor the longest instruction
to complete execution and 10 clocks for the interrupt to execute. Pushing registersre-
quires 10-12 clocks per 16-bit register. Popping registers requires 7-9 clocks. Return
from interrupt requires 7 clocks. If three registers are saved and restored, and 20 instruc-
tions averaging 5 clocks are executed, an entire interrupt routine will require about 200
clocks, or 10 pswith a20 MHz clock. Given thistiming, the following capabilities be-
come possible.

Pulse width modulated output—The minimum pulse width is 10 us. If the repetition rate
is 10 ms, then a new pulse with 1000 different widths can be generated at the rate of 100
times per second.
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Asynchronous communications serial output—Asynchronous output data can be gener-
ated with anew pulse every 10 us. This corresponds to a baud rate of 100,000 bps.

Asynchronous communications serial input—To capture asynchronous serial input, the in-
put must be polled faster than the baud rate, a minimum of three times faster, with five
times being better. If fivetimes polling is used, then asynchronous input at 20,000 bps
could be received.

Generating pulseswith precise timing relationships—T he rel ationship between two events
can be controlled to within 10 psto 20 us.

Using atimer to generate a periodic clock allows eventsto be controlled to a precision of
approximately 10 ps. However, if Timer B is used to control the output registers, a preci-
sion approximately 100 times better can be achieved. Thisisbecause Timer B hasa
match register that can be programmed to generate a pulse at a specified future time. The
match register has two cascaded registers, the match register and the next match register.
The match register is loaded with the contents of the next match register when apulseis
generated. Thisallows eventsto be very close together, one count of Timer B. Timer B
can be clocked by syscl k/2 divided by a number in the range of 1-256. Timer B can
count as fast as 10 MHz with a 20 MHz system clock, allowing events to be separated by
aslittleas 100 ns. Timer B and the match registers have 10 hits.

Using Timer B, output pulses can be positioned to an accuracy of cl k/2. Timer B can also
be used to capture the time at which an external event takes place in conjunction with the
external interrupt line. The interrupt line can be programmed to interrupt on either rising,
falling or both edges. To capture the time of the edge, the interrupt routine can read the
Timer B counter. The execution time of the interrupt routine up to the point where the
timer isread can be subtracted from the timer value. 1f no other interrupt is of the same or
higher priority, then the uncertainty in the position of the edge is reduced to the variable
time of the interrupt latency, or about one-half the execution time of the longest instruc-
tion. Thisuncertainty is approximately 10 clocks, or 0.5 psfor a20 MHz clock. Thisen-
ables pul se width measurements for pulses of any length, with aprecision of about 1 us. If
multiple pulses need to be measured simultaneously, then the precision will be reduced,
but this reduction can be minimized by careful programming.

4.1.1 Pulse Width Modulation to Reduce Relay Power

Typicaly relays need far less current to hold them closed than is needed to initially close
them. For example, if the driver is switched to a 75% duty cycle using pulse width modu-
lation after theinitial period when therelay armature is picked, the holding current will be
approximately 75% of the full duty-cycle current and the power consumption will be
about 56% as great.

The pulse width modulation rate may be from 5 kHz to 20 kHz. If aperiodic interrupt is
established that interrupts every 50 ps, then a 50% duty cycle could be set up for a 100 ps
period. A 25%, 50% or 75% duty cycle could operate on a 200 s period. A 250 s pe-
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riod would allow duty cycles of 20%, 40%, 60% or 80%. The code for such an interrupt
routine might appear as follows.

push af ; 10

push hl

push de

Id hl,(ptr) ; 11 get pointer to location in array
Id a, (maskand) ; 9 get nask

and a,(hl) ; 5 get current output

Id e,;a; 2

Id a, (maskor) ; 9

or a,e ; 2

ioi Id (port),a ; 13 store in port
inc hl ; 2 point to next

Id a,(hl) ; 5 check for end of array
or a,a ; 2

jr nz,step2 ; 2

Id hl,(beginptr) ; 11 reset hl to start of array
st ep2:

Id (ptr),hl ; 13 save h

pop de ;7

pop hi

pop af

reti ; 7 return frominterrupt

; 153 clocks total worst case - 7.5 us at 20 VHz

This routine would take approximately 15% of the processor’s compute time assuming
50 s between interrupts. This routine could be speeded up, but at the expense becoming
more complicated. Instead of "and" and "or" masks, a higher level routine could modify
the array directly, and the end of the array could be detected by testing abit patternin HL.
The higher level routine would have to suppress the interrupt while changing the bit pat-
tern in the array, or otherwise prevent erratic outputs while the array is being changed. If
therelay emitsawhistle at the period of the modulation, the acoustic energy can be spread
out over the spectrum by periodically missing an "off" pulse, creating a phase shift of
180°. A faster routine that executes in two-thirds the time is shown below.

push af ;10

push hl

Id hl,(ptr) ;11

Id a,(hl) ;5

ioi Id (port),a ; 13 output data
inc hi

Id a,0fh ;4

and | ; see if hl at end of cycle
jr z,step2

Id (ptr),hl

pop hl

pop af

reti

st ep2:

Id a, (beginptr)

Id1,a

User’s Manual 43



Id (ptr),hl ;13
pop hl ;7
pop af
reti
103 cl ocks total

4.2 Open-Drain Outputs Used for Key Scan

The parallel port D outputs can be individually programmed to be open drain. Thisisuse-
ful for scanning a switch matrix, as shown in Figure 13. A row isdriven low, then the col-
umns are scanned for alow input line, which indicatesakey isclosed. Thisisrepeated for
each row. The advantage of using open-drain outputsisthat if two keysin the same col-
umn are depressed, there will not be a fight between a driver driving the line high and an-
other driver driving it low.

ui'd
92 gy ¢
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Figure 13. Using Open-Drain Outputs for Key Scan
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4.3 Cold Boot

Most microprocessors start executing at afixed address, often address zero, after areset or
power-on condition. The Rabbit hastwo mode pins (SMODEO, SMODE1—see Figure 14
on page 47). Thelogic state of these two pins determines the startup proceedure after are-
set. If both pins are grounded, then the Rabbit starts executing instructions at address
zero. On reset, address zero is defined to be the start of the memory connected to the
memory control lines/CS0, and /OEO. However, three other startup modes are available.
These aternate methods all involve accepting a data stream via a communications port
that is used to store a boot program in aRAM memory, which in turn can be used to start
any further seconary boot process, such as downloading a program over the same commu-
nications port. (For adetailed description, see Section 7.9 on page 79.)

Three communication channels may be used for the bootstrap, either serial port A in asyn-
chronous mode at 2400 bps, seria port A in synchronous mode with an external clock, or
the (paralel) slave port.
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The cold-boot protocol accepts groups of three bytes that define an address and adata
byte. Eachtriplet causes awrite of the data byte to either memory or to internal 1/0 space.
The high bit of the addressis set to specify the 1/0 space, and thus writes are limited to the
first 32K of either space. The cold boot isterminated by a store to an addressin 1/0 space,
which causes execution to begin at address zero. Since any memory chip can be remapped
to address zero by storing in the 1/O space, RAM can be temporarily be mapped to zero to
avoid having to deal with the more complicated write protocol of flash memory, whichis
the usual default memory located at address zero.

The following are the advantages of the cold-boot capability.

» Flash memory can be soldered to the microprocessor board and programmed viaa
serial port or aparallel port. Thisavoids having to socket the part or program it with a
BIOS or boot program before soldering.

e Complete reprogramming of the flash memory can be accomplished in thefield. This
is particularly useful during software development when the devel opment platform can
perform acomplete reload of software regardless of the state of the existing softwarein
the processor. The standard programming cable for Dynamic C allows the devel op-
ment platform to reset and cold boot the target, a Rabbit-based microprocessor board.

 If the Rabbit is used as a dave processor, the master processor can cold boot it over via
the slave port. This means the slave can operate without any nonvolatile memory.
Only RAM isrequired.

4.4 The Slave Port

The dlave port allows a Rabbit to act as a slave to another processor, which can also be a
Rabbit. The slave hasto have only aprocessor chip, aRAM chip, and clock and reset sig-
nals that can be supplied by the master. The master can cold boot and download a pro-
gram to the slave. The master does not have to be a Rabbit processor, but can be any type
of processor capable of reading and writing standard registers.

For a detailed description, See “Rabbit Slave Port” on page 121.

The slave processor’s slave port is connected to the master processor’s data bus. Commu-
nication between the master and the slave takes place via three registers, implemented in
the Rabbit, for each direction of communication, for atotal of six dataregisters. In addi-
tion, there is a slave port status register that can be read by either the master or the lave
(see Figure 38 on page 121). Two dave address lines are used by the master to select the
register to be read or written. The registersthat carry data from the master to the slave ap-
pear as write registers to the master and as read registers to the slave. The registers that
operate in the opposite direction appear as read registers to the master and as write regis-
tersto the slave. These registers appear as read-write registers on both sides, but are not
true read-write registers since different data may be read from what iswritten. The master
provides the clock or strobe to store data in the three write registers under its control. The
master also can do awrite to the status register, which is used as a signaling device and
does not actually write to the status register. The three registers that the master can write
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appear as read registersto the slave Rabbit. The master provides an enable strobe to read
the three read data registers and the status register. These registers are write registersto
the Rabbit.

Thefirst register or the three pairs of registersis special in that writing can interrupt the
other processor in the master-dave communications link. An output line fromthedaveis
asserted when the slave writes to slave register zero. Thisline can be used to interrupt the
master. Internal circuitsin the slave can be setup up to interrupt the slave when the master
writes to slave register zero.

The status register that is available to both sides keeps score on all the registers and reports
if apotential interrupt is requested by either side. The status register keeps track of the
"full-empty" status of each register. A register isconsidered full when one side of the link
writestoit. It becomes empty if the other side readsit. Inthisway either side can test if
the other side has modified a register or whether either side has even stored the samein-
formation to aregister.

The master-slave communication link makes possible "set and forget” communication
protocols. Either side can issue acommand or request by storing datain some register and
then go about its business while the other side takes care of the request according to its
own time schedule. The other side can be alerted by an interrupt that takes place when a
storeis made to register zero, or it can alert itself by aperiodic poll of the status register.

Of the three registers seen by each side for each direction of communication, the first reg-
ister, slave register zero, has a special function because an interrupt can only be generated
by awrite to this register, which then causes an interrupt to take place on the other side of
the link if theinterrupt isenabled. One type of protocol isto store datafirst in registers 1
and 2, and then asthe last step store to register 0. Then 24 bits of datawill be availableto
the interrupt routine on the other side of the link.

Bulk datatransfers accrossthe link can take place by an interrupt for each byte transferred,
similiar to atypical seria port or UART. Inthiscase, afull-duplex transfer can take place,
similar to what can be done withaUART. The overhead for such an interrupt-driven
transfer will beon the order of 100 clocks per byte transfered, assumming a 20-instruction
interrupt routine. (In order to keep the interrupt routine to 20 instructions, the interrupt
routine needsto be very focused as opposed to general purpose.) Severa methods are
availableto cater to afaster transfer with less computing overhead. There are enough reg-
isters to transfer two bytes on each interrupt, thus nearly halving the overhead. If aren-
dezvous is arranged between the processors, data can be transferred at approximately 25
clocks per byte. Each side polls the status register waiting for the other side to read/write
adata register, which is then written/read again by the other side.

4.4.1 Slave Rabbit AsA Protocol UART

A prime application for the Rabbit used asadaveisto create a4-port UART that can also
handle the details of a communication protocol. The master sends and receives messages
over the slave port. Error correction, retransmission, etc., can be handled by the slave.

46 Rabbit 2000 Microprocessor



5. Pin Assignments and Functions

5.1 Package Schematic and Pinout

Z
=
T So00%fYyY L NowTomo oo
LTI LY
C P EREEoRRl5FRFFRER
OO0O0O000OOONONNAAA00000
888588385583 B538388
CLK[] 1 O 80[7 /WEL
vss 2 7900 A19
vDD[] 3 78[0 VDD
ICS2C]| 4 770 VSS
/ICs10] 5 76/ /OE1
JOEOC] 6 7500 ALl
A10C] 7 747 A9
/csoC] 8 7300 A8
D70 9 72[0 A13
D6[] 10 710 A14
D5 11 7000 A17
D4 12 69[7 /WEO
D3] 13 68[7 A18
D2] 14 671 A16
D1 15 66[7 A15
DOL] 16 651 A12
AOL] 17 641 A7
A1C] 18 63[1 A6
A2[] 19 62[71 A5
A3C] 20 611 A4
ISCS, 17, PE7C] 21 60[1 PCO, TXD
16, PESL] 22 59[7 PC1, RXD
INT1B, 15, PES[] 23 58[0 PC2, TXC
INTOB, 14, PEAL] 24 570 PC3,RXC
13, PE3L] 25 56[1 PC4, TXB
12, PE2[] 26 55[1 PC5, RXB
vss] 27 54[7 PC6, TXA
vDD[] 28 531 vDD
INT1A, 11, PE1] 29 52[1 VSS
INTOA, 10, PEOL] 30 51[1 PC7, RXA
HERIBBERILIIILILLTLLR
EF a4 o0okFW0 — o ~NOWwS OANAO
SEEEEY 8IS EEERRRRE
O=SFQOOHL " IX> 5o
STeRoz=%h EETX < 2X
=0 2 EXE
- << <<
Figure 14. Package Outline and Pin Assighments
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5.2 Package Mechanical Dimensions

Figure 15 shows the mechanical dimensions of the Rabbit PQFP package.
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Figure 15. Mechanical Dimensions Rabbit PQFP Package
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Figure 16 shows the PC board land pattern for the Rabbit 100-pin PQFP. This land pattern
ISRLP 711A, the registered land pattern for the Rabbit 2000 chip as developed by the Sur-
face Mount Land Patterns Committee and specified in IPC-SM-782A, Surface Mount De-
sign and Land Pattern Sandard, IPC, Northbrook, IL, 1999.
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Figure 16. PC Board Land Pattern for Rabbit 100-pin PQFP
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5.3 Rabbit Pin Descriptions

Table 3listsall the pins on the device, along with their direction, function, and pin number
on the package.

Table 3. Rabbit Pin Descriptions

Pin Group Pin Name Direction Function Pin Numbers

Peripheral clock output. Thissignal is
derived internally from the main system
oscillator as per cl k, and may be divided
by 8, doubled, or both, by programmable
internal circuitry. Thissignal isenabled
after reset. Under program control, thispin
can output the full internal clock frequency,
or 1/2 the internal frequency, or it can be
used as a general-purpose output pin under
software control. See Table 11, “Global
Output Control Register (GOCR = OEh),”
on page 71.

CLK Output

/IRESET Input Master reset. 37

Quartz crystal for 32 kHz clock oscillator.
Linesto the crystal should be short and
XTALA1 Input shielded from crosstalk. If an external 40
clock is used, this pin should be driven by
the external clock.

Hardware

Quartz crystal for 32 kHz crystal oscillator.

XTALA2 Outtput Do not connect if an external clock is used.

41

Quartz crystal for main system oscillator.
Linesto the crystal should be short and
XTALB1 Input shielded from crosstalk. If an external 90
clock is used this pin should be driven by
the external clock.

Quartz crystal for main system oscillator.

XTALB2 Output Do not connect if an external clock is used.

91

7,17-20, 61—
AO0-A19 Output Address bus. : :
CPU Buses 68, 70-75, 79

DO-D7 Bidirectiona | Data bus. 9—16

WDT timeout—outputs a pulse when the
/WDTOUT Output internal watchdog times out. May also be 34
used to output a 30 ps pulse.

Status/
Control

Programmable for functions:

1. driven low on first opcode fetch cycle

2. driven low during interrupt acknowledge
Status STATUS Output cycle 38
3. to serve as a general-purpose output. See
Table 11, “Global Output Control Register
(GOCR = 0Eh),” on page 71.
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Table 3. Rabbit Pin Descriptions (continued)

Pin Group

Pin Name

Direction

Function

Pin Numbers

Status

SMODE1
SMODEO

Input

Startup mode select (SMODEL1 = pin 35,
SMODEQ = pin 36) to determine bootstrap
procedure.

(SMODEL1 = 0, SMODEDQ = 0) start
executing at address zero.

(0,2) cold boot from slave port.

(1,0) cold boot from clocked serial port A.
(1,2) cold boot from asynchronous serial
port A at 2400 bps.

The smode pins can be used as general
input pins once the cold boot is complete.

35-36 (1:0)

Chip
Selects

/CSO

Output

Memory Chip Select 0—connects directly
to static memory chip select pin. Normally
this pinis used to select base flash memory
that holds the program.

/CS1

Output

Memory Chip Select 1—normally this pin
is connected directly to static RAM chip
select. /CS1 can be optionally forced
continuously low under software control, a
feature that aids in the use of battery-
backed RAM when the chip select must
pass through a controller that may have a
slow propagation time.

/CS2

Output

Memory Chip Select 2—connect to static
memory chip. Use this chip select last.

Output
Enables

/OEO

Output

Memory Output Enable 0—connect
directly to static memory chip.

/OE1

Output

Memory Output Enable 1—alternate
memory output enable allows chip selects
to be shared between two memory chips.

76

Write
Enables

/WEQ

Output

Memory Write Enable O0—connect directly
to static memory chip. This pin may be
disabled under software control to write
protect the chip.

69

/WE1

Output

Memory Write Enable 1—connect directly
to static memory chip. This pin may be
disabled under software control to write
protect the chip.

80

1/O Control

/IBUFEN

Output

1/O Buffer Enable—this signal isdriven
low during an external 1/O cycle and may
be used to control 3-state enable on the bus
buffer. The purposeisto save power by not
driving the I/O address or datalines on
every buscycle.

33
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Table 3. Rabbit Pin Descriptions (continued)

Pin Group

Pin Name

Direction

Function

Pin Numbers

1/0 Read
Strobe

/IORD

Output

I/O read strobe. Driven low on an external
1/O read bus cycle. May be used to drive
glue logic concerned with 1/0 expansion,
such as the direction pin on a bidirectional
bus buffer. See also programmable strobes
in port E.

32

1/0O Write
Strobe

/IOWR

Output

I/O write strobe. Driven low as awrite
strobe during external 1/0 write cycles. |s
enabled by the 1/0 bank control register.
See also programmabl e strobesin port E.

31

1/0 Port A

PAO-PA7

Input/
Output

These 8 bits serve as general-purpose input
output or they serve as the data port for the
dave port. On reset these pins are set to
inputs and they float.

81-88

I/0 Port B

PBO-PB7

6 In/2 Out

I/0 Port B. When used asparallel 1/0, PB7
and PB6 are outputs only. PBO-PB5 are
inputs only.
PBO0 and PB1 can be outputs when set up as
the clock for the clocked serial ports. On
reset, the outputs are set to zero. If the
slave port is enabled, the following
alternate assignments apply:
PB7—/SLAVEATTN: dave requests
attention.
PB5, PB4—address lines (SA1, SAO0) for
daveregisters.
PB3—slave negative read strobe from
master.
PB2—slave negative write strobe from
master.
If serial port A isenabled in clocked mode,
then PB1 isthe bidirectiona clock line. If
serial port B is enabled in clocked mode,
then PBO is the bidirectional clock line.

93-100

1/O Port C

PCO-PC7

4 1n/4 Out

1/0 Port C. When used as a parallel port,
bits 1, 3, 5, 7 areinputs and hits 0, 2, 4, 6
areoutputs. Bits0, 2, 4, 6 can alternately be
selectively enabled to serve as the seria
data output for serial portsD, C, B, A
respectively. Bits1, 3,5, 7 serve asthe
serial datainputs for serial portsD, C, B,
A. These inputs can aso be read from the
parallel port register when they are being
used by the seria port UART.

51, 54-60

52
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Table 3. Rabbit Pin Descriptions (continued)

Pin Group

Pin Name

Direction

Function

Pin Numbers

1/O Port D

PDO-PD7

Input/
Output/
output open
drain

1/O Port D. Each bit may be individually
selected to be an input or output. Each out-
put may be selected to be high-low drive or
open drain. Outputs are buffered by timer-
synchronizable registersfor precision edge
control. PD6 can be programmed to be an
optiona serial output for serial port A.
PD4 can be programmed to be an optional
serial output for serial port B. PD7 and
PD5 can be used as alternate serial inputs
by serial ports A and B, in which casethese
pins should be programmed as inputs.

43-50

I/O Port E

PE7-PEO

Input/
Output

I/0 Port E. Each bit may be individualy
selected to be an input or output. Outputs are
buffered by timer-synchronizable registers
for precision edge control. Each of the port
lines can beindividually selected tobean 1/0
control signal instead of a parald 1/O line.
Each of the 8 possible 1/0 control signalsisa
strobe energized on an external 1/0 cycleto
1/8th of the 64K external 1/0 space. Each
strobe can be programmed to be a chip select,
awrite strobe, a read strobe or a combined
read and write strobe. Any port bit used as
an 1/O control strobe must be programmed as
an output bit. If the slave port is enabled,
PE7 is used asthe dave register chip select
signal (negative active). PE7 should be pro-
grammed as an input for the slave register
chip select function to work. If PE7 ispro-
grammed as an output and set low, then the
slave register chip select will always be acti-
vated. PEO and PE4 serve as alternate inputs
for external interrupt 0. PE1 and PE5 serve
as alternate inputs for external interrupt 1. If
PEO is enabled, then PE1 must also be
enabled and similarly for PE4 and PES. The
interrupt istriggered in software on fal, ris-
ing or both edges. If both interrupts are
enabled, they are or’ ed together after edge
detection has been performed on each input
individually. The port bits must be set up as
inputs for the to use them asinterrupt request
inputs.

21-26, 29, 30

Power

VBAT

+3.0 V (battery backup), +3.3V or +5.0V

42

VDD

+3.3V or+5.0V

3,28,53,78,92

VSS

Ground

2,27, 39,52,
77,89
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Table 3. Rabbit Pin Descriptions (continued)

Pin Group Pin Name Direction Function Pin Numbers
Inout/ Clock for serial port A when operating in
CLKA P synchronous mode. Alternate assignment 94
Output
for PB1.
Inout/ Clock for serial port B when operating in
CLKB P synchronous mode. Alternate assignment 93
Output
for PBO.
Serial Ports ,
Eig '-I'r)>2 Q RX—input | Serial inputs and output for serial ports A—
' ' TX— D. These are aternate pin assignments for 51, 54-60
RXC, TXC, arallel port C
RXD,TXD | outPut P port &
RX—input | Alternate serial inputs and output for serial
ﬁﬁig ":-Tr;é'é TX— ports A and B. These are alternate pin 43-46
' output assignments for parallel port D, PD4-PD?7.
SDO-SD7 Bidirectional | S 2/8 POt detabus. An alternate 81-88
assignment for parallel port A.
ISLAVEATTN—Slave is requesting atten-
/[SLAVEATTN | Output tion from the master. An alternate pin 100
assignment for parallel port B, hit 7.
Strobe used to read one of the dave
/SRD Input registers. An aternate pin assignment for 96
parallel port B, hit 3.
Slave Port Strobe used to write aslave register. An
/ISWR Input alternate pin assignment for parallel port B, 95
bit 2.
Address lines to address slave registers.
SAQ, SA1 Input An alternate pin assignment for parallel 97,98
port B, bits4 and 5.
Chip select for dave port, activelow. An
/SCS Input alternate pin assignment for parallel port E, 21
bit 7.
I/O strobes. Each strobe uses 1/8th of the I/O
N0/1, space or 8K addresses. Each strobe can be
n2,N3, programmed as: chip select, read, write,
[/O Strobes | /14, /15, Outputs combined read or write. Thesearedternate | 21-26, 29, 30
ne, N7 pin assignment for parallel port E, bits 0—7.
Each pin may beindividually re-assigned
from parallel port to strobe functionality.
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Table 3. Rabbit Pin Descriptions (continued)

Pin Group

Pin Name

Direction

Function

Pin Numbers

External
Interrupt O

INTOA, INTOB

Inputs

These pins are sampled and an interrupt
request for external interrupt number O is
latched on a specified transition (pos, neg,
either). Thereisa separate latch for each
pin. May be enabled when thispinisset up
asinput for parallel port E. The value of
the pin may also be read via the parallel
port. UsesbitsO, 1 of the parallel port. If
parallel port is set up as output, the paralel
port output may be used to cause the
interrupt.

24, 30

External
Interrupt 1

INT1A, INT1B

Inputs

These pins are sampled and an interrupt
request for external interrupt number 1is
latched on a specified transition (pos, neg,
either). Thereisaseparate latch for each
pin. May be enabled when thispinisset up
asinput for parallel port E. The value of
the pin may also be read via the parallel
port. Useshits4, 5 of the paralléel port. If
parallel port is set up as output, the parallel
port output may be used to cause the
interrupt.

23,29
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5.4 BusTiming

The external bus has essentially the same timing for memory cycles or I/O cycles. A
memory cycle begins with the chip select and the address lines. One clock later, the out-
put enable is asserted for aread. The output data and the write enable are asserted for a
write.

T1 Tw T2
|

|
|
<

| |
| L
I i Address (20 for memory, 16 for 1/0)
| I
N | I /IOCSn or /CSn
' ' L JOEn or /IORD and /BUFEN (/BUFEN rd or wr)
| | i |
: : >:<:[>< Datafor read
| | valid
I X | :>< Datafor write 3-sdrive starts at end of T1
| | |
L | ~+—— /WEnor/IOWR
|
| | |
|
Notes:

Read may have no wait states.

Write cycles and 1/0 read cycles have at least 1 wait state. Clock
may be asymmetric if clock doubler used. 1/0 chip select avail-
able on port E as option.

Figure 17. Bus Timing Read and Write

In some cases, the timing shown in Figure 17 may be prefixed by afalse memory access
during the first clock, which isfollowed by the access sequence shown in Figure 17. In
this case, the address and often the chip select will change values after one clock and as-
sume the final values for the memory to be actually accessed. Output enable and write en-
able are always delayed by one clock from the time the final, stable address and chip select
are enabled. Normally the false memory access attempts to start another instruction ac-
cess cycle, which is aborted after one clock when the processor realizesthat aread data or
write data bus cycle is needed. The user should not attempt a design that uses the chip se-
lect or amemory address as a clock or state changing signal without taking thisinto con-
sideration.
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5.5 Description of Pinswith Alternate Functions

Table 4. Pins With Alternate Functions

Pin Name Output Function Input Function Other Function
1. Low on first op code
fetch. Programmabl e output
STATUS (38) 2. Low oninterrupt port high/low
acknowledge
(SMODEL1, SMODE2) .
1-bit t after boot
SMODEL (35) Startup boot mode Cor;p'lgfg erhoo
control. '
(SMODEL1, SMODE2) .
1-bit t after boot
SMODE?2 (36) Startup boot mode Cor;p'lgfg erhoo
control. '
1. Peripheral clock.
CLK (1) p Programmabl e output

2. Peripheral clock/2.

port high/low

/WDTOUT (34)

Outputs 30.5 ps pulse on
watchdog timeout (pro-
cessor is also reset).

Outputs a pul se between
30.5 and 61 ps under
program control.

PA7 (88) SD7 SD7
PAG (87) SD6 SD6
PA5 (86) SD5 SD5
PA4 (85) SD4 SD4
PA3 (84) SD3 SD3
PA2 (83) SD2 SD2
PA1(82) SD1 SD1
PAOQ (81) SDO SDO

/SLAVEATTN (master
PB7 (100) needs attention from

dave).
PB5 (98) SA1 (slave address).
PB4 (97) SAO

/SRD (strobe for master

PB3 (%6) to read a slave register).
PB2 (95) /SWR (strobe for master

to write slave register).
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Table 4. Pins With Alternate Functions (continued)

CLKA (serial port A

PB1 (94) clocked mode clock, CLKA
bidirectional).

PBO (93) CLKB (bidirectional). CLKB

PC7 (51) RXA

PC6 (54) TXA

PC5 (55) RXB

PC4 (56) TXB

PC3 (57) RXC

PC2 (58) TXC

PC1 (59) RXD

PCO (60) TXD

PD7 (43) ARXA

PD6 (44) ATXA

PD5 (45) ARXB

PDA4 (46) ATXB

PD3 (47)

PD2 (48)

PD1 (49)

PDO (50)

PE7 (21) g:;gmgrammab'e 1O 1 /scs (slave chip select).

PE6 (22) /16

PE5 (23) 115 INT1 (input)

PE4 (24) /14 INTO (input)

PE3 (25) N3

PE2 (27) 2

PE1 (29) N INT1 (input)

PEO (30) /10 INTO (input)
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5.6 DC Characteristics

5.6.1 5.0 Volts

Table 5 outlines the DC characteristics for the Rabbit at 5.0 V over the recommended op-
erating temperature range from T, = -40°C to +85°C, Vpp = 4.5V t0 5.5 V.

Table 5. 5.0 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units
Iy Input Leakage High ViN=Vpp, Vpp =55V 10 HA
Input Leakage Low _ —
I Vin=Ves, Vpp =55V -
L (no pull-up) IN=Vss VpD 10 HA
VN =Vpp O Veg,
loz | Output Leakage (no pull-up) IN _ bb SS -10 10 UA
Vpp =55V
ViL |CMOS Input Low Voltage 03xVpp | V
Vig | CMOS Input High Voltage 0.7 X Vpp Vv
V1 | CMOS Switching Threshold | Vpp = 5.0V, 25°C 2.4 Vv
lOL = See Table7
VoL | CMOSOutput Low Voltage | (sinking) 0.2 0.4 vV
VDD =45V
lOH =SeeTable7
Von | CMOS Output High Voltage | (sourcing) 0.7XVpp | 4.2 V]
VDD =45V
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5.6.2 3.3 Volts

Table 6 outlines the DC characteristics for the Rabbit at 3.3 V over the recommended op-
erating temperature range from T, = -40°C to +85°C, Vpp = 2.7V 10 3.6 V.

Table 6. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units
iy | Input Leakage High Vin=Vpp: Vpp=3.6V 5 HA
N Iur;r))ut Leakage Low (no pull- Vin=Vss Vpp=3.6V 5 UA

V|N=VDD or Vss,
I - -
oz | Output Leakage (no pull-up) Vpp=3.6V 5 5 HA
VL | CMOS Input Low Voltage 03xVpp | V
Viy | CMOS Input High Voltage 0.7XVpp V
Vot CMOS Switching Threshold | Vpp=3.0V, 25°C 15 Vv
o= See Table 5.3
VoL | CMOSOutput Low Voltage | (Sinking) 0.11 0.4 \Y
VDD:2.7V
lon= See Table 5.3
Von | CMOS Output High Voltage | (Sourcing) 0.7xVpp | 2.3 \Y
VDD:2.7V
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5.7 1/0 Buffer Sourcing and Sinking Limit

Unless otherwise specified, the Rabbit 1/0 buffers are capable of sourcing and sinking 8
mA of current per pin at full AC switching speed. Full AC switching assumes 22.11 MHz

CPU clock and capacitive loading on address and data lines of less than 100 pF per pin.

Address pin AO and Data pin DO are rated at 16 mA each.

Table 7 shows the AC and DC output drive limits of the parallel 1/0 buffers.

Table 7. 1/O Buffer Sourcing and Sinking Capability

Output Drive
Pin Name Sourcing?/Sinking? Limits
(mA)
; 3

ot Port Nerme Full AC Switching | MaXImum DCOutpt

P SRC/SNK e

SRC/SNK

PA [7:0] 8/8 12/12
PB[7, 1, O] 8/8 12112
PC[6,4, 2, 0] 8/8 12/12
PD [7:4] 8/8 12/12
PE [7:0] 8/8 12/12

1. The maximum DC sourcing current for 1/O buffers between Vpp pinsis

112 mA.

2. The maximum DC sinking current for 1/O buffers between V g5 pinsis

150 mA.

3. The maximum DC output drive on I/O buffers must be adjusted to take
into consideration the current demands made my AC switching outputs,
capacitive loading on switching outputs, and switching voltage.

The current ascribed to AC switching is the average current that flows
while AC switching istaking place. This can be computed using | =
CVf, wheref isthe number of transitions per second, C isthe capactance
switched, and V isthe voltage swing. For example, if 12,000,000 transi-
tions per second take place with a5 V swing driving 100 pF, then | =

6 mA for one pin. The current attributable to all the pins between the
power or ground pins must be summed to test the limits, including the

current attritubable to switching current or DC current.

The current drawn by all switching and non-switching |/O must not
exceed the limits specified in Notes 1 and 2.

. The combined sourcing from Port D [7:0] may need to be adjusted so as

not to exceed the 112 mA sourcing limit requirement specified in Note 1.
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6. Rabbit Internal 1/O Registers

Table 8. Rabbit Internal /0O Registers

Address Reset Value Functionality

GCSR=00h 11000000 |Global Control Status Register. Control of clocks, periodic interrupts,
and monitoring of watchdog. See Table 9 on page 68.

RTCCR=01h 00000000 |Real-Time Clock Control Register. See Section 7.5 on page 71

RTCOR=02h XXXXXXXX  |Real-Time Clock Byte O Register.

RTC1R=03h xXXxxXxxX  |Real-Time Clock Byte 1 Register.

RTC2R=04h xXXxxXxxX  |Real-Time Clock Byte 2 Register.

RTC3R=05h XXXXXXXX  |Real-Time Clock Byte 3 Register.

RTC4R=06h xXXxxXxxX  |Real-Time Clock Byte 4 Register.

RTC5R=07h XXXXXXXX  |Real-Time Clock Byte 5 Register.

WDTCR=08h 00000000 |Watchdog Timer Control Register. See Section 7.6 on page 73

WDTTR=0%h 00000000 |Watchdog Timer Test Register.

GOCR=0Eh 00000x00 |Global Output Control Register. See Section 7.4 on page 71.

GCDR=0Fh XXXxX000 |[Global Clock Doubler Register.

MMIDR=10h xxx00000 |Memory Management | and D Space Register. Controls| & D space
enable and battery switchover support for /CS1.

XPC 00000000 |Not an I/O register, but initialized to zero by reset.

STACKSEG=11h |00000000 |Stack segment memory pointer. Locates stack segment in physical

(2180 CBR) memory.

DATASEG=12h |00000000 |Datasegment memory pointer. Locates data segment in physical mem-

(2180 BBR) ory.

SEGSIZE=13h 11111111 | Specifies start of data segment and start of stack segment in 64K mem-

(2180 CBAR) ory space.

MBOCR=14h 00000000 |Memory Bank O Control Register. Controls mapping of first memory
quadrant 256K to physical memory chips.

MB1CR=15h XXXXXXXX  |Memory Bank 1 Control Register. Controls mapping of second mem-
ory quadrant to physical memory chips.

MB2CR=16h XXXXXXXX  |Memory Bank 2 Control Register. Controls mapping of third memory
quadrant to physical memory chips.

MB3CR=17h XXXXXXXX  |Memory Bank 3 Control Register. Controls mapping of fourth mem-
ory quadrant to physical memory chips.

SPDOR=20h XXXXXXXX |Slave Port Register 0. Separate registers for read and write used for
dlave port communication.

SPD1R=21h XXXXXXXX |Slave port register 1.
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Table 8. Rabbit Internal 1/0O Registers (continued)

Address Reset Value Functionality
SPD2R=22h XXXXXXXX  |Slave port register 2.
SPSR=023h 00000000 |Slave port status register.
SPCR=24h 000x0000 |Slave port control register.
PADR=30h XXXXXXXX  |Paralel port A dataregister. R/W.
PBDR=40h 00xxxxxx |Paralel port B dataregister. R/W.
PCDR=50h x0x0x0x0 |Paralel port C dataregister.
PCFR=55h x0x0x0x0  |Port C function register.
PDDR=60h XXXXXXXX  |Paralel port D dataregister. R/W.
PDCR=64h xX00xx00 |Port D control register
PDFR=65h XXXXXXXX  |Port D function register.
PDDCR=66h XXXXXXXX  |Port D drive control register.
PDDDR=67h 00000000  |Port D data direction register.
PDBOR=68h XXXXXXXX  |Port D bit O register. W
PDB1R=69h XXXXXXXX  |Bit 1.
PDB2R=6Ah XXXXXXXX  |Bit2.
PDB3R=6Bh XXXXXXXX  |Bit3.
PDB4R=6Ch XXXXXXXX  |Bit4.
PDB5R=6Dh XXXXXXXX  |Bit5.
PDB6R=6Eh XXXXXXXX  |Bit6.
PDB7R=6Fh XXXXXXXX  |Bit7.
PEDR=70h XXXXXXXX  |Paralel port E dataregister. R/W.
PECR=74h xXx00xx00 |Port E control register.
PEFR=75h XXXXXXX Port E function register.
PEDDR=77h 0000000 Port E data direction register.
PEBOR=78h XXXXXXX Port E bit O register. W
PEB1R=7%h XXXXXXX Bit 1.
PEB2R=7Ah XXXXXXX Bit 2.
PEB3R=7Bh XXXXXXX Bit 3.
PEB4R=7Ch XXXXXXX Bit 4.
PEB5R=7Dh XXXXXXX Bit 5.
PEB6R=7Eh XXXXXXX Bit 6.

64

Rabbit 2000 Microprocessor



Table 8. Rabbit Internal 1/0O Registers (continued)

Address Reset Value Functionality
PEB7R=7FH XXXXXXX Bit 7
IBOCR=80h 00000xxx  |External I/O control bank O
IB1CR=81h 00000xxx  |External I/O control bank 1
IB2CR=82h 00000xxx |Externa I/O control bank 2
IB3CR=83h 00000xxx  |External I/O control bank 3
IBACR=84h 00000xxx  |External I/O control bank 4
IBSCR=85h 00000xxx  |Externa I/O control bank 5
IB6CR=86h 00000xxx  |External I/O control bank 6
IB7CR=87h 00000xxx  |Externa I/O control bank 7
I0CR=98h xx000000 |External interrupt O control register.
[1CR=9%h xx000000 |External interrupt 1 control register.
TACSR=0A0h 0000xx00  |Timer A Control/Status Register
TACR=0A4%h XXXXXXXX | Timer A Control Register
TAT1R=0A3h 0000xx00 |Timer Al Time Constant 1 Register
TAT4R=0A%h XXXXXXXX | Timer A4 Time Constant 4 Register
TAT5R=0ABh XXXXXXXX | Timer A5 Time Constant 5 Register
TAT6R=0ADh XXXXXXXX | Timer A6 Time Constant 6 Register
TAT7R=0AFh XXXXXXXX | Timer A7 Time Constant 7 Register
TBCSR=0B0Oh xxxxxX000 |Timer B Control/Status Register
TBCR=0B1h xxxx0000 |Timer B Control Register
TBM1R=0B2h XXXXXXXX  |Timer B MSB 1 Reg
TBL1R=0B3h XXXXXXXX  |Timer BLSB 1 Reg
TBM2R=0B4h XXXXXXXX  |Timer B MSB 2 Reg
TBL2R=0B5h XXXXXXXX | Timer BLSB 2 Reg
TBCMR=0BEh |xxxxxxxx |Timer B Count MSB Reg
TBCLR=0BFh XXXXXXXX | Timer B Count LSB Reg
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Table 8. Rabbit Internal 1/0O Registers (continued)

Address Reset Value Functionality
SADR=0COh XXXXXXXX  |Serial port A dataregister receive/send.
SAAR=0Clh XXXXXXXX  |Serial port A alternate data register (transmit 9th bit)
SASR=0C3h 0xx00000 |Serial port A status register.

SACR=0C4h xX000000 |Serial port A control register.

SBDR=0D0h XXXXXXXX  |Serial port B dataregister receive/send.
SBAR=0D1h XXXXXXXX  |Serial port B alternate data register (transmit Sth bit)
SBSR=0D3h 0xx00000 |Serial port B status register.

SBCR=0D4h xXx000000 |Seria port B control register.

SCDR=0EGh XXXXXXXX  |Serial port C dataregister receive/send.
SCAR=0Elh XXXXXXXX  |Serial port C alternate data register (transmit 9th bit)
SCSR=0E3h 0xx00000 |Serial port C status register.

SCCR=0E4h xX00x000 |Serial port C control register.

SDDR=0FOCh XXXXXXXX  |Seria port D dataregister receive/send.
SDAR=0F1h XXXXXXXX  |Serial port D alternate data register (transmit 9th bit)
SDSR=0F3h 0xx00000 |Serial port D status register.

SDCR=0F4h xX00x000 |Serial port D control register.
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7. Miscellaneous /O Functions

7.1 Rabbit Oscillators and Clocks

There aretwo crystal oscillators built into the Rabbit. The main oscillator accepts crystals
up to afrequency of 29.4912 MHz (first overtone crystals only). The clock oscillator re-
quires a 32.768 kHz crystal, which is powered by VBAT, and can be battery-backed.

An external oscillator or clock can be substituted for either crystal by connecting the ex-
ternal clock to XTALAL or XTALB1 and leaving the other crystal pin (XTALAZ2 or
XTALB2) unconnected. If an external oscillator is used for the main clock the output pin
CLK (pin 1) should be used if the clock is needed externally. This signal is synchronized
with the internal clock. In comparision, the internal clock is delayed by approximately 10
nanoseconds compared to the external oscillator input XTALBL.

The main oscillator isnormally used to derive the clock for the processor and peripherals.
The 32.768 kHz oscillator is normally used to clock the watchdog timer, the battery back-
able time/date clock, and the periodic interrupt. The main oscillator can be shut downina
special low-power mode of operation, and the 32.768 kHz oscillator is then used to clock
al the things normally clocked by the main oscillator. Thisresultsin slower execution at
low power (~200 pA).

The on-chip routing of the clocksis shown in Figure 18. The main oscillator can be dou-
bled in frequency and/or divided by 8. If both doubling and dividing are enabled, then
there will be anet division by 4. The CPU clock can optionally by divided by 2 and then
optionally drive the external pin CLK. In many casesthe clock is not needed externally,
and in that case CLK can be used as a general-purpose output pin. The divide by 2 option
isavailable to minimize electromagnetic radiation if theis clock is driven off chip.

Tort/
% ext pin
| !
S . ! Clock

— Main Ost ™ T |5 oubler f/8 CPU
== | 32kHz Peripheral
— | O Devices

To Watchdog Timer and

Time/Date Clock Note: Peripherals cannot be clocked

slower than CPU.

Figure 18. Clock Distribution
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Table 9. Global Control/Status Register (I/O adr = 00h)

Bit(s) Value Description
7:6 00 No reset or watchdog timer timeout since the last read.
(read only) o1 Thg watchdog timer timed out. These hits are cleared by aread of this
register.
10 This bit combination is not possible.
1 Reset occurred. These bits are cleared by aread of this register.
5 (write only) 0 Read this register to clear periodic interrupt request. This bit always read
as zero.
1 Force a periodic interrupt.
. Processor clock from the main oscillator, divided by eight.
4:2 (write onl 000 . . . . )
( y) Peripheral clock from the main oscillator, divided by eight.
Processor clock from the main oscillator, divided by eight.
001 . . . . .
Peripheral clock from the main oscillator, without divider.
01x Processor clock from the main oscillator, without divider.
Peripheral clock from the main oscillator, without divider.
10 Processor clock from the 32 kHz oscillator, without divider.
Peripheral clock from the 32KHz oscillator, without divider.
Processor clock from the 32 kHz oscillator, without divider.
1x1 Peripheral clock from the 32 kHz oscillator, without divider.
The main oscillator is turned off.
1:0 (write only) 00 Periodic interrupts are disabled.
01 Periodic interrupts use Interrupt Priority 1.
10 Periodic interrupts use Interrupt Priority 2.
1 Periodic interrupts use Interrupt Priority 3.
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7.2 Clock Doubler

The clock doubler is provided to alow alower frequency crystal to be used for the main
oscillator and to provide an added range of clock frequency adjustability. The clock dou-
bler uses an on-chip delay circuit that must be programmed by the user at startup if thereis
aneed to double the clock. Table 10 lists the recommended delays for various oscillator
frequencies. Note that the “best for” oscillator frequencies aready reflect the doubling of
the actual crystal frequencies.

Table 10. Global Clock Double Register (GCDR, adr = 0fh)

Bit(s) Value Description
7.3 XXXXX | These bits are ignored.
2.0 000 The clock double circuit is disabled.

001 8 nsnominal low time (best for 30 MHz oscillator).

010 10 ns nominal low time (best for 25 MHz oscillator).

011 12 ns nominal low time (best for 20 MHz oscillator).

100 14 ns nominal low time (best for 18 MHz oscillator).

101 16 ns nominal low time (best for 16 MHz oscillator).

110 18 ns nominal low time (best for 14 MHz oscillator).

111 20 nsnominal low time. (best for 12 MHz or slower oscillator).

When the clock doubler is used and thereis no subsequent division of the clock, the output
clock will be asymmetric, as shown in Figure 19. The doubled-clock low time is subject
to wide (50%) variation since it depends on process parameters, temperature, and voltage.
The times given above are for a supply voltage of 5V and atemperature of 25°C. The
doubled-clock low time increases by 20% when the voltage is reduced to 4 V, and in-
creases by about 40% when the voltage is reduced further to 3.3 V. The valuesincrease or
decrease by 1% for each 5°C increase or decrease in temperature. The doubled clock is
created by xor’ing the delayed and inverted clock withitself. If the original clock does not
have a 50-50 duty cycle, then alternate clocks will have a dlightly different length. Since
the duty cycle of the built-in oscillator can be as asymmetric as 52-48, the clock generated
by the clock doubler will exhibit up to a 4% variation in period on alternate clocks. This
does not affect the no-wait states memory access time since two adjacent clocks are al-
ways used. However, the maximum allowed clock speed must be reduced by 10% if the
clock issupplied viathe clock doubler. The only signals clocked on the falling edge of the
clock are the memory and 1/0 write pulses, and these have noncritical timing. Thusthe
length of the clock low timeisnoncritical aslong asit is not so long asto shorten the clock
high time excessively, which could make the write pulse too short for the memory used.
Thisisunlikely to happen with practical clock speeds and typical static RAM memories.
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Figure 19. Effect of Clock Doubler

The power consumption is proportional to the clock frequency, and for this reason power
can be reduced by slowing the clock when less computing activity is taking place. The
clock doubler provides a convenient method of temporarily speeding up or slowing down
the clock as part of a power management scheme.

7.3 Controlling Power Consumption

The processor power consumption can be traded against speed by slowing the system
clock, adding wait states, using low-power-consumption instructions, and for maximum
power savings disabling the main system oscillator and using the real-time clock oscillator
to provide the clock. The following power saving features can be enabled.

» Add memory wait statesfor instruction fetching. Total wait states are programmable as
0,1, 20r 4. Generaly two wait states should use half the power of zero wait states.

 If the clock doubler isnot already in use, divide both the processor and the peripheral
clock by 4. Thisispermissibleif nothing, particularly timers and serial ports, depends
on the peripheral clock.

 If the clock doubler isin use, turn it off, dividing both processor and peripheral by 2.
 Divide the processor and/or peripheral clock by 8.
* Run codein RAM rather than flash memory.

» Switch the processor and peripheral clock to the 32.768 kHz oscillator and, if desired,
disable the main oscillator.
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» Execute alow-power instruction loop consisting mostly of instructions that don’t use
much power. The best choice is successive mul instructions that multiply 0x 0. No
intervening instructions are needed to load the terms to be multiplied after the first mul
since all registersinvolved stay at zero.

It isanticipated that these measures would reduce current consumption to aslow as 25 pA
plus some leakage that would be significant at high operating temperatures.

7.4 Output PinsCLK, STATUS, /WDTOUT, /BUFEN

Certain output pins can have alternate assignments as specified in Table 11.

Table 11. Global Output Control Register (GOCR = OEh)

Bit(s) Value Description

7:6 00 CLK pinisdriven with peripheral clock.

01 CLK pinisdriven with peripheral clock divided by 2.

10 CLK pinislow.

1 CLK pinishigh.

5.4 00 STATUS pinisactive (low) during afirst opcode byte fetch.

01 STATUS pinisactive (low) during an interrupt acknowledge.

10 STATUS pinislow.

11 STATUSpinishigh.

3 1 WDTOUTB pinislow (1 cycle minimum, 2 cycles maximum, of 32 kHz).

0 WDTOUTB pin follows watchdog function.

2 X Thishit isignored.
1.0 00 /BUFEN pin isactive (low) during external 1/0 cycles.
01 /BUFEN pin is active (low) during data memory accesses.

10 /BUFEN pinislow.

11 /BUFEN pinishigh.

7.5 Time/Date Clock (Real-Time Clock)

The time/date clock (RTC) isa48-hit (ripple) counter that is driven by the 32.768 kHz os-
cillator. The RTC isamodified ripple counter composed of six separate 8-bit counters.
The carries are fed into all six 8-bit counters at the same time and then ripple for 8 bits.
Thetimefor thisrippleto take placeis afew nanoseconds per bit, and certainly should not
should not exceed 200 nsfor all 8 bits, even when operating at low voltage.
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The 48 bits are enough bits to count up 272 years at the 32 kHz clock frequency. By con-
vention, 12 AM on January 1, 1980, istaken astime zero. Z-World software ignores the
highest order bit, giving the counter a capacity of 136 yearsfrom January 1, 1980. To read
the counter value, the value isfirst transferred to a 6-byte holding register. Then the indi-
vidual bytes may be read from the holding registers. To perform the transfer, any data bits
are written to RTCOR, the first holding register. The counter may then be read as six 8-bit
bytes at RTCOR through RTC5R. The counter and the 32 kHz oscillator are powered from
a separate power pin that can be provided with power while the remainder of the chipis
powered down. This design makes battery backup possible. Since the processor operates
on adifferent clock than the RTC, there is the possibility of performing atransfer to the
holding registers while a carry istaking place, resulting in incorrect information. In order
to prevent this, the processor should do the clock read twice and make sure that the value
Is the same in both reads.

If the processor isitself operating at 32 kHz, the read-clock procedure must be modified
since a number of clock counts would take place in the time needed by the slow-clocked
processor to read the clock. An appropriate modification would be to ignore the lower
bytes and only read the upper 5 bytes, which are counted once every 256 clocks or every
1/128th of asecond. If the read cannot be performed in this time, further low-order bits
can beignored.

The RTC registers cannot be set by a write operation, but they can be cleared and counted
individually, or by subset. In this manner, any register or the entire 48-bit counter can be
set to any value with no more than 256 steps. If the 32 kHz crystal is not installed and the
input pin is grounded, no counting will take place and the six registers can be used asa
small battery-backed memory. Normally this would not be very productive since the cir-
cuitry needed to provide the power switchover could also be used to battery-back aregular
low-power static RAM.

Table 12. Real-Time Clock Read Registers

Real-Time Clock x Holding Register (RTCOR) R/'W  (Address = 00000010)
(RTC1R) (Address = 00000011)
(RTC2R) (Address = 00000100)
(RTC3R) (Address = 00000101)
(RTC4AR) (Address = 00000110)
(RTC5R) (Address = 00000111)

Table 13. Real-Time Clock RTCxR Data Registers

Bit(s) Value Description
7.0 Read The current value of the 48-bit RTC holding register is returned.
. Writing to the RTCOR transfers the current count of the RTC to six holding
Write . . . :
registers while the RTC continues counting.
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Table 14. Real-Time Clock Control Register (RTCCR adr = 01h)

Bit(s) Value Description

No effect on the RTC counter, disable the byte increment function,

70 0oh or cancel the RTC reset command (except code 80h)
40h Arm RTC for areset with code 80h or reset and byte increment
function with code OcOh.
Resets all six bytes of the RTC counter to 00h if proceeded by arm
80h
command 40h.
oh Resets all six bytes of the RTC counter to 00h and enters byte

increment mode—precede this command with 40h arm command.

This bit combination must be used with every byte increment write
to increment clock(s) register corresponding to bit(s) setto "1".
7:6 01 Example: 01001101 increments registers: 0, 2,3. The byte
increment mode must be enabled. Storing 00h cancels the byte
increment mode.

5.0 0 No effect on the RTC counter.

1 Increment the corresponding byte of the RTC counter.

7.6 Watchdog Timer

The watchdog timer isa 17-bit counter. In normal operation it is driven by the 32 kHz
clock. When the watchdog timer reaches any of several values corresponding to adelay of
from 0.25 to 2 seconds, it "timesout.” When it timesout, it emitsa 1-clock pulse from the
watchdog output pin and it resets the processor viaan interna circuit. To prevent this
timeout, the program must "hit" the watchdog timer before it times out. The hit is accom-
plished by storing acode in WDTCR.

Table 15. Watchdog Timer Control Register (WDTCR adr = 08h)

Bit(s) Value Description

7:0 5Ah Restart (hit) the watchdog timer, with a 2-second timeout period.

57h Restart (hit) the watchdog timer, with a 1-second timeout period.

59h Restart (hit) the watchdog timer, with a 500 ms timeout period.

53h Restart (hit) the watchdog timer, with a 250 ms timeout period.

other No effect on watchdog timer.

The watchdog timer may be disabled by storing a special code in the WDTTR register.

Normally this should not be done unless an external watchdog deviceisused. The pur-
pose of the watchdog is to unhang the processor from an endless loop caused by a soft-
ware crash or a hardware upset.
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It isimportant to use extreme care in writing software to hit the watchdog timer (or to turn
off the watchdog timer). The programmer should not sprinkle instructionsto hit the
watchdog timer throughout his program because such instructions can become part of an
endlessloop if the program crashes and thus disable the recovery ability given by having a
watchdog.

The following is a suggested method for hitting the watchdog. An array of bytesis set up
in RAM. Each of these bytesisavirtual watchdog. To hit avirtual watchdog, a number is
stored in abyte. Every virtua watchdog is counted down by an interrupt routine driven by
aperiodic interrupt. This can happen every 10 ms. If none of the virtual watchdogs has
counted down to zero, the interrupt routine hits the hardware watchdog. If any have
counted down to zero, the interrupt routine disables interrupts, and then enters an endless
loop waiting for the reset. Hits of the virtual watchdogs are placed in the user’s program
at “must exercise” locations.

Table 16. Watchdog Timer Test Register (WDTTR adr = 09h)

Bit(s) Value Description
70 51h Clock the least significant byte of the WDT timer from the peripheral
' clock. (Intended for chip test and code 54h below only.)
50h Clock the most significant byte of the WDT timer from the peripheral
clock. (Intended for chip test and code 54h below only.)
53h Clock both bytes of the WDT timer, in parallel, from the peripheral clock.
(Intended for chip test and code 54h below only.)
Disable the WDT timer. Thisvalue, by itself, does not disablethe WDT
54h timer. Only a sequence of two writes, where the first write is 51h, 52h or
53h, followed by a write of 54h, actually disablesthe WDT timer. The
WNDT timer will be re-enabled by any other write to this register.
other Normal clocking (32 kHz oscillator) for the WDT timer. Thisisthe
condition after reset.

The code to do this may also hit the watchdog with a 0.25-second period to speed up the
reset. Such watchdog code must be written so that it is highly unlikely that a crash will in-
corporate the code and continue to hit the watchdog in an endlessloop. The following
suggestions will help.

1. Placeajump to self before the entry point of the watchdog hitting routines. This pre-
vents entry other than by adirect call or jump to the routine.

2. Before caling the routine, set a data byte to a special value and then check it in the
routine to make sure the call came from theright caller. If not, go into an endless loop
with interrupts disabled.

3. Maintain data corruption flags and/or checksums. If these go wrong, go into an end-
less loop with interrupts off.
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7.7 System Reset

The Rabbit has a master reset input (/RESET), which initializes everything in the device
except for the RTC. Thisreset isdelayed until the completion of any write cyclesin
progressto prevent any potential corruption of memory. If no write cyclesarein progress,
the reset takes effect immediately.

The purpose of inhibiting the completion of reset until write cyclesin progress are com-
pleted isto protect variablesin battery-backed memory from corruption when a reset takes
place. However, if the power controller responsible for battery switchover blocksthe chip
select signal to the RAM, the writes in progress will be aborted in any case. Thisisnot
necessarily serious as software schemes can be used to protect critical variablesin battery-
backed memory.

The reset sequence requires aminimum of 128 cycles of the fast oscillator to complete,
even if no write cycleswerein progress at the start of the reset. Reset forces both the pro-
cessor clock and the peripheral clock in the divide-by-eight mode. Note that if the proces-
sor is being clocked from the 32 kHz oscillator, the 128 cycles of the fast oscillator will
probably not be sufficient to allow any writesin progress to be completed before the reset
sequence completes and the clocks switch to divide-by-eight mode.

During reset, all of the memory control signals are held inactive. After the/RESET signal
isinactive (high), the processor begins fetching instructions and the memory control sig-
nals begin normal operation. Note that the default valuesin the Memory Bank Control
registers select four wait states per access, so theinitial program fetch memory reads are
48 clock cycleslong (8 x (2 + 4)). Software can immediately adjust the processor timing
to whatever the system requires.

The default selection for the memory control signals consists of /CS0, /OEO and /WEQ,
and writes are enabled. This selection can also be immediately programmed to match the
hardware configuration. A typical sequence would be to speed up the clock to full speed,
then select the appropriate number of wait states and the chip select signals, output enable
signals and write enable signals. At this point software would usually check the system
status to determine what type of reset just occurred and begin normal operation.

7.8 Rabbit Interrupt Structure

An interrupt causes a call to be executed, pushing the PC on the stack and starting to exe-
cute code at the interrupt vector address. The interrupt vector addresses have a fixed
lower byte value for all interrupts. The upper byte is adjustable by setting the registers
EIR and IIR for external and internal interrupts respectively. There are only two external
interrupts generated by transitions on certain pinsin paralel port E.

The interrupt vectors are shown in Table 17.
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Table 17. Peripheral Device Address and Interrupt Vectors

On-Chip Peripheral I/O Address Range ISR Starting Address
System Management (periodic interrupt) | Oxh {IIR, 00h}
Memory Management 1xh No interrupts
Slave Port 2xh {11R,80h}
Parallel Port A 3xh No interrupts
Parallel Port B 4xh No interrupts
Parallel Port C 5xh No interrupts
Parallel Port D 6xh No interrupts
Parallel Port E 7xh No interrupts
External 1/0O Control 8xh No interrupts
External Interrupts 9xh :::gg E E: E ggﬂi
Timer A Axh {IIR, ACh}
Timer B Bxh {1IR, BOh}
Serial Port A Cxh {lIR, COh}
Serial Port B Dxh {1IR, DOh}
Serial Port C Exh {1IR, EOn}
Serial Port D Fxh {lIR, FOh}
RST 10 instruction n‘a {lIR, 20h}
RST 18 instruction n‘a {IIR, 30h}
RST 20 instruction n‘a {lIR, 40h}
RST 28 instruction n‘a {lIR, 50h}
RST 38 instruction n‘a {lIR, 70h}

The interrupts differ from most Z80 or Z180 interrupts in that the 256-byte tables pointed
to EIR and I1R contain the actual instructions beginning the interrupt routines rather than a
16-bit pointer to the routine. The interrupt vectors are spaced 16 bytes apart so that the en-
tire code will fit in the table for very small interrupt routines.

Interrupts have priority 1, 2 or 3. The processor operates at priority 0, 1, 2 or 3. If anin-
terrupt is being requested, and its priority is higher than the priority of the processor, the
interrupt will take place after then next instruction. The interrupt automatically raises the
processor’s priority to its own priority. The old processor priority is pushed into the 4-po-
sition stack of priorities contained in the IP register. Multiple devices can be requesting
interrupts at the same time. In each case there isalatch set in the device that requests the
interrupt. If that latch is cleared before the interrupt is latched by the central interrupt
logic, then the interrupt request is lost and no interrupt takes place. Thisis shownin
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Table 18. The priorities shown in thistable apply only for interrupts of the same priority
level and are only meaningful if two interrupts are requested at the sametime. Most of the
devices can be programmed to interrupt at priority level 1, 2 or 3.

Table 18. Interrupts—Priority and Action to Clear Requests

Priority Interrupt Source Action Required to Clear the Interrupt
Highest External 1 Automatically by interrupt acknowledge.
External O Automatically by interrupt acknowledge.
Periodic (2KHZz) Read GCSR.
Timer B Read TBCSR".
Timer A Read TASR.
Slave Port Write SPSR.
. Rx: Read SADR or SAAR.
Serial Port A Tx: Write SADR, SAAR or SASR
. Rx: Read SBDR or SBAR.
Serial Port B Tx: Write SBDR, SBAR or SBSR
. Rx: Read SCDR or SCAR.
Serial Port C Tx: Write SCDR, SCAR or SCSR
Rx: Read SDDR or SDAR.
Lowest Serial Port D X o

Tx: Write SDDR, SDAR or SDSR

* | the compare registers (TBMxXR and TBLXR) are not written within the ISR, the interrupt will
fire only once.

In the case of the external interrupts the only action that will clear the interrupt request is
for the interrupt to take place, which automatically clears the request. A special action
must be taken in the interrupt service routine for the other interrupts.

7.8.1 External Interrupts

There are two external interrupts. Because of a problem in the Rabbit design, only one of
these interrupts is available for general use. In order to work around the design problem,
which is described in Tecnical Note 301, “Rabbit 2000 Microprocessor Interrupt Prob-
lem,” it isusually necessary to connect an external interrupt request line to two interrupts
using a1 kQ resistor as shown in Figure 20 below. When thisis done, both interrupts (#1
and #0) will occur ontherising or falling edge programmed, but interrupt #1 should beig-
nored and interrupt #0 should enter the interrupt service routine. This prevents any possi-
bility of lost or spurious interrupts that were a symptom of the problem. To prevent
spurious interrupts, the priority in the control register should be programmed to be equal
to the highest priority used by competing interrupts, but the priority can be lowered on en-
try to the service routine.
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Figure 20. External Interrupt Line Logic

The external interrupts take place on atransition of the input, which is programmable for
rising, falling or both edges. The pulse catchers are programmable separately to detect a
rising, falling, or either edgeintheinput. The pairs of pulse catchersthat are connected to
the same interrupt should be programmed for the same type of edge detection. Each of the
interrupt pins hasits own catcher device to catch the edge transition and request the interrupt.

When the interrupt takes place, both pulse catchers associated with that interrupt are auto-
matically reset. If both edges are detected before the corresponding interrupt takes place,
because the triggering edges occur nearly simultaneously or because the interrupts are in-
hibited by the processor priority, then there will be only one interrupt for the two edges de-
tected. The interrupt service routine can read the interrupt pins via parallel port E and
determine which lines experienced a transition, provided that the transitions are not too
fast. Interrupts can also be generated by setting up the matching port E bit as an output
and toggling the bit.

Table 19. Control Registers for External Interrupts

Reg Name | Reg Address Bits 7,6 Bits 5,4 Bits 3,2 Bits 1,0
I0CR 10011000 XX INTOB PE4 INTOA PEO Enb INTO
11CR 10011001 XX INT1B PE5 INT1A PE1 Enb INT1

edgetriggered |edgetriggered |interrupt
00-disabled 00-disabled 00-disable
10-rising 10-rising 01-pri 1
01-faling 01-faling 10-pri 2
11-both 11-both 11-pri 3
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Interrupt vectors: INTO - EIR,00h/INT1 - EIR,08h

When it isdesired to expand the number of interruptsfor additional peripheral devices, the
user should use the interrupt routine to dispatch interrupts to other virtual interrupt rou-
tines. Each additional interrupting device will have to signal the processor that it isre-
questing an interrupt. A separate signal line is needed for each device so that the
processor can determine which devices are requesting an interrupt.

The following code shows how the interrupt service routines can be written.

External interrupt Routine #1
intl:
i pres ; restore systemopriority
ret ; return and ignore interrupt

External interrupt Routine #0 (progranmed priority could be 3)
int2:
push ip ; save interrupt priority
ipset 1 ; set to priority really desired (1, 2, etc.)
insert body of interrupt routine here

pop ip ; get back entry priority
i pres ; restore interrupted routine’'s priority
ret ; return frominterrupt

7.9 Bootstrap Operation

The device provides the option of bootstrap from any of three sources: from the Slave
Port, from Serial Port A in clocked serial mode, or from Serial Port A in asynchronous
mode. Thisiscontrolled by the state of the SMODE pins after reset. Bootstrap operation
isdisabled if (SMODE1, SMODEOQ) = (0, 0).

Bootstrap operation inhibits the normal fetch of code from memory, and instead substi-
tutes the output of asmall internal boot ROM for program fetches. This bootstrap pro-
gram reads groups of three bytes from the selected peripheral device. Thefirst byteisthe
most significant byte of a 16-bit address, followed by the |east-significant byte of a 16-bit
address, followed by a byte of data. The bootstrap program then writes the byte of datato
the downloaded address and jumps back to the start of the bootstrap program. The most
significant bit of the addressis used to determine the destination for the byte of data. If
this bit is zero, the byte is written to the memory location addressed by the downloaded
address. If thishit is one, the byte iswritten to the internal peripheral addressed by the
downloaded address. Note that all of the memory control signals continue to operate nor-
mally during bootstrap.

Execution of the bootstrap program automatically waits for data to become available from
the selected peripheral, and each byte transferred automatically resets the watchdog timer.
However, the watchdog timer still operates, and bytes must be transferred often enough to
prevent the watchdog timer from timing out.

Bootstrap operation is terminated when the SMODE pins are set to zero. The SMODE
pins are sampled just prior to fetching thefirst instruction of the bootstrap program. If the
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SMODE pins are zero, instructions are fetched from normal memory starting at address
0000h. The Slave Port Control register allows the bootstrap operation to be terminated re-
motely. Writing aone to bit 7 of thisregister causes the bootstrap operation to terminate
immediately. So the sequence 80h, 24h and 80h will terminate bootstrap operation.

Bootstrap operation is not restricted to the time immediately after reset, because the boot
ROM is addressed by only the four least significant bits of the address. So any time that

the address ends in four zeros, if the SMODE pins are non-zero and bit 7 of the SPCRis

zero, the bootstrap program will begin execution. This allows in-line downloading from

the selected bootstrap port. Upon completion of the bootstrap operation, either by return-
ing the SMODE pinsto zero or setting the bit in the SPCR, execution will continue from

where it was interrupted for the bootstrap operation.

The Slave Port is selected for bootstrap operation when (SMODEL, SMODEQ) = (0, 1). In
this case the pins of Parallel Port A are used for a byte-wide data bus, and selected pins of
Parallel Ports B and E are used for the Slave Port control signals. Only Slave Port Data
Register 0 isused for bootstrap operation, and any writesto the other dataregisterswill be
ignored by the processor, and can actually interfere with the bootstrap operation by mask-
ing the Write Empty signal.

See Section 14.8.2 on page 133 for an example of using the bootstrap mode.

Serial Port A is selected for bootstrap operation as a clocked seria port when SMODE =
10. Inthiscase bit 7 of Parallel Port Cisused for the serial data and bit 1 of Parallel Port
B isused for the serial clock. Note that the serial clock must be externally supplied for
bootstrap operation. This precludes the use of a serial EEPROM for bootstrap operation.

Serial Port A is selected for bootstrap operation as an asynchronous serial port when
SMODE = 11. Inthiscase bit 7 of Parallel Port C isused for the serial data and the

32 kHz oscillator is used to provide the serial clock. A dedicated divide circuit alowsthe
use of the 32 kHz signal to provide the timing reference for the 2400 bps asynchronous
transfer. Only 2400 bps is supported for bootstrap operation, and the serial data must be
eight bits for proper operation.

When abootstrap is performed using Serial Port A, the TXA signal is not needed since the
bootstrap is a one-way communication. After the reset ends and the bootstrap mode be-
gins, TXA will be low, reflecting its function as aparallel port output bit that is cleared by
thereset. Thismay be interpreted as abreak signal by some serial communication de-
vices. TXA can be forced high by sending the triplet 80h, 50h, 40h, which stores40hin
paralel port C. An alternate approach isto send the triplet 80h, 55h, 40h, which will en-
able the TXA output from bit 6 of parallel port C by writing to the parallel port C function
register (55h).

The transfer rate in any bootstrap operation must not be too fast for the processor to exe-
cute the instruction stream. The Write Empty signal acts as an interlock when using the
Slave Port for bootstrap operation, because the next byte should not be written to the Slave
Port until the Write Empty signal is active. No such interlock exists for the clocked serial
and asynchronous bootstrap operation. In these cases, remember that the processor clock
starts out in divide-by-eight mode with four wait states, and limit the transfer rate accord-
ingly. Inasynchronous mode at 2400 bpsit takes about 4 msto send each character, so no
problem is likely unless the system clock is extremely slow.
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8. Rabbit Memory Mapping and Interface
See Section 3.2 on page 14 for atutorial discussion of the Rabbit memory mapping.

Figure 21 shows an overview of the Rabbit memory mapping. The task of the memory
mapping unit is to accept 16-bit addresses and translate them to 20-bit addresses. The
memory interface unit accepts the 20-bit addresses and generates control signals applied
directly to the memory chips.

Processor | p| Memory |4 o Memory 02:” r?_mory
Mapping Interface IpS
Unit Unit

Figure 21. Overview of Rabbit Memory Mapping

8.1 Memory-Mapping Unit

The 64K 16-bit address space accessed by processor instructionsis divided into segments.
Each segment has alength that isamultiple of 4K. Except for the extended code segment,
the segments have adjustable sizes and some segments can be reduced to zero size and
thus vanish from the memory map.

The four segments are shown in the example in Figure 22. The segment size register
(SEGSIZE) determines the boundaries marked in the diagram. The extended code seg-
ment always occupies the addresses OEOOOh—OFFFFh. The stack segment stretches from
the address specified by the upper 4 bits of the SEGSIZE register to ODFFFh. For exam-
ple, if the upper 4 bits of SEGSIZE are ODh, then the stack segment will occupy 0D0O0Oh—
ODFFFh, or 4K. If the upper 4 bits of SEGSIZE are greater than or equal to OEh, the stack
segment vanishes. If these bits are set to zero, the two segments bel ow the stack segment
will vanish.

The lower 4 bits of SEGSIZE determine the lower boundary shown in the figure. If this
boundary isequal to the upper boundary or greater than OEh, the data segment will vanish.
If this segment is placed at zero the code segment will vanish.
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Figure 22. Memory Segments

The memory management unit accepts a 16-bit address from the processor and translates
it into a 20-bit address. The procedure to do this works as follows.

1. Itisdetermined which segment the 16-bit address belongs to by inspecting the upper 4
bits of the address. Every address must belong to one of the possible 4 segments.

2. Each segment has an 8-bit segment register. The 8-bit segment register is added to the
upper 4 bits of the 16-bit address to create a 20-bit address. Wraparound occursif the
addition would result in an address that does not fit in 20 bits.

Table 20. Segment Registers

Segment Register

Function

XPC

L ocates extended code segment in physical memory. Read and written
by processor instructions: Id a,xpc, Id xpc,a, Icall, Iret, |jp

STACKSEG = 11h

Locates stack segment in physical memory.

DATASEG = 12h

L ocates data segment in physical memory.

Table 21. Segment Size Register

Bits 7..4 Bits 3..0

SEGSIZE = 13h

Boundary address stack segment. |Boundary address data segment.
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8.2 Memory Interface Unit

The 20-bit memory addresses generated by the memory-mapping unit feed into the mem-
ory interface unit. The memory interface unit has a separate write-only control register (see
Table 22) for each 256K quadrant of the 1M physical memory. This control register speci-
fies how memory access requests to that quadrant are to be dispatched to the memory chips
connected to the Rabbit. There are three separate chip select output lines (/CS0, /CS1, and
/CS2) that can be used to select one of three different memory chips. A field in the control
register determines which chip select is selected for memory accesses to the quadrant. The
same chip select line may be accessed in more than one quadrant. For example, if a512K
RAM isinstaled and is selected by /CSL1, it would be appropriate to use /CS1 for accesses
to the 3rd and 4th quadrants, thus mapping the RAM chip to addresses 80000h to OFFFFFh.

Table 22. Memory Bank Control Register x (MBxCR=14h+x)

Bits 7,6 Bit 5 Bit 4 Bit 3 Bit 2 Bits 1,0

00—4 wait states | 1—Invert | 1—Invert |1—Write-pro- |O0—use/OEQ, /WEQ | 00—use/CS0
01—2 wait states address address tect memory | 1—use/OEL, /WE1 | 01—use/CS1
10—1 wait states A19 A18 this quadrant Ix—use /CS2
11—0 wait states

8.3 Memory Bank Control Register Functions

Table 22 describes the operation of the four memory bank control registers. The registers
are write-only. Each register controls one quadrant in the 1M address space.

» Bits7,6—The number of wait states used in access to this quadrant. Without wait
states, read requires 2 clocks and write requires 3 clocks. The wait state adds to these
numbers. Wait states should only be used for memory data accesses (RAM or data
flash), not for memory from which instructions are executed (code memory).

» Bits5, 4—These bits allow the upper address lines to be inverted. Thisinversion
occurs after the logic that selects the bank register, so setting these lines has no effect
onwhich bank register isused. Theinversion may be used to install a1M memory chip
in the space normally allocated to a 256K chip. The larger memory can then be
accessed as 4 pages of 256K each. Thereis no effect outside the quadrant that the
memory bank control register is controlling.

e Bit 3—Inhibitsthe write pulse to memory accessed in this quadrant. Useful for protect-
ing flash memory from an inadvertent write pulse, which will not actually write to the
flash because it is protected by lock codes, but will temporarily disable the flash mem-
ory and crash the system if the memory is used for code.

* Bit 2—Selects which set of the two lines /OEx and /WEXx will be driven for memory
accesses in this quadrant.

* Bits 1,0—Determines which of the three chip select lines will be driven for memory
accesses to this quadrant.

» All bits of the control register areinitialized to zero on reset.
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8.3.1 Optional A16, A19 Inversions by Segment (/CS1 Enable)

Theinversion of A19 or A16 controlled by the read/write MMIDR register is used to redi-
rect mapping of the root segment and the data segment by inverting certain bits when
these segments are accessed. Currently there is no planned use for this functionality.

The optional enable of /CS1 is valuable for systems that are pushing the access time of
battery-backed RAM. By enabling /CS1, the delay time of the switch that forces /CS1
high when power is off can be bypassed. Thisfeature increases power consumption since
the RAM is always enabled and its access is controlled normally by /OEL.

Table 23. MMU Instruction/Data Register (MMIDR = 010h)

Bits 7,6,5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1—force/CS1
to be .
000 These bits must always be 0
aways
enabled

8.4 Allocation of Extended Code and Data

The Dynamic C compiler compiles code to root code space or to extended code space.
Root code starts in low memory and compiles upward.

64K
xcode
window
56K
soK [ Sk
Debug Variables
Root
code

\

VA/

Do

—
T
A i

1024K
Variables

Stacks

Available RAM

512K

Extended code

Root code and constants

OK

Figure 23. Typical Memory Mapping and Memory Usage
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Allocation of extended code starts above the root code and data. Allocation normally con-
tinues to the end of the flash memory.

Datavariables are allocated to RAM working backwardsin memory. Allocation normally
starts at 52K in the 64K D space and continues. The 52K space must be shared with the
root code and data, and is allocated upward from zero.

Dynamic C also supports extended data constants. These are mixed in with the extended
codein flash.

8.5 How the Compiler Compilesto Memory

The compiler actually generates code for root code and constants and extended code and
extended constants. It allocates space for data variables, but does not generate data bitsto
be stored in memory.

In any but the smallest programs, most of the code is compiled to extended memory. This
code executesin the 8K window from EO000 to FFFF. This 8K window uses paged access.
Instructions that use 16-bit addressing can jump within the page and also outside of the
page to the remainder of the 64K space. Special instructions, particularly long call, long
jump and long return, are used to access code outside of the 8K window. When one of
these transfer of control instructionsis executed, both the address and the view through the
8K window or page are changed. Thisallows transfer to any instruction in the 1M mem-
ory space. The 8-hit XPC register controls which of the 256 4K pages the 8K window
alignswith. The 16-bit PC controls the address of the instruction, usually in the region
EO00 to FFFF. The advantage of paged accessis that most instructions continue to use 16-
bit addressing. Only when an out-of-range transfer of control is made does a 20-bit trans-
fer of control need to be made. The beauty of having a 4K minimum step in page align-
ment while the size of the page is 8K isthat code can be compiled continuously without
gaps caused by change of page. When the page is moved by 4K, the previous end of code
isstill visible in the window, provided that the midpoint of the page was crossed before
moving the page alignment.

As the compiler compiles code in the extended code window, it checks at oportune times
to seeif the code has passed the midpoint of the window or FO00. When the code passes
FOO0O0, the compiler sides the window down by 4K so that the code at FOOO+x becomes
resident at EOOO+x. Thisresultsin the code being divided into segmentsthat are typically
4K long, but which can very short or aslong as 8K. Transfer of control can be accom-
plished within each segment by 16-bit addressing; 20-bit addressing is required between
segments.
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9. Parallel Ports

The Rabbit hasfive 8-bit parallel portsdesignated A, B, C, D and E. The pinsused for the
parallel ports are also shared with numerous other functions as shown in Table 4 on
page 57. The important properties of the ports are summarized below.

* Port A—Shared with the slave port data interface.

» Port B—Shared with control lines for slave port and clock 1/O for clocked serial mode
option for serial ports A and B.

» Port C—Shared with serial port serial datal/O.

» Port D—4 bits shared with aternate I/O pinsfor serial ports A and B. 4 bits not shared.
Port D has the ability to configure its outputs as open drain outputs. Port D has output
preload registers that can be clocked into the output registers under timer control for
pulse generation. Port D bits 0—3 have a higher current drive capability.

» Port E—AII bits of Port E can be configured as 1/0 strobes. 4 bits of port E can be used
as external interrupt inputs. One bit of port E is shared with the slave port chip select.
Port E has output preload registers that can be clocked into the output registers under
timer control for pulse generation.

9.1 Parallel Port A

Parallel Port A has a single read/write register, shown in Table 24.

Table 24. Parallel Port A Data Register PADR (adr = 030h)

R/W 8-bit Data Value

Thisregister should not be used if the slave port is enabled.

The dlave port control register is used to control whether Parallel Port A isan output or an
input. To make the port an input, store 080h in the SPCR (slave port control register). To
make the port an output, store 084h in SPCR. Parallel Port A is set up as an input port on
reset.

When the port isread, the value read reflects the voltages on the pins, "1" for high and " 0"
for low. Thiscould be different than the value stored in the output register if the pinis
forced to a different state by an externa voltage.
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9.2 Parallel Port B

Parallel Port B, shown in Table 25, has six inputs and two outputs when used exclusively
asaparalld port.

Table 25. Parallel Port B Data Register PBDR (adr = 040h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Read Echo Echo PB5in |PB4in |PB3in |PB2in |PBlin |PBOin
drive drive
Write PB7 PB6 X X X X X X

When the dave port is enabled, parallel port lines PB2—PB7 are assigned to various save
port functions. However, it isstill possibleto read PBO-PB5 using the Port B dataregister
even when lines PB2-PB7 are used for the slave port. It isalso possibleto read the signal
driving PB6 and PB7 (this signal is on the signaling lines from the slave port logic).

Regardless of whether the slave port is enabled, PBO reflects the input of the pin unless se-
rial port B hasitsinternal clock enabled, which causes this line to be driven by the serial
port clock. PB1 reflects the input of the pin unless serial port A hasitsinternal clock en-
abled.

On reset the output bits 6 and 7 are reset and the value output on pins PB6 and PB7 (pack-
age pins 99, 100) will aso be low.

9.3 Paralldl Port C

Paralel port C, shown in Table 26, has four inputs and four outputs. The even-numbered
ports, PCO, PC2, PC4, and PC6, are outputs. The odd-numbered ports, PC1, PC3, PC5,
and PC7, areinputs. When the dataregister isread, bits 1,3,5,7 return the value of the
voltage on the pin. Bits 0,2,4,6 return the value of the signal driving the output buffers.
The signal driving the output buffers and the value of the output pin are normally the
same. Either the Port C dataregister is driving these pins or one of the serial port transmit
linesisdriving the pin. Thebitsset inthe PCFR Parallel Port C Function Register identify
whether the dataregister or the serial port transmit lines were driving the pins.

Table 26. Parallel Port C Data Register and Function Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PCDR (1) . Echo . Echo . Echo . Echo
adr = 050h PC7in drive PC5in drive PC3in drive PCLin drive
PCDR (w)
PC6 PC4 PC2 PCO

adr = 050h X X X X

PCFR (w) « Drive « Drive « Drive « Drive
adr = 055h TXA TXB TXC TXD
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Parallel port C sharesits pins with the four serial ports. The parallel port input pins may
also serve as serial port inputs. (Seria ports A and B can alternately use bits 7 and 5 re-
spectively in Port D as inputs, and the source of the serial port inputs for these serial ports
depends on the setup of the corresponding serial port control register.) When serving as
seria inputs, the datalines can still be read from the parallel port C dataregister. The par-
allel port outputs can be selected to be serial port outputs by storing bitsin the correspond-
ing positions of the Port C Function register (PCFR). When a parallel port output pinis
selected to be a serial port output, the value stored in the dataregister isignored. On reset
the active (even-numbered) function register bits and data register bits are zeroed. This
causes the port to output zeros on the four output bits.

9.4 Paralldl Port D

Paralel port D, shown in Figure 25 on page 90, has eight pins that can programmed indi-
vidually to be inputs and outputs. When programmed as outputs, the pins can be individu-
ally selected to be open-drain outputs or standard outputs. Port D pins can be addressed
by bit if desired. The output registers are cascaded and timer-controlled, making it possi-
bleto generate precise timing pulses. In addition, port D outputs have a higher drive capa-
bility. Port D bits4 and 5 can be used as alternate bits for serial port B, and bits 6 and 7
can be used as alternate bitsfor serial port A. Alternate serial port bit assignments make it
possible for the same seria port to connect to different communications lines that are not
operating at the same time.

On reset, the data direction register is zeroed, making all pinsinputs. In addition bitsin

the control register are zeroed (bits 0,1,4,5) to ensure that datais clocked into the output
registers when loaded. All other registers associated with port D are not initialized on re-
Set.

The following registers are described in Table 27 and in Table 28.

* PDDR—Paralld port D dataregister. Read/Write.

« PDDDR—Parallel port D data direction register. A "1" makes the corresponding pin
an output. Write only.

» PDDCR—Paralld port D drive control register. A "1" makesthe corresponding pin an
open-drain output if that pinis set up for output. Write only.

* PDFR—Parallel port D function control register. This port may be used to make port
positions 4 and 6 be serial port outputs. Write only.

* PDBxR—These eight registers may be used to set outputs on individual port positions.

 PDCR—Parallel port D control register. Thisregister isused to control the clocking of
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4,
and 5 are reset to zero.
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Table 27. Parallel Port D Registers

01—clock on timer A1
10—clock ontimer B1
11—clock on timer B2

01—clock on timer Al
10—clock on timer B1
11—clock on timer B2

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
dePR:( 060)h PD7 PD6 PD5 PD4 PD3 PD2 PD1 PDO
PDDCR (W) out = out = out = out = out = out = out = out =
adr = 066h | °PEN open open open open open open open

- drain drain drain drain drain drain drain drain
ZdDrFR:(V\(/))GSh X at TXA |Xx atTXB |x X X X
PDDDR (W) dir = dir = dir = dir = dir = dir = dir = dir =
adr = 067h |out out out out out out out out
PDBOR (W
adr = (06)8h X X X X X X X PDO
PDBIR (W
adr = (06)9h X X X X X X PD1 X
PDB2R (W
adr = (06)Ah X X X X X PD2 X X
PDB3R (W
adr = (06)Bh X X X X PD3 X X X
PDB4R (W
adr = (OG)Ch X X X PD4 X X X X
PDB5R (W
adr = (06)Dh X X PD5 X X X X X
PDB6R (W
adr = (06)Eh X PD6 X X X X X X
PDB7R (W
adr = (OG)Fh PD7 X X X X X X X

Table 28. Parallel Port D Control Register (adr = 064h)
Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0
X 00—clock upper nibble on pclk/2 | x 00—clock lower nibble on pclk/2
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9.5 Paralldl Port E

Parallel port E, shown in Figure 26, has eight 1/0 pinsthat can be individually programmed
asinputs or outputs. Port E has ahigher drive than most of the other ports. PE7 isused as
the dave port chip select when the dave port is enabled. Each of the port E outputs can be
configured as an /O strobe. In addition, four of the port E lines can be used as interrupt re-
quest inputs. The output registers are cascaded and timer-controlled, making it possible to

generate precise timing pul ses.

™ 6 | |
INT1
1 —
PE4
zmi ™ INTO
A Inputs
/O Data perclk/2
Timer Al
Timer B1
Timer B2
] PE3
RS -
— ™ 2] | -
INT1
T || -
PEO
T | < T INTO
1
perclk/2 — ||
Timer Al
Timer B1
Timer B2

Figure 26. Parallel Port E Block Diagram
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The following registers are described in Table 29 and in Table 30.

 PEDR—Port E dataregister. Readsvalue at pins. Writesto port E preload register.

» PEDDR—Port E data direction register. Setto"1" to make corresponding pin an out-
put. Thisregister iszeroed on reset.

» PEFR—Port E function register. Set bit to "1" to make corresponding output an I/O

strobe. The nature of the I/O strobe is controlled by the 1/0 bank control registers

(IBXCR). The data direction must be set to output for the I/O strobe to work.
* PEBXxR—These areindividual registersto set individual output bits on or off.

» PECR—Parallel port E control register. Thisregister isused to control the clocking of
the upper and lower nibble of the final output register of the port. Onreset, bits0, 1, 4,

and 5 are reset to zero.

Table 29. Parallel Port E Registers

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

PEDR (R/W)

adr = 070h

PE7

PEG6

PES

PE4

PE3

PE2

PE1

PEO

PEFR (W)

adr = 075h

at/7

at/lé

at/I5

at/l4

at/I3

at/12

at/I1

at/l1o

PEDDR (W)

adr = 077h

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

PEBOR (W)

adr = 078h

PEO

PEBIR (W)

adr = 079h

PE1

PEB2R (W)

adr = 07Ah

PE2

PEB3R (W)

adr = 07Bh

PE3

PEB4R (W)

adr = 07¢Ch

PE4

PEBS5R (W)

adr = 07Dh

PES

PEB6R (W)

adr = O7Eh

PE6

PEB7R (W)

adr = O07Fh

PE7
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Table 30. Parallel Port E Control Register (adr = 074h)

Bits 7, 6

Bits 5, 4

Bits 3, 2

Bits 1, 0

00—clock upper nibble on pclk/2
01—clock ontimer Al
10—clock ontimer B1
11—clock on timer B2

X

00—clock lower nibble on pclk/2
01—clock on timer Al
10—clock on timer B1
11—clock on timer B2
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10. I/0 Bank Control Registers

The pins of Port E can be set individually to be 1/0 strobes. Each of the eight possible 1/0
strobes has a control register that controls the nature of the strobe and the number of wait
states that will be inserted in the I/O bus cycle. Writes can also be suppressed for any of
the strobes. The types of strobes are shown in Figure 27. Each of the eight 1/0O strobesis
active for addresses occupying 1/8th of the 64K external 1/0 address space.

T1 Tw T2
Jl—l_l—l_l—l_{
ADDR 222 . valid [
writedata [ /17 valid lVA
write strobe : li:
read data 7 /: AVdId!V/]
read strobe l

|
|
chip select strobe—|
|
|
|

External 1/0 Timing (with 1 wait state)

Figure 27. External I/O Bus Cycles

Table 31 shows how the eight I/O bank control registers are organized.

Table 31. I/O Bank Control Reg (adr IBXCR = 08xh)

Bits 7,6 Bits 5,4 Bit 3 Bits 2—0
Wait state code /IX strobe type 1—permit write Ignored
11-1 00—chip select O—inhibit write
10-3 0l—read strobe
01-7 10—write strobe
00-15 11—or of read and
write strobe

The eight I/O bank control registers determine the number of 1/0O wait states applied to an

external 1/0 access within the zone controlled by each register even if the associated
strobes are not enabl ed.
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The control over the generation of wait states is independent of whether or not the associ-
ated strobe in Port E isenabled. The upper 2 bits of each register determine the number of
wait states. Thefour choicesare 1, 3, 7, or 15 wait states. On reset, the bits are cleared,
resulting in 15 wait states. Thereisawaysat least one external 1/0 wait state, and thusthe
minimum external I/O read cycle isthree clockslong. Theinhibit write function applies
to both the Port E write strobes and the /IOWR signal.

These control bits have no effect on theinternal 1/0 space, which does not have wait states
associated with read or write access. Interna 1/0 read or write cycles are two clocks long.

The 1/0 strobes greatly ssmplify the interfacing of external devices. On reset, the upper 5
bits of each register are cleared. Parallel port E will not output these signals unless the
data-direction register bits are set for the desired output positions. In addition, the Port E
function register must be set to "1" for each position.

Each 1/0 bank is selected by the three most significant bits of the 16-bit 1/O address.
Table 32 shows the relationship between the 1/0 control register and its corresponding
space in the 64K address space.

Table 32. External I/O Register Address Range and Pin Mapping

Control Register sz;E I/C/)Aﬁ(;(:jlrg]ss I/O Address Range
IBOCR PEO 000 0x0000-Ox1FFF
IBICR PE1 001 0x2000-0x3FFF
IB2CR PE2 010 OX4000-OX5FFF
IB3CR PE3 011 0x6000-0x7FFF
IBACR PE4 100 0x8000-0x9FFF
IBSCR PES 101 0xA000-OxBFFF
IB6CR PE6 110 0xCO00-OxDFFF
IB7CR PE7 111 OXEO00-OxFFFF

Refer to Section 3.3.8 for afix to a bug that manifestsitself if an I/O instruction
(prefix 1 O or | CE) isfollowed by one of 12 single-byte op codesthat use HL as
an index register.
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11. Timers

There are two timers—Timer A and Timer B. Timer A isintended mainly for generating
the baud clock for the serial ports, a periodic clock for clocking parallel ports D and E, or
for generating periodic interrupts. Timer B can be used for the same functions, but it can-
not generate the baud clock. Timer B is more flexible when it can be used because the
program can read the time from a continuously running counter and events can be pro-
grammed to occur at a specified future time.

Figure 28 shows a block diagram of Timers A and B.

[] _ I
—— Al -
per cl k/2 B A4
’, A5 [
Timer A System A6 [
A7
_ 10-bit counter
I8 compare
L 10 bits —p P []
match preload
A Timer B2
match reg
match preload

A

Figure 28. Block Diagram of Timers A and B
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11.1 Timer A

Timer A consists of five separate countdown timers—A 1 and A4—-A7—as shown in Figure 28.

Timers Al and A4-A7 are 8-bit countdown registers as shown in Figure 29. The reload
register can contain any number in the range from 0 to 255. The counter dividesby (n+1).
For example, if the reload register contains 127, then 128 pulses enter on the left before a
pulse exits on theright. If the reload register contains zero, then each pulse on the left re-
sultsin apulse on theright, that is, thereis division by one.

¢

8-bit reload register

¢

Clock in load
EEE—— 8-bit down counter

pulse on zero count out

Input clock 1 1 ] [ ]
Count value 2 2 1 10 0 N N-1

Outputpulse [ 1__

Figure 29. Reload Register Operation

Thetimer systems are driven by the peripheral clock divided by two. Thisclock isaways
the same as the processor clock, or it isfaster than the processor clock by afactor of eight.
The output pulses are always one clock long. Clocking of the counters takes place on the
negative edge of this pulse. When the counter reaches zero, the reload register isloaded
on the next input pulse instead of a count being performed. The reload registers may be
reloaded at any time since the peripheral clock is synchronous with the processor clock.

Timers A4, A5, A6 and A7 always provide the baud clock for serial ports A, B, Cand D
respectively. Except for very low baud rates, clock A1 does not need to be used to pres-
caletheinput clock for timers A4-A7. For example, if the system clock is 11.0592 MHz,
and if the timer A4 divides by 144, an asynchronous baud rate of 2400 bps can be achieved
inone step. The clock input to the serial port must be 16 times the baud rate for asynchro-
nous mode and 8 times the baud rate for synchronous mode. The maximum asynchronous
baud rate with a 11.0592 MHz clock would be (11,059,200/(2* 16) = 345,600.

Each of the five countdown registersin timer A can cause an interrupt. Thereis oneinter-
rupt vector for timer A and acommon interrupt priority. A common status register
(TACSR) has abit for each timer that indicates if the output pulse for that timer has taken
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place since the last read of the status register. When the status register is read, these bits
are cleared. No bit will belost. Either it will be read by the status register read or it will
be set after the status register read is complete. If abit is on and the corresponding inter-
rupt is enabled, an interrupt will occur when priorities allow. However, a separate inter-
rupt is not guaranteed for each bit with an enabled interrupt. 1f the bit isread in the status
register, itis cleared and no further interrupt corresponding to that bit will be requested. It
Is possible that one bit will cause an interrupt, and then one or more additional bitswill be
set before the status register isread. After these bits are cleared, they cannot cause an in-
terrupt. If any bits are on, and the corresponding interrupt is enabled, then the interrupt
will take place as soon as priorities alow. However, if the bit is cleared before the inter-
rupt islatched, the bit will not cause an interrupt. The proper ruleto follow isfor theinter-
rupt routine to handle all bitsthat it sees set.

11.1.1 Timer A 1/0O Registers

The l/O registersfor Timer A arelisted in Table 33.

Table 33. Timer A I/O Registers

Register Name Register Mnemonic 1/0 address (hex) R/W
Timer A Control/Status Register TACSR A0 R/W
Timer A Control Register TACR A4 w
Timer A1 Time Constant 1 Register TAT1IR A3 w
Timer A4 Time Constant 4 Register TAT4R A9 W
Timer A5 Time Constant 5 Register TAT5R AB W
Timer A6 Time Constant 6 Register TAT6R AD w
Timer A7 Time Constant 7 Register TAT7R AF W
The control/status register for Timer A (TACSR) islaid out as shown in Table 34.
Table 34. Timer A Control and Status Register (adr = 0AOh)
Bit 7 Bit 6 Bit 5 Bit 4 Bit3 | Bit2 Bit 1 Bit 0
Read A7 count A6 count A5 count A4 count 0 0 A1l count Th_is bitis
done done done done done write only.
Write A7 interrupt | A6interrupt | ASinterrupt | A4 interrupt X X Alinterrupt 1—§nable
enable enable enable enable enable Timer A

Bits 1, 4—-7—Read/write, terminal count reached on timers Al and A4-A7. Reading
this status register clears any bits (bits 1 and 4—7) that are on. Writing to these bits
enables the interrupts for the corresponding timer.

Bit 0—Write, setto a"1" to enable the clock (perclk/2) for Timer A, set to "zero" to
disable the clock (perclk/2 in Figure 28 on page 97). Bits 1 and 4—7 are written
(write only) to enable the interrupt for the corresponding timer.
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The control register (TACR) islaid out as shown in Table 35.

Table 35. Timer A Control Register (adr = 0A4h)

Bit 7 Bit 6 Bit 5 Bit 4 Bits 3, 2 Bits 1,0
A7 A6 A5 A4
Source A7 | Source A6 | Source A5 | Source A4 not used 00—Interrupt disabled
O-pclk/2 O-pclk/2 O-pclk/2 O-pclk/2 ignored 01—Enable priority 1 interrupt
1-A1 1-A1 1-A1 1-A1 10—Enable priority 2 interrupt
11—Enable priority 3 interrupt

The time constant register for each timer is simply an 8-bit data register holding a number
between 0 and 255. The time constant registers are write only.

11.1.2 Practical Useof Timer A

Timer A isdisabled (bit 0in control and status register) on power-up. Timer A isnormally
set up while the clock is disabled, but the timer setup can be changed while the timer is
running when thereisaneed to do so. Timersthat are not used should be driven from the
output of A1 and the reload register should be set to 255. Thiswill cause counting to be as
slow as possible and consume minimum power.

Timer A hasfive separate subtimer units, A1 and A4-Ab, that are also referred to astim-
ers.

Most likely, if aserial port is going to be used and atimer is needed to provide the baud
clock, that timer will be set up to be driven directly from the clock, and the interrupt asso-
ciated with that timer will be disabled. (Seria port interrupts are generated by the serial
port logic.)

The value in the reload register can be changed while the timer is running to change the
period of the next timer cycle. When the reload register isinitialized, the contents of the
countdown counter may be unknown, for example, during power-up initialization. If in-
terrupts are enabl ed, then the first interrupt may take place at an unknown time. Similarly,
if the timer output is being used to drive the clock for aparallel port or serial port, the first
clock may come at arandom time. If aperiodic clock isdesired, it is probably not impor-
tant when the first clock takes place unless a phase relationship is desired relative to a dif-
ferent timers.

A phase relationship between two timers can be obtained in several ways. One way isto
set both reload registers to zero and to wait long enough for both timers to reload (maxi-
mum 256 clocks). Then both timers' reload registers can be set to new values before or af-
ter both are clocked.
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11.2 Timer B

Figure 28 shows a block diagram of Timer B. The Timer B counter can be driven directly

by per cl k/2, by that clock divided by 8, or by the output of Timer A1. Timer B hasa

continuoudly running 10-bit counter. The counter is compared against two match regis-
ters, the B1 match register and the B2 match register. When the counter transitionsto a
value equal to a match register, an internal pulse with alength of 1 periphera clock is gen-
erated. The match pulse can be used to cause interrupts and/or clock the output registers

of paralel portsD and E.

The match registers are loaded from the match preload registers that are written to by an
I/O instruction. The data byte in the match preload register is advanced to the next match

register when the match pulse is generated.

Every time amatch condition occurs, the processor sets an internal bit that marks the match
vauein TBLxR asinvalid. Reading TBCSR clearstheinterrupt condition. TBLXR must be
reloaded to re-enable the interrupt. TBMXR does not need to be reloaded every time.

If both match registers need to be changed, the most significant byte needs to be changed first.

The l/O registersfor Timer B are listed in Table 36.

Table 36. Timer B Registers

Register Name Register Mnemonic e ,(Ahdedxr)ess R/W on :)eset
Timer B Control/Status Register TBCSR BO R/W XXxxx000
Timer B Control Register TBCR Bl w XXXXxX00
Timer B MSB 1 Reg TBM1R B2 X
Timer B LSB 1 Reg TBL1R B3 W X
Timer B MSB 2 Reg TBM2R B4 W X
Timer B LSB 2 Reg TBL2R B5 W X
Timer B Count MSB Reg TBCMR BE R X
Timer B Count LSB Reg TBCLR BF R X

The control/status register for Timer B (TBCSR) islaid out as shown in Table 37.

Table 37. Timer B Control and Status Register (TBCSR) (adr = 0BOh)

Bits 7:3 Bit 2 Bit 1 Bit 0
Not used 1—A match with match 1—A match with match 1—Enable the main clock
register 2 was detected. register 1 was detected. for this timer.
Thisbit iscleared when Thisbit iscleared when
this register is read; thisregister is read;
setting this bit to 1 setting this bit to 1
enables the interrupt. enables the interrupt.
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The control register for Timer B (TBCR) islaid out as shown in Table 38.

Table 38. Timer B Control Register (TBCR)

Bits 7:4 Bits 3:2 Bits 1:0

Not used 00—Counter clocked by perclk/2 00—Interrupt disabled
01—Counter clocked by output of T 1'+ XX—Interrupt priority xx enabled.

imer Al
1Ix—Timer clocked by perclk/2 divided by 8

The MSB x registersfor Timer B (TBM1R/TBM2R) are laid out as shown in Table 39.

Table 39. Timer B MSB x Register (TBM1R/TBM2R = 0B2h/0B4h)

Bits 7:6 Bits 5:0

Two most significant bits of timer | Not used.
match preload register.

11.2.1 Using Timer B

Normally the prescaler is set to divide perclk/2 by a number that provides a counting rate
appropriate to the problem. For example, if the clock is 22.1184 MHz, then perclk/2 is
11.0592 MHz. A Timer B clock rate of 11.0592 MHz will cause a complete cycle of the
10-bit clock in 92.6 ps.

Normally an interrupt will occur when either of the comparatorsin Timer B generates a
pulse. The interrupt routine must detect which comparator isresponsible for the interrupt
and dispatch the interrupt to a service routine. The service routine sets up the next match
value, which will become the match value after the next interrupt. If the clocked parallel
ports are being used, then a value will normally be loaded into some bits of the parallel
port register. These bits will become the output bits on the next match pulse. (It is neces-
sary to keep a shadow register for the parallel port unless the bit-addressable feature of
ports D and E isused.)

If it isdesired to read the time from the Timer B counter, either during an interrupt caused
by the match pulse or in some other interrupt routine asynchronous to the match pulse, a
special procedure needs to be used to read the counter because the upper 2 bitsarein adif-
ferent register than the lower 8 bits. The following method is suggested.

Read the lower 8 bits.

2. Read the upper 2 bits
3. Readthelower 8 bitsagain
4. If bit 7 changed from 1 to O between the first and second read of the lower 8 bitsthere

has been a carry to the upper 2 bits. In this case read the upper 2 bits again and decre-
ment those 2 bitsto get the correct upper 2 bits. Use the first read of the lower 8 bits.
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This procedure assumes that the time between reads can be guaranteed to be less than 256
counts. Thiscan be guaranteed in most systems by disabling the priority 1 interrupts,
which will normally be disabled in any case in an interrupt routine.

It isinadvisable to disable the high-priority interrupts (levels 2 and 3) as that defeats their
purpose.

If speed iscritical, the three reads of the registers can be performed without testing for the
carry. Thethree register values can be saved and the carry test can be performed by a
lower priority analysis routine. Since the upper 2 bits are in the register TBCMR at ad-
dress OBEh, and the lower 8 bitsarein TBCLR at address OBFh, both registers can be read
with asingle 16-bit I/O instruction. The following sequence illustrates how the registers
could be captured.

; enter fromexternal interrupt on pulse input transition
19 clocks latency plus 10 clocks interrupt execution

push af ; 7
push hl
ioi Id a,(TBCLR) ; 11 get lower 8 bits of counter

ioi Id hl,(TBCWR) ;13 get |=upper, h=lower

Timer B can be used for various purposes. The 10-bit counter can be read to record the
time at which an event takes place. If the event creates an interrupt, the timer can be read
in the interrupt routine. The known time of execution of the interrupt routine can be sub-
tracted. The variableinterrupt latency is then the uncertainty in the event time. Thiscan
be aslittle 19 clocksif the interrupt is the highest priority interrupt. If the system clock is
20 MHz, the counter can count as fast as 10 MHz. The uncertainty in a pulse width mea-
surement can be nearly aslow as 38 clocks (2 x 19), or about 2 psfor a20 MHz system
clock.

Timer B can be used to change a parallel port output register at a particular specified time
in the future. A pulse train with edges at arbitrary times can be generated with the restric-
tion that two adjacent edges cannot be too close to each other since an interrupt must be
serviced after each edge to set up the time for the next edge. Thisrestriction limitsthe
minimum pulse width to about 5 ps, depending on the clock speed and interrupt priorities.
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12. Rabbit Serial Ports

The Rabbit has four on-chip serial ports designated A, B, C, and D. All the ports can per-
form asynchronous serial communications at high baud rates. Ports A and B have the ad-
ditional capabilities of being able to operate as clocked ports and of being switchable to
aternate 1/0 pins. Port A hasthe special capability of being usable to perform acold boot
of the microprocessor system.

Table 40 lists the synchronous seria port signals.

Table 40. Synchronous Serial Port Signals

Rabbit . .
Signal Names Pin Function
CLKA or CLKB Serial Clock
TxA or TxB on Parallel Port C Data Transmit
ATXxA or ATxB on Parallel Port D
RxA or RxB on Parallel Port C .
Data Receive

ARXA or ARXB on Parallel Port D

* Serial Ports A and B can be multiplexed between Parallel Ports C
and D. However, only Seria Port A or B can be configured to
operate on one of the parallel ports at any particular time.

Figure 30 shows a block diagram of the serial ports.

| CLKA
Input to timers |Timer A4 Serial A > X

— RX
percl k/2or Alternate 1/0

per cl k/2
prescal ed | CLKB

Timer A5 Serid B > X

TR
—————— Alternate 1/O

Timer A6 Serid e ——» X
4— RXx

Timer A7 Serid D —» Tx
<« RXx

Figure 30. Block Diagram of Rabbit Serial Ports
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Theindividual serial ports are capable of operating at baud rates in excess of 500,000 bps
in the asynchronous mode, and 8 times faster than that in the synchronous mode. Either 7
or 8 data bits may be transmitted and received in the asynchronous mode. The so-called
"Oth" bit or address bit mode of operation is also supported. Parity and multiple stop bits
are not directly supported by the hardware, but may be accomplished with suitable pro-
gramming techniques.

12.1 Register Layout Serial Port

Figure 31 shows a functional block diagram of a serial port. Each serial port has a data
register, acontrol register and a status register. Writing to the dataregister starts transmis-
sion. If thewriteisperformed to an alternate data register address, the extra address bit or
9th bit is sent. When data bits have been received, they are read from the data register.
The control register isused to set the transmit and receive parameters. The status register
may be tested to check on the operation of the serial port.

Read Data Write Data
" Alt DataOut '
DataIn Reg Data Out Reg | (for oth bit)
T i‘____i_JJ
Input Shift Reg Output Shift Reg

Rx serial datain )
Tx serial data out

Bit 0 1 2 3 4 5 6 7 stop

@_‘_l L 1 T ] Transmitting 0D6h
0 1 1 0 1 0 1 1 \

Sart Bit Stop Bit
Bit 0 1 2 3 4 5 6 7 A stop L
Transmitting 0D6h

@_A_/ I B with 9th address bit
0 1 1 0 1 0 1 1 \\

Sart Bit
9th bit Stop Bit

Signals Shown At Microprocessor Tx pin

Figure 31. Functional Block Diagram of a Serial Port
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The clock input to the serial port unit must be 16 times the baud rate in the asynchronous
mode and 2 times the baud rate for the clocked serial mode when the internal clock is
used. Timers A4-A7 supply the input clock for Serial Ports A—D. These timers can di-
vide the frequency by any number from 1 to 256 (see Chapter 11). The input frequency to
the timers can be selected in different ways described in the documentation for the timers.
One choiceis the peripheral clock divided by 2—with that choice and a well-chosen crys-
tal frequency for the main oscillator, the most commonly used baud rates can be obtained
down to approximately 2400 bps at the highest Rabbit clock frequencies (see Section A.2
in Appendix A).

Table 41 lists the seria port registers.

Table 41. Serial Port Registers

. Address xx =00, 01, 10, 11 L
Register for A, B, C, D Mnemonic x = A, B, C, D

Data Register 11xx0000 SxDR
Alternate Data Register to

Send 9th (8th) Address Bit, 11xx0001 SXAR

Status Register (read, write

to clear transmit IRQ) 11xx0011 SR

Control Register (write only) 11xx0100 SXCR

The serial port interrupt vectors are shown Table 17 in Chapter 7.

Table 42 describes the serial port status registers.

Table 42. Serial Port Status Registers (adr = 11xx0011, xx = A,B,C,D)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1,0
Receiver Transmitter
ready (there . Receive Transmitter
. . 9th bit data . .
isabytein . buffer 0 S issendinga | 0,0

. received register is

the receive overrun full byte
data register)

Writing to the status register clears the transmit interrupt request FF, but has no other effect.

Bit 7—receiver ready. Thishit is set when abyte istransferred from the receiver shift regis-
ter to the receiver dataregister. The bit is cleared when the receiver dataregister is
read. Thetransition from "0" to"1" setsthe receiver interrupt request flip-flop.

Bit 6—address bit or 9th (8th) bit. Thisbit isset if the character in the receiver dataregister
has a 9th (8th) bit. Thisbit iscleared and should be checked before reading a data reg-
Ister since anew data value with a new address bit may be loaded immediately when
the data register is read.

Bit 5—thishit isset if the receiver isoverrun. Thishappensif the shift register and the data
register are full and a start bit is detected. Thisbit is cleared when the receiver data
register isread.
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Bit 3—transmitter data buffer full. Thisbit is set when the transmit data register isfull, that
IS, abyteiswritten to the seria port dataregister. It iscleared when abyteistrans-
ferred to the transmitter shift register or awrite operation is performed to the serial port
status register. This bit will request an interrupt on the transition from 1 to 0 if inter-
rupts are enabled.

Bit 2—transmitter busy bit. Thishit isset if the transmitter shift register is busy sending
data. Itisset onthe falling edge of the start bit, which is also the clock edge that trans-
fers data from the transmitter data register to the transmitter shift register. The trans-
mitter busy bit is cleared at the end of the stop bit of the character sent. This bit will
cause an interrupt to be latched when it goes from busy to not busy status after the last
character has been sent (there are no more datain the transmitter data register).

Bits0,1,4—Always read as zero.
Table 43 describes the serial port control registers.

Table 43. Serial Port Control Registers (adr = 11xx0100, xx = A,B,C,D)

Bit 7,6 Bit 5,4 Bit 3,2 Bit 1,0
00—no op 00—use port C for serial | 00—async mode, 8 bits | 00—no interrupt
01—receive 1 byte input 01—async mode 7 bits | 01— priority 1 interrupt

clocked mode (A,B) | 01—use port D for seria | 10—clocked mode 10—priority 2
10—send one byte input external clock (A,B) | 11—priority 3
clocked mode (A,B) | 1x—disable receiver 11—clocked mode
11—reserved for future input internal clock (A,B)
use

Bits 7,6—In asynchronous mode, aways store zero in these bits. For Ports A and B, if the
clocked seria mode is enabled, store the code here to start an operation, either receive
or send. If theclock isinternal, aburst of 8 clockswill drivetheclock line. In external
mode, the receiver or transmitter waits for an externally supplied burst of 8 clocks.

Bits 5,4—This enables the standard or alternate pinsfor the ports. The parallel port output
function for the specified Tx pin becomes disabled when the port is enabled. The set-
tingsin the parallel port C function register (PCFR) and the parallel port D function
register (PDFR) are used to enable the Port C and Port D serial outputs (see
Section 9.3, “Parallel Port C”, and Section 9.4, “Parallel Port D” for more details).

Bits 3,2—This sets the mode of operation. Modes 10 and 11 apply only to Ports A and B.
Bits 1,0—These bits enable interrupts and set the interrupt priority.

12.2 Serial Port Interrupt

A common interrupt vector is used for the receive and transmit interrupts. Thereisa sep-
arateinterrupt request flip-flop for the receiver and transmitter. If either of these flip-flops
isset, aserial port interrupt isrequested. The flip-flops are set by arising edge only. The
flip-flops are cleared by a pulse generated by an I/O read or write operation as shown in
Figure 32. When an interrupt is requested, it will take place immediately when priorities
allow and aninstruction execution iscomplete. Theinterrupt islost if the request flip-flop
is cleared before the interrupt takes place. If the flip-flop is not cleared in the interrupt,
another interrupt will take place when priorities are lowered.
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Transmitter IRQ

R
Transmitter Dafa Request Interrupt
Buffer Empty or |
Transmitter not Busy Write Transmitter
Data Register or )
Write Status Register RECEIVEr IRQ
_
Receiver Dala
Buffer Full |
Read Receiver Data
Register

Figure 32. Generation of Serial Port Interrupts

The receive interrupt request flip-flop is set after the stop bit is sampled on receive, nomi-
nally 1/2 of the way through the stop bit. Data bits are transferred on this same clock from
the receive shift register to the receive data register.

The transmit interrupt request flip-flop is set on the leading edge of the stop bit for data
register empty and at the trailing edge of the stop bit for shift register empty (transmitter
idle). Unless the data register is empty on thistrailing edge of the stop bit, the transmitter
does not become idle. The transmitter becomesidle only if the dataregister is empty at the
trailing edge of the stop bit.

The serial port interrupt vectors are shown in Table 17 in Chapter 7.

12.3 Transmit Serial Data Timing

On transmit, if the interrupts are enabled, an interrupt is requested when the transmit regis-
ter becomes empty and, in addition, an interrupt occurs when the shift register and trans-
mit register both become empty, that is, when the transmitter becomesidle. When the
transmit dataregister contains data and the shift register finishes sending data, the data bits
are clocked from the transmit register to the shift register, and the shift register is never
idle. Theinterrupt request is cleared either by writing to the data register or by writing to
the status register (which does not affect the status register). The dataregister normally is
clocked into the shift register each time the shift register finishes sending data, leaving the
dataregister empty. This causes an interrupt request. The interrupt routine normally an-
swersthe interrupt before the shift register runsdry (9 to 11 baud clocks, depending on the
mode of operation). The interrupt routine stores the next data item in the data register,
clearing the interrupt request and supplying the next data bitsto be sent. When all the
characters have been sent, the interrupt service routine answers the interrupt once the data
register becomes empty. Since it has no more data, it clears the interrupt request by stor-
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ing to the status register. At this point the routine should check if the shift register is
empty; normally it won't be. If itis, because the interrupt was answered | ate, the interrupt
routine should do any final cleanup and store to the status register again in case the shift
register became empty after the pending interrupt is cleared. Normally, though, the inter-
rupt service routine will return and there will be afinal interrupt to give the routine a
chance to disable the output buffers, asin the case for RS-485 transmission.

12.4 Receive Serial Data Timing

When the receiver isready to receive data, afalling edge indicates that a start bit must be
detected. Thefalling edge isdetected asadifferent Rx input between two different clocks,
the clock being 16x the baud rate. Once the start bit has been detected, data bits are sam-
pled at the middle of each data bit and are shifted into the receive shift register. After 7 or
8 data bits have been received, the next bit will be either a 9th (8th) address bit, or a stop
bit will be sampled. If the Rx lineislow, it isan address bit and the address bit received
bit in the status register will be enabled. If an address bit is detected, the receiver will at-
tempt to sample the stop bit. If the lineis high when sampled, it isastop bit and a new
scan for anew start bit will begin after the sample point. At the sametime, the databits are
transferred into the receive data register and an interrupt, if enabled, is requested.

On receive, an interrupt is requested when the receiver data register has data. This hap-
pens when data bits are transferred from the receive shift register to the dataregister. This
also sets hit 7 of the status register. The interrupt request and bit 7 are cleared when the
dataregister isread.

Aninterrupt isrequested if bit 7 ishigh. Theinterrupt is requested on the edge of the
transmitter data register becoming empty or the transmitter shift register becoming empty.
The transmitter interrupt is cleared by writing to the status register or to the data register.

On receive, the scan for the next start bit starts immediately after the stop bit is detected.
The stop bit isnormally detected at a sample clock that nominally occursin the center of
the stop bit. If thereisa9th (8th) address bit, the stop bit follows that bit.

12.5 Clocked Serial Ports

Ports A and B can operate in clocked mode. The data line and clock line are driven as
shown in Figure 33. The data and clock are provided as 8-bit bursts. The transmit shift
register advances on the falling edge of the clock. The receiver samples the data on the
rising edge of the clock. The serial port can generate the clock or the clock can be pro-
vided externally.

To enable the clocked serial mode, a code must be in bits (3,2) of the control register, en-
abling the clocked serial mode with either an internal clock or an external clock. Thetran-
sition between the external and the internal clock should be performed with care.
Normally a pullup resistor is needed on the clock line to prevent spurious clocks while
neither party is driving the clock.
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Figure 33. Serial Port Synchronization

In clocked serial mode the shift register and the data register work in the same fashion as
for asynchronous communications. However, to initiate sending or receiving, a code must
be stored in bits (7,6) of the control register for each byte sent or received. One code spec-
ifies sending a byte, a different code specifies receiving a byte. The effect of these codes
is different, depending on whether the mode isinternal clock or external clock.

To transmit in internal clock mode, the user must first load the data register (which must
be empty) and then store the send code. When the shift register finishes sending the cur-
rent character, if any, the dataregister will be loaded into the shift register and transmitted
by an 8-clock burst. One character can be in the process of transmitting while another
character iswaiting in the data register tagged with the send code. The send code is effec-
tively double-buffered.

To receive acharacter ininternal clock mode, the receive shift register should beidle. The
user then stores the receive code in the control register. A burst of 8 clocks will be gener-
ated and the sender must detect the clocks and shift output data to the data line on the fall-
ing edge of each clock. Thereceiver will sample the dataon therising edge of each clock.
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The receive mode cannot double-buffer characters when using the internal clock. The
shift register must be idle before another character receive can beinitiated. However, the
interrupt request and character ready takes place on the rising edge of the last clock pulse.
If the next receive code is stored before the natural |ocation of the next falling edge, an-
other receive will be initiated without pausing the clock. To do this, the interrupt hasto be
serviced within /2 clock.

To transmit each byte in external clock mode, the user must load the dataregister and then
store the send code. When the shift register isidle and the receiver provides aclock burst,
the data bits are transferred to the shift register and are shifted out. Once the transfer is
made to the shift register, a new byte can be loaded into the transmit register and a new
send code can be stored.

To receive abyte in external clock mode, the user must set the receive code for the first
byte and then store the receive code for the next byte after each byte is removed from the
dataregister. Since the receive code must be stored before the transmitter sends the next
byte, the receiver must service the interrupt within 1/2 baud clock to maintain full-speed
transmission. Thisisusually not practical unless aflow control arrangement is made or
the transmitter inserts gaps between the clock bursts.

In order to carry on high-speed communication, the best arrangement will usually be for
the receiver to provide the clock. When the receiver provides the clock, the transmitter
should always be able to keep up because it is double-buffered and has a full character
time to answer the transmitter data register empty interrupt. The receiver will answer in-
terrupts that are generated on the last clock rising edge. If the interrupt can be serviced
within 1/2 clock, there will be no pause in the datarate. If it takes the receiver longer to
answer, then there will be a gap between bytes, the length of which depends on the inter-
rupt latency. For example, if the baud rate is 400,000 bps, then up to 50,000 bytes per sec-
ond could be transmitted, or a byte every 20 ys. No datawill belost if the transmitter can
answer itsinterrupts within 20 us. There will be no slow down if the receiver can answer
itsinterrupt within 1/2 clock or 1.25 ps. If it can answer within 1.5 clocks, or 2.75 ps, the
datarate will dow to 44,444 bytes per second. If it can answer in 2.5 clocks or 6.25 s,
the data rate slows to 40,000 bytes per second. If it can answer in 3.5 clocks or 8.75 s,
the data rate will slow to 36,363 bytes per second, and so forth.

If two-way half-duplex communication is desired, the clock can be turned around so that
the receiver always providesthe clock. Thisis dlightly more complicated since the re-
ceiver cannot initiate amessage. If the recelver attempts to receive a character and the
transmitter is not transmitting, the last bit sent will be received for al eight bits.
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12.6 Clocked Serial Timing

12.6.1 Clocked Serial Timing With Internal Clock

For synchronous serial communication, the serial clock can be either generated by the
Rabbit or by an external device. Thetiming diagram in Figure 34 below can be applied to
both full-duplex and half-duplex clocked serial communication where the seria clock is
generated internally by the Rabbit. With an internal clock, the maximum seria clock rate
isper cl k/4.

CYCLE 1 2 3 4 5 6 7 8
CLKA A WA A WA G A WA WA W
TXA q LSB Y BIT1 Y BIT2 X BIT3 ( BIT4 { BIT5 { BIT6 MSB
RXA LSB BIT1 Y BIT2 \BIT3 ( BIT4 }{ BIT5 ¥ BIT6 { MSB

weawesnae 4 44 4 4 A4

Figure 34. Full-Duplex Clocked Serial Timing Diagram with Internal Clock

12.6.2 Clocked Serial Timing with External Clock

In asystem where the Rabbit serial clock is generated by an external device, the clock sig-
nal hasto be synchronized with the internal peripheral clock (per cl k) before data can be
transmitted or received by the Rabbit. Depending on when the external serial clock isgen-
erated, in relation to per cl k, it may take anywhere from 2 to 3 clock cyclesfor the exter-
nal clock to be synchronized with the internal clock before any data can be transferred.
Figure 35 shows the timing relationship among per cl k, the external serial clock, and
data transmit.

perck /. /. / /S

CLKA
(ext.)

TXA | X

Figure 35. Synchronous Serial Data Transmit Timing with External Clock
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Figure 36 shows the timing relationship among per cl k, the external serial clock, and
datareceive. Note that RxA issampled by the rising edge of per cl k.

Valid

Figure 36. Synchronous Serial Data Receive Timing with External Clock

When clocking the Rabbit externally, the maximum serial clock frequency is limited by
the amount of time required to synchronize the external clock with the Rabbit per cl k. If
we sum the maximum number of per cl k cyclesrequired to perform clock synchroniza-
tion for each of the receive and transmit cases, then the fastest external serial clock fre-
guency would be limited to per cl k/6.

12.7 Serial Port Software Suggestions

The receiver and transmitter share the same interrupt vector, but it is possible to make the
receive and transmit interrupt service routines (1SRs) separate by dispatching the interrupt
to either of two different routines. Thisis desirable to make the ISR less complex and to
reduce the interrupt off time. No interrupts will be lost since distinct interrupt flip-flops
exist for receive and transmit. The dispatcher can test the receiver data register full bit to
dispatch. If thisbit ison, the interrupt is dispatched for receive, otherwise for transmit.
The receiver receivesfirst consideration because it must be serviced attentively or data
could be lost.

The dispatcher might look as follows.

i nterrupt:

push af ; 10

ioi Id a,(SCSR) ; 7 get status register serial port C

jp mreceive ; 7 go service the receive interrupt

jp transmt ; 7 (41 clocks to here) go service transmt interrupt

The individual interrupts would assume that register AF has been saved and the status reg-
ister has been loaded into register A.

The interrupt service routines can, as a matter of good practice and obtaining optimum
performance, remove the cause of the interrupt and re-enable the interrupts as soon as pos-
sible. Thiskeepsthe interrupt latency down and allows the fastest transmission speed on
al serial ports.
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All the seria portswill normally generate priority level 1 interrupts. In exceptional circum-
stances, one or more serial ports can be configured to use a higher priority interrupt.
There isan exception to be aware of when a serial port hasto operate at an extremely high
speed. At 115,200 bps, the highest speed of a PC seria port, the interrupts must be serviced
in 10 baud times, or 86 s, in order not to lose the received characters. If al four seria ports
were operating at this receive speed, it would be necessary to service the interrupt in less
than 21.5 psto assure no lost characters. 1n addition, the time taken by other interrupts of
equal or higher priority would have to be considered. A receiver service routine might ap-
pear asfollows below. The byte at buf pt r isused to address the buffer where data bits
are stored. It isnecessary to save and increment this byte because characters could be han-
dled out of order if two receiver interrupts take place in quick succession.

receive:
push hl ; 10 save h
push de ; 10 save de

Id hl,struct ; 6
Id a,(hl) ; 5 getin-pointer

ld e,a ; 2 save in pointer in e

inc hl  ; 2 point to out-pointer

cnp a,(hl) ; 5 see if in-pointer=out-pointer (buffer full)
jr z,roverrun ; 5 go fix up receiver over run

inc a ; 2 incenent the in pointer

and a, mask ; 4 mask such as 11110000 if 16 buffer |ocs

dec hl ; 2

Id (hl),a ; 6 update the in pointer

ioi Id a,(SCDR) ; 11 get data register port C, clears interrupt
request

i pres ; 4 restore the interrupt priority

68 clocks to here
; to level before interrupt took place
; more interrupts could now take place,
but receiver data is in registers
; now handl e the rest of the receiver interrupt routine
Id hl, bufbase ; 6

Id d,0; 6

add hl,de ; 2 location to store data
Id (hl),a ; 6 put away the data byte
pop de ;7

pop hl ; 7

pop af ; 7

ret ; 8 frominterrupt

117 cl ocks to here

This routine gets the interrupts turned on in about 68 clocks or 3.5 ps at a clock speed of
20 MHz. Although two characters may be handled out of order, thiswill beinvisibleto a
higher level routine checking the status of the input buffer because all the interrupts will
be completed before the higher level routine can perform a check on the buffer status.

A typical way to organize the buffersisto have an in-pointer and an out-pointer that incre-
ment through the addresses in the data buffer in a circular manner. The interrupt routine
mani pulates the in-pointer and the higher level routine manipulates the out-pointer. If the
in-pointer equals the out-pointer, the buffer is considered full. 1f the out-pointer plus 1
eguals the in-pointer, the buffer isempty. All increments are done in acircular fashion,
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most easily accomplished by making the buffer a power of two in length, then anding a
mask after the increment. The actual memory address is the pointer plus a buffer base ad-
dress.

12.7.1 Controlling an RS-485 Driver and Receiver

RS-485 uses a half-duplex method of communication. One station enables its driver and
sends amessage. After the message is complete, the station disables the driver and listens
tothelinefor areply. The driver must be enabled before the start bit is sent and not dis-
abled until the stop bit has been sent. The transmitter idle interrupt is normally used to
disable the RS-485 driver and possibly enable the receiver.

12.7.2 Transmitting Dummy Characters

It may be desired to operate the serial transmitter without actually sending any data. “Dummy”
characters are transmitted to pass time or to measure time.

The output of the transmitter may be disconnected from the transmitter output pin by manip-
ulating the control registersfor parallel port C or D, which are used as output pins. For ex-
ample, if serial port B isto be temporarily disconnected from its output pin, which isbit 4
of parallel port C, this can be done asfollows.

1. Storea"1" inbit 4 of the parallel port data output register to provide the quiescent state
of thedriveline.

2. Clear bit 4 of the parallel port C function register so that the output no longer comes
from the seria port. Of course, this should not be done until the transmitter isidle.

A similar procedure can be used if the serial port is set up to use alternate output pins on
port D. Only serial ports A and B can use alternate outputs on parallel port D.

If an RS-485 driver is being used, dummy characters can be transmitted by disabling the
driver after the stop bit has been sent. Thisis an alternative to the above procedure.

12.7.3 Transmitting and Detecting a Break

A break is created when the output of the transmitter is driven low for an extended period.
If abreak isreceived, it will appear as a series of charactersfilled with zeros and with the
9th bit detected low. This could only be confused with alegitimate message if a protocol
using the 9th bit was in effect. Break is not usually used as a message in such protocols.

A break can be transmitted by transmitting a byte of zeros at avery slow baud rate. An-
other and probably better method is to disconnect the transmitter from the output pin, and
use the parallel port bit to set the line low while sending dummy characters to time out the
break.

The use of break as a signaling device should be avoided because it is low, erratically sup-
ported by different types of hardware, and usually creates more problems than it solves.
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12.7.4 Using A Serial Port to Generate a Periodic Interrupt

A serial port may be used to generate a periodic interrupt by continuously transmitting
characters. Since the Tx output via parallel port C or D can be disabled, the transmitted
characters are transmitted to nowhere. Because the character output path is double-buff-
ered, there will be no gaps in the character transmission, and the interrupts will be exactly
periodic. Theinterrupts can happen every 9, 10 or 11 baud times, depending on whether 7
or 8 bits are transmitted and on whether the 9th (8th) bit is sent.

12.7.5 Extra Sop Bits, Sending Parity, 9th Bit Communication Schemes

Some systems may require two stop bits. 1n some cases, it may be necessary to send a par-
ity bit. Certain systems, such as some 8051 based multidrop communications systems, use
a 9th data bit to mark the start of amessage frame. The Rabbit 2000 can receive parity or
message formats that contain a 9th bit without problem. Transmitting messages with par-
ity or messages that always contain a 9th bit is also possible. It is quite easy to do so for
byte formats that use only 7 data bits, in which case the 9th bit or parity bit is actually an
8th bit. Thingsarealittle bit messy for the transmitter softwareif there are 8 data bits and
a 9th parity or signaling bit is needed. Sending a 9th low bit is supported by hardware.
Sending a 9th bit as a high value requires delaying the transmission of the next character
by 1 baud time, effectively providing the 9th bit high and a stop bit, which is the same as
two stop bits.

Figure 37 illustrates the standard asynchronous serial output patterns.

stop bit
0 7 '
data bit \ )
start bit ata bits oth bit low
Character with 9th bit low stop bit
0 70
L —
start bit Character w/o 9th bit low op bit This format is not

t
// sent automatically.

0 7 \ '
L —
. Character w. 9th bit high
start bit g 9th bit high

Signal shown at output pin on processor. A “1” is high.

Figure 37. Asynchronous Serial Output Patterns
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12.7.5.1 Parity, Extra Sop Bitswith 7 Data Bit Characters

If only 7 data bits are being sent, the problem of sending an additional parity or signal bit
iseasily solved by sending 8 bits and always setting bit 7 (the eighth bit) of the byteto "1"
or “0” depending on what is desired. No special precautions are needed if two stop bits
areto bereceived. If parity isreceived with 7 data bits, receive the data as 8 bits, and the
parity will be in the high bit of the byte.

12.7.5.2 Parity, Extra Sop Bitswith 8 Data Bit Characters

In order to receive parity with 8 data bits, a check is made on each character for a 9th bit
low. The 9th bit, or parity bit, islow if bit 6 of the serial port status register issettoa 1"
after the character isreceived. |If the 9th bit is not a zero, then the serial port treatsit asan
extrastop bit. Soif the 9th bit low flag isnot set, it should be assumed that the parity bit is
a"l"

No special precautions are necessary to receive extra stop bits, nor does the serial port
check for stop bits beyond one. If thefirst stop bit ismissing, it istreated as a 9th (or 8th)
bit low and will be received as a 9-bit (8-bit) character.

It is somewhat difficult to transmit an extra stop bit or a parity bit of value"1." The diffi-
culty arises because there is no one solution that applies to every case, although thereisa
solution for every case. To send an extra stop bit or parity bit of value"1," it is necessary
to delay sending the next character so that the stop bit will be extended to alength of at
least 2 baud times. In order to delay the next character by an additional baud time, the
program has to wait for the transmitter idle interrupt, which takes place after the data reg-
ister empty interrupt. The data register ready interrupt request is terminated by writing to
the status register. After the transmitter idle interrupt, which takes place at the trailing
edge of the stop bit, the interrupt routine must not load the next character for another baud
time, for example, 8.6 pusat 115,200 bps or 104 ps at 9600 bps. At the highest baud rates
it makes sense to use a busy wait loop in the interrupt routine to time out a baud step be-
fore loading the data register with the next character. The busy wait loop may be very
brief since the delay can be partially made up from the time used to save the registers on
entry to the interrupt and the time used in fetching the next character to be sent from the
transmit buffer. Of course the busy wait loop runs on the processor clock, which is subject
to being throttled up and down, so the loop count must be coordinated with the current
processor speed.

A busy wait loop can still be used at slower baud rates, but then there will be a deleterious
effect on the interrupt latency unless interrupts are re-enabled in the interrupt routine.
This can certainly be done provided that the receiver and transmitter interrupts are prop-
erly dispatched to separate routines because the receiver and transmitter interrupts share
the same interrupt vector. In addition, when interrupts are re-enabled in the interrupt rou-
tine, there must be coordination with the real-time kernel or the operating system (if there
isone). This coordination typically involves a nesting count of interrupt routines that
much be adjusted by each interrupt routine that re-enables interrupts before it returns. If a
busy wait loop is used, it can be expected to consume around 10% of the processors com-
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pute time while characters are being transmitted, since it is doing busy waiting for 1 baud
out of 11 baud timesfor each character sent. Using the transmitter idle interrupt to request
the next character will result in gaps between characters that can be as long as the worst-
caseinterrupt latency. Most applications are not bothered by gaps between characters, but
certain applications such as Modbus require controlling gaps between characters. Thus, it
would be inadvisable to attempt Modbus with parity at a high datarate.

Other ways to add a 1-baud delay are listed below:

e Useanother seria port asatimer. Disable the interrupts on the port being used to trans-
mit and, at the same time the data register is loaded, load a dummy character and a 9th
bit in the other serial port. Theinterrupt in the auxiliary port will occur after 11 baud
times rather than 10 baud times, thus guaranteeing the stop bit its full time.

* Send afull dummy character to create a very long stop bit. To avoid the long stop bit,
the baud timer can be speeded up while the dummy character is sent to reduce the
length of the extra stop bit. The synchronous nature of timers A4-A7 allowsthe divide
ratio to be increased or decreased at will without generating irregular clock pulses.

« Useatimer interrupt to generate the extra 1-baud delay between characters. Theinter-
rupts can be enabled for the same timer that was used to generate the baud clock, and
the timer can be slowed down so that one cycle is equal to the delay length needed.

» Useserid ports A and B, which have synchronous capability, to send a character in
synchronous mode (output Tx disabled). The synchronous character is sent at a baud
rate 8 times greater than the asynchronous baud rate, giving an additional baud time.
For thisto work, the pin used for the synchronous clock out (port B bits 0 or 1) must
either be unconnected or connected to something that can tolerate a burst of 8 clock
pul ses.

12.7.6 Supporting 9th Bit Communication Protocols

This section describes how 9th bit communication protocols work. 9th bit communication
protocols are supported by processors such as the 8051 and the Z180, and by companies
such as Cimentrics Technology. The data bytes have an extra 9th bit appended where a
parity bit would normally be placed. Requests from the network master to one of its
slaves consist of aframe of bytes—the first byte has the 9th bit set to "1" (asthe signal is
observed at the Tx pin of the processor) and the following bytes have the Sth bit set to "0."
Thefirst byteisidentified as the address byte, which specifies the slave unit where the
message is directed. Thisenablesadave to find the start of a message, which is the byte
with the 9th bit set, and to determine if the message is directed to it. If the message isdi-
rected to a particular slave, the slave will then read the characters in the rest of the mes-
sage; otherwise the slave will continue to scan for a start of message character containing
its address.

Normally the 9th bit isset to "1" only on the first byte of arequest transmitted by the net-
work master. The subsequent bytes and the dave replies have the 9th bit set to zero. Since
the majority of thetraffic hasa9th bit set low, it isonly necessary to stretch the stop bit for
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the first bytes or address bytes. This can be done without sacrificing performance by
sending a dummy character (transmitter disconnected) after the address byte.

Some microprocessor serial ports have a“wake up” mode of operation. In this mode,
characters without the 9th bit set to "1" areignored, and no interrupt is generated. When
the start of aframe is detected, an interrupt takes place on that byte. If the byte contains
the address of the slave, then the “wake up” mode is turned off so that the remaining char-
actersin the frame can be read. This scheme reduces the overhead associated with mes-
sages directed to other daves, but it does not really help with the worst-case load. In most
cases, the worst-case compute load is the governing factor for embedded systems. In ad-
dition, it is quite easy for the interrupt driver to dismiss characters not directed to the sys-
tem. For these reasons, the “wake up” mode was not implemented for the Rabbit.

The 9th bit protocols suffer from amajor problem that the IBM-PC uarts can support the
9th bit only by using special drivers.

12.7.7 Rabbit-Only Master/Slave Protocol

If only Rabbit microprocessors are connected, the 9th bit low can be set on the address
byte, and the remaining bytes can be transmitted in the normal 8-bit mode. Thisis more
efficient than other 9th bit protocols because only the first byte requires 11 baud times; the
remaining bytes are transmitted in 10 baud times.

12.7.8 Data Framing/M odbus

Some protocols, for example, Modbus, depend on a gap in the data frame to detect the be-
ginning of the next frame. The 9th bit protocol is another way to detect the start of a data
frame.

The Modbus protocol requires that data frames begin with a minimum 3.5-character quiet
time. The receiver uses this 3.5-character gap to detect the start of aframe. In order for
the receiving interrupt service routine to detect this gap, it is suggested that dummy char-
acters be transmitted to help detect the gap. This can be done in the following manner.
The transmitter starts transmitting dummy characters when the first character interrupt is
received. Each time thereisan interrupt, either receiver dataregister full or transmitter
dataregister empty, adummy character istransmitted if the transmitter dataregister is
empty. Although the transmitter and receiver operate at approximately the same baud rate,
there can be a difference of up to about 5% between their baud rates. Thus the receiver
full and transmitter empty interrupts will become out of phase with each other, assuming
that the remote station transmits without gaps between characters. A counter is zeroed
each time a character is received, and the counter is incremented each time a character is
transmitted. If this counter holds (n), thisindicates that a gap has been detected in the
frame; the length of thegap is (n - 1) to (n) characters. The start of frame could be marked
by (n) reaching 3, indicating that the existence of a gap at least two characters long.
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13. Rabbit Slave Port

When a Rabbit microprocessor is configured as a slave, paralel port A and certain other
datalines are used as communication lines between the slave and the master. The slave
unit isa Rabbit configured asaslave. The master can be another Rabbit or any other type
of processor. Rabbits configured as slaves can themselves have slaves.

The master and slave communicate with each other viathe slave port. Thedave portisa
physical device that includes data registers, a data bus and various handshaking lines. The
slave port isapart of the slave Rabbit, but logicaly it isan independent device that is used
to communicate between the two processors. A diagram of the slave port is shown in
Figure 38.

SPSR

’_ﬁ/
i

i L SPD2R
81-88
- SDO—SD7>

98 | sa1
97

_ SPDIR

| | SPDOR

96 _| /sRD

21 | /scs

<100 | /SLAVEATTN

CPU

Figure 38. Rabbit Slave Port

The dlave port has three data registers for each direction of communication. Three regis-
ters, named SPDOR, SPD1R, and SPD2R, can be written by the master and read by the
dave. Threedifferent registers, also named SPDOR, SPD1R, and SPD2R, can be written
by the master and read by the slave. The same names are used for different registers since
itisusually clear from the context which register ismeant. If it isnecessary to distinguish
between registers, we will refer to the registers as SPDOR writable by the dave or SPDOR
readable by the master, different descriptions for the same register.

A status register can be read by either the slave or the master. The status register has full/
empty bitsfor each of the six registers. A dataregister is considered full when itiswritten
to by whichever side is capable of writing to it. If the same register isthen read by either

sideitisconsidered to be empty. Theflag for that register isthus set to a"1" when the reg-
ister iswritten to, and the flag is set to a"0" when the register is read.
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The registers appear to be internal 1/0 registersto the slave. To the master, at least for a
Rabbit master, the registers appear to be external 1/0 registers. Figure 39 shows the se-
guence of events when the master reads/writes the dave port registers.

Slave Port Read Cycle
/scs X —
:<—>: Tsu(SCS) :«—»: Th(SCS)
SA1, SA0 —X X
L, TsU(SA) <> Th(SA)
/ISRD \ /
! ' Tw(SRD)
SD[7:0] ———— X ——
! Ten(SRD) | | Tdis(SRD)
. 1 Ta(SRD)
SSWR T

l«———> TSu(SWR — SRD)

Slave Port Write Cycle

/scs =X —
:«—»: Tsu(SCS) :«—»: Th(SCS)
SA1, SA0 X
:«—»I Tsu(SA) :<—>: Th(SA)
/ISWR \ /
! ' Tw(SWR)
SD[7:0] ; { ' —
! | :<—>:Th(SD)
1 !<—>| Tsu(SD)
/SRD :

'«—— Tsu(SRD — SWR)

Figure 39. Slave Port R/W Sequencing
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The following table explains the parameters used in Figure 39.

Symbol Parameter Milzri:g)um Maz(ri?)um
Tsu(SCS) /SCS Setup Time 10 —
Th(SCS) /SCS Hold Time 10 —
Tsu(SA) SA Setup Time 10 —
Th(SA) SA Hold Time 10 —
Tw(SRD) /SRD Low Pulse Width 120 —
Ten(SRD) /SRD to SD Enable Time 0 —
Ta(SRD) /SRD to SD Access Time — 90
Tdis(SRD) /SRD to SD Disable Time — 20
Tsu(SRW — SRD) | /SWR High to /SRD Low Setup Time 120 —
TW(SWR) /SWR Low Pulse Width 120 —
Tsu(SD) SD Setup Time 20 —
Th(SD) SD Hold Time 10 —
Tsu(SRD — SWR) | /SRD High to /SWR Low Setup Time 120 —

The two SPDOR registers have special functionality not shared by the other data registers.
If the master writesto SPDOR, an inbound interrupt flip-flop isset. If slave port interrupts
are enabled, the slave processor will take a slave port interrupt. If the slave writesto the
other SPDOR register, the slave attention line (/SLAVEATTN, pin 100) is asserted (driven
low) by the slave processor. This line can be used to create an interrupt in the master. Ei-
ther sidethat isinterrupted can clear the signal that is causing an interrupt request by writing
to the slave port status register. The data bits are ignored, but the flip-flop that is the source
of the interrupt request is cleared. Figure 40 showsalogical schematic of this functionality.
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Master writes SPDOR

Slave inbound interrupt requested

Visible in status register

Slave writes status register

Slave writes SPDOR
/ISLAVEATTN (PB7)

R P

Visible in status register

Master writes status register

Figure 40. Slave Port Handshaking and Interrupts

Figure 41 shows a sample connection of two slave Rabbitsto a master Rabbit. The master
drives the slave reset line for both slaves and provides the main processor clock from its
own clock. Thereis no requirement that the master and slave share a clock, but doing so
makes it unnecessary to connect a crystal to the slaves. Each Rabbit in Figure 41 hasto
have RAM memory. The master must also have flash memory. However, the slaves do
not need nonvolatile memory since the master can cold boot them over the slave port and
download their program. In order for this to happen, the SMODEO and SMODEL1 pins
must be properly configured as shown in Figure 41 to begin a cold boot process at the end
of the slave reset.
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Master Rabbit First Slave Rabbit
DO-D7 g - SDO-SD7 .
/IORD /SRD
/IOWR ISWR
AO /SAO
Al /SA1 SMODEO
CLK /IXTALB1
portout IRESET SMODE1
INTOA /SLAVEATTN
n7 /SCS
INT1A N
/16
Second Slave Rabbit
-
+
Reset
Pulldown SMODEO | 3
/SLAVEATTN SMODEL
/SCS

Figure 41. Typical Connection Slave Rabbit to Master Rabbit

The dave port lines are shown in Figure 38. The function of these lines is described below.

SD0O-SD7—These are bidirectional datalines, and are generally connected to the data
bus of the master processor. Multiple slaves can be connected to the data bus. The
dlave drives the data lines only when /SCS and /SRD are both pulled low.

SA1, SAO0—These are address lines used to select one of the four data registers of the
dave interface. Normally these lines are connected to the low-order address lines of
the master. The master always drives these lines which are aways inputs to the slave.

/SCS—Input. Slave chip select. The slave ignores read or write requests unless the
chip select islow. If a Rabbit is used as a master, thisline can be connected to one of
the master’s programmable chip select lines/I10-17.

/SRD—Input. If /SCSisalso low, thisline pulled low causes the contents of the regis-
ter selected by the address linesto be driven on the data bus. If aRabbit isused asa
master, thisline is normally connected to the global /O read strobe /IORD.

ISWR—Input. If /SCSisalso low, thisline causes the data bits on the data bus to be
clocked into the register selected by the address lines on the rising edge of /SWR or /SCS,
whichever risesfirst. If aRabbit isused asamaster, thislineis normally connected to the
global 1/0 write strobe /IOWR.

User’s Manual 125



* /SLAVEATTN—Thislineisset low (asserted) if the slave writesto the SPDOR register.
Thislineis set high if the master writes anything to the slave status register. Thislineis
usually connected to cause the master to be interrupted when it goes low.

The datalines of the dave port are shared with parallel port A that uses the same package
pins. The dave port can be enabled, and parallel port A be disabled, by storing an appropri-
ate code in the dave port control register (SCR). After the processor isreset, all the pins be-
longing to the dave interface are configured as parallel-port inputs unless (SMODEL,
SMODEQ) are set to (0,1), in which case the dave port is enabled after reset and the slave
starts the cold-boot sequence using the dave port.

13.1 Hardware Design of Slave Port I nterconnection

Figure 41 shows atypical circuit diagram for connecting two slave Rabbits to a master
Rabbit. The designer has the option of cold-booting the slave and downloading the pro-
gram to RAM on each cold start. Another option isto configure the slave with both RAM
and flash memory. In this case, the lave will only have the program downloaded for
maintenance or upgrades. Usually, the flash would not be written to on every startup be-
cause of the limited number of lifetime writes to flash memory. The daves reset in
Figure 41 is under the program control of the master. If the master is reset, the slave will
also be reset because the master’s drive of the reset line will be lost on reset and the pull-
down resistor will pull the slaves’ resetslow. Thismay be undesirable because it forces
the slave to crash if the master crashes and has a watchdog timeout.

13.2 Slave Port Registers

The dave port registers are listed in Table 44. These registers, each of which isactually two
separate registers, one for read and one for write, are accessible to the dave at the 1/0 ad-
dresses shown in the table and they are accessible to the master at the external address
shown which specifiesthe value of the dave address (SAO, SA1) input to the save when the
master reads or writestheregisters. Theregister that can be written by the ave can only be
read by the master and vice versa. If one side were to attempt to read aregister at the same
time that the other side attempted to write the register the result of the read could be scram-
bled. However, the protocols and handshaking bits used in communication are normally
such that this never happens.

Table 44. Slave Port Registers

Register Mnemonic Internal External
Address Address
SPDOR 20h 0
Slave Port Data x Register SPD1R 21h 1
SPD2R 22h 2
Slave Port Status Register SPSR 23h 3
Slave Port Control Register SPCR 24h N.A.
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If the user for some reason wants to depart from the suggested protocols and poll aregister
while waiting for the other side to write something to the register, the user should be aware
that al the bits might not change at the exact same time when the result changes, and a
transitional value could be read from the register where some bits have changed to the new
value and others have not. To avoid being confused by atransitional value, the user can
read the register twice and make sure both values are the same before accepting the value,
or the user can test only one bit for achange. The transitional value can only exist for one
read of the register, and each bit will have its old value change to the new value at some
point without wavering back and forth. The existence of atransitional value could be very
rare and has the potential to create a bug that happens often enough to be serious, but so in-
frequently as to be difficult to diagnose. Thus, the user is cautioned to avoid this situation.

Table 45 describes the slave port control register.

Table 45. Slave Port Control Register (SPCR) (adr = 024h)

Bit 7 w/o Bits 6,5 R/O Bit 4 Bit 3,2 w/o Bits 1,0 w/o
0—obey SMODE | Reads SMODE pins | x 00—disable dave port, 00—no slave
pins smodel,smode0 port A isabyte wide interrupt
1—ignore SMODE input port pp—enable slave
pins 01—disable slave port, port interrupt
port A isabyte wide priority 1-3.
output port
1x—enable the dave port

The functionality of the bitsis as follows.

Bit 7—If set to "0," the cold-boot feature will be enabled. Normally thisbitisset to a
"1" after the cold boot is complete. The cold boot for the slave port is enabled au-
tomaticaly if (SMODEL, SMODEO) linesare set to (0,1) after thereset ends. This
features disables the normal operation of the processor and causes commands to be
accepted via the slave port register SPDOR. These commands cause data to be
stored in memory or I/O space. When the master that is managing the cold boot
has finished setting up memory and 1/O space, the (SMODE1, SMODEDO) pins are
changed to code (0,0), which causes execution to start at address zero. Typically
thiswill start execution of a secondary boot program. At some point, bit 7 will be
setto a"1" so that the SMODEX pins can be used as normal input pins.

Bits 6,5—May be used to read the input pins SMODE , SMODEO.

Bits 3,2—Bit 3 enables the slave port when set to a"1," disabling parallel port A and
various other port lines. Bit 3isautomatically settoa"1" if acold boot isdonevia
thedlave port. If bit 3is"0," then bit 2 controls whether parallel port A isan input
(bit 2 = 0) or an output (bit 2 =1).

Bits 1,0—This 2-bit field sets the priority of the slave port interrupt. The interrupt is
disabled by (0,0).

Table 46 describesthe slave port statusregister. The statusregister has 6 bitsthat are set if
the particular register isfull. That means that the register has been written by the proces-
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sor that can writeto it but it has not been read by the processor that can read it. The bits
for SPDOR are used to control the slave interrupt and the handshaking lines as shown in

Figure 40.
Table 46. Slave Port Status Register (SPSR) (adr = 023h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
l—setby |1—setby |l1—setby |1—setby |l1—setby |l1—setby |l1—setby |l1—sethby
master master master master dave dave dave save

writeto writeto writeto write to write to write to write to write to

SPDOR. SPD2R. SPD1R. SPDOR. SPDOR. SPD2R. SPD1R. SPDOR.
Cleared Cleared Cleared Cleared Cleared Cleared Cleared Cleared

by dave when when when by when when when

writeto slave slave dave master master master master

SPSR. reads reads reads write to reads reads reads
register. register. register. SPSR. register. register. register.

13.3 Applications and Communications Protocols for Slaves

The communications protocol used with the slave port depends on the application. A

slave processor may be used for various reasons. Some possible applications are listed be-
low.

Keep in mind that the Rabbit can also be operated as a slave processor viaaserial port and
some of the protocols will work well viaa serial communications connection. |If aserial
connection is used, the protocol becomes more complicated if errorsin transmission need
to be taken into account. If the physical link can be controlled so that transmission errors
do not occur, arealistic possibility if the interconnection environment is controlled, the se-
rial protocol is simpler and faster than if error correction needs to be taken into account.

13.3.1 Slave Applications

Motion Controlle—Many types of motion control require fast action, may be com-
pute-intensive or both. Traditional servo system solutions may be overly expensive or
not work very well because of system nonlinearities. The basic communications model
for amotion controller isfor the master to send short messages—positioning com-
mands—to the slave. The slave acknowledges execution of the commands and reports
exception conditions.

Communications Protocol Processor—Communications protocols may be very com-
plex, may require fast responses, or may be compute-intensive.

Graphics Controller—The Rabbit can be used to perform operations such as drawing
geometric figures and generating characters.

Digital Signal Processing—Although the Rabbit is not a speciality digital signal pro-
cessor, it has enough compute speed to handle some types of jobs that might otherwise
require a speciality processor. The slave processor can process data to perform pattern
recognition or to extract a specific parameter from a data stream.
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13.3.2 Master-Slave M essaging Protocol

In this protocol the master sends messages to the dave and receives an acknowledgement
message. The protocol can be polled or interrupt driven. Generally, the master sends a
message that has a message type code, perhaps a byte count, and the text of the message.
The dlave responds with a similar message as an acknowledgement. Nothing happens un-
less the master sends amessage. The slaveis not allowed to initiate a message, but the
slave could signal the master by using a parallel port line other than /SLAVEATN or by
placing datain one of the registers the master can read without interfering with the mes-
sage protocol.

The master sends a message byte by storing it in SPDOR. The slave noticesthat SPDOR is
full and reads the byte. When the master notices that SPDOR is empty because the dlave
read it, the master stores the next byte in SPDOR. Either side can tell if any register is
empty or full by reading the status register. When the slave acknowledges the message
with areply message, the processisreversed. To perform the protocol with interrupts, a
dave interrupt can be generated each time the slave receives a character. The Slave can ac-
knowledge the master by reading SPDOR if the master is polling for the slave response to
each character. If the master isto be interrupted to acknowledge each character, the slave
can create an interrupt in the master by storing adummy character in SPDOR to create a
master interrupt, assuming that the /SLAVEATTN line iswired to interrupt the master.
The acknowledgement message worksin asimilar manner, except that the master writesa
dummy character to interrupt the dave to say that it has the character.

Several problems can ariseif there are dual interrupts for each character transmitted. One
problem is that the message transmission rate will free run at a speed limited by the inter-
rupt latency and compute speed of each processor. This could consume a high percentage
of the compute resources of one or both processors, starving other processes and espe-
cialy interrupt routines, for compute time. If thisisaproblem, then atimed interrupt can
be used to drive the process on one side, thus limiting the data transmission rate.

Another solution, which may be better than limiting the transmission rate, is to use inter-
rupts only for the first byte of the message on the dave side, and then lower the interrupt
priority and conduct the rest of the transaction as a polled transaction. On the master side
the entire transaction can be a polled transaction. In this case, the entire transaction takes
place in the interrupt routine on the slave, but other interrupts are not inhibited since the
priority has been lowered.

A typical slave system consists of a Rabbit microprocessor and aRAM memory con-
nected to it. The clock can be provided either by connecting a crystal, or crystalsto the
dlave or by providing an external clock, which could be the master’s clock. Thereset line
of the dlave would normally be driven by the master. At system startup time the master re-
sets the slave and cold bootsiit viathe slave port. (The SMODE pins must be configured
for this.) Once the software isloaded into the slave, the slave can begin to performits
function.
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As asimple example, suppose that the dave isto be used as afour-port UART. It hasthe
capability to send or receive characters on any of itsfour serial ports. Leaving aside the
guestion of setup for paramters such as thebaud rate, we could define a protocol as fol-
lows.

SPDOR readable by master is a status register with bits indicating which of the four
receivers and four transmittersis ready, that is, has a character received or is ready to
send a character.

SPDOR writable by the master is a control register used to send commands to the dave.
SPD1R is used to send or receive data characters or control bytes.

Theline/SLAVEATTN iswired to the external interrupt request of the master so that
the master is interrupted when the slave writesto SPDOR. Typically the slave will
write to SPDOR when there is a change of status on one of the seria ports.

The slave can interrupt the master at any time by storing to SPDOR. It will do thisevery
time an enabled transmitter isready to accept acharacter or every time an enabled receiver
receives a character. When it storesto SPDOR, it will store a code indicating the reason
for the interrupt, that is, receive or transmit and channel number. If the cause isreceive,
the received character will also be placed in SPD1R writable by the slave. When the mas-
ter isinterrupted for any reason, the master will sneak a peek at SPDOR by reading SPSR.
If the interrupt is caused by areceive character, it will remove the character from SPD1R
and read SPDOR to handshake with the slave.

If the master isinterrupted for transmitter ready, as determined by the sneak peek, it will
place the outgoing character in SPD1R and write a code to SPDOR indicating transmit and
channel number. Thiswill cause the slave to be interrupted, and the slave will take the
character and handshake by reading SPDOR. This handshake does not interrupt the mas-
ter.
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14. Rabbit Hardware Design and Development

Core designs can be devel oped around the Rabbit 2000 microprocessor. A core design in-
cludes memory, the microprocessor, oscillator crystals, the Rabbit standard programming
port, and in some cases a power controller and power supply. Although modern designs
usually use at least four-layer printed circuit boards, two-sided boards are a viable option
with the Rabbit, especialy if the clock speed is not high and the design is intended to op-
erateat 2.5V or 3.3 V—factors which reduce edge speed and el ectromagnetic radiation.

Schematics illustrating the use of the Rabbit microprocessor are available on the Rabbit
Semiconductor Web site.

14.1 RS-485 Communication Interface

To be added in the future.

14.2 RS-232 Communication Interface

To be added in the future.

14.3 Analog-to-Digital Converters

To be added in the future.

14.4 Digital-to-Analog Converters

To be added in the future.

14.5 High-Voltage Drivers

To be added in the future.

14.6 Clocks

The Rabbit has two built in oscillators. The 32.768 kHz clock oscillator is needed for the
battery-backable clock, the watchdog timer, and the cold boot function. The main oscilla-
tor provides the run time clock for the microprocessor.

The 32.768 kHz oscillator is slow to start oscillating after power-on. For this reason a
wait loop in the BIOS waits until this oscillator is oscillating regularly before continuing
the startup procedure. If the clock is battery-backed, there will be no startup delay since
the oscillator is already oscillating. The startup delay may be as much as 5 seconds. Crys-
tals with low seriesresistance (R < 35 kQ) will start faster. The required oscillator circuit
iIsshown in Figure 42. If current consumption by the real-time clock isimportant, the reg-
ulator circuit shown in the figure below will reduce the current consumption by a substan-

User’s Manual 131



tial amount when a3V lithium battery is used. Using this circuit the battery backed clock
will require less than 25 pA. If the full 3V isused the current consumption will be ap-
proximately 70 pA.

R2 390 kQ
XTALAZ XTALB2 R2
O
C1 O
R1 T 15pF | 33pq ¢!
10MQ _ R1 ]
32.768 kHz ;; 1MQ _ ;;
o c2 o
XTALAL | 15pF “r A(EBl
g; 33 pF——
ircui Main Oscillat g;
32.768 kHz Circuit ain Oscillator
Safety resistor required by
1kQ / regul atory agencies.
BAT 3.0V
220kQ Battery Regulator
2MQ 23V battery backup power

— O1WF N 43MmQ

~

Figure 42. Oscillator Circuits

14.7 Low-Power Design

The power consumption is proportional to the clock frequency and to the square of the op-
erating voltage. Thus, operating at 3.3V instead of 5V will reduce the power consump-
tion by afactor of 10.9/25 or 43% of the power required at 5V. The clock speed is
reduced proportionally to the voltage at the lower operating voltage. Thusthe clock speed
at 3.3V will be about 2/3 of the clock speed at 5 V. The operating current is reduced in
proportion to operating voltage.

The Rabbit does not have a"standby" mode that some microprocessors have. Instead, the
Rabbit has the ability to switch its clock to the 32.768 kHz oscillator. Thisis called the
sleepy mode. When thisis done, the power consumption is dramatically decreased. The
current consumption is often reduced to the region of 100 pA at this clock speed. The
Rabbit executes about 6 instructions per millisecond at this low clock speed. Generally,
when the speed is reduced to this extent, the Rabbit will be in atight polling loop looking
for an event that will wake it up. The clock speed isincreased to wake up the Rabbit.
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14.8 Basic Memory Design

Normally /CS0 and /OEQ and /WEOQ should be connected to a flash memory that holds the
startup code that executes at address zero. When the processor exits reset with (SMODEL,
SMODEDO) set to (0,0), it will attempt to start executing instructions at the start of the
memory connected to /CS0, /OEQ, and /WEO.

By convention, the basic RAM memory should be connected to /CS1, /OEL, and /WEL.
/CS1 has a specia property that makes it the preferred chip select for battery-backed
RAM. A bit may be set in the MMIDR register to force/CSL to stay enabled (low) (see
Table 23 in Section 8.3.1). This capability can be used to counter a problem encountered
when the chip select line is passed through a device that is used to place the chip in
standby by raising /CS1 when the power is switched over to battery backup. The battery
switchover device typically has a propagation delay that may be 20 nsor more. Thisis
enough to require the insertion of wait states for RAM accessin some cases. By forcing
/CS1 low, the propagation delay is not a factor because the RAM will be always selected
and will be controlled by /OE1 and /WEL1. If thisisdone, the RAM will consume more
power while not battery-backed than it would if it were run with dynamic chip select and a
walit state. If this special feature is used to speed up access time for battery backed RAM
then no other memory chips should be connected to OE1 and WEL.

14.8.1 Memory Access Time

The memory access time required depends on the clock speed and the capacitive loading
of the address and data lines. Wait states can be specified by programming to accomodate
slow memories for agiven clock speed. Wait states should be avoided with memory that
holds programs because there is a significent slowing of the execution speed. Wait states
are far more important in the instruction memory than in the data memory since the great
majority of accesses are instruction fetches. Going from 0 to 1 wait states is about the
same as reducing the clock speed by 30%. Going from O to 2 wait statesis worth approx-
imately a 45% reduction in clock speed. A table of memory access times required for var-
ious clock speedsis given in Table 48 in Chapter 15.

14.8.2 Precautionsfor Unprogrammed Flash Memory

If a Rabbit-based system is powered up and released from reset when not in one of the
cold-boot modes, the processor attempts to begin execution by reading from address zero
of the memory attached to /CS0, /OEQ, and /WEQ. If thismemory isan unprogrammed or
improperly programmed flash memory, there is a danger that the memory could be de-
stroyed if the write security feature of the flash memory isdisabled. Flash memories have
awrite security feature that inhibits starting write cycles unless a special code isfirst
stored to the memory. For example, Atmel flash memories use the bytes AAh, 55h, and
AOh stored to addresses AAAA or 5555h in a particular sequence. Any write executed
that is not prefixed by this sequence will be ignored. If the memory has write protection
disabled, and execution starts, it is possible that an endless loop that includes awrite to
memory will establish itself. Since the flash memory wears out after afew hundred thou-
sand writes, the memory could be damaged in a short period of time by such aloop. Un-

User’s Manual 133



fortunately, flash memory is shipped from the factory with the protection feature disabled
to accomodate obsolete memory programmers.

The solution to this problem is to order the memory with the write protection enabled, or
to enable it with aflash programming system. Then the memory will be safeif it is sol-
dered into the Rabbit system. If an unsafe memory is soldered into a system, then the
memory can be powered up with the programming cable connected, and a sequence can be
sent using the cold-boot procedure to enable the write protection. Compiling any Dy-
namic C program to the flash will make the memory safe. If thisis not convenient, tester
software can make the memory safe by sending a byte sequence over the programming
connection serial link.

The following example shows a program that can be downloaded via the cold-boot proto-
col to make a Atmel AT29C010A 128K x 8 flash memory safe. In this case, the RAM
connected to /CS1 is used to hold a program starting at address zero. The flash memory is
mapped into the data segment starting at address 1000h for access to the start of the flash
memory.

before storing this programthe RAMis mapped to the
first quadrant
the programthat resides at address zero in RAM
; note: this program has not been tested
Id a,0elh ; 3e el segsize reg
ioi Id (13h),a ; d3 32 13 00 data seg starts at 1000h
Id a,3fh ; 3e 3f dataseg reg
ioi 1d(12h),a ; d3 32 12 00 set data seg base of flash to 1000h
Id a,0 ; 3e 00 for MBICR nenory bank reg for flash on csO
Id (15h),a ; 32 15 00 bank 1 reads flash starting at 256k
Id a, 0aah ; 3e aa
I d (5555h+1000h),a ; 32 55 65 first byte of unlock code
Id a,55h ; 3e 55
I d (2AAAh+1000h),a ; 32 aa 3a 2nd byte of unl ock code
Id a, 0a0Oh ; 3e a0
I d (5555h+1000h),a ; 32 55 65 3rd byte of unlock code
Id hl,1000h ;21 00 10 point to start of flash nenory
Id (hl),0c3h ; 36 c3 junp op code

inc hl ; 23

Id (hl'),00h ; 36 00 zero

inc hl ; 23

Id (hl'),00h ; 36 00 zero

jr * ; 18 fe end with endl ess | oop

This code can be sent by means of a sequence of triplets viathe serial port.

80 14 01 ; I/Owite 01 to 0000 MBOCR select cs1l- map RAMto QL
00 00 3e ; wite to menory address O
00 01 el
00 02 d3
00 03 32
00 04 12
00 05 00
conti nue code above here
00 2b 18 ; last instruction
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00 2c fe ; last byte
80 24 80 ; start execution of program at zero

The program will execute within about 10 ms.

14.9 PC Board Layout and Memory Line Permutation

In order to use the PC board real estate efficiently, it is recommended that the address and
datalinesto memory be permuted to minimize the use of PC board resources. By permut-
ing the lines, the need to have lines cross over each other on the PC board is reduced, sav-
ing feed-through’s and space.

For static RAM, address and data lines can be permuted freely, meaning that the address
lines from the processor can be connected in any order to the address lines of the RAM,
and the same appliesfor the datalines. For example, if the RAM has 15 addresslines and
8 datalines, it makes no difference if A15 from the processor connectsto A8 on the RAM
and viceversa. Similarly D8 on the processor could connect to D3 onthe RAM. Theonly
restriction isthat all 8 processor data lines must connect to the 8 RAM datalines. If sev-
eral different types of RAM can be accommodated in the same PC board footprint, then
the upper addresslinesthat are unused if asmaller RAM isinstalled must be kept in order.
For example, if the same footprint can accept either a 128K x 8 RAM with 17 address
linesor a512K x 8 RAM with 19 address lines, then address lines A18 and A19 can be in-
terchanged with each other, but not exchanged with AO-A17.

Permuting lines does make a difference with flash memory. If the memory is socketed and
it isintended to program the memory off the board, then it is probably best to keep the ad-
dress and datalinesin their natural order. However, since the flash can be programmed in
the circuit using the Rabbit programming port, it is expected that most designers will sol-
der the flash memory directly to the board in an unprogrammed state. In this case, the per-
meation of data and address lines must still be taken into account because flash memory
requires the use of a special unlock code that removes write protection. The unlock oper-
ation involves a special sequence of reads and writes accessing special addresses and writ-
ing the unlock codes.

Another consideration is that the flash memory may be divided into sectors. In order to
modify the memory, an entire sector must be written. In the small-sector memories the
memory is divided into 1024 sectors. If the largest flash memory that is usable in a partic-
ular design is 512K, the largest sector size is512 bytes. |If the smallest memory used is
128K, then the smallest sector is 128 bytes. In order that the sector can be contiguous for
all possible types of memory, the lower 7 addresslines (AO...A6) should be permuted as a
group. Addresslines A7 and A8 should not be permuted at all if it isdesirable to keep the
larger sectors contiguous. The upper 10 address lines can be permuted as a separate
group. The special memory chip addresses 05555h and OAAAAh must be accessed as
part of the unlock sequence. These addresses use only the first 16 address lines and have
the odd and even numbered bitsthe same. The unlock codes use the numbers 55h, AAh or
AOh.
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Permuting data or address lines with flash memory should probably be avoided in practi-
cal systems.
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15. AC Timing Specifications

The Rabbit 2000 processor may be operated at voltages between 25V and 5.5V, and at
temperatures from —40°C to +85°C with use possible use over therange -55°C to +120°C.
Most userswill operate the Rabbit at either 5.0 V or 3.3 V. The most computation per watt
Isobtained at approximately 3.3 V. The highest practical speed is usually obtained at 5 V.

The Rabbit isavailable in one version, the R30, which has a maximum clock speed of
29.4 MHz over the industrial temperature range of -40°C to +85°C. The R30 has a maxi-
mum clock speed of 18.9 MHz at 3.3V £10%. The maximum clock speed is11.5 MHz at
25 V.

If ahalf-speed crystal is used with the clock doubler to achieve the desired clock speed,
the maximum clock speed must be reduced by 4% to allow for an up to 4% asymmetry
(52/48) in the waveform generated by the oscillator. Thisis because the clock doubler
uses the intermediate edge to generate the double frequency. If the clock doubler is used
to double 14.7456 MHz to 29.4912 MHz, the operating temperature should be limited to
70°C.

To optimize power consumption, the usual strategy isto use asupply voltage between 3 V
and 3.5V, and the clock speed should be adjusted downward as far asfeasible. Thiswill
give the maximum computation per watt.

Table 47. Rabbit Basic Worst-Case Timings

250V min. | 3.3V 10% 3.3V 5% 50V £10% | 5.0V +5%
-40°C—+85°C | -40°C—+85°C | -40°C—+70°C | -40°C—+85°C | -40°C—+70°C

Maximum clock speed 11.5MHz 17.5MHz | 19.25 MHz 29.5 MHz 31.5MHz
Maximum clock speed
generated using clock 11.06 MHz | 16.75MHz | 185MHz 28.5 MHz 30.0 MHz
doubler
Togr OUtPUL delay with

_ 15 11 10 8 7
20 pF addressline load ns ns ns ns ns
Tagr OUtPUL delay with

. 27 ns 21ns 19ns 15ns 14ns
70 pF address line load
Tsetup 4ns 4ns 3ns 3ns 2ns
Toe delay from clock to 12 ns 8ns 8ns 6ns 5ns
output enable (10 pF load)

2001.01.31

Theindustrial clock speed valuesin Table 47 (at a maximum temperature of 85°C) areim-
proved by 7% over commercial ratings at 70°C (which are extended to -40°C here). The
effect of temperature alone is a clock speed that is approximately 1.2% lower for each 5°C
temperature increase. The maximum clock speed is approximately directly proportional
to the operating voltage.
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If serial communication is to be used at standard baud rates, then certain clock speeds
must be used. These clock speeds are usually multiples of 1.8432 MHz to ensure that
baud rates of 57,600 bps, 19,200 bps, and lesswill be available. Multiplesof 3.6862 MHz
ensure that baud rates of 115,200 bps, 38,400 bps, and less will be available. Multiples of
1.2288 MHz ensure that baud rates of 38,400 bps and lesswill be available. The standard
Rabbit BIOS will accept any clock speed that isamultiple of 0.6144 MHz.

The graphsin Figure 43 and Figure 44 illustrate the maximum clock speed at which no
failureisdetected for atypical Rabbit 2000 asthe voltage and temperature are varied. The
official design specifications specify alower maximum frequency to allow for process
variation.

The die suffers significant self-heating at higher clock speeds. The die to ambient thermal
impedance is 44°C/W at zero air flow. At 5V and a current consumption of 65 mA, this
would result in about 15°C of self-heating, and would reduce the maximum clock speed
by approximately 3%. Thisreduction isincluded in Table 48, which provides the memory
access time requirements.

When interfacing to memory devices, the memory accesstime required for adirectly in-
terfaced memory is given by:

accesstime = (clock period)* (2 + wait states) - Teetyp - Tegr D

where T,y is the delay between the rising edge of T4 and address valid, and Tegp isthe
data setup time relative to the clock. Tayr and Tgyy, are shown in Figure 45 to Figure 47

for memory read/write and 1/0 read/write cycles. Most 5V memoriesare TTL compatible
inthat they switchat 0.8V and 2.0 V. Tgy, is specified from the point at which the input

voltage reaches 30% or 70% of VDD for falling and rising signals respectively. TyeiS
specified for the time from the clock that isrequired for the signal to reach 0.8 V.

The T, measured was the time required for the signal to fall from ahigh level to 0.8 V.
Toqr depends on the bus loading—address line AO has a more powerful driver and can han-
dle double the capacitance with the same delay times. The T,y times also apply to the
memory chip select lines.

The formulain Equation (1) remains true if the clock doubler is used, except that the ac-
cess time must be reduced by 4% of one clock period if there is an odd number of wait
states. The length of the T pulseis subjected to a reduction of up to 4% if the clock dou-

bler is used.
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Figure 43. Rabbit 2000 Typical Maximum Operating Frequency
versus Temperature at 5V and 3.3V

Figure 44. Rabbit 2000 Typical Maximum Operating Frequency
versus Voltage at 25°C
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The memory access time requirements are listed in Table 48. It isimportant that wait
states should not be used for any memory that holds code that is being executed. Memory
walit states are only intended for use with data accesses. For code memory the clock
should be matched to the memory requirements, or one of the clock dividers should be en-
abled to accomodate slow memory. Asarough guide, each data memory wait statein
main RAM that is introduced will reduce the average compute performance by approxi-
mately 8%. The datamemory read accessis slowed by 50% for 1 wait state and is slowed
by 100% for 2 wait states. However, since only asmall proportion of accesses are data ac-
cesses rather than code accesses or instruction fetch cycles, the overall affect on perfor-
manceisdight. If data memory wait states are introduced, it isimportant to use the
macros specified in the BIOS so that the compiler will be aware of the wait states.

Generally, the maximum operating speed is proportional to the power supply voltage. The
operating current is proportional to the voltage, and so the operating power is proportional
to the square of the voltage. The operating power is also proportional to the clock speed.
Higher temperatures reduce the maximum operating speed by approximately 1% for each
5°C. Inaddition, higher operating speeds increase the die temperature because of the heat
generated and therefore slightly compound the adverse effects of higher temperature.
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Table 48. Memory Access Time Requirements (V+5%, T -40°C to +70°C)

Clock Memory Memory Maximum PC-
Speed Period Wait Access Time Access Time Compatible
P (ns) States @5V 20 pF Load | @5V 70 pF Load Baud Rate
(MHz)
(ns) (ns) (bps)
29.4912 34 0 59 52 921,600
27.6480 36.2 0 64 57 57,600
25.8048 38.7 0 69 62 115,200
25.8048 38.7 1 108 101 115,200
25.8048 38.7 2 147 140 115,200
24.576 40.7 0 73 66 38,400
23.9616 417 0 75 68 57,600
22.1184 452 0 82 75 230,400
22.1184 45.2 1 127 120 230,400
22.1184 452 2 173 165 230,400
20.2752 49.3 0 90 83 57,600
100 @5V NB@s5V
18.432 54.2 0 115,200
9% @ 3.3V 87 @33V
127 @5V/ 120@5V/
14.7456 67.8 0 123@33V 114 @33V 460,800
197 @5V/ 190 @ 5V/
14.7456 67.8 1 193 @33V 184 @33V 460,800
12 @5V 165@5V/
11.0592 90.5 0 168 @ 3.3V 159 @33V 115,200
162 @ 2.5V(min) | 150 @ 2.5 V(min)
263@5V/ 256 @5V/
7.3728 135.6 0 259 @33V 250 @ 3.3V/ 230,400
253 @ 2.5V (min) | 241 @ 2.5V(min)
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Figure 45, Figure 46, and Figure 47 illustrate the memory read and write cycles. The Rab-
bit operates at 2 clocks per bus cycle plus any wait states that might be specified.

Memory Read (no wait states)

| T1 | T2 |
CLK*I ! !
A[19:0] X' v:alid 'X
_’: :*Tadr : :
1 1 Tsetup—>: l<—
D[7:0] — k/ﬁ(F}T—
! : Z = Thold
/CSx X valid X
JOEx ——7 \ s
Memory Write (no extra wait states)
1 | Tw——] T2 ——
CLK J. . , ;
A[19:0] X i NG
> < Tadr : : :
D[7:0] — < | valid T o—
/CSx X valid X
! ! ! Tholdi‘—'_’l !
IWEXx T/ \ , /A

Figure 45. Memory Read and Write Cycles

Notice that Ty q is different depending on whether data are being read or written. Ty g

for dataread specifies how long the data must remain valid following therising edge of T1
when the clock cycle repeats. Ty, 4 for datawrite specifies how long the dataremain valid

once /WEx or /IOWR goes high, and must be at least one-half of a CPU clock cycle.
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Memory Read (one wait state)
| T1 | Tw——] T2 ——
CLK ~| . .
A[19:0] X T X
S T : ¥
1 1 1 Tsetup—ﬂ <
D[7:0] — K : X valid p—
; ; ; Thold > 1=
/CSx X valid X
JOEx ——7 \ i W
Memory Write (one wait state)
| T1 | Tw | Twi—— T2 |
CLK ~|| . . . !
Al19:0] 7T—X v —C
_): :«Tadr : : : :
D[7:0] — K valid S—
/ICSx I X valid F X
; ! ! ! Tholdi‘—'_’: E
IWEx 7 \ : Y A

Figure 46. Memory Read and Write with Wait States

I/O bus cycles have an automatic wait state and thus require 3 clocks plus any extrawait
states specified.
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External I/0 Read (no extra wait states)

—T1 | Tw————— T2 |

CLK J

Al15:0] ~X I —C
= T : R
| 1 1 Tsetupﬂ [
D[7:0] — < ) M valid p—
: : A
/ICSx ___/ : : AN
JOEXx ——7 f f f
10CSx X T e
/IORD E : i i
/BUFEN ! \ : -/
External I/O Write (no extra wait states)
» 1 | Tw—— T2 ——
CLK 1 1 1 1
A[15:0] X i S
S : :
D[7:0] — 4 | valid . o—
/CSx / X X L
/WEx =7 i i —
/I0CSx X valid X
| ! | Thoigi————
/IOWR | \ : / |
/BUFEN T X R e

Figure 47. 1/0 Read and Write Cycles No Extra Wait States
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Table 49 lists the parameters shown in these figures and provides minimum or measured
values.

Table 49. Memory and External 1/O Read/Write Parameters

Parameter Description Value
S T Time from CPU clock rising Max Tns@20pF, 5V (10ns@ 3.3V)
g adr edge to address valid " 14ns@70pF 5V (19ns@ 3.3V)
@
S |Teayp | Dataread setup time Min. 2ns@5V (3ns@ 3.3V)
©
§ Thold Dataread hold time Min. Ons
% T Time from CPU clock rising Max 7Tns@20pF, 5V (10ns@ 3.3V)
£ adr edge to address valid " 14ns@70pF 5V (19ns@ 3.3V)
Datawrite hold time from .
g T L
§ hold /WEx or /|OWR Min. % CPU clock cycle

15.1 Current Consumption

Typical current is proportional to both clock frequency and voltage. The main oscillator
requires approximately 6 mA at 5V and 2 mA at 3V independent of frequency. The basic
current consumption for the processor exclusive of the oscillator at 5V and 15 MHz is ap-
proximately 42 mA. The following formula can be used to compute the current consump-
tion:

| = (0.7)*(freq MH2z)* (voltage) + (0.35)* (voltage - 0.86)2 2

The first term represents the current consumed by the processor, which is directly propor-
tional to voltage and frequency. The second term is the current consumed by the main os-
cillator, which is approximately independent of frequency, but varies as the square of the
voltage. Thisterm iszero when the main oscillator is disabled. Some checkpointsfor cur-
rent consumption are provided in Table 50.
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Table 50. Typical Current at Selected Frequencies and Voltages at 25°C

Clock Frequency Voltage Current
(MHz) V) (mA)
29.4912 5 109
22.11 5 83
14.7456 5 58
14.7456 3.3 36
7.3728 33 19
3.6864 33 11
1.8432 33 6
0.9216 33 4.2
0.4608 33 3.14
0.032 (sleepy mode) 5 0.280
0.032 (dleepy mode) 4 0.173
0.032 (sleepy mode) 33 0.113
0.032 (sleepy mode) 2.7 0.072

The current consumed by memory and other devices included in the system, including
pullup resistors, outputs driving aload, and floating inputs, must be added to the figuresin
Table 50.

The 32.768 kHz clock oscillator and the associated real-time clock consume approxi-
mately 23 HA at 3V. (At 2.25V, when backed by a battery, the current consumption is ap-
proximately 11 uA.) The (typical) current consumed when the main power is off, and
only the 32.768 kHz oscillator and clock are powered, is given by the formula

current (A) = 5.44*(V - 0.86)? , ©)

whereV isthe operating voltage. Thisisthe current that must be supplied by a backup
battery, not counting the current required by the associated circuits. The oscillator will not
operate below approximately 1.3 V. The measurement from which the above formulawas
derived were made with a series resistor of 390 kQ and load capacitors of 15 pF in the
32.768 kHz oscillator circuit. The shunt resistor was 10 MQ.

If the processor is running at 32.768 kHz, then the added current to operate the processor
at room temperature (main oscillator shut off) is given by:

current (MA) = 7.5%(V2) . )
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In low-power modes the current consumption is proportional to the square of the voltage.

At 3.0V thisisapproximately 67 HA. Add the 25 HA needed to operate the oscillator and
the total current consumption will be approximately 92 A with the processor operating at
32.768 kHz.

The current consumed by RAM or flash memory will be substantial and very significant at
lower frequenciesif auto powerdown flash or low-power RAM isnot used. If low-power
RAM is used to support the sleepy mode, the sleepy mode loop should be copied to RAM
and executed in RAM. When trying to operate in an ultralow-power sleepy mode, it is
important that no inputs be floating. Floating inputs consume substantial power. Keep in
mind that port D open-drain outputs will create floating inputs if not pulled toward zero.
Pullup resistors consume current and should be avoided or disabled in ultralow-power
modes. When testing a sleepy mode of operation, it is advisable to connect an ammeter to
make sure that no extra floating inputs or other current-consuming features areincluded in
the setup.
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16. Rabbit Software

This chapter outlines basic low-level software constructs that are recommended for use
with the Rabbit microprocessor. By following these suggestions, the user will find it
much easier to use the software and to avoid various pitfalls. More details can be found by
consulting the Dynamic C manual or the source code in the Dynamic C libraries.

16.1 Reading and Writing I/O Registersand Shadow Registers

The Rabbit has two 1/0 spaces:. internal 1/O registers and external 1/0 registers. Accessis
the same as for accessing data memory except that the instruction is preceeded by a prefix
(ioi or ioe) to indicate the internal or external 1/0 space.

The fastest way to read and write 1/O registersin Dynamic C isto use a short segment of
assembly language inserted in the C program. For example.

/1 conmpute value and wite to port A data register

val ue=x+y

#asm

Id a,(value) ; value to wite

ioi Id (PADR),a ; wite value to PADR
#endasm

In the example above the ioi prefix changes a store to memory to a store to an internal 1/0
port. The prefix ioe is used for writes to external 1/O ports.

A series of C callable functions are available to read and write I/O registers.

/1l Internal 1/0O Register Calls
int RdPortl (int PORT); // returns port, high byte zero
int BitRdPortl( int PORT, int bitcode) ; // bit code 0-7
/1 wites 8 bits to port and shadow
/1 no shadow wite if a null pointer is used for shadow
void WPortl( int PORT, char *PORTShadow, int value);
/Il wite to a port bit (bits are nunbered 7, 6, ... 1, O.
void BitWPortl (

i nt PORT, char *PORTShadow, int value, int bitcode);

/1 Same external 1/O registers
int RAPortE(int adr); // returns contents of port, high byte zero
int BitRdPortE( int PORT, int bitcode) ; [// bit code 0-7
int WPortE( int PORT, char *PORTShadow, int val ue);
int BitWPortE(
i nt PORT, char *PORTShadow, int value, int bitcode);

In order to read a port the following code could be used:

k=RdPort | (PDDR); // returns port D data register

If the port isawrite only port then the shadow register can be used to find out what the
contents of the port are. For example the global control status register has a number of
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write-only bits. These can be read by consulting the shadow, provided that the shadow
register is always updated when writing to the register.

k=GCSRShadow,

In order to write awrite only register and update the shadow register the following rou-
tines can be used:

W Por t | ( GCSR, &GCSRShadow, val ue); // update regi ster and shadow
Bi t W Port | (GCSR, &CSRShadow, 1,5); // set 1 to bit 5 of GCSR

IntheW Por t | routineaNULL can be substituted for the pointer to the shadow register if
no shadow register isto be used. The pointer to the shadow register is manditory for
Bit WPortl.

16.2 Shadow Registers

Many of the registers of the Rabbit’sinternal 1/0 devices are write-only. Write-only regis-
ters save gates on the chip, making possible greater capability at lower cost. Typical de-
signs that implement external 1/O registers also have write-only registers due to the cost
saving of not having the additional hardware to make it possible to read back the register’s
contents. Write-only registers are easier to use if amemory location, called a shadow reg-
ister, is associated with each write-only register. In order to make the names of the shad-
ows easy to remember they are compounded from the internal register names used in this
manual. For example the regiser PADR (port A dataregister) has the shadow
PADRShadow. Some shadow registers are defined in the bios files as shown below.

/1 the internal I/Oregisters -the shadows

/1 parallel ports

char PADRShadow, PBDRShadow, PCDRShadow, PCFRShadow;

char PDDRShadow, PDCRShadow, PDFRShadow, PDDCRShadow, PDDDRShadow,
char PEDRShadow, PECRShadow, PEFRShadow, PEDDRShadow;

char GCSRShadow; // gl obal control status register
char GOCRShadow; // gl obal control
char CGCDRShadow; // clock doubl er

When manipulating /O registers and shadow registers, the programmer must keep in
mind that an interrupt can take place in the middle of the sequence of operations, and then
the interrupt routine may manipulate the same registers. If this possibility exists, then a
solution must be crafted for the particular situation. Usually it is not necessary to disable
the interrupts while manipulating registers and their associated shadow registers.

As an example, consider the parallel port D data direction register (PDDDR). Thisregis-
ter iswrite only, and it contains 8 bits corresponding to the 8 1/0 pins of parallel port D.
If abitinthisregisterisa"l," the corresponding port pinisan output, otherwiseitisanin-
put. Itiseasy toimagine a situation where different parts of the application, such asan in-
terrupt routine and a background routine, need to be in charge of different bitsin the
PDDDR register. The following code sets a bit in the shadow and then setsthe 1/0 regis-
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ter. If an interrupt takes place between the set and the | dd, and changes the shadow reg-
ister and PDDDR, the correct value will still be set in PDDDR.

I d hl, PDDDRShadow ; point to shadow register

| d de, PDDDR ; set de to point to I/Oreg
set 5, (hl) ; set bit 5 of shadow register

; use ldd instruction for atomic transfer

ioi |dd ; (io de)<-(hl) side effect: hl--, de--

In this case, thel dd instruction when used with an 1/O prefix provides a convenient data
move from a memory location to an I/O location. Importantly, the | dd instruction isan
atomic operation so there is no danger that an interrupt routine could change the shadow
register during the move to the PDDDR register. |If two instructions such as the following
were used instead of the Idd instruction,

(PDDDR),a ; output to PDDDR

then there is the possibility that an interrupt would take place after the first instruction,
change the shadow register and the PDDDR register, and then after areturn from the inter-
rupt, the second instruction would execute and store an obsolete copy of the shadow regis-
ter in the PDDDR, setting it to awrong value.

Thereis no reason to have a shadow register for many of the registers that can be written
to. In some cases, writing to registersis used as a handy way of changing a periphera’s
state, and the data bits written are ignored. For example, awrite to the status register in
the Rabbit serial portsis used to clear the transmitter interrupt request, but the databitsare
ignored, and the status register is actually aread-only register except for the specia func-
tionality attached to the act of writing the register. Anillustration of awrite-only register
for which a shadow is unnecessary isthe transmitter data register in the Rabbit serial port.
The transmitter dataregister isawrite-only register, but there is little reason to have a
shadow register since any data bits stored are transmitted promptly on the serial port.

16.3 Timer and Clock Usage

Thereal time clock or battery backable clock isa 48 bit counter that counts at 32768
counts per second. The counting frequency comes from the 32.768 kHz oscillator whichis
separate from the main oscillator. Two other important devices are also powered from the
32.768 kHz oscillator: the periodic interrupt and the watchdog timer. 1t is assumed that all
measurements of time will derrive from this clock and not the main processor clock which
operates at amuch higher frequency (e.g. 22.1184 MHz). This allows the main processor
oscillator to use less expensive ceramic resonators rather than quartz crystals. Ceramic
resontorstypically have an error of 5 partsin 1000, while crystals are much more accurate,
to afew seconds per day.

It is not intended that the real time clock be read and written frequently. The procedure to
read it islengthy and has an uncertain execution time. The procedure for writing the clock
Is even more complicated. Rather, Dynamic C software maintains along variable
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SEC_TI MERin memory. SEC Tl MER s updated every second by the periodic interrupt
and may be read or written directly by the user’s programs. Since SEC_TI MERisdriven by
the same oscillator as the real time clock there is no relative gain or loss of time between
the two. As part of the standard startup code SEC_TI MER has bits 15-46 of thereal time
clock copied to it. SEC_TI MER holds the number of seconds since 12 AM of 1-January-
1980. SEC_TI MER can accomodate 136 years from 1980 or to the year 2116. Another long
timer MS_TI MER counts milliseconds and can be used in asimilar manner. M5_TI MER
wraps around from max count to zero approximately every 6 weeks. The software that
uses the counters measures intervals correctly even if the counter used wraps arround.

unsigned long int read_rtc(void); // read bits 15-46 rtc
void wite_rtc(unsigned long int tine); // wite bits 15-46
/'l note: bits 0-14 and bit 47 are zeroed

Two utility routines are provided that can be used to convert times between the traditional
format (10-Jan-2000 17:34:12) and the seconds since 1-Jan-1980 format.

/!l converts tinme structure to seconds
unsi gned long nktine(struct tm *tinmeptr);

/'l seconds to structure
unsigned int nktm(struct tm*tineptr, unsigned long tine);

The format of the structure used is the follow ng

struct tm{

char tm sec; /'l seconds 0-59

char tmnmin; /1 0-59

char tm hour; /1 0-59

char tm nday; /1 1-31

char tm non; /1 1-12

char tmyear; /1 00-150 (1900-2050)
char tm wday; /1 0-6 O==sunday

b

The day of the week isnot used to compute the long seconds, but it is generated when
computing from long seconds to the structure. A utility routine setclock.c is available to
set the date and time in the real time clock from the Dynamic C console.

16.4 WatchDog Support Software

A microprocessor system can crash for avariety of reasons. A software bug or an electri-
cal upset are common reasons. When the system crashes the program will typically settle
into an endless |oop because parameters that govern looping behavior have been cor-

rupted. Typically the stack becomes corrupted and returns are made to random addresses.

The usual corrective action taken in response to a crash isto reset the microprocessor and
reboot the system. The crash can be detected either because an anomaly is detected by pro-
gram consistency checking or because a part of the program that should be executing peri-
odically is not executing and the watchdog times out.
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Direct detection of crashesis supported in Dynamic C by certain checksumming opera-
tions and other causes of error that are classed as fatal errors.

The virtual watchdog system allows establishing multiple virtual watchdogs for different
parts of the program which must be executed periodically. If any of the virtual watchdogs
times out, then hits are withheld from the hardware watchdog and it times out, resulting in
ahardware reset. The virtual watchdogs are implemented by an array of memory counters.
The counters are counted down 16 times per second by the periodic interrupt routine. Hit-
ting avirtual watchdog is performed by calling a routine that stores a count between 1 and
255 in the memory counter. Virtual watchdogs may be allocated, disallocated, enabled and
disabled. One virtual watchdog isimplemented by default and it is hit in the periodic inter-
rupt routine. If the periodic interrupt stops working, then the watchdog will time out. The
advantage of the virtual watchdogsisthat if any of them fail and error is detected. Directly
hitting the hardware watchdog will cause an error only if every place where the watchdog
is hit fails to be included in the crash loop.

16.4.1 The Watchdog Hardware

The Rabbit microprocessor has a hardware watchdog timer. The watchdog is hit by calling
abios routine hitwd() which hitsit for 2 seconds or by storing a special code in the
WDTCR register, the code determining the time delay. The watchdog isa 17 bit counter
that counts toward zero at 32768 Hz provided by the 32.768 kHz oscillator. A hit storesa
number in the counter, postponing the time when it will reach zero. If hits are not frequent
enought the counter will reach zero and perform a microprocessor reset.

Best practice requires that extreme care be taken before the program hits the watchdog. If
hits of the watchdog are scattered in a reckless manner througout the user’s program then
there is a good chance that the watchdog will become effectively useless, because when a
crash takes place the program will enter an endless loop that includes a hit of the watch-
dog.

16.4.2 The Virtual Watchdog System
By default 10 virtual watchdogs are available. This can be changed by a#define:
#define N_WATCHDOG 15 // default is 10 watchdogs

To allocate a watchdog make the call:

N= VdGet FreeWd(char count); // establish watdog with
/1 timeout count/16 seconds

To hit that watchdog use the call:
VdH tWi(int N); // hit that watchdog

To remove that watchdog from the table use the call:

VdRel easeWd(int N); // release (deestablish) watchdog N
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17. Rabbit Sandard BIOS

(Note: The information in this chapter is provided for conceptual purposes only. An up-
date in the form of a software manual will clarify these issues.)

The Rabbit standard BIOS is a package of software that handles startup, shutdown and
various basic features of the Rabbit. By providing standard software to perform basic
functions, the user isrelieved of the necessity of re-inventing this software for his own
needs. Further, by using Z-World'stested software, the user greatly reduces the possibility
of errorsand bugs. Z-World providesthe full source code for the BIOS so the user hasthe
possibility of modifying it and so that the user has a ready reference to examine details of
the operation of the BIOS that are not apparent from the documentation.

In generd, the BIOS is customized for each different controller board. The BIOS has dec-
larations at the start of the code that define the hardware configuration and use options.

A general-purpose BIOS is available that will work with most systems based on the Rab-
bit. The genera-purpose BIOS is useful for bringing up new designs.

17.1 TheBIOS—More Details

The BIOS is compiled separately from the user’s application. It occupies space at the bot-
tom of the root code segment. When execution of the user’s program starts at address
zero, it startsin the BIOS. Thereisno limit to the amount of code that can be included in
the BIOS. If the user compileslibraries as a part of the BIOS, time can be saved since the
BIOS is not recompiled except for specific reasons.

Normally routines that are frequently called on or that are needed for essential functions
areinthe BIOS. When Dynamic C cold-boots the target and downloads the binary image,
the symbol tableis retained to make it possible for the user program to call entry pointsin
the BIOS.

The BIOS supports the following services.

e System startup, including setup of memory, wait states and clock speed.

» Reading and programming the real-time clock.

» Operation and management of the periodic interrupt.

* Maintenance of memory counters that count ticks, milliseconds and seconds since Jan-
uary 1, 1980.

» Operation of the watchdog timer and maintenance of a system of virtual watchdog tim-
ers.

* Routines to speed up and slow down the system clock for power management. The
execution speed can be controlled over awide range.

* Routinesto set up the mode of operation of the parallel ports and to input and output
data to them.
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* Routinesto initialize the timers and manipulate them.

* Routines to write flash memory with built-in protection of the system identification
area.

* Routines to maintain an error log or operation log and to handle fatal errors and watch-
dog timeouts

» Basic services for multitasking

* Routines that support a general-purpose parameter setup viathe programming port.
This system can be used in the field for such items as setting a network address or cali-
bration constants and setting the real-time clock.

» A download manager (to be available with future releases of the BIOS).

« Modbus dave.

17.2 BIOS Assumptions

The BIOS makes certain assumptions concerning the physical configuration of the proces-
sor. Processors are expected to have RAM connected to /CS1, /WE1, and /OE1. Flash
memory, if present, is expected to be connected to /CS0O, /WEQ, and /OEQ. The crystal fre-
quency is expected to be n*.6144* 3 MHz, or else 4*.6144 MHz.

17.3 Periodic Interrupt and Real-Time Clock BIOS Services

The real-time clock isdriven by the 32.768 kHz oscillator, which may be battery backed.
The periodic interrupt, when enabled, occurs every 16 clocks or every 488 us. If the
32.768 kHz oscillator is absent, it is possible to substitute adifferent periodic interrupt, but
this alternative is not supported by Z-World since it the cost of connecting acrystal isvery
small.

The periodic interrupt is used to count several memory counters that are used for general
software use. These counters count ticks, milliseconds and seconds. These counters have
an exact relationship with the real-time clock and the 32.768 kHz oscillator. A seconds
counter is generated by adding 65536/2048=32 to a 16-bit word on every tick. The carry
out counts the seconds counter. A millisecond counter is obtained by adding 32000 to a
16-bit word on every tick The carry out occurs on an average of once per millisecond and
drives the millisecond counter. T he tick counter is counted 2048 times per second.

In addition, the periodic interrupt provides support for function slicing and areal -time ker-
nel by providing periodic callsto clock routines. The periodic interrupt keeps the inter-
rupts turned off (that is, the processor priority israised to 1 from zero) for aminimum time
of about 35 clocks. Inthisway, the periodic interrupt makes little contribution to interrupt
latency.
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17.3.1 Real-Time Clock Support

If the real-time clock is battery-backed, which is an option in the BIOS, the BIOS reads
the real-time clock on startup and sets up the seconds since 1980 counter synchronized
with the clock. If the clock is not battery-backed, the seconds since 1980 counter is set to
zero, thus measuring time since startup. A log of startup times and conditionsis kept as a
debugging aid. Thetime of exiting reset is recorded as well as the reason for the reset is
kept in what may or may not be battery-backed memory.

17.3.2 Watchdog Timer Support

In awell-organized system, the periodic interrupt should be the only place where instruc-
tions to hit the watchdog timer are located. Thisisaccomplished by setting up a number
of virtual watchdog timers. Each virtual watchdog isan 8-bit counter that is counted down
16 times per second, or every 128 ticks of the real-time clock. If any counter reaches zero,
the program turns off interrupts and freezes until the hardware watchdog times out and re-
sets the processor. The user program must hit each virtual watchdog periodically by call-
ing aroutine with the number of the watchdog and count value to be stored. The number
of virtual watchdogsisitself a parameter that can be increased by a call to get the virtual
watchdog routine, which adds another watchdog to the list (not a linked list) up to the
maximum number in the array. Initialy there is one virtual watchdog that is hit by the pe-
riodic interrupt itself. The virtual watchdogs can be distributed across interrupts to reduce
the interrupt execution timeif al possible virtual watchdogs must be counted in one inter-
rupt. Precautions are taken to make sure that a crash will not result in accidently hitting
the watchdog.

17.3.3 Power Management Support

The power consumption and speed of operation can be throttled up and down with rough
synchronism. Thisisdone by changing the clock speed or the clock doubler. The range of
control is quite wide: 16-1 or more. In addition, the main clock can be switched to the
32.768 kHz clock. Inthis case, the lowdown isvery dramatic, perhaps 500-1. Each clock
takes about 30 us, and atypical instruction takes 150 psto execute. At this slow speed,
the periodic interrupt cannot still operate because the interrupt routine would execute too
slowly to keep up with an interrupt every 16 clocks. Only about 3 instructions could be
executed between ticks.

A different set of rules appliesin the ultraslow mode. The user will set up an endless|oop
to determine when to exit the ultraslow mode. The user should include acall in thisloop
to apolling routine that is a part of the BIOS. The polling routine will update the memory
counters and the watchdog each timeit iscalled. It will do this by directly reading the
real-time clock and by catching up the memory counters. If the user’s routine cannot get
around the loop in the maximum watchdog timer timeout time, the user should put severa
callsto the polling routine in the loop. The user should avoid indiscriminate direct access
to the watchdog timer and real-time clock. The least bits of the real-time clock cannot be
read in ultra slow mode because they count fast compared to the instruction execution
time. To reduce bus activity and thus power consumption, it is useful to multiply zero by

User’s Manual 157



zero. Thisrequires 12 clocks for one memory cycle and reduces power consumption.
Typicaly anumber of mul instrucitons can be executed between each test of the condition
being waited for.

17.3.4 Flash Memory Write Support

A flash memory write routine is provided. Thisroutine works differently or there are dif-
ferent routines for the cases when the memory to be written isin the primary code memory
or isin aseparate special memory. Writesto the primary code memory require freezing
the system for 10 ms or so. Other writes just require that the user wait for the write to be
done before doing the next write.

To protect the system identification block, the program tests the absol ute memory address
relative to the start of the flash memory connected to /CS0O, /WEQ, and /OEQ, which is
used to store the system identification block. The program hasto check the contents of the
memory bank control registers to make this check. A routine that can actually write this
block is not included in the BIOS to make it hard to accidently write this block.
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18. Rabbit Instructions

Summary

“Load Immediate Data” on page 162

“8-bit Indexed Load and Store” on page 162

“16-bit Indexed Loads and Stores’ on page 162

“16-bit Load and Store 20-bit Address’ on page 163
“Register to Register Moves’ on page 164

“Exchange Instructions’ on page 164

“Stack Manipulation Instructions’ on page 165

“16-bit Arithmetic and Logical Operations’ on page 165
“8-bit Arithmetic and Logical Operations’ on page 166
“8-bit Bit Set, Reset and Test Instructions’ on page 167
“8-bit Increment and Decrement” on page 167

“8-bit Fast A register Operations’ on page 167

“8-bit Shifts and Rotates’ on page 168

“Instruction Prefixes’” on page 169

“Block Move Instructions’ on page 169

“Control Instructions - Jumps and Calls’ on page 170
“Miscellaneous Instructions” on page 170

“Privileged Instructions’ on page 171

“Instructions in Alphabetical Order With Binary Encoding” on page 175
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Spreadsheet Conventions
ALTD (“A” Column) Symbol Key

Flag Description

f ALTD sdlects alternate flags

fr ALTD selects alternate flags and register

r ALTD sdlects alternate register

s ALTD operation is a special case

IOl and IOE (“I” Column) Symbol Key

Flag Description
b IOl and IOE affect source and destination
d IOl and IOE affect destination
s IOl and IOE affect source

Flag Register Key

S|zl |c Description

* Sign flag affected

- Sign flag not affected

* Zero flag affected

- Zero flag not affected

L LV flag contains logical check result

LV flag contains arithmetic overflow result

o<

LV flagiscleared
LV flag is affected
* | Carry flag is affected

*

- | Carry flag is not affected

0 | Carry flag iscleared

1 | Carry flag is set

" TheL/V (logical/overflow) flag serves adual purpose—L/V
issetto 1 for logical operationsif any of the four most signif-
icant bitsof theresult are 1, and L/V isreset to O if all four of
the most significant bits of the result are 0.
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Symbols

Rabbit 7180 Meaning
Bit select:
000 = hit 0, 001 = bit 1,
b b 010 = hit 2, 011 = bit 3,

100 = hit 4, 101 = hit 5,
110 = bit 6, 111 =hit 7

Condition code select:

cc cc 00=NZ,01=7Z,
10=NC,11=C
d d 7-bit (signed) displacement. Expressed in two’'s complement.
dd ww | Word register select destination: 00=BC, 01 =DE, 10=HL, 11 =SP
dd’ Word register select alternate;: 00 = BC', 01 = DE’, 10 = HL’
e j 8-hit (signed) displacement added to PC.
Condition code select:
000 = NZ (non zero), 001 = Z (zero),
f f 010 = NC (non carry), 011 = C (carry),
100=LZ" (logical zero), 101 = LO (logical one),
110 = P (sign plus), 111 = M (sign minus)
m m MSB of a16-bit constant.
m m 16-bit constant.
n n 8-hit constant or LSB of a 16-bit constant.
Byte register select:
000 =B, 001 =C,
r, r’ g, g |010=D, 011 =E,
100 = H, 101 =L,
111 =A
ss ww | Word register select (source): 00=BC, 01 =DE, 10=HL, 11=SP
Restart address select:
v v 010 = 0020h, 011 = 0030h,
100 = 0040h, 101 = 0050h,
111 = 0070h
XX xx | Word register select: 00=BC, 01 =DE, 10=1X, 11 =SP
yy yy Word register select: 00=BC, 01 =DE, 10=1Y, 11 =SP
zz zz |Wordregister select: 00=BC, 01 =DE, 10=HL, 11 = AF

Logical zeroif al four of the most significant bits of the result are 0.

T Logical oneif any of the four most significant bits of the result are 1.
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18.1 Load Immediate Data

I nstruction clk A
LD I X, m 8
LD 1Y, m 8
LD dd, m 6 r
LD r,n 4 r

Qper ati

I X m
Y m
dd m

18.2 Load and Soreto an Immediate Address

I nstruction clk A
LD (m), A 10
LD A, (mm) 9 r
LD (m), HL 13
LD (m), I X 15
LD (m), 1Y 15
LD (m), ss 15
LD HL, (m) 11 r
LD I X (m) 13
LD 1Y, (m) 13
LD dd, (m) 13 r

on

S ZV C CQperation

I
d
S
d
d
d- - - -
d
s
s
S
s

18.3 8-bit Indexed L oad and Sore

=~

I nstruction
LD A, (BO)
LD A, (DE)
LD (BO), A
LD (DE), A
LD (HL), n
LD (HL),r
LD r, (HL)
LD (I X+d),n
LD (I X+d), r
LD r, (1 X+d)
LD (1Y+d),n
LD (IY+d),r
LD r, (1Y+d) 9 r

A
r
r

GO NN~NOO O

© R
oR
=

Tl
or

SZV

I
s
s
d
d
d
d
S - - - -
d
d
S
d
d
S

18.4 16-bit Indexed L oads and Sores

clk
13
11 r
11

I nstruction A
LD (HL+d), HL
LD HL, (HL+d)
LD (SP+n), HL
LD (SP+n), I X 13
LD (SP+n),l1Y 13
LD HL, (SP+n) 9 r
LD I X, (SP+n) 11
LD 1Y, (SP+n) 11
LD (I X+d), HL 11
LD HL, (I X+d) 9 r
LD (IY+d),HL 13
LD HL, (I'Y+d) 11 r

I SzZzvC

d- - - -
S - - - -

(m) = A

A= (m)

(m) =L; (m+1) =H

(m) = IXL; (m+1) = I XH
(m) = 1YL, (m+1) = 1YH
(m) = ssl; (m+1) = ssh

L = (m); H= (m+1)

IXL = (m); I XH = (nm+1)

IYL = (m); |IYH = (nmm+1)

ddl = (m); ddh = (m+1)
Qperation

A = (BO

A = (DE)

(BO = A

(DE) = A

(HL) =n

(HL) =r =B, C D E H L, A
r = (H)

(I X+d) = n

(IX+d) =1

r = (1 X+d)

(1Y+d) = n

(ly+d) =r

r = (1Y+d)

Qperation

(HL+d) = L; (HL+d+1) = H

L = (HL+d); H = (HL+d+1)
(SP+n) = L; (SP+n+l) = H
(SP+n) = I XL; (SP+n+l1l) = I XH
(SP+n) = 1YL; (SP+n+l) = |YH
L = (SP+n); H = (SP+n+1)

I XL = (SP+n); | XH = (SP+n+1)
YL = (SP+n); |YH = (SP+n+1)
(I X+d) = L; (IX+d+1) = H

L = (I X+d); H = (IX+d+1)
(1'y+d) = L; (lY+d+1l) = H
L = (lY+d); H = (1Y+d+l)

162
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18.5 16-bit Load and Store 20-bit Address

I nstruction clk A I SZVC Qperation
LDP (HL),HL 12 - - - - (H) =1L; (H+1) =H
(Adr[19:16] = A[3:0])

LDP (I X),HL 12 - - - - (IX) =L; (IX+1) = H
(Adr[19:16] = A[3:0])
LDP (1Y),HL 12 - - - - (1Y) =L; (IY+l) = H
(Adr[19:16] = A[3:0])
LDP HL, (HL) 10 - - - - L =(H); H= (H+1).
(Adr[19:16] = A[3:0])
LDP HL, (I X) 10 - - - - L=(IX); H=(1X+1).
(Adr[19:16] = A[3:0])
LDP HL, (1Y) 10 - - - - L=(1Y); H=(1Y+1).
(Adr[19:16] = A[3:0])
LDP (m), HL 15 - - - - (m) =1L; (m+1l) =H
(Adr[19:16] = A[3:0])
LDP (m),I1X 15 - - - - (m) = IX; (m+l) = IXH
(Adr[19:16] = A[3:0])
LDP (m),lY 15 - - - - (m) =1YL; (m+1) = 1IYH
(Adr[19:16] = A[3:0])
LDP HL, () 13 - - - - L=(m); H=(m+1).
(Adr[19:16] = A[3:0])
LDP 1 X, (mm) 13 - - - - IXL = (m); IXH=(m+l).
(Adr[19:16] = A[3:0])
LDP 1Y, (m) 13 - - - - 1YL= (m); IYH=(m+l).

(Adr[19:16] = A[3:0])

Note that the LDP instructions wrap around on a 64K page boundary. Since the LDP
instruction operates on two-byte values, the second byte will wrap around and be
written at the start of the pageif you try to read or write across a page boundary.
Thus, if you fetch or store at address Oxn,0xFFFF, you will get the bytes located at
0xn,0xFFFF and 0xn,0x0000 instead of Oxn,0xFFFFand Ox(n+1),0x0000 as you
might expect. Therefore, do not use LDP at any physical address ending in OXFFFF.

User’s Manual 163



18.6 Register to Register Moves

I nstruction clk A I SZVC Qperation

LDr,g 2 r - - - - 1 =g r,g any of B,
C D E H L, A

LD A EIR 4 fr ** . - A=ER

LD A IIR 4 fr ** . - A=1IR

LD A XPC 4 r - - - - A= MW

LD EIR A 4 - - - - ER=A

LDIIR A 4 - - - - 1lIR=A

LD XPC, A 4 - - - - XPC=A

LD HL, I X 4 r - - - - H=1X

LD HL, 1Y 4 r - - - - H=1Y

LD I X, HL 4 - - - - IX=H

LD 1Y, HL 4 - - - - lY=H

LD SP, HL 2 - - - - SP=HL

LD SP, I X 4 - - - - SP=1IX

LD SP, 1Y 4 - - - - SP=1Y

LD dd’, BC 4 - - - - dd° =BC (dd : 00-BC,
01-DE', 10-HL")

LD dd’, DE 4 - - - - dd° =DE (dd' : 00-BC,
01-DE', 10-HL.")

18.7 Exchange Instructions

I nstruction cl k A I SZVC Qperation

EX (SP), HL 15 r - - - - H<->(SP+1); L <-> (SP)

EX (SP), I X 15 - - - - IXH<-> (SP+1); IXL <-> (SP)

EX (SP),IY 15 - - I YH <-> (SP+1); IYL <-> (SP)

EX AF, AF 2 - - - - AF <-> AF

EX DE', HL 2 S - - - - if (TALTD) then DE <-> HL
el se DEE <-> HL’

EX DE' , HL’ 4 S - - - - DE <-> HL’

EX DE, HL 2 S - - - - if (VALTD) then DE <-> HL
el se DE <-> HU

EX DE, H’ 4 S - - - - DE<->H

EXX 2 - - - - BC<->BC; DE<->DFE;
HL <-> HL’

EX DEHL
(DlE] [B]C]
> 2w

EX AFAF
EXDEHL EX DE',HL

O] E]

Blc

EX DE' HL

EXX - exchange HL ,HL' ,DE,DE’ ,BC,BC’
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18.8 Stack Manipulation Instructions

I nstruction
ADD SP, d
POP I P

POP | X

POP |Y

POP zz

PUSH | P
PUSH | X

PUSH 1Y

PUSH zz

clk
4
7
9

12

10

A
f

| SZV C Qperation

*

SP =SP +d -- d=0 to 255
IP = (SP); SP = SP+1

IXL = (SP); I XH = (SP+1);
SP = SP+2

YL = (SP); IYH = (SP+1);
SP = SP+2

zzl = (SP); zzh = (SP+1);
SP=SP+2 -- zz= BC, DE, HL, AF
(SP-1) = 1P, SP = SP-1
(SP-1) = I XH (SP-2) = IXL;
SP = SP-2

(SP-1) = IYH (SP-2) =1YL;
SP = SP-2

(SP-1) = zzh; (SP-2) = zzl

SP=SP-2 --zz= BC, DE, HL, AF

18.9 16-bit Arithmetic and L ogical Operations

I nstruction
ADC HL, ss

ADD
ADD

HL, ss
I X, XX
ADD 1Y, yy
ADD SP, d

AND HL, DE
AND | X, DE

AND 1Y, DE
BOOL HL

BOOL | X
BOOL 1Y
DEC | X
DEC | Y
DEC ss

INC | X
INC Y
I NC ss

<=
M M

clk
4

2

NABADMD N BRDNPA

N A BS

12

A BN

A
fr

fr
f

| S Z
* *

* % X X 1

* % X X 1

orrr
Oo0oo *

o
o

o
'O

|

C
*

*

Operation
HO = HL + ss + CF -- ss=BC
DE, HL, SP
HL = HL + ss
IX=1X + xx -- xx=BC
DE, 11X, SP
Y = 1Y +yy -- yy=BC
DE, 1Y, SP
SP=SP +d-- d=0 to 255
HL = HL & DE
IX =1X & DE
Y = 1Y & DE
if (HL!=0) H =1
set flags to match HL
if (IX!I=0) IX=1
if (1Y!I=0) 1Y=1
IX=1X-1
Y =1Y -1
ss = ss - 1 -- ss= BC
DE, HL, SP
IX=1X+1
Y =1Y + 1
ss = ss + 1 -- ss= BC
DE, HL, SP
HL: BC = BC * DE, signed
32 bit result. DE unchanged
HL = HL | DE -- bitw se or
IX =1X]| DE
Y =1Y | DE
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RL DE

RR DE
RR HL
RR I X
RRI1Y
SBC HL, ss

A BADNDODN

fr

fr
fr

fr

E o B

L B

<r-r-—rr

L B

{CY,DE} = {DE, CY} --
left shift with CF

{DE, CY} = {CY, DE}
{HL, CY} = {CY, HL}
{IX CY} ={CY, I X}
{ry,cy; = {Cv, 1Y}
HL=HL- ss- CY

(cout if (ss-CY)>hl)

18.10 8-bit Arithmetic and L ogical Operations

I nstruction
ADC A, (HL)

ADC A, (| X+d)
ADC A, (I Y+d)

(

(1 X+d)
(1Y+d)
n
r

3333899999

SBC*
SBC*
SBC*
SBC* A, n
SBC* A r
SUB (HL)
SUB (| X+d)
SUB (| Y+d)
SUB n

SUB r

XOR (HL)
XOR (| X+d)
XOR (1 Y+d)
XOR n

XOR r

(1 X+d)
(1Y+d)
A (HL)

NDAOCOCHNDOOUINDMUIOONDNOOUNDMOOUNDOOUNDOOUNINOOOUO

=~

A
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
f
f
f
f
f
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr
fr

I

s
s
s

n n

(7]

X0k kb ok 3k b 3F F b 3 F b 3k b b 3k b 3k 3k b E F b 3E F b 3k F ok 3k F ok %k X X X X ()

S T R R R A S S A A T R T T T S R S S S S S S S N
<< << <K<K <LK <LK LKrrrrr<<<<<<rrrrr<<<<< << <K<K <K<

OO OOO * % % % % % % % ¥ OO0 O0O0O0O % * % ¥ OO OOO * * * % % % * % %

V C CQperation

*

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> D

=+

>>>>2>2>2>>>>>>>>D>
@+ + + + ++ + + +

A
A
A -
A
A

_n_
-r-CY (cout

A&
A&
A & ~(1Y+d)
A&
A&

(HL) + CF
(I X+d) + CF
(Iy+d) + CF
n + CF

r + CF
(HL)

(1 X+d)
(1Y+d)

n

r

(HL)

(1 X+d) -
(1Y+d) -
(HL) - CY
CY (cout if
i f
(HL)

(1 X+d)
(1Y+d)

~(HO1 | [
~( | X+d)

~n] |

I

I

~A
~r] | [~A

Ll —

Cy
Cy

(r-CY)>A)
(r-Cv)>A)

~A & (HL)]
[~A & (1 X+d)]
[~A & (1Y+d)]
& nj

& r]
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* SBC and CP instruction output inverted carry. Cis set

the operation or virtual
A>=B. SUB outputs carry in opposite sense from SBC and CP.

operation is (A-B).

18.11 8-bit Bit Set, Reset and Test I nstructions

I nstruction
BIT b, (HL)
BIT b, (I X+d))
BIT b, (1Y+d))
BIT b, r
RES b, (HL)
RES b, (| X+d)
RES b, (| Y+d)
RES b,
SET b, (HL)
SET b, (I X+d)
SET b, (1Y+d)
b,

SET

—_ A~~~ =

clk
7
10
10
4
10
13
13
4
10
13
13
4

A
f
f
f
f

I

s
s
s

O O o

O T T

S ZV C CQperation
(HL) & bit
(I X+d) & bi
(1Y+d) & bi
r & bit
(HL) = (H)
(1 X+d) (1
(1Y+d) (1
- - - - 1 =71 & ~bi
(HL) = (H)
(1 X+d) (1
(1Y+d) (1
- - - 1 =71 | bit

* X kX

o I

18.12 8-bit Increment and Decrement

I nstruction
DEC (HL)
DEC (| X+d)
DEC (I Y+d)
DEC r

I NC (HL)

I NC (I X+d)
I NC (I Y+d)
INC r

I

b
b
b

O T

% 3k X ok X X k()

C CQOperation
- (HL) = (H)
- (IX+d) = (I
- (1Y+d) (1
r=r -1
- (HL) = (H)
- (IX+d) = (I
- (1Y+d) = (I
- r =r + 1

L A RGN \N |

<LK <LKLKLKKLKLKKL

18.13 8-bit Fast A register Operations

I nstruction
CPL

NEG

RLA

RLCA

RRA

RRCA

c
2
4
2
2
2
2

A
r
fr
fr
fr
fr
fr

S ZV C CQperation
A= -~A

A=0-A

* * V*

if A<B i
Carry is cleared if

t
t

& ~bit
X+d) & ~bit
Y+d) & ~bit
t

| bit
X+d) | bit
Y+d) | bit

-1
X+d)
Y+d)

-1
-1

+ 1
X+d) + 1
Y+d) + 1

f

* X kX

{CY,A} = {ACYV}
A= {A6,0],A 7]};
{A CY} = {CY, A

A={A0], A7 1]},

CYy = A 7]

CY = A[0]
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18.14 8-bit Shiftsand Rotates

RL, RLA L Cla— - SLA | C ja—] - 0
I

RR,RRA  Lp —» C SRL | O —»C

RRC, RRCA Ly i, C

I nstruction clk A I SZVC Qperation

RL (HL) 10 f b**L* {CY,(H)} = {(HD), CY}

RL (I X+d) 13 f b=**L* {CY (IX+td)} = {(IX+d), CY}
RL (IY+d) 13 f b=**L* {CY,(lY+d)} = {(1Y+d), CY}
RL r 4 fr *x L x {CY,r} ={r,CY}

RLC (HL) 10 f b**L* (H) = {(H)[6,0],(H)[7]};

CY = (HL)[7]
RLC (| X+d) 13 f b**L* (I1X+td) = {(IX+d)[86,0],
(IX+d)[7]}; CY = (I X+d)[7]
RLC (1 Y+d) 13 f b**L* (1Y+d) = {(1Y+d)[86, 0],
(1Y+d)[7]}; CY = (1Y+d)[7]

RLC r 4 fr *x Lx or ={r[6,0],r[7]}; CY =1r1][7]
RR (HL) 10 f b**L* {(HL),CY} = {CY,(H)}

RR (1 X+d) 13 f o b**L* {(IX+d),CY} = {CV, (I X+d)}
RR (1 Y+d) 13 f o b**L=* {(lY+d),CY} = {CV, (lY+d)}
RR r 4 fr ** L {r,C¥} ={CVY,r}

RRC (HL) 10 f b**L* (H) = {(H)[O],(H)[7,1]};

CY = (HL)[0]
RRC (| X+d) 13 f b**L* (IX+d) = {(I1X+d)[O],
(IX+d)[7,1]}; CY = (1X+d)[0]
RRC (1 Y+d) 13 f b**L* (1Y+d) = {(1Y+d)[O], (
| Y+d)[7,1]}; CY = (1Y+d)[O0]

RRC r 4 fr **L* r ={r[0],r[7,1]}; CY =1r[0]
SLA (HL) 10 f b** L* (H) ={(H)[6,0],0}; CY =
(HL) [ 7]

SLA (| X+d) 13 f b**L=* (IX+td) = {(IX+d)[6,0], 0};
CY = (I X+d)[7]

SLA (1Y+d) 13 f b=**L* (lY+d) = {(1Y+d)[6,0], 0};
CY = (1Y+d)[7]

SLA r 4 fr ** L*x r ={r[6,0],0}; CY =r[7]
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SRA (HL) 10 f b *
SRA (1 X+d) 13 f b *
SRA (1 Y+d) 13 f b *

SRA r 4 fr *
SRL (HL) 10 f b~

SRL (1 X+d) 13 f b *
SRL (1 Y+d) 13 f b *

SRL r 4 fr *

18.15 Instruction Prefixes

I nstruction clk A I S
ALTD 2 -
| CE 2
1A 2

18.16 Block Move Instructions

I nstruction clk A

LDD 10 d - -
LDDR 6+7i d - -
LDl 10 d - -
LD R 6+7i d - -

SZ

C

(HL) = {(H)[7],(H)[7,1]};
CY = (HL)[0]

(IX+d) = {(IX+d)[ 7],
(IX+d)[7,1]}; CY = (I1X+d)[0]
(1Y+d) = {(1Y+d)[7],
(1Y+d)[7,1]}; CY = (1Y+d)[O]
r={r[7],r[7,1]}; CY =1r[0]
(HL) ={0,(H)[7,1]};

CY = (HL)[0]

(IX+d) = {0, (I X+d)[7,1]};

CY = (I X+d)[0]

(1Y+d) = {0, (1Y+d)[7,1]};

CY = (1Y+d)[0]

r ={0,r[7,1]};

CYy = r[0]

Qperation

- alternate register destinatln

C

* -

* -

for next Instruction

I/ O external prefix
I/Ointernal prefix
Qper ation

(DE) = (HL); BC = BC1;

DE = DE-1; HL = HL-1
if {BC!= 0} repeat:
(DE) = (HL); BC = BC-1;
DE = DE+1; HL = HL+1
if {BC!= 0} repeat:

If any of the block move instructions are prefixed by an /O prefix, the destination
will be in the specified I/O space. Add 1 clock for each iteration for the prefix if
the prefix is10I (internal 1/0). If the prefix is1OE, add 2 clocks plus the number
of 1/0 wait states enabled. TheV flag is set when BC transitionsfrom 1to 0. If
the V flag is not set another step is performed for the repeating versions of the
instructions. Interrupts can occurr between different repeats, but not within an iter-
ation equivalent to LDD or LDI. Return fromtheinterrupt isto thefirst byte of the
instruction which isthe /O prefix byteif thereis one.
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18.17 Control Instructions - Jumpsand Calls

I nstruction

CALL mm
DINZ j

JP (HL)

JP (1 X)

JP (1Y)

JP f,m
JP m

JR cc, e
JR e

LCALL xpc, m
LJP xpc, m
LRET

RET

RET f

RETI

RST v

clk
12

QU NN O ~O

[EnN
©

10
13

8/2

12

10

A

SZV C CQperation

18.18 Miscellaneous I nstructions

I nstruction
CCF

| PSET 0O

| PSET 1

| PSET 2

| PSET 3

| PRES

LD A EIR
LD A IIR
LD A, XPC
LD EIR A
LDIIR A
LD XPC, A
NOP

POP I P
PUSH | P
SCF

Z1 NTACK

PNONNPABRARAERMARAEDMAEPMBPAAENO
=~

o

A
f

fr
fr

SZV

(SP-1) =

B = B-1;
PC = HL
PC = 1X
PC=1Y

PCH, (SP-2) = PCL;
PC=m; SP = SP-2
if {B!=0} PC=PC+ j

if {f} PC = m

PC = m

if {cc} PC=PC+ e

PC = PC + e (if e==0 next

i s executed)

XPC; (SP-2) = PCH
PCL; XPC=xpc;

PC = m; SP = (SP-3)

PC = mm

seq i nst
(SP-1) =
(SP-3)

XPC=xpc;
PCL
XPC
PCL
SP = SP+
if {f} P
(SP+1);

P = (SP

PCH = (SP+2);

(SP-1) =
SP = SP

2
CL
SP

)

(SP);
(SP+2);
(SP);

PCH = (SP+1);
SP = SP+3
PCH = (SP+1);

(SP); PCH =
SP+2

PCL = (SP+1);
SP = SP+3

PCH, (SP-2) = PCL;
2; PC={RV)
v=10, 18, 20, 28, 38 only

Qperation

CF = ~CF

IP={IP[5:0], 00}
IP={IP[5:0], 01}
IP={IP[5:0], 10}

IP = {IP[5:0], 11}
IP={IP[1:0], IP[7:2]}

A= ER

A=1IR

A= MU

EIR = A

IR =A

XPC = A

No Operation

IP = (SP); SP = SP+1
(SP-1) = 1P, SP = SP-1
CF=1

(SP-1) = PCH (SP-2) = PCL;
SP = SP-2; P ={IP[6:
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18.19 Privileged Instructions

The privileged instructions are described in this section. Privilege means that an interrupt
cannot take place between the privileged instruction and the following instruction.

The three instructions below are privileged.

LD SP,HL ; load the stack pointer
LD SP, I Y
LD SP, I X

The instructionsto load the stack are privileged so that they can be followed by an instruc-
tion to load the stack segment (SSEG) register without the danger of an interrupt taking
place with and incorrect association between the stack pointer and the stack segment reg-
ister. For example,

LD SP, HL
1O LD (STACKSEG), A

The following instructions are privileged.

| PSET 0O ; shift IP left and set priority 00 in bits 1,0

| PSET 1

| PSET 2

| PSET 3

| PRES ; rotate IP right 2 bits, restoring previous priority
POP IP ; pop IP register from stack

The instructions to modify the I P register are privileged so that they can be followed by a
return instructions that is guaranteed to execute before another interrupt takes place. This
avoidsthe possibility of an ever-growing stack.

RETI ; pops I P fromstack and then pops return address

Theinstructionr et i can be used to set both the return address and theipin asingle in-
struction. If preceded by aLD XPC, acompletejump or call to acomputed address can be
done with no possible interrupt.

LD A XPC ; get and set the XPC
LD XPC, A

Theinstruction LD XPC, Aisprivileged so that it can be followed by other code setting in-
terrupt priority or program counter without an intervening interrupt.

BIT B,(HL) ; test a bit in nenory

Theinstruction bit B, (HL) is privileged to make it possible to implement a semaphore
without disabling interrupts. The following sequenceisused. A bit isa semaphore, and
thefirst task to set the bit owns the semaphore and has a right to manipulate the resources
associated with the semaphore.
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BIT B, (HL)
SET B, (HL)
JP z,ihaveit
here | don’t have it

The SET instruction has no effect ontheflags. Since no interrupt takes place after the Bl T
instruction, if theflag is zero that means that the semaphore was not set when tested by the
bit instruction and that the set instruction has set the semaphore. If an interrupt was al-
lowed between the BI T and set instructions, another routine could set the semaphore and
two routines could think that they both owned the semaphore.

18.20 Op Code Mapping

Please click for spreadsheet.
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19. Differences Rabbit vs. Z80/Z180 I nstructions

The Rabbit is highly code compatible with the Z80 and 2180, and it is easy to port non 1/O
dependent code. The main areas of incompatibility are instructions that are concerned
with I/O or particular hardware implementations. The more important instructions that
were dropped from the Z80/2180 are automatically simulated by an instruction sequence
inthe Dynamic C assembler. A few fairly uselessinstructions have been dropped and can-
not be easily smulated. Code using these instructions should be rewritten.

The following Z80/Z180 instructions have been dropped and there is no exact substitute.

DAA, HALT, DI ElI,IMO,IM 1,1 M 2,OUT, I N, QUTO, | NO, SLP, QUTI , | ND, QUTD,
I NI R, OTl R, I NDR, OTDR, TESTI O, M_.T SP, RRD, RLD, CPI , CPI R, CPD, CPDR

Most of these op codes deal with 1/0 devices and thus do not represent transportable code.
The only opcodes that are not processor 1/O related are MLT SP, DAA, RRD, RLD, CPI ,

CPI R, CPD, and CPDR. MLT SPisnot apractical op code. The codes that are concerned
with decimal arithmetic, DAA, RRD, and RLD, could be simulated, but the simulation isvery
inefficient. (Thebit inthe status register used for half carry is available and can be set and
cleared using the push and pop af instructions to gain access.) Usually code that uses
these instructions should be rewritten. The instructions CPI , CPI R, CPD, and CPDR are re-
peating compare instructions. These instructions are not very useful because the scan
stops when equal compare is detected. Unequal compare would be more useful. They are
difficult to simulate efficiently, so it is suggested that code using these instructions be re-
written, which in most cases should be quite easy.

The following op codes are dropped.
RST 0, RST 8, RST 30h

The remaining RST instructions are kept, but the interrupt vector isrelocated to avariable
location the base of which is established by the EIR register. RST can be simulated by a
call instruction, but thisis not done automatically by the assembler since most of these in-
structions are used for debugging by Dynamic C.

The following instruction has had its op code changed.

EX (SP), HL - old opcode OE3h, new opcode - OEDh-054h

The following instructions use different register names.

LD A EIR
LD EIR A ; was R register
LDIIR A
LD A IR ; was | register
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The following Z80/Z180 instructions have been dropped and are not supported.

CALL CC, ADR JR (JP) ncc, xxx ; reverse condition
CALL ADR
XXX:

TST R ( (HL), n) PUSH DE
PUSH AF

AND r ( (HL), n)
POP DE ; get ainh
LD A d

POP DE
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20. Instructionsin Alphabetical Order With Binary Encoding

Spreadsheet Conventions

ALTD (“A” Column) Symbol Key

Flag

Description

ALTD selects alternate flags

fr

ALTD sdlects alternate flags and register

ALTD selects alternate register

ALTD operation is a special case

IOl and IOE (“I” Column) Symbol Key

Description

10l and IOE affect source and destination

IOl and IOE affect destination

10l and IOE affect source

Flag Register Key

LV | C

Description

Sign flag affected

Sign flag not affected

Zero flag affected

Zero flag not affected

L L/V flag contains logical check result
\Y L/V flag contains arithmetic overflow result
0 L/V flag iscleared

*

L/V flagis affected

Carry flag is affected

Carry flag is not affected

0

Carry flag is cleared

1

Carry flag is set

" TheL/V (logical/overflow) flag serves adual purpose—L/V

issetto 1 for logical operationsif any of the four most signif-
icant bitsof theresult are 1, and L/V isreset to O if all four of
the most significant bits of the result are O.
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Symbols

Rabbit 7180 Meaning
Bit select:
000 = hit 0, 001 = bit 1,
b b 010 = bit 2, 011 = bit 3,

100 = hit 4, 101 = hit 5,
110 = bit 6, 111 =hit 7

Condition code select:

cc cc 00=NZ,01=7,
10=NC,11=C
d d 7-bit (signed) displacement. Expressed in two’'s complement.
dd ww | Word register select destination: 00=BC, 01 =DE, 10=HL, 11 =SP
dd’ Word register select alternate;: 00 = BC', 01 =DE’, 10 = HL’
e j 8-hit (signed) displacement added to PC.
Condition code select:
000 = NZ (non zero), 001 = Z (zero),
f f 010 = NC (non carry), 011 = C (carry),
100=LZ" (logical zero), 101 = LO (logical one),
110 = P (sign plus), 111 =M (sign minus)
m m MSB of a16-bit constant.
m m 16-bit constant.
n n 8-hit constant or LSB of a 16-bit constant.
Byte register select:
000 =B, 001 =C,
r, r’ g, g |010=D, 011 =E,
100 =H, 101 =L,
111 =A
ss ww | Word register select (source): 00=BC, 01 =DE, 10=HL, 11=SP
Restart address select:
v v 010 = 0020h, 011 = 0030h,
100 = 0040h, 101 = 0050h,
111 = 0070h
XX xx | Word register select: 00=BC, 01 =DE, 10=1X, 11 =SP
yy yy Word register select: 00=BC, 01 =DE, 10=1Y,11=SP
zz zz |Wordregister select: 00=BC, 01 =DE, 10=HL, 11 = AF

Logical zero if all four of the most significant bits of the result are 0.

T Logical oneif any of the four most significant bits of the result are 1.
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I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A 1 szvCcC
ADC A, (HL) 10001110 5 fr s * * Vv~
ADC A, (I X+d) 11011101 10001110 ----d--- 9 fr s * * V=*
ADC A, (I Y+d) 11111101 10001110 ----d--- 9 fr s * * V=*
ADC A, n 11001110 ----n--- 4 fr VA
ADC A, r 10001-r- 2 fr VAR
ADC HL, ss 11101101 01ss1010 4 fr VAR
ADD A, (HL) 10000110 5 fr s * * Vv~
ADD A, (I X+d) 11011101 10000110 ----d--- 9 fr s * * V=*
ADD A, (IY+d) 11111101 10000110 ----d--- 9 fr s * * V=*
ADD A, n 11000110 ----n--- 4 fr R VA
ADD A, r 10000-r - 2 fr VAR
ADD HL, ss 00ss1001 2 fr - - - %
ADD | X, xx 11011101 00xx1001 4 f - - - %
ADD 1Y, yy 11111101 O0OOyyi1001 4 f - - - %
ADD SP, d 00100111 ----d--- 4 f - - - %
ALTD 01110110 2 - - - -
AND (HL) 10100110 5 fr s**LO
AND (| X+d) 11011101 10100110 ----d--- 9 fr s**LO
AND (1 Y+d) 11111101 10100110 ----d--- 9 fr s**LO
AND HL, DE 11011100 2 fr ** L O
AND | X, DE 11011101 11011100 4 f * * L O
AND 1Y, DE 11111101 11011100 4 f * * L O
AND n 11100110 ----n--- 4 fr * * L O
AND r 10100-r - 2 fr * * L O
BIT b, (HL) 11001011 01-b-110 7 f s - * - -
BIT b, (I X+d)) 11011101 11001011 ----d--- 01-b-110 10 f s - * - -
BIT b, (IY+d)) 11111101 11001011 ----d--- 01-b-110 10 f s - * - -
BIT b, r 11001011 O01-b--r- 4 f - - -
BOOL HL 11001100 2 fr ** 00
BOOL | X 11011101 11001100 4 f ** 00
BOOL |Y 11111101 11001100 4 f ** 00
CALL mm 11001101 ----n--- ----Mm-- 12 - - - -
CCF 00111111 2 f - - - %
CP (HL) 10111110 5 f s**V*
CP (| X+d) 11011101 10111110 ----d--- 9 f s* *V*
CP (1Y+d) 11111101 10111110 ----d--- 9 f s* *V*
CP n 11111110 ----n--- 4 f A VA
CPr 10111-r- 2 f R VAR
CPL 00101111 2 r - - - -
DEC (HL) 00110101 8 f b**V-
DEC (/| X+d) 11011101 00110101 ----d--- 12 f b * * V-
DEC (| Y+d) 11111101 00110101 ----d--- 12 f b * * V-
DEC | X 11011101 00101011 4 - - - -
DEC 1Y 11111101 00101011 4 - - - -
DEC r 00-r-101 2 fr * X\ -
DEC ss 00ss1011 2 r - - - -
ss= 00-BC, 01-DE, 10-HL, 11-SP
DINZ j 00010000 --(j-2)- 5 r - - - -
EX (SP), HL 11101101 01010100 15 r - - - -
EX (SP), I X 11011101 11100011 15 - - - -
EX (SP), 1Y 11111101 11100011 15 - - - -
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I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A1l SzvVvC

EX AF, AF 00001000 2 - - - -
EX DE, HL 11101011 2 s - - - -
EX DE , HL 11100011 2 s - - - -
EX DE, HL’ 01110110 11100011 4 s - - - -
EX DE , HU’ 01110110 11100011 4 S - - - -
EXX 11011001 2 - - - -
I NC (HL) 00110100 8 f b**V-
I NC (I X+d) 11011101 00110100 ----d--- 12 f b * * V-
I NC (I Y+d) 11111101 00110100 ----d--- 12 f b * * V-
INC I X 11011101 00100011 4 - - - -
INC 1Y 11111101 00100011 4 - - - -
I NC r 00-r-100 2 fr * X\ -
I NC ss 00ss0011 2 r - - - -
ss= 00-BC, 01-DE, 10-HL, 11-SP
| OE 11011011 2 - - - -
1A 11010011 2 - - - -
| PSET 0O 11101101 01000110 4 - - - -
| PSET 1 11101101 01010110 4 - - - -
| PSET 2 11101101 01001110 4 - - - -
| PSET 3 11101101 01011110 4 - - - -
| PRES 11101101 01011101 4 - - - -
JP (HL) 11101001 4 - - - -
JP (1X) 11011101 11101001 6 - - - -
JP (1Y) 11111101 11101001 6 - - - -
JP f, m 11-f-010 ----n--- ----m-- 7 - - - -
JP m 11000011 ----n--- ----m-- 7 - - - -
JR cc, e 001cc000 --(e-2)- 5 - - - -
JR e 00011000 --(e-2)- 5 - - - -

Note: If byte followi ng op code is zero, next sequential instruction
is executed. If byte is -2 (11111110) jr is to itself.

LCALL xpc, m 11001111 ----n--- ----mM-- --Xpc--- 19 - - - -
LD (BO), A 00000010 7 d- - - -
LD (DE), A 00010010 7 d- - - -
LD (HL), n 00110110 ----n--- 7 d- - - -
LD (HL),r 01110-r- 6 d- - - -
LD (HL+d),HL 11011101 11110100 ----d--- 13 d- - - -
LD (I X+d),HL 11110100 ----d--- 11 d- - - -
LD (1 X+d), n 11011101 00110110 ----d--- =----n--- 11 d- - - -
LD (1 X+d), r 11011101 01110-r- ----d--- 10 d- - - -
LD (1Y+d),HL 11111101 11110100 ----d--- 13 d- - - -
LD (1Y+d),n 11111101 00110110 ----d--- =----n--- 11 d- - - -
LD (1Y+d),r 11111101 01110-r- ----d--- 10 d- - - -
LD (m), A 00110010 ----n--- ----M-- 10 d- - - -
LD (m), HL 00100010 ----n--- ----M-- 13 d- - - -
LD (m), I X 11011101 00100010 ----n--- ----M-- 15 d- - - -
LD (m), 1Y 11111101 00100010 ----n--- ----M-- 15 d- - - -
LD (m), ss 11101101 01ss0011 ----n--- ----M-- 15 d- - - -
LD (SP+n),HL 11010100 ----n--- 11 - - - -
LD (SP+n), 1 X 11011101 11010100 ----n--- 13 - - - -
LD (SP+n),l1Y 11111101 11010100 ----n--- 13 - - - -
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I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A 1 szvCcC
LD A (BQO 00001010 6 ros- - - -
LD A (DE) 00011010 6 ros- - - -
LD A (m) 00111010 ----n--- ----m-- 9 ros- - - -
LD A EIR 11101101 01010111 4 fr oo
LD A IR 11101101 01011111 4 fr koo
LD A, XPC 11101101 01110111 4 r - - - -
LD dd, (m) 11101101 01dd1011 ----n--- ----Mm-- 13 r s - - - -
LD dd’, BC 11101101 01dd1001 4 - - - -
LD dd’, DE 11101101 01ddo001 4 - - - -
LD dd, m 00ddo0o01 ----n--- ----m-- 6 r - - - -
LD bc, m 00000001

LD de, m 00010001

LD hl, m 00100001

LD sp, m 00110001 ...

LD EIR A 11101101 01000111 4 - - - -
LD HL, (HL+d) 11011101 11100100 ----d--- 11 r s - - - -
LD HL, (I X+d) 11100100 ----d--- 9 ros- - - -
LD HL, (I Y+d) 11111101 11100100 ----d--- 11 r s - - - -
LD HL, (m) 00101010 ----n--- ----m-- 11 r s - - - -
LD HL, (SP+n) 11000100 ----n--- 9 r - - - -
LD HL, I X 11011101 01111100 4 r - - - -
LD HL, 1Y 11111101 01111100 4 r - - - -
LDIIR A 11101101 01001111 4 - - - -
LD I X, (i) 11011101 00101010 ----n--- ----M-- 13 s - - - -
LD I X, (SP+n) 11011101 11000100 ----n--- 11 - - - -
LD I X, HL 11011101 01111101 4 - - - -
LD I X, m 11011101 00100001 ----n--- ----M-- 8 - - - -
LD 1Y, (m) 11111101 00101010 ----n--- ----M-- 13 s - - - -
LD 1Y, (SP+n) 11111101 11000100 ----n--- 11 - - - -
LD 1Y, HL 11111101 01111101 4 - - - -
LD 1Y, m 11111101 00100001 ----n--- ----M-- 8 - - - -
LD r, (HL) 01-r-110 5 ros- - - -
LD r, (1 X+d) 11011101 O01-r-2110 ----d--- 9 ros- - - -
LD r, (1Y+d) 11111101 O01-r-210 ----d--- 9 ros- - - -
LDr,qg 01l-r--r’ 2 r - - - -
LD r,n 00-r-110 ----n--- 4 r - - - -
LD SP, HL 11111001 2 - - - -
LD SP, I X 11011101 11111001 4 - - - -
LD SP, 1Y 11111101 11111001 4 - - - -
LD XPC, A 11101101 01100111 4 - - - -
LDD 11101101 10101000 10 d- - * -
LDDR 11101101 10111000 6+7i d- - * -
LDI 11101101 10100000 10 d- - * -
LDl R 11101101 10110000 6+7i d- - * -
LDP (HL), HL 11101101 01100100 12 - - - -
LDP (1 X), HL 11011101 01100100 12 - - - -
LDP (1Y), HL 11111101 01100100 12 - - - -
LDP (mm), HL 11101101 01100101 ----n--- ----M-- 15 - - - -
LDP (m),IX 11011101 01100101 ----n--- ----NMt-- 15 - - - -
LDP (m),lY 11111101 01100101 ----n--- ----NMt-- 15 - - - -
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I nstruction Byte 1 Byte 2 Byte 3 Byte 4 clk A I SzvVvC

LDP HL, (HL) 11101101 01101100 10 - - - -
LDP HL, (I X) 11011101 01101100 10 - - - -
LDP HL, (1Y) 11111101 01101100 10 - - - -
LDP HL, (mm) 11101101 01101101 ----n--- ----Mm-- 13 - - - -
LDP | X, (mm) 11011101 01101101 ----n--- ----Mm-- 13 - - - -
LDP 1Y, (m) 11111101 01101101 ----n--- ----Mm-- 13 - - - -
LJP nbr, m 11000111 ----n--- ----m-- --nbr--- 10 - - - -
LRET 11101101 01000101 13 - - - -
MJL 11110111 12 - - - -
NEG 11101101 01000100 4 fr S VA
NOP 00000000 2 - - - -
OR (HL) 10110110 5 fr s**LO
OR (I X+d) 11011101 10110110 ----d--- 9 fr s** LO
OR (1Y+d) 11111101 10110110 ----d--- 9 fr s** LO
OR HL, DE 11101100 2 fr * * L0
OR | X, DE 11011101 11101100 4 f * * L0
OR 1Y, DE 11111101 11101100 4 f * * L0
OR n 11110110 ----n--- 4 fr * * L0
R 10110-r - 2 fr * * L0
POP I P 11101101 01111110 7 - - - -
POP | X 11011101 11100001 9 - - - -
POP IY 11111101 11100001 9 - - - -
POP zz 11zz0001 7 r - - - -
PUSH | P 11101101 01110110 9 - - - -
PUSH | X 11011101 11100101 12 - - - -
PUSH | Y 11111101 11100101 12 - - - -
PUSH zz 11zz0101 10 - - - -
RES b, (HL) 11001011 10-b-110 10 d- - - -
RES b, (I X+d) 11011101 11001011 ----d--- 10-b-110 13 d- - - -
RES b, (I Y+d) 11111101 11001011 ----d--- 10-b-110 13 d- - - -
RES b, r 11001011 10-b--r- 4 r - - - -
RET 11001001 8 - - - -
RET f 11-f-000 8/ 2 - - - -
RETI 11101101 01001101 12 - - - -
RL (HL) 11001011 00010110 10 f b * * L *
RL (1 X+d) 11011101 11001011 ----d--- 00010110 13 f b * * L *
RL (1Y+d) 11111101 11001011 ----d--- 00010110 13 f b * * L *
RL DE 11110011 2 fr * ok ¥
RL r 11001011 00010-r- 4 fr * ok ¥
RLA 00010111 2 fr - - - *
RLC (HL) 11001011 00000110 10 f b * * L *
RLC (1 X+d) 11011101 11001011 ----d--- 00000110 13 f b * * L *
RLC (1 Y+d) 11111101 11001011 ----d--- 00000110 13 f b * * L *
RLC r 11001011 00000-r- 4 fr ok ¥
RLCA 00000111 2 fr - - - *
RR (HL) 11001011 00011110 10 f b * * L *
RR (1 X+d) 11011101 11001011 ----d--- 00011110 13 f b * * L *
RR (1 Y+d) 11111101 11001011 ----d--- 00011110 13 f b * * L *
RR DE 11111011 2 fr ¥ ok L%
RR HL 11111100 2 fr * ok ¥
RR I X 11011101 11111100 4 f ok ¥
RRI1Y 11111101 11111100 4 f * ok ¥
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I nstruction Byte 1

RR r 11001011
RRA 00011111
RRC (HL) 11001011
RRC (| X+d) 11011101
RRC (| Y+d) 11111101
RRC r 11001011
RRCA 00001111
RST v 11-v-111
SBC (| X+d) 11011101
SBC (| Y+d) 11111101
SBC A, (HL) 10011110
SBC A n 11011110
SBC A r 10011-r-
SBC HL, ss 11101101
SCF 00110111
SET b, (HL) 11001011
SET b, (1 X+d) 11011101
SET b, (1Y+d) 11111101
SET b, r 11001011
SLA (HL) 11001011
SLA (| X+d) 11011101
SLA (1Y+d) 11111101
SLA r 11001011
SRA (HL) 11001011
SRA (| X+d) 11011101
SRA (| Y+d) 11111101
SRA r 11001011
SRL (HL) 11001011
SRL (| X+d) 11011101
SRL (IY+d) 11111101
SRL r 11001011
SUB (HL) 10010110
SUB (| X+d) 11011101
SUB (| Y+d) 11111101
SUB n 11010110
SUB r 10010-r-
XOR (HL) 10101110
XOR (| X+d) 11011101
XOR (1 Y+d) 11111101
XOR n 11101110
XOR r 10101-r-
ZI NTACK (interrupt)

Byte 4

00001110
00001110

11- b-110
11- b-110

00100110
00100110

00101110
00101110

00111110
00111110

Byte 2 Byte 3
00011-r-

00001110
11001011 ----d---
11001011 ----d---
00001-r -

[v=2,3,4,5,7 only]

10011110 ----d---
10011110 ----d---
____n___
01ss0010
11-b-110
11001011 ----d---
11001011 ----d---
11-b--r-

00100110
11001011 ----d---
11001011 ----d---
00100-r -

00101110
11001011 ----d---
11001011 ----d---
00101-r-

00111110
11001011 ----d---
11001011 ----d---
00111-r-

10010110 ----d---
10010110 ----d---
----n---

10101110 ----d---
10101110 ----d---

----n---

clk A

4
2
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13
13
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Appendix A

A.1 Rabbit Programming Port

The programming port provides a standard physical and electrical interface between a
Rabbit-based system and the Dynamic C programming platform. A special interface cable
and converter connects a PC serial port to the programming port. The programming port is
implemented by means of a 10-pin standard 2 mm connector. (Of course the user can
change the physical implementation of the connector if he so desires.) With this setup the
PC can communicate with the target, reset it and reboot it. The DTR line on the PC serial
interface is used to drive the target reset line, which should be drivable by an external
CMOSdriver. The STATUS pinisused to by the Rabbit-based target to request attention
when a breakpoint is encountered in the target under test. The SMODE pins are pulled up
by a+5V/+3V level from the interface. They should be pulled down on the board when
theinterfaceisnot in use by approximately 5 kQ resistorsto ground. The target under test
providesthe +5V or +3 V to the interface cable which is used to power the RS-232 driver
and receiver.

PROGRAMMING PORT PIN ASSIGNMENTS
(Rabbit PQFP pins are shown in parenthesis)
110 @2 1. RXA(51) — — — — — A~ +
3@ @ |4 2. GND ~50 kQ
e ol 3. CKLKA (94) — — — — —AAA- +
4. +5V/+3V 5k é\:fg
e @8 5 OREEE T == === M-+
s|@ @0 6. TXA (54)
7. n.c.
Programming Port 8. STATUS (output) (38) ..,
Pin Numbers 9. SMODEQO (36) — — — {é{\k/g\/- GND
10. SMODE1 (35) — — — —AAA~ GND

Figure 48. Rabbit Programming Port

A.1.1 Useof the Programming Port as a Diagnostic/Setup Port

The programming port, which is already in place, can serve as a convenient communica
tions port for field setup, diagnosis or other occasional communication need (for example,
asadiagnostic port). There are several ways that the port can be automatically integrated
into the user’s software scheme. If the purpose of the port is simply to perform a setup
function, that is, write setup information to flash memory, then the controller can be reset
through the programming port, followed by a cold boot to start execution of a special pro-
gram dedicated to this functionality.

The standard programming cable connects the programming interface to a PC program-
ming port. The/RESET line can be asserted by manipulating DTR on the PC serial port
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and the STATUS line can be read by the PC as DSR on the serial port. The PC can restart
thetarget by pulsing reset and then, after a short delay, sending aspecial character string at
2400 bps. To simply restart the BIOS, the string 80h, 24h, 80h can be sent. When the
BIOS s started, it can tell whether the PROG connector on the programming cableis con-
nected because the SMODEL, SMODEDQ pins are sensed as high. Thiswill cause the
BIOS to think that it should enter programming mode. The Dynamic C programming
mode then can have an escape message that will enable the diagnostic serial port function.

Another approach to enabling the diagnostic port is to poll the serial port periodically to
see if communication needs to begin or to enable the port and wait for interrupts. The
SMODEX pins can be used for signaling and can be detected by a poll. However, recall
that the SMODEX pins have a special function after reset and will inhibit normal reset be-
havior if not held low. The pull-up resistors on RXA and CLKA prevent spurious data re-
ception that might take place if the pins floated.

If the clocked serial mode is used, the seria port can be driven by having two toggling
lines that can be driven and one line that can be sensed. Thisalows a conversation with a
device that does not have an asynchronous serial port but that has two output signal lines
and one input signal line.

Theline TXA (also called PC6) is zero after reset if cold boot modeis not enabled. A
possible way to detect the presence of a cable on the programming port isfor the cable to
connect TXA to one of the SMODE pins and then test for the connection by raising PC6
and reading the SMODE pin after the cold boot mode has been disabled.

A.1.2 Alternate Programming Port

The programming port uses serial port A. If the user needsto use serial port A in his ap-
plication, an alternate method of programming is possible using the same 10-pin program-
ming port. For his own application the user should use the alternate I/O pinsfor port A
that share pinswith parallel port D. The TXA and RXA pinson the 10-pin programming
port are then a parallel port output and parallel port input using pins 6 and 7 on parallel
port C. Using these two ports plusthe STATUS pin as an output clock, the user can create
asynchronous clocked communication port using instructionsto toggle the clock and data.
Another Rabbit-based board can be used to trandlate the clocked serial signal to an asyn-
chronous signal suitable for the PC. Since the target controls the clock for both send and
receive, the data transmission proceeds at a rate controlled by the target board under de-
velopment.

This scheme does not allow for an interrupt, and it is not desirable to use up an external in-
terrupt for this purpose. The seria port may be used, if desired, During program load be-
cause there is no conflict with the user’s program at compile load time. However, the
user’s program will conflict during debugging. The nature of the transmissions during de-
bugging is such that the user program starts at a break point or otherwise wants to get the
attention of the PC. The other type of message is when the PC wantsto read or write tar-
get memory while the target is running.
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The target toggling the clock can ssimply send a clocked serial message to get the attention
of the PC. The intermediate communications board can accept these unsolicited messages
using its clocked serial port. To prevent overrunning the receiver, the target can wait for a
handshake signal on one of the SMODE lines or there can be suitable pre-arranged delays.

If the PC wants attention from the target it can set aline to request attention (SMODEX).
Thetarget will detect this line in the periodic interrupt routine and handle the complete
message in the periodic interrupt routine. Thismay slow down target execution, but the in-
terrupts will be enabled on the target while the message is read. The intermediate board
could split long messages into a series of shorter messages if thisis a problem.

A.2 Suggested Rabbit Crystal Frequencies

Table 48 on page 141 provides alist of suggested Rabbit operating frequencies. The crys-
tal can be half the operating frequency if the clock doubler is used up to approximately
29.5 MHz. Beyond this operating clock speed, it is necessary to use an X1 crystal or an
external oscillator because asymetery in the waveform generated by the oscillator be-
comes avariation in the clock speed if the clock speed is doubled.
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Appendix B

B.1 Default Valuesfor all the Peripheral Control Registers

The default values for all of the peripheral control registers are shown in this appendix.

The registers within the CPU affected by reset are the Stack Pointer (SP), the Program

Counter (PC), the lIR register, the EIR register, and the IPregister. TheIPregister isset to
all ones (disabling all interrupts), while all of the other listed CPU registers are reset to all

Z€Eros.

Table 51. Default Values for all the Peripheral Control Registers

Register Name Mnemonic | I/O Address R/W Reset
Globa Control/Status Register GCSR 0x0 R/W 11000000
Real Time Clock Control Register RTCCR Ox1 W 00000000
Real Time Clock Byte 0 Register RTCOR 0x2 R/W XXXXXXXX
Real Time Clock Byte 1 Register RTC1R 0x3 R XXXXXXXX
Real Time Clock Byte 2 Register RTC2R Ox4 R XXXXXXXX
Real Time Clock Byte 3 Register RTC3R 0x5 R XXXXXXXX
Real Time Clock Byte 4 Register RTC4R 0x6 R XXXXXXXX
Real Time Clock Byte 5 Register RTC5R 0x7 R XXXXXXXX
Watch-Dog Timer Control Register |WDTCR 0x8 W 00000000
Watch-Dog Timer Test Register WDTTR 0x9 W 00000000
Globa Output Control Register GOCR OxE W 00000x00
Global Clock Double Register GCDR OxF w XXxxx000
MMU Instruction/Data Register MMIDR 0x10 R/W xxx00000
Stack Segment Register (S;gglésBi? Ox11 R/W 00000000
Data Segment Register (DZ/LT;@ SBEBGR) 0x12 R/W 00000000

SEGSIZE
Segment Size Register (2180 0x13 R/W 11111111
CBAR)

Memory Bank 0 Control Register MBOCR 0x14 W 00000000
Memory Bank 1 Control Register MB1CR 0x15 W XXXXXXXX
Memory Bank 2 Control Register MB2CR 0x16 w XXXXXXXX
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Table 51. Default Values for all the Peripheral Control Registers (continued)

Register Name Mnemonic | I/O Address R/W Reset
Memory Bank 3 Control Register MB3CR O0x17 W XXXXXXXX
Slave Port Data O Register SPDOR 0x20 R/W XXXXXXXX
Slave Port Data 1 Register SPD1R 0x21 R/W XXXXXXXX
Slave Port Data 2 Register SPD2R 0x22 R/W XXXXXXXX
Slave Port Status Register SPSR 0x23 R 00000000
Slave Port Control Register SPCR 0x24 R/W 000x0000
Port A Data Register PADR 0x30 R/W XXXXXXXX
Port B Data Register PBDR 0x40 R/W XXXXXXXX
Port C Data Register PCDR 0x50 R/W X0x0x0x0
Port C Function Register PCFR 0x55 W X0x0x0x0
Port D Data Register PDDR 0x60 R/W XXXXXXXX
Port D Control Register PDCR 0x64 W xXx00xx00
Port D Function Register PDFR 0x65 W XXXXXXXX
Port D Drive Control Register PDDCR 0x66 w XXXXXXXX
Port D Data Direction Register PDDDR 0x67 W 00000000
Port D Bit O Register PDBOR 0x68 W XXXXXXXX
Port D Bit 1 Register PDB1R 0x69 W XXXXXXXX
Port D Bit 2 Register PDB2R O0x6A W XXXXXXXX
Port D Bit 3 Register PDB3R 0x6B W XXXXXXXX
Port D Bit 4 Register PDB4R 0x6C W XXXXXXXX
Port D Bit 5 Register PDB5R 0x6D W XXXXXXXX
Port D Bit 6 Register PDB6R O0x6E W XXXXXXXX
Port D Bit 7 Register PDB7R Ox6F W XXXXXXXX
Port E Data Register PEDR 0x70 R/W XXXXXXXX
Port E Control Register PECR Ox74 W xx00xx00
Port E Function Register PEFR 0x75 W XXXXXXXX
Port E Data Direction Register PEDDR Ox77 w 00000000
Port E Bit 0 Register PEBOR 0x78 W XXXXXXXX
Port E Bit 1 Register PEB1R O0x79 W XXXXXXXX
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Table 51. Default Values for all the Peripheral Control Registers (continued)

Register Name Mnemonic | I/O Address R/W Reset
Port E Bit 2 Register PEB2R Ox7A W XXXXXXXX
Port E Bit 3 Register PEB3R 0x7B w XXXXXXXX
Port E Bit 4 Register PEB4R Ox7C W XXXXXXXX
Port E Bit 5 Register PEB5R 0x7D w XXXXXXXX
Port E Bit 6 Register PEB6R OX7E W XXXXXXXX
Port E Bit 7 Register PEB7R Ox7F w XXXXXXXX
I/0 Bank 0 Control Register IBOCR 0x80 W 00000xxx
I/O Bank 1 Control Register IBICR 0x81 W 00000xxx
I/0 Bank 2 Control Register IB2CR 0x82 W 00000xxx
I/O Bank 3 Control Register IB3CR 0x83 W 00000xxx
I/0 Bank 4 Control Register IBACR 0x84 W 00000xxx
I/O Bank 5 Control Register IB5CR 0x85 W 00000xxx
I/0 Bank 6 Control Register IB6CR 0x86 W 00000xxx
I/O Bank 7 Control Register IB7CR 0x87 W 00000xxx
Interrupt 0 Control Register IOCR 0x98 W xx000000
Interrupt 1 Control Register I1CR 0x99 W xx000000
Timer A Control/Status Register TACSR OxAO R/W 0000xx00
Timer A Control Register TACR 0xA2 w 0000xx00
Timer A Time Constant 1 Register TAT1R OxA3 W XXXXXXXX
Timer A Time Constant 4 Register TAT4R 0xA9 w XXXXXXXX
Timer A Time Constant 5 Register TAT5R OxAB W XXXXXXXX
Timer A Time Constant 6 Register TAT6R O0xAD w XXXXXXXX
Timer A Time Constant 7 Register TAT7R OxAF W XXXXXXXX
Timer B Control/Status Register TBCSR 0xBO R/W XXxxx000
Timer B Control Register TBCR 0xB1 W xxxx0000
Timer B MSB 1 Register TBM1R 0xB2 W XXXXXXXX
Timer B LSB 1 Register TBL1R 0xB3 W XXXXXXXX
Timer B MSB 2 Register TBM2R 0xB4 W XXXXXXXX
Timer B LSB 2 Register TBL2R 0xB5 W XXXXXXXX
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Table 51. Default Values for all the Peripheral Control Registers (continued)

Register Name Mnemonic | I/O Address R/W Reset
Timer B Count MSB Register TBCMR OxBE R XXXXXXXX
Timer B Count LSB Register TBCLR OxBF R XXXXXXXX
Serial Port A Data Register SADR 0xCO R/W XXXXXXXX
Serial Port A Address Register SAAR 0xC1 W XXXXXXXX
Serial Port A Status Register SASR 0xC3 R 0xx00000
Serial Port A Control Register SACR 0xC4 W xx000000
Serial Port B Data Register SBDR 0xDO R/W XXXXXXXX
Serial Port B Address Register SBAR 0xD1 W XXXXXXXX
Serial Port B Status Register SBSR 0xD3 R 0xx00000
Serial Port B Control Register SBCR 0xD4 W xx000000
Serial C Data Register SCDR OxEO R/W XXXXXXXX
Serial C Address Register SCAR OxE1l W XXXXXXXX
Serial C Status Register SCSR OxE3 R 0xx00000
Serial C Control Register SCCR OXE4 W xx00x000
Serial Port D Data Register SDDR OxFO R/W XXXXXXXX
Serial Port D Address Register SDAR OxF1 W XXXXXXXX
Serial Port D Status Register SDSR OxF3 R 0xx00000
Serial Port D Control Register SDCR OxF4 W xx00x000
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L egal Notice

Rabbit Semiconductor products are not authorized for use as critical componentsin life-
support devices or systems unless a specific written agreement regarding such intended
use is entered into between the customer and Rabbit Semiconductor prior to use. Life-
support devices or systems are devices or systems intended for surgical impantation into
the body or to sustain life, and whose failure to perform, when properly used in accor-
dance with instructions for use provided in the labeling and user’s manual, can be reason-
ably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system
of any size. In order to prevent danger to life or property, it is the responsibility of the sys-
tem designer to incorporate redundant protective mechanisms appropriate to the risk in-
volved.
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