
XP8700 and XP8800
RS-232 and Motion Control Expansion Boards

User�s Manual
Revision C

XP88
00

XP8700

XP8700 and XP8800 User�s Manual
Part Number 019-0056

�

 Revision C

Last revised on March 15, 2000 � Printed in U.S.A.

Copyright
© 1999 Z-World, Inc.

 �

 All rights reserved.

Z-World reserves the right to make changes and improvements to its
products without providing notice.

Trademarks
� Dynamic C

®
 is a registered trademark of Z-World, Inc.

� Windows
®

is a registered trademark of Microsoft Corporation

� PLCBus
�

 is a trademark of Z-World, Inc.

� Hayes Smart Modem
®

is a registered trademark of Hayes Microcom-
puter Products, Inc.

Notice to Users
When a system failure may cause serious consequences, protecting life and
property against such consequences with a backup system or safety device
is essential. The buyer agrees that protection against consequences
resulting from system failure is the buyer�s responsibility.

This device is not approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional
testing may include visual quality control inspections or mechanical
defects analyzer inspections. Specifications are based on characterization
of tested sample units rather than testing over temperature and voltage of
each unit. Z-World may qualify components to operate within a range of
parameters that is different from the manufacturer�s recommended range.
This strategy is believed to be more economical and effective. Additional
testing or burn-in of an individual unit is available by special arrangement.

Company Address

Z-World, Inc.
2900 Spafford Street
Davis, California 95616-6800
USA

Telephone:
Facsimile:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
http://www.z w orld.com
zworld@zworld.com

XP8700/XP8800 Table of Contents s iii

TABLE OF CONTENTS

About This Manual vii

XP8700

Chapter 1: Overview 13

Chapter 2: Getting Started 15
XP8700 Components ... 16
Connecting Expansion Boards to a Z-World Controller 17
Setting Expansion Board Addresses .. 18

XP8700 Addresses .. 18
Power ... 18

Chapter 3: I/O Configurations 19
XP8700 Pin Assignments ... 20
Using Expansion Boards .. 20
XP8700 Operation ... 21

Signetics SCC2691 UART .. 21
Reading and Writing to the UART .. 26

Controlling the UART .. 27
Communicating ... 29
Interrupts ... 30
Delays ... 31

Chapter 4: Software Reference 33
Expansion Board Addresses .. 34

Logical Addresses ... 34
Dynamic C Libraries .. 35
XP8700 Software ... 36

General Functions in DRIVERS.LIB .. 36
UART Support Functions .. 37
RS-232 Communication Support .. 38
XMODEM Support ... 40
Miscellaneous Functions ... 41
Sample Project .. 42

iv s Table of Contents XP8700/XP8800

XP8800

Chapter 5: Overview 49
XP8800 Overview ... 50

Features ... 50

Chapter 6: Getting Started 51
XP8800 Components ... 52
Connecting Expansion Boards to a Z-World Controller 53
Setting Expansion Board Addresses .. 54

XP8800 Addresses .. 54
Power ... 54

Chapter 7: I/O Configurations 55
XP8800 Pin Assignments ... 56

Header H5 Signals .. 56
Screw Terminal Block H6 Signals .. 57
Sample XP8800 Connections .. 58
Optional Optical Isolation ... 59

Using Expansion Boards .. 60
Resetting XP8800 Expansion Boards ... 60

XP8800 Operation ... 62
PCL-AK Pulse Generator .. 62

Communicating with the PCL-AK .. 63
Registers ... 64

Acceleration/Deceleration Rate (ADR) Register 65
Status Bits ... 66

UCN5804 Motor Driver IC ... 67
Driver Power... 68

Quadrature Decoder/Counter .. 69
Control Register .. 70
PLCBus Interrupts ... 71

Chapter 8: Software Reference 73
Expansion Board Addresses .. 74

Logical Addresses ... 75
Dynamic C Libraries .. 76
XP8800 Software ... 77

Data Structures .. 77
Interrupts ... 78
XP8800 Driver Functions ... 79
Miscellaneous XP8800 Function Descriptions 81
Sample Program .. 87

XP8700/XP8800 Table of Contents s v

APPENDICES

Appendix A: PLCBus 93
PLCBus Overview ... 94
Allocation of Devices on the Bus .. 98

4-Bit Devices .. 98
8-Bit Devices .. 99

Expansion Bus Software .. 99

Appendix B: Specifications 105
XP8700 Hardware Specifications .. 106
XP8800 Hardware Specifications .. 107

Appendix C: Connecting and Mounting Multiple Boards
109

Connecting Multiple Boards .. 110
Mounting Expansion Boards .. 112

Index 113

vi s Table of Contents XP8700/XP8800

Blank

XP8700/XP8800 About This Manual s vii

ABOUT THIS MANUAL

This manual provides instructions for installing, testing, configuring, and
interconnecting the Z-World XP8700 RS-232 and XP8800 motion control
expansion boards. Instructions are also provided for using Dynamic C
functions.

Assumptions
Assumptions are made regarding the user's knowledge and experience in
the following areas.

� Ability to design and engineer the target system that the controller
used with the XP8700 or XP8800 expansion boards will control.

� Understanding of the basics of operating a software program and
editing files under Windows on a PC.

� Knowledge of the basics of C programming.

For a full treatment of C, refer to the following texts.

The C Programming Language by Kernighan and Ritchie
C: A Reference Manual by Harbison and Steel

� Knowledge of basic Z80 assembly language and architecture for
controllers with a Z180 microprocessor.

For documentation from Zilog, refer to the following texts.

Z180 MPU User's Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User's Manual

� Knowledge of basic Intel assembly language and architecture for
controllers with an Intel�386 EX processor.

For documentation from Intel, refer to the following texts.

Intel�386 EX Embedded Microprocessor User�s Manual
Intel�386 SX Microprocessor Programmer�s Reference
 Manual

$

$

$

XP8700/XP8800viii s About This Manual

Acronyms
Table 1 lists and defines the acronyms that may be used in this manual.

Icons
Table 2 displays and defines icons that may be used in this manual.

Table 1. Acronyms

Acronym Meaning

 EPROM Erasable Programmable Read-Only Memory

 EEPROM Electronically Erasable Programmable Read-Only Memory

 LCD Liquid Crystal Display

 LED Light-Emitting Diode

 NMI Nonmaskable Interrupt

 PIO Parallel Input/Output Circuit
(Individually Programmable Input/Output)

 PRT Programmable Reload Timer

 RAM Random Access Memory

 RTC Real-Time Clock

 SIB Serial Interface Board

 SRAM Static Random Access Memory

 UART Universal Asynchronous Receiver Transmitter

Table 2. Icons

 Icon Meaning Icon Meaning

 $ Refer to or see ! Note

 (Please contact 7LS Tip

 Caution High Voltage

)' Factory Default

XP8700/XP8800 About This Manual s ix

Conventions
Table 3 lists and defines the typographical conventions that may be used in
this manual.

Pin Number 1
A black square indicates
pin 1 of all headers.

Measurements
All diagram and graphic measurements are in inches followed by millime-
ters enclosed in parenthesis.

Table 3. Typographical Conventions

Example Description

 while Courier font (bold) indicates a program, a fragment of a
program, or a Dynamic C keyword or phrase.

 // IN-01… Program comments are written in Courier font, plain face.

 Italics Indicates that something should be typed instead of the
italicized words (e.g., in place of filename, type a file’s
name).

 Edit Sans serif font (bold) signifies a menu or menu selection.

 . . . An ellipsis indicates that (1) irrelevant program text is
omitted for brevity or that (2) preceding program text may
be repeated indefinitely.

 [] Brackets in a C function’s definition or program segment
indicate that the enclosed directive is optional.

 < > Angle brackets occasionally enclose classes of terms.

 a | b | c A vertical bar indicates that a choice should be made from
among the items listed.

J1Pin 1

XP8700/XP8800x s About This Manual

Blank

XP8700

This page is intentionally blank.

Blank

XP8700 Overview s 13

CHAPTER 1: OVERVIEW

Chapter 1 provides an overview and description of the XP8700 RS-232
expansion board.

XP870014 s Overview

Z-World�s XP8700 expansion board provides a simple way to add a UART
to a control system built around a Z-World controller. The XP8700
connects directly to a PLCBus port. The XP8700 does not have the
software drivers to enable it to be used with other Z-World controllers.

The XP8700 may be connected on the PLCBus with other expansion
boards. Up to four XP8700s can be addressed on a single bus. Unlike
most other expansion boards, which take 12-bit addresses (4 bits at a time),
XP8700s have 15-bit addresses, placed on the bus five bits at a time.

The XP8700 features a Signetics SCC2691 UART, which is described
briefly. The UART is operated by reading and writing to two registers on
the XP8700, the control register (CTRL) and data register (DATA).

In addition, the XP8700 may be used as an additional programming board
for controllers with a PLCBus port. This frees up the existing RS-232
ports on the controller. The XP8700 also can raise a processor interrupt
INT1. The manual discusses methods for dealing with several interrupting
devices.

Like other Z-World expansion boards, the XP8700 can be installed in
modular plastic circuit-board holders attached to a DIN rail. The XP8700
can also be mounted, with plastic standoffs, on any surface that will accept
screws.

The XP8700 expansion board cannot be used as a Dynamic
C interface to program the BL1700 controller. Such an
interface is not supported by the BIOS.

The Serial Interface Board 2 is available to program the
BL1700 if there is a need to have all the BL1700 communi-
cation ports used by the application.

The XP8700 expansion board may still be used on the
BL1700�s PLCBus to provide another RS-232 port.

!

XP8700 Getting Started s 15

CHAPTER 2: GETTING STARTED

Chapter 2 provides instructions for connecting XP8700 expansion boards
to a Z-World controller. The following sections are included.

� XP8700 Components

� Connecting Expansion Boards to a Z-World Controller

� Setting Expansion Board Addresses

XP870016 s Getting Started

XP8700 Components
The XP8700 boards offer a modular RJ-12 jack (H2) and a standard 10-
pin header H1) to interface with other devices. Figure 2-1 illustrates the
basic layout and orientation of components, headers, and connectors.

Figure 2-1. XP8700 Board Layout

P1

J1

Latch

D2

P2

H1

U5

PAL

PAL

U6

U4

SCC2691 UART

U1

3.686
MHz

U2

RN1

D1R2R1

C1 C3 C4 C2

H2

RS-232
Jack

RS-232 Driver

XP8700 Getting Started s 17

Connecting Expansion Boards to a Z-World
Controller
Use the 26-conductor ribbon cable supplied with the XP8700 to connect
the XP8700 to the PLCBus on a Z-World controller. See Figure 2-2. The
XP8700�s two 26-pin PLCBus connectors, P1 and P2, are used with the
ribbon cable. Z-World recommends using the cable supplied to avoid any
connection problems.

Figure 2-2. Connecting XP8700 Expansion Board to Controller PLCBus

Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board�s P2 or H2
PLCBus header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2/H2
on the new board to header P1/H1 of the board that is already con-
nected. Lay the expansion boards side by side with headers P1/H1
and P2/H2 on adjacent boards close together, and make sure that all
expansion boards are facing right side up.

See Appendix C, �Connecting and Mounting Multiple
Boards,� for more information on connecting multiple expan-
sion boards.

1

 Controller
PLCBus Port

Controller With PLCBusXP8700

Pin 1

P2

P1

$

XP870018 s Getting Started

!

4. Each expansion board comes with a factory-default board address. If
more than one expansion board of each type is to be used, be sure to
set a unique address for each board.

The following section on �Setting Expansion Board Ad-
dresses,� and Chapter 4, �Software Reference,� provide details
on how to set and use expansion board addresses.

5. Power may be applied to the controller once the controller and the
expansion boards are properly connected using the PLCBus ribbon
cable.

Setting Expansion Board Addresses
Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to a
controller.

Remember that each expansion board must have a unique
PLCBus address if multiple boards are to be connected. If two
boards have the same address, communication problems will
occur that may go undetected by the controller.

XP8700 Addresses
XP8700 expansion boards are shipped from the factory with no pins on
header J1 connected. Each of the two registers on the XP8700 board is
addressable on the PLCBus, with the jumper connections on pins 1�4 of
header J1 determining the address of the register, as explained in Chapter 4.

See Chapter 4, �Software Reference,� for further details on
how to determine the physical address for XP8700 expansion
boards.

Power
Z-World�s expansion boards receive power from the controller over the
+24 V and VCC lines of the PLCBus. XP8700 expansion boards use
VCC, which is +5 V. The XP8700 typically draws about 80 mA at 5 V.

$

$

XP8700 I/O Configurations s 19

CHAPTER 3: I/O CONFIGURATIONS

Chapter 3 describes the built-in flexibility of the XP8700 expansion
boards, and describes how to configure the available inputs/outputs. The
following sections are included.

� XP8700 Pin Assignments

� Using D/A Converter Boards

XP870020 s I/O Configurations

XP8700 Pin Assignments
There are two RS-232 connectors on the XP8700 expansion board. One is
a 10-pin header, H1, and the other is a 6-wire RJ-12 �phone jack,� H2.
Either one can be used. Figure 3-1 shows the pin assignments for header
H1 and RJ-12 jack H2.

Figure 3-1. XP8700 Header H1 and RJ-12 Jack H2

Using Expansion Boards
The following steps summarize how to use the XP8700 expansion boards.

1. Send a reset command to the PLCBus.

2. Place the address of the XP8700 registers on the PLCBus. Write a
reset command to a CTRL register.

3. Write to the XP8700 registers as needed to control the XP8700. Read
the internal registers to monitor what is happening.

4. Read the receive holding register (RHR) or write to the transmit
holding register to communicate.

These steps are done using software drivers in Dynamic C function librar-
ies.

Refer to Chapter 4, �Software Reference,� for the applicable
libraries and where they are used.

/TXD /IN (/CTS)

/RXD /OUT (/RTS)

GND

1
2
3
4
5

/TXD

/IN (/CTS)
/RXD

/OUT (/RTS)
GND

6

Header H1 RJ-12 Jack H2

10

1 2

3 4

5 6

7 8

9

$

XP8700 I/O Configurations s 21

XP8700 Operation
The XP8700 can be connected on the PLCBus with other expansion
boards. Up to four XP8700s can be addressed on a single PLCBus.
XP8700 expansion boards have 15-bit addresses, placed on the PLCBus
five bits at a time.

The XP8700 uses a Signetics SCC2691 UART, which is described briefly
below. Two registers on the XP8700, the control register and the data
register, are used to read and write to the UART. The XP8700 can also
raise a processor interrupt, INT1. Methods for dealing with many inter-
rupting devices are discussed.

Signetics SCC2691 UART
The SCC2691 UART is a full-duplex asynchronous receiver/transmitter. It
supports 18 baud rates from 50 bps to 38,400 bps. Data may be framed
with 5 to 8 data bits, four parity modes, and 1, 1.5, or 2 stop bits. The
UART provides error detection (framing errors, parity errors, and overrun
errors), break detection and generation, and echo. There are two diagnos-
tic modes. The chip also has a multifunction 16-bit counter/time.

The SCC2691 chip generates interrupts under seven maskable conditions.
It has a low-power mode and a �wake-up� mode. Receiver data are
quadruple-buffered (FIFO).

The SCC2691 is controlled by reading or writing its internal registers. A
counter or timer may be set up, RS-232 communication may be initiated,
or control interrupts may be initiated. Options include setting baud rates,
parity, and ot

Figure 3-2 shows a block diagram of the SCC2691 architecture.

Figure 3-5. SCC2691 Architectural Block Diagram

Bus BufferD0�D7
8 Communication

Transmit Holding
Register

Receiver Holding
Registers (3)

MR1 & MR2
CR
SR

TxD

RxDOperation Control
Address Decode

Interrupt Control
IMR
ISR

I/O Pins
Change of State

Detector

Function Select LogicMPO

MPI

Timing
Baud Rate Generator

Clock Selectors

CSR
ACR

CTUR

Counter/Timer

CTLR

X1/CLK

X2

A0�A2
3

RESET Read/Write Control

/READ

/WRITE

/ENABLE

/INTR

XP870022 s I/O Configurations

There are 14 internal registers, 7 of which can be read, and 9 of which can
be written, as shown in Table 3-1.

The address bits A2�A0 specify a register only partially. The full determi-
nation of which register is accessed depends on the state of the UART. If
the UART is being read, one set of registers is addressed. If it is being
written, the other set is addressed.

Furthermore, MR1 (mode register 1) is selected when the UART is reset.
When MR1 is read or written, the UART switches to MR2, and thereafter
uses MR2. (MR1 can be reselected by a command.)

The registers are described below.

MR1, MR2�are mode registers 1 and 2. The mode registers control
much of the serial communication to and from the UART.

RxRTS
control

RxInt
select

error
mode parity mode

parity
type bits per char

channel mode TxRTS
control

CTS
enable Tx

stop bit length (9/16–2 bits)

Table 3-1. SCC2691 UART Internal Registers

Address

A2 A1 A0
Read Write

0 0 0 MR1, MR2 MR1, MR2

0 0 1 SR CSR

0 1 0 Reserved CR

0 1 1 RHR THR

1 0 0 Reserved ACR

1 0 1 ISR IMR

1 1 0 CTU CTUR

1 1 1 CTL CTLR

XP8700 I/O Configurations s 23

SR�is the channel status register. The upper half of this register repre-
sents communication conditions. The lower half represents the condition
of the receive and transmit buffers. MR1 bit 6 controls whether FIFO full
(FFULL) or Receiver ready (RxRDY) is reported.

CR�is the RS-232 command register.

The upper half of the CR register represents the commands, listed in
Table 3-2, that can be given to the RS-232 channel.

The lower half of the command register disables or enables the receiver
and transmitter.

miscellaneous commands disable
Tx

enable
Tx

disable
Rx

enable
Rx

Table 3-2. CR Register Commands for RS-232 Channel

CR[7:4] Command

0000 No command.

0001 Reset mode register pointer to MR1.

0010 Reset receiver. FIFO is flushed.

0011 Reset transmitter.

0100 Reset error status.

0101 Reset break change interrupt.

0110 Start break. Forces TxD output low (spacing).

0111 Stop break.

1000 Start counter/timer. Counter/timer registers must have been loaded.

1001 Stop counter.

1010 Assert /RTS on the MPO pin.

1011 Negate /RTS (on the MPO pin).

1100 Reset MPI change interrupt.

1101 Reserved.

111x Reserved.

received
break

framing
error

parity
error

overrun
error TxEMT TxRDY FIFO

full RxRDY

XP870024 s I/O Configurations

CSR�is the clock select register.

The upper half of the CSR register selects the baud rate of the receiver,
while the lower half selects the baud rate of the transmitter. The two sets
of baud rates, selectable by ACR bit 7 on the auxiliary control register, are
listed in Table 3-3.

receiver clock select transmitter clock select

Table 3-3. CSR Baud Rates Selected by ACR Bit 7

CSR Code ACR[7] = 0 ACR[7] = 1

0000 50 50

0001 110 110

0010 134.5 134.5

0011 200 150

0100 300 300

0101 600 600

0110 1,200 1,200

0111 1,050 1,050

1000 2,400 2,400

1001 4,800 4,800

1010 7,200 1,800

1011 9,600 9,600

1100 38,400 19,200

1101 timer timer

1110 MPI–16X MPI–16X

1111 MPI–1X MPI–1X

XP8700 I/O Configurations s 25

CTU, CTL, CTUR, CTLR�are the counter/timer registers. Register
pairs CTUR/CTLR and CTU/CTL are the upper and lower halves of 16-bit
counter/timer values. The counter/timer value is set through CTUR/CTLR
and is read through CTU/CTL.

THR�is the transmitter holding register. It holds one character.

RHR�is the receiver holding register. RHR is actually the frontmost
entry in a 3-character FIFO queue. (A receiver shift register constitutes the
fourth buffer in a quadruple-buffering scheme.)

IMR, ISR�are the interrupt mask register and interrupt status registers.

The interrupt mask register selectively enables or disables interrupts.

The interrupt status register can be read to determine what caused the
interrupt.

The upper halves of both the IMR and the ISR reflect the I/O pins and the
counter. The lower halves represent the state of RS-232 communication.
MR1 bit 6 controls whether FIFO full (FFULL) or Receiver Ready
(RxRDY) is reported.

ACR�is the auxiliary control register.

ACR bit 7 controls which set of baud rates is selected. The CSR (clock
select register) specifies one rate from the selected set for the receiver and
a separate rate from the selected set for the transmitter.

Refer to the Signetics SCC2691 product description for a
description of other bits in this register and in other registers.

MPI
change

MPI
level — counter

ready
delta
break

RxRDY
/FFULL TxEMT TxRDY

MPI pin
change

MPI pin
state —

counter
ready

delta
break

RxRDY
/FFULL TxEMT TxRDY

BRG set
select counter/timer mode, source low

power MPO pin function select

$

XP870026 s I/O Configurations

Table 3-4. XP8700 Bus Cycles

Register Address Usage

BUSADR0 0xC8 First address byte.

BUSADR1 0xCA Second address byte.

BUSADR2 0xCC Third address byte.

BUSWR 0xCE Write data to control or data register, whichever was
addressed.

BUSRD0 0xC0 Read XP8700 information. Bit 0 (when 0) indicates
the presence of a properly addressed XP8700. Bit 1
(when set) indicates that the UART needs servicing.
This read is valid only when the board’s control
register has been addressed.

BUSRD1 0xC2 Read the UART internal register selected by the
board’s control register. This read is valid only
when the board’s data register has been addressed.

BUSRESET 0xC6 Resets all expansion cards on the PLCBus. How-
ever, an XP8700 does not respond to this. The
UART is reset with the RESET bit of the control
register.

Reading and Writing to the UART
The PLCBus cycles have special meaning when addressing an XP8700.
Reading or writing to one of the bus registers causes the bus cycle to occur
according to Table 3-4.

XP8700 I/O Configurations s 27

— — /CE A0 RESET A1 LT1180
on A2

Table 3-5. Explanation of XP8700 Control Register Bits

Bit Meaning

/CE Enables the UART chip when low. The UART must be
enabled to read from it or write to it.

A0–A2 Select one of the UART’s internal registers. The register
selection depends also on whether you are reading or
writing, and on whether MR1 or MR2 has been selected.

RESET Resets the UART.

LT1180 on When set, enables the LT1180 RS-232 driver. When
clear, reduces power consumption.

Controlling the UART
To control the UART on the XP8700, data are sent to, or read data from,
one of its internal registers. This uses the XP8700�s control and data
registers. The control register looks like this.

Table 3-5 explains the meaning of the control bits.

Place one of the constants in Table 3-6 into the XP8700�s control register
to select a UART internal register. These constants are defined in
UART232.LIB.

When the UART is reset, it uses MR1 (mode register 1). The UART
automatically switches to MR2 whenever MR1 is read or written to, and
thereafter uses MR2. You can switch back to MR1 with a command to the
command register (CR).

All of the constants in Table 3-6 have bit 1 set to enable the LT1180 chip.

To reset the UART, call uart_reset().

Examples
The following examples suppose that there is one XP8700 on the bus and
that its addresses are 0x040018 (control register) and 0x040019 (data
register). The examples show the basics. Higher level functions are
available.

XP870028 s I/O Configurations

Table 3-6. XP8700 Control Register Constants to Select
UART Internal Register

Name Internal Register Usage A2–A0 Control Value

UART_MR1 Mode reg 1 R/W 000 0x02 = 00 0010

UART_MR2 Mode reg 2 R/W 000 0x02 = 00 0010

UART_SR Channel status reg R 001 0x12 = 01 0010

UART_CSR Clock select reg W 001 0x12 = 01 0010

UART_CR Command reg W 010 0x06 = 00 0110

UART_RHR Receive holding
reg

R 011 0x16 = 01 0110

UART_THR Transmit holding
reg

W 011 0x16 = 01 0110

UART_ACR Aux control reg W 100 0x03 = 00 0011

UART_ISR Interrupt status
reg

R 101 0x13 = 01 0011

UART_IMR Interrupt mask reg W 101 0x13 = 01 0011

UART_CTU Counter/timer,
upper

R 110 0x07 = 00 0111

UART_CTUR C/T reload, upper W 110 0x07 = 00 0111

UART_CTL Counter/timer,
lower

R 111 0x17 = 01 0111

UART_CTLR C/T reload, lower W 111 0x17 = 01 0111

Example 1. Write the clock select register (CSR) to set the UART to
9600 bps.

ld a,0x04 ;1st address byte (5x3 mode)
out0 (BUSADR0),a
ld a,0x00 ;2nd address byte (5x3 mode)
out0 (BUSADR1),a
ld a,0x18 ;3rd address byte (5x3 mode)
out0 (BUSADR2),a
ld a,UART_CSR ;UART’s clock select register

;selected
ld a,0x19 ;address byte for
out0 (BUSADR2),a ;DATA register, = CTRL+1
ld a,0xCC ;9600 baud for receive & transmit
out0 (BUSWR),a

XP8700 I/O Configurations s 29

Z-World
Controller

ComputerModem Modem

Null
Modem

Phone
Line

Z-World
Controller

PC or
dumb

terminal
XP8700

XP8700

$

Example 2. Read the RHR (receiver holding register).

Communicating
The XP8700 can communicate with any RS-232 device such as

� a COM port on a PC,

� a dumb terminal, or

� a modem.

Figure 3-6 shows typical RS-232 communication arrangements for the
XP8700.

Figure 3-6. Placement of UART in Communication Sequence

Z-World recommends using a Hayes SmartModem or compatible modem.
Otherwise, the RTS, CTS and DTR lines must be tied together. A null
modem between the XP8700 and the modem takes care of this.

When programming the UART to communicate with a modem, set
ismodem = 1 when calling Dinit_uart. The baud rate must be 2400
bps or 1200 bps. The library software will then handle modem communi-
cation commands transparently and pass data directly to the application.

Refer to Chapter 4, �Software Reference,� for details.

ld a,0x04 ;1st address byte (5x3 mode)
out0 (BUSADR0),a
ld a,0x00 ;2nd address byte (5x3 mode)
out0 (BUSADR1),a
ld a,0x18 ;3rd address byte (5x3 mode)
out0 (BUSADR2),a
ld a,UART_RHR ;UART’s receive holding register
out0 (BUSWR),a ;selected
ld a,0x19 ;address byte for
out0 (BUSADR2),a ;DATA register, = CTRL+1
in0 (BUSRD1),a ;get the character from RHR

XP870030 s I/O Configurations

Interrupts
The XP8700 has the capability of interrupting the controller through the
INT1 line whenever

a character has been received (RxRDY), or

the transmit buffer is empty (TxEMT).

When such an interrupt occurs, the application may check for errors
(parity, framing, and overrun errors).

The /AT line of the PLCBus is connected to INT1 of the Z180. Since there
may be more than one interrupting device on the PLCBus, Z-World
provides a framework for handling more than one device through the same
(INT1) line.

The following function from DRIVERS.LIB illustrates the framework.

#INT_VEC INT1_VEC plcbus_isr
#asm root
plcbus_isr::
push af ;protect general registers
in0 a,(CBR) ;and save CBR
push af
push hl
push bc
push de
in0 a,(ITC) ;disable INT1. prevents bus
and 11111101b ;interrupts on /AT
out0 (ITC),a ;(ITC=Interrupt Trap Control 0x34)

#ifdef USE_UARTEXP
call Duart_circ_int ;service UART interrupt

#endif

...insert calls to other INT1 service routines here as needed

in0 a,(ITC) ;enable INT1
or 00000010b
out0 (ITC),a
ei ;enable interrupts
pop de ;restore general registers
pop bc
pop hl
pop af
out0 (CBR),a ;and CBR
pop af
ret

#endasm

XP8700 I/O Configurations s 31

The framework consists of a single interrupt service routine
(plcbus_isr) that responds to the interrupt. It then checks all devices
that could possibly have caused the interrupt, and services the devices that
need service.

It is also possible to determine whether an XP8700 expansion board is
responding to interrupts by executing a BUSRD0 cycle. Use the following
sample program with a control register address of 0x040018.

Z-World supports Dynamic C programming of a controller through the
XP8700 expansion board. Since all expansion boards share the same INT1
interrupt, the following protocol maintains control of the INT1 interrupt.

1. Load the address of the interrupt service routine into vector location
0x18.

2. Place a jump opcode (0xC3) in location 0x17.

3. Place the location of the jump instruction in the INT1 vector location.

The following function and declaration will accomplish this.

#INT_VEC 0x18 plcbus_isr // isr now at 2018
nodebug relocate_int1(){

((int)(0x2000))=0x2017
// jump addr in INT1 vector

((char)(0x2017))=0xC3 // jump instr in 2017
}

Do not use the above function when generating code to download to ROM
or to RAM. Simply make the following declaration.

#INT_VEC INT1_VEC plcbus_isr

Delays
Delays in the software are implemented with calls to suspend() if the
real-time kernel is in use (that is, when RUNKERNEL is defined).

ld a,0x04 ;1st address byte (5x3 mode)
out0 (BUSADR0),a
ld a,0x00 ;2nd address byte...
out0 (BUSADR1),a
ld a,0x18 ;3rd address byte...
out0 (BUSADR2),a ;...of CTRL reg
in0 (BUSRD0),a ;get condition bits
and 00000010b ;test for interrupt requests
jp z,done

process any interrupts here

done:
ret

XP870032 s I/O Configurations

Blank

XP8700 Software Reference s 33

CHAPTER 4: SOFTWARE REFERENCE

Chapter 4 describes the Dynamic C functions used to initialize the XP8700
expansion boards and to control the resulting outputs. The following
major sections are included.

� Expansion Board Addresses

� Dynamic C Libraries

� XP8700 Software

XP870034 s Software Reference

Expansion Board Addresses
There are two registers on an XP8700�the control register and the data
register. Each is addressable on the PLCBus. The 15-bit address is
determined by jumpers across header J1.

J1 can be set four different ways, giving four boards per bus. Each
register�s address has the following format.

00100 00000 xy00R

where

R = 0 for the control register, 1 for the data register,
x = 0 when pins 3�4 on J1 are connected, and
y = 0 when pins 1�2 on J1 are connected.

The 15-bit address can be placed on the bus using the functions set24adr,
read24datax, and write24data in DRIVERS.LIB.

Logical Addresses
PLCBus expansion boards have �logical addresses.� RS-232-specific
software defines four integer board addresses, 0�3. The following formula
maps the physical address to the logical address.

logical address = xy

where x and y (jumper bits) are defined above. For example, consider an
XP8700 with pins 1�2 on J1 connected. This is the physical address of its
control register.

00100 00000 xy000 = 00100 00000 10000

The XP8700�s logical address is 10
B
 = 2.

Table 4-1 shows how to address the registers on the four XP8700s that can
exist on a single PLCBus.

The 15-bit addresses are placed on the bus as 3 bytes using the lower 5 bits
of each byte. In each case, data address = control address + 1.

Table 4-1. XP8700 Register Addresses

Header J1

pins 1–2 pins 3–4

Logical
Address

Control
Register

Data
Register

connected connected 0 0x040000 0x040001

unconnected connected 1 0x040008 0x040009

connected unconnected 2 0x040010 0x040011

unconnected unconnected. 3 0x040018 0x040019

XP8700 Software Reference s 35

Dynamic C Libraries
Several Dynamic C function libraries contain the software functions
described in this chapter. The chart in Table 4-2 identifies which libraries
must be used with particular Z-World controllers.

The XP8700 expansion board cannot be used as a Dynamic C
interface to program the BL1700 controller because the
interface is not supported by the BIOS.

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the
library PLC_EXP.LIB, be sure there is a line at the beginning of the
program in the following format.

 #use plc_exp.lib

Table 4-2. Dynamic C Libraries Required by Z-World Controllers
for XP8700 Expansion Boards

Library Needed Controller

DRIVERS.LIB BL1200, BL1600, PK2100, PK2200

EZIOCMMN.LIB BL1200, BL1600, PK2100, PK2200

EZIOPBDV.LIB BL1200, BL1600, PK2100, PK2200

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200

EZIOPLC2.LIB BL1700

EZIOBL17.LIB BL1700

PLC_EXP.LIB BL1200, BL1600, PK2100, PK2200

!

XP870036 s Software Reference

XP8700 Software
There are several levels of software for operating the XP8700. The basic
functions may be found in DRIVERS.LIB. Other functions are more
specific. The highest level functions relate to serial communication. They
support circular buffering, modem communication, and uploading and
downloading data. Table 4-3 lists these other libraries.

Table 4-3. XP8700-Related Libraries

Library Use

UART232.LIB Used with first XP8700 board connected to BL1200,
PK2100, and PK2200 controllers

UART2.LIB Used with second XP8700 board connected to
BL1200, PK2100, and PK2200 controllers

MODEM232.LIB Support library for other communication libraries

AASCUART.LIB Operates up to four XP8700 boards for most
controllers with 8-bit PLCBus addressing

AASCURT2.LIB Operates up to four XP8700 boards for controllers
with 16-bit PLCBus addressing (e.g., BL1700)

XP8700 addresses are 15-bit addresses encoded in the lower 5 bits of three
bytes. When using these functions, interchange the first and third byte of
the address. For example, if the bus address is 0x040018, pass 0x180004.

General Functions in DRIVERS.LIB
� void set24adr(long address)

Places the 3-byte address on the PLCBus.

� void set8adr(long address)

Places the third byte of the address on the PLCBus. This function
assumes that the first two bytes of the address have already been sent.

� void write24data(long address, byte value)

Writes value at the specified bus address. The address will be either
that of the XP8700�s control register or data register.

� void write8data(long address, byte value)

This is an abbreviated form of write24data, and is used when only
the third byte of the address needs to be sent.

XP8700 Software Reference s 37

� int read24data0(long address)

Returns a value read (using the BUSRD0 cycle) from the specified bus
address. The address must be that of the control register.

Bit 0 of the returned value (when 0) indicates that the addressed board
actually exists. Bit 1 (when set) indicates that the UART on the board
is interrupting.

� int read8data0(long address)

This is an abbreviated form of read24data0, and is used when only
the third byte of the address needs to be sent.

� int read24data1(long address)

Returns a value read (using the BUSRD1 cycle) from the specified bus
address. The address must be that of the data register.

The data to be read is one of the UART�s internal registers, such as the
channel status register (SR) or the receiver holding register (RHR).
Specify which register with a prior write to the board�s control register.

� int read8data1(long address)

This is an abbreviated form of read24data1, and is used when only
the third byte of the address needs to be sent.

UART Support Functions
� void uart_reset(long uart_addr)

Resets the addressed XP8700 at uart_addr. Unlike other PLCBus
boards, which can be reset by reading BUSRESET, the XP8700 must
be reset by pulsing the RESET bit of the board�s control register. The
minimum reset pulse time is 100 ns.

� long uart_addr(int logical_board)

Returns the PLCBus address of the control register of the XP8700
whose logical address is logical_board.

� int find_uart(long uart_addr)

Returns 1 if an XP8700 exists at the specified address uart_addr.
Otherwise, the function returns 0.

� int uart_reg_rd(long uart_addr, char regnum)

Reads the UART register regnum from the SCC on the XP8700 at
PLCBus address uart_addr. Does not check to see if the board
exists. The value regnum represents the intended register, and is sent
to the board�s control register. The codes in UART232.LIB can be
used. For example, use UART_SR to read the channel status register.

The function returns data from the register.

XP870038 s Software Reference

� void uart_reg_wr(long uart_addr, char regnum,
char data)

Writes data to the SCC register regnum on the specified XP8700 at
PLCBus address uart_addr. Does not check to see if the board
exists. The value regnum represents the intended register, and is sent
to the board�s control register. The codes in UART232.LIB can be
used. For example, use UART_CR to write to the command register.

� void uartbinaryset(void)

Puts the serial receiver in binary mode. This means that all characters
received are placed in the receive buffer.

� void uartbinaryreset()

Places the serial receiver in ASCII mode, where the BACKSPACE
character (0x08) is parsed out of the receive buffer. Character echo
also resumes if it was selected.

� int uartmodemstat()

Returns the status of the modem.

RETURN VALUE: 1 if the modem is in command mode, 0 if the
modem is in data mode (i.e., open to communication).

� int uartmodemset()

Returns information about modem selection.

RETURN VALUE: 1 if the modem option is selected, otherwise 0.

RS-232 Communication Support
These functions from UART232.LIB support RS-232 communication by
the XP8700 expansion board. Be sure to include the following definition
when using these functions in an application.

#define USE_UARTEXP

This declaration ensures that the communication service routine
Duart_circ_int is called within plcbus_isr, which responds to
PLCBus interrupts.

The UART232.LIB library assumes that there is only one XP8700 in the
system. Its address is defined as shown here

#define UARTADDR 0x040018 // no jumpers at J1

This constant must be changed if the XP8700 uses a different address. If
there is more than one XP8700, some of the UART232.LIB library may
have to be rewritten to handle multiple boards.

Call Dinit_uart before using any of the other functions described here.

XP8700 Software Reference s 39

� int Dinit_uart(char *rbuf, char *tbuf,
 int rsize, int tsize,
 char mode, char baud,
 char ismodem, char isecho)

Initializes the XP8700 and software for RS-232 communication. This
library uses circular receive and transmit buffers, which are allocated
by the programmer. This function tells the software what the setup is.

PARAMETERS: rbuf is a pointer to the receive buffer.

tbufpointer to the transmit buffer

rsize is the size, in bytes, of the receive buffer.

tsize is the size, in bytes, of the transmit buffer.

mode selects communication criteria as follows.

bit 0 0 1 stop bit
1 2 stop bits

bit 1 0 no parity
1 with parity

bit 2 0 7 data bits
1 8 data bits

bit 3 0 even parity
1 odd parity

bit 4 0 no CTS/RTS control
1 CTS/RTS enabled

baud selects the baud rate in multiples of 1200 bps. Valid multipliers
are 1, 2, 4, 8, 16, 24, 32, 48 and 64. Pass a value of 8 to get 9600 bps.

ismodem if 1, modem communication is supported. Otherwise is 0.

isecho if 1, every character is echoed. Otherwise is 0.

If CTS/RTS handshaking is selected, the software negates RTS when
the receive buffer is 80% full. It will reassert RTS when the receive
buffer falls below 20% capacity.

RETURN VALUE: 1 when the XP8700 is found and initialized, �1
otherwise.

� int Dread_uart(char *buf, char terminate)

Copies the contents of the receive buffer to buf until the specified
terminating character is reached or until the buffer is empty. The
terminating character is replaced with a null byte in buf.

RETURN VALUE: 1 if it is successful, 0 if the buffer is empty or
becomes empty before the terminating character can be found.

XP870040 s Software Reference

!

� int Dread_uart1ch(char *data)

Reads one character from the receive buffer and stores it in location
pointed to by data.

RETURN VALUE: 1 if successful, 0 if the receive buffer is empty.

� int Dwrite_uart(char *buf, int count)

Copies count characters from buf to the transmit buffer. If the
transmitter is not already transmitting, the function initiates transmis-
sion.

RETURN VALUE: 1 if successful, 0 if the transmit buffer does not
have enough space for count bytes.

� int Dwrite_uart1ch(char data)

Writes one character (data) into the transmit buffer. The function
initiates transmission if the transmit interrupt was off.

RETURN VALUE: 1 if successful, 0 if the transmit buffer is full.

� void Duartsend_prompt()

Sends CR, LF, and > to the transmit buffer. The assumption here is
that the receiver is a �dumb terminal.� The function fails without
warning if the transmit buffer is full.

� void Dkill_uart()

Resets the XP8700.

The library assumes there is only one board on the bus with an
address of 0x040018.

� void Dreset_uartrbuf()
void Dreset_uarttbuf()

These functions reset the circular receive and transmit buffers, respec-
tively. Be sure to call Dinit_uart at least once before one of these
calls. Otherwise the reset functions will use uninitialized pointers.

XMODEM Support
These two functions use the XMODEM protocol.

� int Dxmodem_uartdown(char *buf, int count)

Sends (downloads) count 128-byte blocks from buf.

RETURN VALUE:

0�timed out (no transfer).

1�successful transfer.

2�transfer canceled by receiver.

XP8700 Software Reference s 41

� int Dxmodem_uartup(unsigned long address,
int *pages, int dest, int(*handler)())

Receives (uploads) a file using the XMODEM protocol.

PARAMETERS: address is the physical address in RAM where the
received characters are to be stored. If the receive buffer is created
using xdata, the base name of the array may be used for the base
address. Otherwise, the logical address of the buffer must be con-
verted to a physical address using the library function phy_adr.

pages is a pointer to an integer storing the number of 4K blocks that
have been transferred.

dest is the destination of the transfer when a RS-485 master-slave
network has been set up. If dest = 0, the destination is the network
master. If dest is from 1 to 9, the upload is intended for a network
slave.

handler is a pointer to a function that handles the uploaded data. It
is the nature of the data that determines what sort of handler is needed.
If a handler is not needed, build a handler that does nothing and use it.

Examine Dxmodem_uartup in the UART232.LIB library for
further details.

RETURN VALUE:

0�timed out (no transfer).

1�successful transfer.

2�transfer canceled by sender.

Miscellaneous Functions
These functions are found in UART232.LIB and MODEM232.LIB.

� int Dget_modem_command(char *buffer)

Scans buffer for a (Hayes-compatible) modem command.

RETURN VALUE:

�1�no command present 5��CONNECT 1200�

0��OK� 6��NO DIALTONE�

1��CONNECT� 7��BUSY�

2��RING� 8��NO ANSWER�

3��NO CARRIER� 9��CONNECT 2400�

4��ERROR� 10��\n� just a new line

$

XP870042 s Software Reference

A Hayes SmartModem or compatible modem is recommended.
A null modem cable is needed between the XP8700 expansion
board and the modem. Some modems require that the RTS,
CTS, and DTR lines be tied together. The XP8700 does not
support DTR.

� void Drestart_uartmodem()

Restarts a modem during startup or because of abnormal operation.

� int Duartmodem_chk(char *buf)

Checks the buffer buf for a valid modem command. buf points to a
stream terminated by <CR> that was copied from the receive buffer.

RETURN VALUE: 0 if a valid modem command is present, �1
otherwise.

� void Ddelay_1sec()
void Ddelay_100ms()
void Ddelay_5sec()

Produces a delay of approximately 1 second, 100 ms, or 5 seconds,
respectively. The function Ddelay_1sec uses suspend(50) if
RUNKERNEL is defined. The function Ddelay_5sec calls
Ddelay_1sec five times.

� interrupt Duart_circ_int()

This is the interrupt service routine for the XP8700. The interrupt
service routine plcbus_isr in DRIVERS.LIB responds to the
interrupt and calls Duart_circ_int.

Sample Project
The sample project presented here demonstrates the use of the XP8700
expansion board in communicating with a dumb terminal. The program
solicits �commands� from the dumb terminal. If the command is recogniz-
able, the program performs the command. Otherwise, it simply writes
back the input line.

Connecting a dumb terminal to a Z-World controller and being able to
issue commands or make inquiries to the controller has obvious advan-
tages. Remember that this is only one of many tasks to which an XP8700
can be applied.

Setting up this demo requires some care and requires that you make your
PC operate like a dumb terminal. There is a terminal-emulation program
in Windows�TERMINAL�that does this. Other programs, such as
PROCOM, will work too. The instructions that follow are detailed and
assume that you are using TERMINAL in Windows to emulate a dumb
terminal.

!

XP8700 Software Reference s 43

Instructions
1. Power up your controller and make sure it is working properly. If you

encounter problems, consult the controller�s user�s manual. Now
disconnect power from the controller.

2. Connect the XP8700 to the controller.

See Chapter 2, �Getting Started,� for more information on
installing expansion boards.

3. Check header J1 on the XP8700. Leave it unjumpered.

4. Power up the controller and bring up Dynamic C on your PC. If you
encounter problems re-establishing communications between your PC
and the controller, consult the controller�s user�s manual.

5. Open and run the sample program UARTDEMO.C that appears below.
After a few seconds, the word �Running� will appear in the upper
right-hand corner of the screen.

6. Exit from Dynamic C. The sample program will continue to run on
the controller. Disconnect the cable from the RS-232 connector on the
controller and plug it into the RS-232 jack on the XP8700 expansion
board. Use the 10-pin connector or RJ-12 jack, whichever matches
the cable you have.

7. Run Windows and start up TERMINAL, the terminal emulation
program. Make sure that you are communicating at 9600 bps with one
stop bit and no parity. If you do not have Windows, use another
terminal-emulation program such as PROCOM.

8. Type something�anything. The sample program will respond. If you
type one of these commands, the controller will execute the command.

help deliver a short help message
time print the time (according to the controller)

date print the date (according to the controller)

If you type anything else, the controller will simply repeat what you
typed. Press �ALT-F4� to get out of the Windows TERMINAL
program. The controller will continue to run the sample program
indefinitely until the controller is reset.

$

XP870044 s Software Reference

UARTDEMO.C

// globals
#define USE_UARTEXP // enable uart interrupts

byte baud = 9600/1200; // 9600 baud
byte mode = 0x04; // 1 stop, no parity,

// 7 data, no cts/rts
byte modem = 0; // no modem is connected
byte echo = 1; // chars are echoed.
char tbuf[100]; // transmit buffer
char rbuf[100]; // receive buffer

// prototypes
void interpret_cmd(char*);
void crlf();

main(){
char buf[100];

#if BOARD_TYPE==CPLC_BOARD
uplc_init();

#endif
Reset_PBus(); Reset_PBus_Wait();
relocate_int1();
Dinit_uart(rbuf,tbuf,100,100,mode,baud,modem,echo);
while(1)

Duartsend_prompt(); // CR,LF,”>”
// read command & take action

 while(Dread_uart(buf,ENTER)==0){}
interpret(buf);

}
}

void crlf(){
Dwrite_uart1ch(ENTER);
Dwrite_uart1ch(LINEFEED);
Dwrite_uart1ch(SPACE);

}

Sample Program
This sample program demonstrates the use of the XP8700 expansion board
in communicating with a dumb terminal. The program solicits �com-
mands� from the dumb terminal. If the command is recognizable, the
program performs the command. Otherwise, it simply writes back the
input line.

XP8700 Software Reference s 45

void interpret(char* buf){
struct tm x;
tmc_rd(&x);
crlf();
if(strcmp(buf,”help”)==0){

Dwrite_uart(
“Commands are: ‘help’ ‘time’ & ‘date’”,36);

}else if(strcmp(buf,”time”)==0){
Dwrite_uart(“Time: “,6);
Dwrite_uart1ch(x.tm_hour/10 + ‘0’);
Dwrite_uart1ch(x.tm_hour%10 + ‘0’);
Dwrite_uart1ch(‘:’);
Dwrite_uart1ch(x.tm_min /10 + ‘0’);
Dwrite_uart1ch(x.tm_min %10 + ‘0’);
Dwrite_uart1ch(‘:’);
Dwrite_uart1ch(x.tm_sec /10 + ‘0’);
Dwrite_uart1ch(x.tm_sec %10 + ‘0’);

}else if(strcmp(buf,”date”)==0){
Dwrite_uart(“Date: “,6);
Dwrite_uart1ch(x.tm_mday/10 + ‘0’);
Dwrite_uart1ch(x.tm_mday%10 + ‘0’);
Dwrite_uart1ch(‘-’);
Dwrite_uart1ch(x.tm_mon /10 + ‘0’);
Dwrite_uart1ch(x.tm_mon %10 + ‘0’);
Dwrite_uart1ch(‘-’);
Dwrite_uart1ch(x.tm_year/10 + ‘0’);
Dwrite_uart1ch(x.tm_year%10 + ‘0’);

}else{
Dwrite_uart(buf, strlen(buf)); //put buf!

}
}

More elaborate sample programs may be found in UARTREM.C and
CUARTREM.C.in the Dynamic C SAMPLES\NETWORK subdirectory.

XP870046 s Software Reference

Blank

XP8800

This page is intentionally blank.

Blank

XP8800 Overview s 49

CHAPTER 5: OVERVIEW

Chapter 5 provides an overview and description of the XP8800 motion
control expansion boards.

XP880050 s Overview

XP8800 Overview
Z-World�s XP8800 expansion board may be attached to a Z-World
controller with a PLCBus port. The XP8800 does not have the software
drivers to enable it to be used with other Z-World controllers.

The XP8800 controls a single axis of motion. Multiple XP8800s may be
connected to provide up to four axes of control. The benefit of the
XP8800 is that it can handle motor control operations, leaving the master
controller free to perform other tasks.

The onboard motor driver IC (UCN5804) is capable of driving 1 A per
phase and motor voltages up to 35 V. The driver automatically generates
the sequencing for 1-phase, 2-phase, and half-step operations. The
XP8800 includes a 16-bit quadrature decoder / counter (HCTL-2016) that
can count at speeds up to 3 MHz.

An XP8810 version of the XP8800 expansion board is available. The
XP8810 offers optical isolation for the quadrature and sense inputs.

Note that there is a common ground for the board and the
inputs. Therefore the optical isolation is not absolute.

Like other Z-World expansion boards, the XP8800 can be installed in
modular plastic circuit board holders attached to a DIN rail. The XP8800
can also be mounted, with plastic standoffs, on any surface that will accept
screws.

Features
� Continuous (manual), preset (counted), or origin-seeking modes of

operation.

� Switching between high-speed and low-speed operation, with or
without acceleration and deceleration.

� �Bidirectional� pulse output modes.

� Sensing of origin, end-limit, and slowdown signals.

� Interrupt generation.

� 13-bit (8,191) step rate resolution, 18-bit (256K) counter.

� User-definable output speed range up to 16 kHz.

� Single-phase, dual-phase, and half-step modes.

� 16-bit quadrature decoder/counter.

� Watchdog reset.

� Optional optical isolation for quadrature and sense inputs.

!

XP8800 Getting Started s 51

CHAPTER 6: GETTING STARTED

Chapter 6 provides instructions for connecting XP8800 expansion boards
to a Z-World controller. The following sections are included.

� XP8800 Series Components

� Connecting Expansion Boards to a Z-World Controller

� Setting Expansion Board Addresses

XP880052 s Getting Started

XP8800 Components
The XP8800 stepper motor control expansion board controls a single axis
of motion. Figure 6-1 shows the basic layout and orientation of compo-
nents, headers, and connectors.

Figure 6-1. XP8800 Board Layout

H1
X1

P
A

L

U2 U3 U4 U5 U6

RN1

RN2

J1

H2

H4

H3
H5

D1 D2
R1

R2
R3

RN3

RN4

D3 D4 D5 D6

U9

H6

U1

(U7)

U8

Motor
Driver

P
A

L

C
on

tr
ol

 R
eg

.

Screw Terminals

Quadrature Decoder & Counter

P
C

L-
A

K

XP8800 Getting Started s 53

Connecting Expansion Boards to a Z-World
Controller
Use the 26-conductor ribbon cable supplied with an expansion board to
connect the expansion board to the PLCBus on a Z-World controller. See
Figure 6-2. The expansion board�s two 26-pin PLCBus connectors, P1 and
P2, are used with the ribbon cable. Z-World recommends using the cable
supplied to avoid any connection problems.

Figure 6-2. Connecting XP8800 Expansion Board to Controller PLCBus

Be sure power to the controller is disconnected before adding
any expansion board to the PLCBus.

Follow these steps to connect an expansion board to a Z-World controller.

1. Attach the 26-pin ribbon cable to the expansion board�s P2 or H2
PLCBus header.

2. Connect the other end of the ribbon cable to the PLCBus port of the
controller.

Be sure pin 1 of the connector cable matches up with pin 1 of
both the controller and the expansion board(s).

3. If additional expansion boards are to be added, connect header P2/H2
on the new board to header P1/H1 of the board that is already con-
nected. Lay the expansion boards side by side with headers P1/H1
and P2/H2 on adjacent boards close together, and make sure that all
expansion boards are facing right side up.

See Appendix C, �Connecting and Mounting Multiple Boards,�
for more information on connecting multiple expansion boards.

 Controller
PLCBus Port

Controller With PLCBus

X1

H6

H1
J1

H3 H5
H4

XP8800

H2

1

Pin 1

$

XP880054 s Getting Started

4. Each expansion board comes with a factory-default board address. If
more than one expansion board of each type is to be used, be sure to
set a unique address for each board.

The following section on �Setting Expansion Board Ad-
dresses,� and Chapter 8, �Software Reference,� provide details
on how to set and use expansion board addresses.

5. Power may be applied to the controller once the controller and the
expansion boards are properly connected using the PLCBus ribbon
cable.

Setting Expansion Board Addresses
Z-World has established an addressing scheme for the PLCBus on its
controllers to allow multiple expansion boards to be connected to a
controller.

Remember that each expansion board must have a unique
PLCBus address if multiple boards are to be connected. If two
boards have the same address, communication problems will
occur that may go undetected by the controller.

XP8800 Addresses
XP8800 expansion boards are shipped from the factory with no pins on
header H4 connected. An XP8800 expansion board may be assigned any
one of 16 addresses using jumpers on the pins of header H4. The LED at
D2 lights up whenever the XP8800 is addressed on the PLCBus.

See Chapter 8, �Software Reference,� for further details on
how to determine the physical address for XP8800 expansion
boards.

Power
Z-World�s expansion boards receive power from the controller over the
+24 V and VCC lines of the PLCBus. The XP8800 expansion boards use
VCC, which is +5 V. The XP8700 draws from 40 mA (quiescent) to a
maximum of 105 mA.

$

$

!

XP8800 I/O Configurations s 55

CHAPTER 7: I/O CONFIGURATIONS

Chapter 7 describes the built-in flexibility of the XP8800 expansion
boards, and describes how to configure the available inputs/outputs. The
following sections are included.

� XP8800 Series Pin Assignments

� Using D/A Converter Boards

XP880056 s I/O Configurations

XP8800 Pin Assignments
External connections are made to the XP8800 expansion board using H5, a
14-pin header, and H6, a 16-screw terminal block. Figure 7-1 shows the
pin assignments.

Figure 7-1. XP8800 Output Header H5 and Terminal Block H6

Header H5 Signals
H5 provides connection points for motor control signals, power and
ground, power failure, and watchdog signals. The motor control signals
are usually used with an amplifier to drive the motor.

/DRVOE�A low signal enables output from the TTL motor driver IC.

GND�is the PLCBus ground, common to the entire system.

Connect the motor power supply ground only to GND on the
screw terminal block (H6).

HSTEP�Together with the WAVE signal, HSTEP determines the opera-
tion of the TTL motor driver IC: single-phase, two-phase, or half-step.

PDIR�This signal indicates in which direction the TTL motor driver IC is
to move. A high level means movement in the + direction. A low level
means movement in the � direction.

PFI�is an analog signal input to the power-fail comparator. The /PFO
line becomes active when PFI drops below 1.25 V (±0.05 V).

!

PHA

PHB

PHC

PHD AIN

BIN

/ORG

/EL+

/EL�

/SD+

/SD�

K GNDGND

Motor Drive Quadrature Sense Input Power

+24 V+5 V

H6

GND

10

12

34

56

78

9

/PULSE

PDIR

14

12 11

13

/DRVOE

HSTEP

WAVE

GND

/WDO

/PFO

PFI

+5 V

+24 V

Header H5

XP8800 I/O Configurations s 57

/PFO�is the open-collector power-failure indicator. /PFO goes low when
PFI goes below 1.25 V (±0.05 V). /PFO can be connected to the NMI or
interrupt line on the master controller.

/PULSE �A low pulse on this line signals a one-step move to the TTL
motor driver IC.

WAVE�Together with the HSTEP signal, WAVE determines the operation
of the TTL motor driver IC: single-phase, two-phase, or half-step.

/WDO�This is the active low, open-collector watchdog output line.
When the watchdog is enabled, this line will go low�upon a watchdog
timeout�to generate a hard reset at the PCL-AK pulse generator.

+5 V�is the regulated PLCBus +5 V digital power supply. This supply
should not be used for motor power, but can be used to power external
logic.

+24 V�is the unregulated PLCBus +24 V supply. Though nominally
24 V, this can be anywhere from 9 V to 30 V DC. This supply may be used
to drive the motor if the controller�s power supply can handle the current
requirements.

Screw Terminal Block H6 Signals
PHA, PHB, PHC, PHD�are the open-collector motor control outputs.
They connect to the motor phase lines, and can sink up to 1 A, depending
on the ambient temperature.

AIN, BIN�are the TTL-compatible quadrature-encoded input signals.

/ORG�is the active-low origin pulse input. /ORG goes directly to the
PCL-AK pulse generator, thereby allowing the PCL-AK to generate pulses
until it receives an origin signal. /ORG is readable in the PCL-AK
(address 0) status bits.

/EL+, /EL� �are the active-low end-limit inputs, one for the + direction,
the other for the � direction. These signals go directly to PCL-AK pulse
generator, where they are typically used to indicate end-of-travel, usually
to stop pulse generation. These signals are readable in the PCL-AK
(address 0) status bits.

/SD+, /SD� �are the active-low �slowdown� inputs, one for the +
direction, the other for the � direction. These signals go directly to
PCL-AK pulse generator, where they are typically used to force the
PCL-AK to decelerate to its slower speed. These signals are readable in
the PCL-AK (address 3) status bits.

XP880058 s I/O Configurations

K�is protection for the driver chip. K is connected to the motor control
voltage source through protective diodes.

Be sure to connect K to the motor�s voltage source. Damage
can occur or performance can degrade if this connection is not
made.

+5 V�is the regulated PLCBus +5 V digital power supply. This supply
should not be used for motor power, but can be used to power external
logic.

+24 V�is the unregulated PLCBus +24 V supply. Though nominally 24
V, this can be anywhere from 9 V to 30 V DC. This supply may be used to
drive the motor if the controller�s power supply can handle the current
requirements.

GND�is the PLCBus ground, common to the entire system. The motor�s
power supply ground should be connected here only. There are two GND
connections on H6.

Sample XP8800 Connections
Figure 7-2 shows an example of a stepper motor connected to an XP8800
expansion board.

Figure 7-2. Sample Stepper Motor Connection to XP8800

Motor
Power
Supply

XP8800

G
N

D

P
F

I

K

+

/E
L�

/S
D

�
/S

D
+

/E
L+

A
IN

B
IN

G
N

D

Z-World
Controller

/P
F

O

/I
N

T
0

/O
R

G

Mechanical
Switches and
Optical sensors

PLCBus

Moving

Platform

Stepper Motor

Gears
Quadrature
Encoder

P
H

A
P

H
B

P
H

C
P

H
D

+5
 V

XP8800 I/O Configurations s 59

Optional Optical Isolation
The quadrature and sense inputs (AIN, BIN, /ORG, /EL+, /EL-, /SD+, and
/SD-) may be optically isolated, as shown in Figure 7-3. The XP8810
version of the XP8800 expansion board features this optical isolation.

Figure 3-4. XP8810 Optical Isolation Circuit

Note that there is a common ground for the board and the
inputs so that the optical isolation is not absolute.

6 51

2 4

4N26

+5 V
470 Ω

IN

OUT

!

XP880060 s I/O Configurations

Using Expansion Boards
The following steps summarize how to use the XP8800 boards.

1. Send a reset command to the PLCBus.

2. Place the address of the XP8800 registers on the PLCBus. The
address will actually be the address of one of the components, the
PCL-AK pulse generator, or the quadrature decoder/counter.

3. Operate the XP8800. The following operations are the ones done
most frequently.

� Set XP8800 control register.

� Issue command to PCL-AK pulse generator.

� Set PCL-AK parameters or read PCL-AK registers or status.

� Reset the quadrature counter or read its value.

� Wait for interrupt requests.

4. Once the XP8800 operation is done, issue a soft reset to the PCL-AK
pulse generator.

The Dynamic C STEP.LIB library handles the details of operating the
XP8800.

Resetting XP8800 Expansion Boards
There are many ways to reset the XP8800 and its components.

1. Power-Up Reset

On power-up, both the PCL-AK pulse generator chip and the quadrature
decoder/counter undergo a hardware reset.

The control register powers up to an unknown state, making it necessary
for the application to initialize the control register before using anything
else on the board. (Use the function sm_find_boards to do this.)

2. PLCBus Reset

A PLCBus reset command strobes both the PCL-AK and quadrature
decoder/counter reset lines, forcing hardware resets for both. The control
register and motor driver IC are not affected by a PLCBus reset.

3. Watchdog Reset

The watchdog timer is a safety feature that halts the PCL-AK (and there-
fore motion) in the event of a system crash. When the watchdog is turned
on, the application must �hit� the watchdog at least every 1.5 seconds. The
watchdog is �hit� every time the application reads the quadrature counter
(the actual chip need not be present), writes the control register, or calls the
function sm_hitwd. The quadrature counter is not reset in the event of a
watchdog timeout.

XP8800 I/O Configurations s 61

Once reset this way, the PCL-AK pulse generator chip will stay reset until
the application hits the watchdog again. Connecting the jumper on header
J1 enables the watchdog. The watchdog is disabled if this jumper is not
connected.

4. PCL-AK Reset

In addition to the watchdog reset and the power-up reset, there are two
other ways to reset the PCL-AK pulse generator:

To achieve a hardware reset, drive the PCL-AK reset line low. This line is
connected to the control register (bit 1). A hardware reset halts all activity
of the controller and resets all internal counters and registers. The function
smc_hardreset will pulse this line and generate the reset.

To achieve a software reset, write a reset command to the controller. A
software reset immediately stops pulse generation and deactivates the
PCL-AK�s interrupt request line if it is active. The contents of PCL-AK
registers are not affected. A software reset is typically used at the end of a
programmed operation that generates an interrupt when it finishes. The
function smc_softreset is used to generate a software reset.

5. Quadrature Counter Reset

The quadrature counter is reset to zero on power-up. Use the function
smq_hardreset at any time to reset the quadrature counter.

XP880062 s I/O Configurations

XP8800 Operation
The XP8800 has these three major components.

1. PCL-AK pulse generator.

2. UCN5804 motor driver.

3. HCTL-2016 quadrature decoder/counter.

These components are coupled with a control register (U3) and control
logic (U2, U4), as shown in Figure 7-4. One or more of these components
may be left unused. For example, the XP8800 can be used solely as a
quadrature counter by ignoring the PCL-AK and the motor driver ICs. The
XP8800 can even be used as a timer by ignoring or disabling its outputs.

Figure 7-4. XP8800 Block Diagram

PCL-AK Pulse Generator
The PCL-AK pulse generator at the heart of the XP8800 controls the
motor driver IC. The bidirectional /PULSE output signal steps a motor. If
PDIR is 1, the move is in the + direction, 0 means the move is in the �
direction. The PCL-AK can generate thousands of different pulse rates.

The PCL-AK can sense external signals such as �slow down,� �end limit,�
and �origin,� and can accelerate and decelerate the motor driver IC
between high-speed and low-speed settings. The PCL-AK is able to
generate interrupt requests in response to certain conditions such as the end
of the operation. The PCL-AK chip can signal the stepper motor to stop
immediately or decelerate to a stop.

Quadrature
Decoder/Counter

B

Control
(U2, U3, U4)

Watchdog

A
ORG SD� EL�

SD+ EL+

PCL-AK
Pulse Generator

interrupt request

data

Motor
Driver

A

Phase
Output

B
C
D

Expansion
Header

Pulse & Dir

Reset

data
8

8

Reset

8

control
byte

from external
quadrature encoder

2

2

mode:
1 phase
2 phase
half-step

from external sensors

SD: �slow down�
EL: �end limit�
ORG: origin
+ Positive direction
� Negative direction

P
LC

B
us

XP8800 I/O Configurations s 63

The PCL-AK has the following three basic modes of operation.

1. Continuous Mode�The PCL-AK continues to generate pulses
until instructed to stop or an external signal arrives.

2. Preset Mode�The PCL-AK generates pulses until its preset
counter decrements to 0 or an external signal arrives.

3. Origin Mode�The PCL-AK generates pulses until an �origin�
pulse arrives.

4. Stop Mode�The PCL-AK either generates pulses for the stepper
motor chip to bring the stepper motor to an immediate stop or it
generates pulses leading to a deceleration to a stop.

Figure 7-5 shows a block diagram of the PCL-AK.

Figure 7-5. Block Diagram of PCL-AK Pulse Generator Chip

Communicating with the PCL-AK
The PCL-AK is controlled by writing to its command buffer and by writing
values to its control registers. The chip can be monitored to find out what
it is doing by reading the status register or a control register. Only the
counter and ramp-down point registers are readable.

The internal registers of the PCL-AK can be reset by pulsing the /RESET
line. A software reset does not reset the internal registers.

command &
data in

status and data
out

address

clock

PDIR8

2

FL
FH

CTR
RD

MUL
ADR

Control
Registers

PCL-AK

/PULSE

/ORG

/EL�

/EL+
/SD�

/SD+

/INT

/WR

/RD

/CS

/RESET

XP880064 s I/O Configurations

Table 7-1. PCL-AK Commands

PCL-AK Signals

/CS A1 A0 /RD /WR
Meaning

0 0 0 1 0 Write command buffer.

0 0 1 1 0 Write register bits 0–7.

0 1 0 1 0 Write bits 8–15.

0 1 1 1 0 Write register bits 16–17 (counter).

0 0 0 0 1 Read status.

0 0 1 0 1 Read register bits 0–7.

0 1 0 0 1 Read register bits 8–15.

0 1 1 0 1
Read register bits 16–17 (counter)
with assorted status bits.

1 × × × × D0–D7 at high impedance.

0 × × 0 0 Inhibit.

Table 7-2. PCL-AK Registers

Register Bits Description

 CTR 18 Down counter, gives the number of pulses to generate
for Preset Mode. This register is readable. When read,
it gives the number of remaining pulses.

 FL 13 Low frequency from which to accelerate or decelerate.

 FH 13 High frequency from which to decelerate or accelerate.

 ADR 10 Acceleration/deceleration rate.

 RD 16 Ramp-down point. When the PCL-AK is generating
pulses in the Preset Mode, the ramp-down point is the
point (number of pulses before end-of-count) at which
the PCL-AK will start ramping down (decelerating)
from high speed to low speed. This register is readable.

 MUL 10 Multiplier register, interacts with FL and FH to give
various pulse rates.

Table 7-1 provides the meanings for commands used with the PCL-AK.

Registers
Table 7-2 lists the PCL-AK registers.

XP8800 I/O Configurations s 65

Acceleration/Deceleration Rate (ADR) Register

The ADR register�with settings from 2 to 1023�governs the ramping-up
(acceleration) and ramping-down (deceleration) characteristics. When
started in a high-speed mode, the PCL-AK pulse generator starts with the
speed set in the FL register and accelerates to reach the speed set in the FH
register.

The Z-World reference clock frequency is 6 MHz. Thus, a clock period is
1/6 µs. The time it takes to accelerate or decelerate is

T
RAMP

 = (FH � FL) × (rate in ADR)/6 µs.

The relationship between acceleration and the rate in ADR is

 pulses/s2.

The stepper motor might not operate if the ADR rate is too small because
the acceleration will then be too fast.

The relationship between the value of a speed register (FL or FH varies
from 1 to 8191) and the actual output frequency of PCK-AL is

pulses/s.

pulses/s.

The term MUL is the value
of the multiplier register,
and can be from 2 to 1023.
With Z-World�s 6 MHz ref-
erence clock, MUL = 732
(732.421875 rounded off).

Referring to Figure 7-6, the
number of pulses output dur-
ing T

DEC
 is represented by

the area of the shaded trap-
ezoid.

ADRin rate

CLOCK
onaccelerati =

MUL

CLOCK

8192

FH
HIGH ×=ν

MUL

CLOCK

8192

FL
LOW ×=ν

()

()
pulses.

MUL384,16

ADRFLFH

pulses
2

T
pulsesofNumber

22

DECLOWHIGH

×
×−=

×+
=

νν

ramp-down point

TDEC

Time

F
re

q
u

en
cy νHIGH

νLOW

Figure 7-6. Calculating the Number of Pulses

XP880066 s I/O Configurations

Status Bits
Status bits are available at PCL-AK address 0 and 3. The status bits for
address 0 are explained below.

D7 D6 D5 D4 D3 D2 D1 D0

D0 1�/EL� (end limit) signal

D1 1�/EL+ signal

D2 1�/ORG (origin) signal

D3 1�counter output = 0

D4 1�ramp-down point register (RD) selected
0�other register selected

D5 1�frequency stabilized after ramp down or ramp up

D6 1�operation in progress

D7 0�/INT (interrupt request) active

Bits 0 and 1 of the address 3 status depend on whether the RD (ramp-down
point) register was selected prior to reading the status. The status bits for
address 3 are explained below.

D0 If RD register is selected

0�stop interrupt signal is being output
else�bit 16 of counter is output

D1 If RD register is selected

0�ramp-down point interrupt signal is being output
else�bit 17 of counter is output

D2 1�/SD� (slow down) signal

D3 1�/SD+ signal

D4 1�Ramp up in progress

D5 1�Ramp down in progress

D6 1�counter < ramp-down point

D7 0�/PULSE signal is not active
1�/PULSE signal is active

See Z-World Technical Note 101, Operating the PLC-AK
High-Speed Pulse Generator, for more information on the
PCL-AK chip.

$

XP8800 I/O Configurations s 67

UCN5804 Motor Driver IC
The motor driver chip (UCN5804) receives two pulse signals from the
PCL-AK pulse generator. One signal, /PULSE, steps the motor. The other
signal, PDIR, specifies the motor rotation (high = forward, low = reverse).

The driver receives two mode signals from the control register. Their
meanings are summarized in Table 7-3. The 0s in the table indicate that
the driver line is ON, that is, it is sinking current.

The motor driver chip generates phase signals A, B, C, and D to produce
these modes according to the chart in Figure 7-7. The top line of each
sequence indicates the state of the driver at power-up.

Figure 7-7. Illustration of Phase Signals A, B, C, and D
Produced by Motor Driver Chip

Table 7-3. Motor Driver Chip Modes

Bit 7 Bit 6 Mode

0 0 Two phase

0 1 Half-step

1 0 Single phase

1 1 Undefined–Do not use

Single Phase Two Phase Half-Step

0 0 01 1 11 1 11 0 1
01 1 1

0 11 1
01 1 1

0 1 10
0 11 0

01 1 0

0 0 1 1
1 0 1 1
1 0 0 1
1 1 0 1
1 1 0 0
1 1 1 0
0 1 1 0

A A AB B BC C CD D D

F
or

w
ar

d

R
ev

er
se

XP880068 s I/O Configurations

Figure 7-8 shows how the phase lines are connected to the motor�s
windings.

Figure 7-8. Connection of Phase Lines to Motor

Driver Power
To select a voltage for the motor driver chip, be sure to consider the vari-
ous losses in the drive circuit, including the collector/emitter voltage and
the voltage of the blocking diode. Figure 7-9 illustrates these voltages.

Figure 7-9. Voltage Drops Associated with UCN5804 Motor Driver Chip

D

C

B

A

VD

Motor
Driver

D6

D4

D5

D3

VM Motor-specific voltage

VCE Collector-emitter voltage

VD Drive voltage

VF Diode forward voltage, typically 0.7 V

UCN5804

XP8800 I/O Configurations s 69

Table 7-4 lists typical ratings for the UCN5804 motor driver chip.

For example, consider a 5 V, 1 A motor.

You would need a 6.8 V, 2 A power supply (for 2-phase drive) in addition
to the power required by the logic.

Remember to connect the K line on the screw connector block
(H6) to the high side of the drive voltage.

Quadrature Decoder/Counter
The HCTL-2016 is a 16-bit quadrature decoder and counter. Its two lines,
A and B, accept two quadrature encoded signals, that is, two square waves
90° out of phase. The order in which these signals make transitions deter-
mines the direction that is counted. Figure 7-10 illustrates this counting
operation.

Figure 7-10. HCTL-2016 Quadrature Counting Operation

Table 7-4. Typical Ratings UCN5804
Motor Driver IC

ID VCE

0.7 A 1.0 V

1.0 A 1.1 V

1.25 A 1.2 V

V6.8

V0.7V1.1V5

VVVV FCEMD

=
++=
++=

!

A

Forward Quadrature (Counting Up)

B

A

Reverse Quadrature (Counting Down)

B

Time

XP880070 s I/O Configurations

There are four states of lines A and B, as shown in Figure 7-11. The
counter counts up or down, depending on the state transition.

Figure 7-11. HCTL-2016 Quadrature Counting Operation

The speed at which the counter can operate is limited by the reference
clock (12 MHz). The counter can operate at up to one quarter of this
frequency. Thus, the maximum reliable counting frequency is 3 MHz.

The counter can be read as two successive bytes.

Control Register
The control register is an 8-bit write-only latch that controls the operation
of the XP8800. Table 7-5 explains the meaning of each bit in the register
(bit 0 is the least significant bit).

1 1 2
0 1 3
0 0 4

101
CH A CH B STATE

1

4 2

3

Valid
State

Transitions

COUNT UP

COUNT DOW N

Table 7-5. Control Register Bits

Bit Name Meaning

0 RESCNT Reset quadrature decoder/counter. Low means reset.

1 RESCTL Reset the PCL-AK. Low means reset.

2 LED LED. Low means ON.

3 SEL0 Local address line.

4 SEL1 Local address line.

5 DRVOE Enable motor driver IC output. Low means ON.

6 HSTEP Half-step mode for motor driver IC when this bit is 1 and
bit 7 is 0.

7 WAVE • Single-phase mode for motor driver IC when this bit is 1
and bit 6 is 0.

• Two-phase mode when this bit is 0 and bit 6 is 0.

XP8800 I/O Configurations s 71

The select lines SEL0 and SEL1 have a specific meaning. They are
connected to the two address lines of the PCL-AK pulse generator. SEL0
is also connected to the quadrature decoder/counter. Coupled with PAL
logic, these select lines allow you to read and write to the PCL-AK and to
read the 16-bit counter value. (The function library STEP.LIB takes care
of the details.)

PLCBus Interrupts
Be careful when processing interrupts from the PLCBus. Interrupts can
come from any source, including other expansion boards. A PLCBus
interrupt service routine must determine where the interrupt originated and
what to do.

XP880072 s I/O Configurations

Blank

XP8800 Software Reference s 73

CHAPTER 8: SOFTWARE REFERENCE

Chapter 8 describes the Dynamic C functions used to initialize the XP8800
Series expansion boards and to control the resulting outputs. The follow-
ing major sections are included.

� Expansion Board Addresses

� Dynamic C Libraries

� XP8800 Software

XP880074 s Software Reference

Expansion Board Addresses
Up to 16 XP8800 addresses are possible on the PLCBus. Power con-
straints usually limit the number of XP8800 expansion boards to four,
allowing four axes of control.

Each XP8800 has three addressable components: the PCL-AK pulse
generator, the quadrature decoder/counter, and the control register. The
address of a particular XP8800 is determined by jumpers on header H4 as
shown here.

abcd1100 x0000Rxx

where

a = 0 if H4 pins 1�2 are connected, and 1 if not
b = 0 if H4 pins 3�4 are connected, and 1 if not
c = 0 if H4 pins 5�6 are connected, and 1 if not
d = 0 if H4 pins 7�8 are connected, and 1 if not
x = does not matter
R = 0 to read or write PCL-AK pulse generator
R = 1 to read the quadrature counter
R = 1 to write the control register

The address is placed on the PLCBus as 2 bytes using two bus cycles,
BUSADR0 and BUSADR1. The lower four bits of the first byte (1100)
identify the address as being 8×2 format.

The address is placed on the bus using the functions set82adr and
set81adr.

The LED (D2) will light up on the XP8800 that matches the address the
software placed on the PLCBus.

Examples
1. Write the control register on the XP8800 whose address jumpers are 3

(abcd = 0011).

out0 (BUSADR0), 3Ch ; 00111100 1st addr byte
out0 (BUSADR1), 04h ; 00000100 2nd addr byte
Set shadow variable = control register value, then...
out0 (BUSWR), �shadow� ; control bits

XP8800 Software Reference s 75

2. Write a command to the PCL-AK on the XP8800 whose address
jumpers are 8 (abcd = 1000).

;first, make select lines 00
out0 (BUSADR0), 3Ch ; 00111100 1st addr byte
out0 (BUSADR1), 04h ; 00000100 2nd addr byte
Set shadow variable = AND(shadow variable,

0xE7), then ...
out0 (BUSWR), �shadow� ; control bits

;now address the PCL-AK and send command
out0 (BUSADR1), 00h ; 00000000 2nd addr byte
out0 (BUSWR), �command� ; command

3. Read the 16-bit quadrature counter on the XP8800 whose address
jumpers are 13 (abcd = 1101).

;first, make select lines 00 to get high byte
out0 (BUSADR0), 3Ch ; 00111100 1st addr byte
out0 (BUSADR1), 04h ; 00000100 2nd addr byte
Set shadow variable = AND(shadow variable,

0xE7), then ...
out0 (BUSWR), �shadow� ; control bits
in0 �high�, (BUSRD0) ; get high byte

;next, make select lines 01 to get low byte
Set shadow variable = OR(shadow variable,

0x08), then ...
out0 (BUSWR), �shadow� ; control bits
in0 �low�, (BUSRD0) ; get low byte

Return counter value = high << 8 + low

In general there is no need to program the XP8800 at these low levels.
Software in the Dynamic C STEP.LIB library takes care of these details.

Logical Addresses
Software in the Dynamic C STEP.LIB library keeps information for all
XP8800s on the PLCBus in a table, sorted by XP8800 address. Thus,
XP8800s have �logical addresses� that are simply indexes in the table.

For example, suppose there are three XP8800s on the PLCBus with
addresses of 3 (0011), 8 (1000), and 13 (1101). Table 8-1 shows the table
used by the software.

The logical addresses for these 3 boards would be 0, 1, and 2. The
physical addresses are stored in the table. The function sm_find_boards
sets up this table.

XP880076 s Software Reference

Table 8-1. Example of STEP.LIB
Table for XP8800 Logical Addresses

Index Address

0 0011

1 1000

2 1101

marker —

Dynamic C Libraries
Several Dynamic C function libraries contain the software functions
described in this chapter. The chart in Table 8-2 identifies which libraries
must be used with particular Z-World controllers.

Before using one of these libraries in an application, first include the
library name in a #use command. For example, to use functions in the
library PLC_EXP.LIB, be sure there is a line at the beginning of the
program in the following format.

 #use PLC_EXP.LIB

Table 8-2. Dynamic C Libraries Required by Z-World Controllers
for XP8800 Expansion Boards

Library Needed Controller

DRIVERS.LIB BL1200, BL1600, PK2100, PK2200

EZIOCMMN.LIB BL1200, BL1600, PK2100, PK2200

EZIOPBDV.LIB BL1200, BL1600, PK2100, PK2200

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200

EZIOPLC2.LIB BL1700

EZIOBL17.LIB BL1700

PLC_EXP.LIB BL1200, BL1600, PK2100, PK2200

XP8800 Software Reference s 77

XP8800 Software
The sample programs SM_DEMO1.C, SM_DEMO2.C, and SM_DEMO3.C in
the Dynamic C SAMPLES\PLCBUS subdirectory illustrate the use of these
functions.

The software is designed to simplify the task of using the XP8800 on the
PLCBus. Z-World recommends using the software or at least following
the guidelines for the software structure.

1. Only access the control register using driver functions. These func-
tions keep track of the shadow variables that prevent inadvertently
changing other control lines.

2. Initialize and use the arrays designated for handling multiple board
addresses and status. These are described in detail.

3. If using interrupts, make the declaration

#define USE_STEPPER

early in the main program. This tells the PLCBus interrupt service to
call the function sm_int.

4. Also, if using interrupts, add the call

relocate_int1();

This connects the proper PLCBus interrupt service routine to the
interrupt vector.

Data Structures
The XP8800 driver software uses a table to represent all the XP8800s in a
system. There can be up to four XP8800s, and other PLCBus expansion
boards may also be used, subject to power constraints.

Table 4-2 shows how the Dynamic C STEP.LIB library assigns and sorts
the XP8800 logical addresses. These XP8800 �logical addresses� are
simply indexes in the table.

For example, the logical addresses for the three boards in Table 8-1 are 0,
1, and 2. The physical addresses are stored in the table. Call
sm_find_boards before doing anything else. This function searches the
PLCBus and initializes the table to represent the state of the XP8800s.

These four arrays define the table.

int sm_addr [17];

char sm_stat [16];

char sm_flag [16];

char sm_shadow[16];

XP880078 s Software Reference

The array sm_addr holds the PLCBus address of each XP8800 existing on
the PLCBus. This array has one extra element, because the software
places a marker (address = �1 or 0xFFFF) following the last real board
address in the array.

The array sm_stat contains copies of the address 0 status bits of the
PCL-AK pulse generator for each XP8800 on the PLCBus. The array is
updated by the motor control interrupt service routine (ISR) every time a
PLCBus interrupt is generated.

The array sm_flag is updated at the same time as sm_stat and repre-
sents whether a board is awaiting service (its interrupt line asserted).

The array sm_shadow holds shadow variables for the XP8800 control
registers. Control registers are write-only. If software fails to remember
how control lines are set, chances are good that control lines will become
set incorrectly. The shadow variables provide the memory.

Interrupts
Since the PLCBus has a single shared interrupt line, special care must be
taken when servicing interrupts across it. During PLCBus interrupt
service, all possible interrupt sources must be checked to see if they are
currently awaiting service. These include other PLCBus expansion boards.

The interrupt function sm_int polls all XP8800s on the PLCBus and
updates the arrays sm_stat and sm_flag for each. It also sends a
software reset to each XP8800 that is asserting an interrupt request. The
software reset clears the interrupt request. If this reset is not issued, the
system would lock up since the interrupt line would never go inactive.

By including the statement

#define USE_STEPPER

early in the main program, the PLCBus interrupt service routine will call
sm_int. Your application should periodically check the status of the
interrupt request flags in the sm_flag array to determine when to service
the XP8800.

Although the function sm_int does what it is supposed to do, it probably
does not do what you would want it to do. Z-World has provided sm_int
to demonstrate how to use the XP8800 in an interrupt-driven system.
Since sm_int requires polling flags to provide service, it is not as efficient
as a true interrupt-controlled driver would be. What this function does is
guarantee that interrupts generated by a motor controller are serviced so
that the PLCBus interrupt is not held active by the controller, locking up
the system.

If you wish to do all motor processing in the background, replace the code
in the function sm_int (between the labels mirq and fin) with your own
code.

XP8800 Software Reference s 79

XP8800 Driver Functions
Tables 8-3, 8-4, 8-5, 8-6, and 8-7 list the various XP8800 software drivers
in the Dynamic C STEP.LIB library.

Table 8-3. XP8800 General and Initialization Functions

Type Function Description

int sm_bdaddr Generates address from jumper value

void sm_board_reset Issues full board reset

int sm_find_boards Finds and initialize all XP8800s

void sm_hitwd Hits watchdog timer

void sm_int General ISR for XP8800s

int sm_poll Polls specified XP8800

Table 8-4. XP8800 Control Register Functions

Type Function Description

void sm_ctlreg Writes control register and updates shadow
variable

void sm_drvoe Turns motor driver IC output on or off

void sm_led Turns LED (D1) on or off

void sm_sel00 Sets select lines to 00

void sm_sel01 Sets select lines to 01

void sm_sel10 Sets select lines to 10

void sm_sel11 Sets select lines to 11

XP880080 s Software Reference

Table 8-5. XP8800 Motor Controller Functions

Type Function Description

void smc_cmd Writes to PCL-AK command register

void smc_hardreset Pulses PCL-AK reset line, registers are reset

void smc_manual_move Starts continuous movement, movement
continues until told to stop

void smc_seek_origin Starts continuous movement, movement
continues until origin pulse (/ORG)

void smc_setmove Sets PCL-AK registers for a move operation

void smc_setspeed Sets PCL-AK’s two speed registers

void smc_softreset Sends reset command to PCL-AK, registers
are not reset

char smc_stat0 Reads PCL-AK status register (at address 0)

char smc_stat3 Reads PCL-AK status register (at address 3)

Table 8-6. XP8800 Quadrature Counter Functions

Type Function Description

void smq_hardreset Pulses quadrature counter reset line

unsigned
int

smq_read16 Reads entire 16-bit counter value

char smq_read8 Reads counter’s lower 8 bits

Table 8-7. Miscellaneous XP8800 Functions

Type Function Description

void set81adr Places XP8800 address on bus (shortcut)

void set82adr Places XP8800 address on bus

unsigned
int

smcq_moveto
Uses the motor’s quadrature decoder to
move to location

XP8800 Software Reference s 81

Miscellaneous XP8800 Function Descriptions
In all the following function descriptions, the parameter index is a
number from 0 to 15 that represents the sequence of boards found by
sm_find_boards. The board with the lowest jumper setting is at position
0, and so on.

� void set82adr(int addr)

Places the specified address on the PLCBus in 8×2 addressing mode.
The term addr is a physical board address. Its upper byte must be
xxxx1100 (binary), and the lower byte should be 0 to read or write the
PCL-AK pulse generator, or 1 to read the quadrature counter or to
write the control register. The upper 4 bits of the address correspond
to the jumpers on the intended XP8800.

The execution time for this function is 87 cycles, assuming 0 wait
states, that is

14.16 µs at 6.144 MHz (71 kHz)

9.44 µs at 9.216 MHz (109 kHz)

� void set81adr(int addr)

Places the specified address on the PLCBus in 8×2 addressing mode.
The term addr is the lower byte a physical board address. This
function assumes that the upper byte has already been placed on the
bus. The lower byte should be 0 to read or write the PCL-AK pulse
generator, or 1 to read the quadrature counter or to write the control
register. The main purpose of this function is to save PLCBus cycles.

The execution time for this function is 60 cycles, assuming 0 wait
states, that is

9.77 µs at 6.144 MHz (102 kHz)

6.50 µs at 9.216 MHz (154 kHz)

� int sm_bdaddr(int jumpers)

Returns the physical PLCBus address for an XP8800 that has the
specified jumper settings on header H4. The term jumpers must be
an integer from 0 to 15.

The function returns the physical PLCBus address in a form directly
passable to set82adr.

� void sm_board_reset(int index)

Performs a hardware reset XP8800 identified by index. This resets
the PCL-AK pulse generator and the quadrature decoder/counter, and
disables the motor driver IC and sets it to two-phase mode. The
function also sets the control register�s two select lines to 00.

XP880082 s Software Reference

� void sm_ctlreg(int index, int value)

Writes value to the control register on the XP8800 specified by
index. The function updates the shadow variable for the control
register.

� void sm_drvoe(int index, int onoff)

Turns the motor driver IC of the XP8800 specified by index on or
off. The term onoff is Boolean: when zero, the motor driver IC gets
turned off. Otherwise, it gets turned on.

� int sm_find_boards()

Searches for all possible XP8800s and fills in the XP8800 table,
which is sorted according to physical board address. The table holds
physical addresses in the array sm_addr. The table also holds status
bytes and interrupt service flags, which this function initializes.

The function return is the number of boards found. The function
places a marker (�1 or 0xFFFF) following the last entry in the table.

The function sends a control register value of 0xA7 (1010 0111) to all
XP8800s found. This puts the motor driver IC in two-phase mode and
turns it off, makes the select lines 00, turns the LED (D2) on, and
resets both the PCL-AK pulse generator and the quadrature counter.

The function return is the number of XP8800 boards on the PLCBus
that respond to the search.

The XP8800 table consists of these four arrays.

sm_addr a board�s physical PLCBus address.

sm_stat holds the last status (address 0) read from the board�s PCL-AK.

sm_flag, when non-zero, indicates the XP8800 has requested an
interrupt and is awaiting service.

sm_shadow holds the last value written to the board�s control register.

This function is among the first to call when operating XP8800
expansion boards. After the table is initialized, function calls will
generally refer to XP8800s by their table index.

� void sm_hitwd(int index)

Resets the watchdog timer on the XP8800 specified by index. It does
this by reading the quadrature counter. (The quadrature chip does not
have to be present.)

XP8800 Software Reference s 83

� void sm_int()

This is a general-purpose XP8800 function that can be called by the
PLCBus interrupt service routine (ISR). This function checks the
status (at PCL-AK address 0) of all boards, updating the sm_stat
array. When an interrupt request is detected, the appropriate sm_flag
value is set and the function issues a software reset to the PCL-AK to
deactivate the interrupt request.

The application must then monitor the interrupt service flags to deter-
mine when an operation has been completed.

To use this function, do the following.

1. Call sm_find_boards at the beginning of the application to
initialize the XP8800 table.

2. Add the following statement early in the application to link
sm_int to the PLCBus ISR.

#define USE_STEPPER // activate sm_int

3. Add the following statement early in the application to ensure that
the PLCBus interrupt line is activated.

outport(ITC, (inport(ITC)&OxFD));
// enable INT1

If all motor processing is to be done in the background (that is, as part
of the interrupt service), open and edit STEP.LIB. Find sm_int and
replace the code between the labels mirq and fin with your own code.

� void sm_led(int index, int onoff)

Turns the LED (D1) on the XP8800 specified by index on or off.
The value onoff is Boolean: when zero, the function turns the LED
off. Otherwise, it turns the LED on.

� int sm_poll(unsigned int address)

Returns 0 if the XP8800 specified by address is present (and respond-
ing) on the PLCBus. The parameter address must be a physical
board address, such as that returned by sm_bdaddr (jumpers).

All PLCBus expansion boards respond to a BUSRD1 cycle by sinking
data line 0 (normally high). The board is not present if a 1 is returned.

� void sm_sel00(int index)

Sets the select lines to 00 on the XP8800 specified by index.

� void sm_sel01(int index)

Sets the select lines to 01 on the XP8800 specified by index.

XP880084 s Software Reference

� void sm_sel10(int index)

Sets the select lines to 10 on the XP8800 specified by index.

� void sm_sel11(int index)

Sets the select lines to 11 on the XP8800 specified by index.

� void smc_cmd(int index, int data)

Writes data to the command register of the PCL-AK pulse generator
on the XP8800 specified by index.

� void smc_hardreset(int index)

Causes a hardware reset of the PCL-AK on the XP8800 specified by
index. This stops any pulse output (that is, motor movement) and
clears the internal registers of the PCL-AK. It does this by giving a
negative pulse on bit 1 of the control register.

� void smc_manual_move(int index, int dir,
int speed)

Starts a manual (or continuous) move operation on the XP8800 speci-
fied by index. The motor will move until the application issues a
decelerating stop command, a software or hardware reset, or until the
application detects an end-limit or origin signal (if these are enabled).

The terms dir and speed are Boolean. If dir is non-zero, movement
is in the �+ �direction. Otherwise, movement is in the ��� direction.
If speed is zero, the PCL-AK pulse generator operates at low speed.
(Pulses are generated at the rate in the FL register.) Otherwise, the
PCL-AK pulse generator operates at high speed. (Pulses are gener-
ated at the rate in the FH register.)

It is important to note that this function starts the movement and does
not wait for the movement to complete. The application may then
perform other tasks while the movement takes place.

� void smc_seek_origin(int index, int dir,
int speed)

Starts an �origin mode� operation on the XP8800 specified by index.
The PCL-AK will generate pulses, expecting an origin pulse to occur.
The motor will move until the application issues a decelerating stop
command, a software or hardware reset, or until the application detects
an end-limit or origin signal (if these are enabled).

The terms dir and speed are Boolean. If dir is non-zero, movement
is in the �+� direction. Otherwise, movement is in the ��� direction.
If speed is zero, the PCL-AK pulse generator operates at low speed.

XP8800 Software Reference s 85

(Pulses are generated at the rate in the FL register.) Otherwise, the
PCL-AK pulse generator operates at high speed. (Pulses are gener-
ated at the rate in the FH register.)

It is important to note that this function starts the movement and does
not wait for the movement to complete. The application may then
perform other tasks while the movement takes place.

The function issues a software reset to the board before proceeding.

� void smc_setmove(int index, long CTR, int FL,
int FH,int ADR, int RD, int MUL)

Sets up the registers of the PCL-AK pulse generator on the XP8800
specified by index. The meaning of the registers (listed in Table 7-2)
and their interaction is complex.

See Z-World Technical Note 101, Operating the PLC-AK
High-Speed Pulse Generator, for more information on the
PCL-AK chip.

When the value of the MUL register is 732, the values of the FL and
FH registers approximate �pulses per second,� that is, when
MUL = 732, the actual pulse frequency is

freq
 H

 = FH × 1.000576331967 pulses per second

freq
 L

 = FL × 1.000576331967 pulses per second

� void smc_setspeed(int index, int fast,
int slow)

Sets the high (FH) and low (FL) speed registers of PCL-AK pulse
generator on the XP8800 specified by index. The parameter fast is
for the FH register and the parameter slow is for the FL register. Both
must be in the range 1�8191.

� void smc_softreset(int index)

Sends a software reset command to the PCL-AK pulse generator on
the XP8800 specified by index. This stops pulse output (and
therefore, motion) without clearing the internal registers.

� char smc_stat0(int index)

Reads the 8-bit status register at address 0 (A1 = A0 = 0) on the
PCL-AK pulse generator on the XP8800 specified by index. The
function returns the status bits D0�D7 explained in Chapter 7, �Status
Bits.�

$

XP880086 s Software Reference

� char smc_stat3(int index)

Reads the 8-bit status register at address 3 (A1 = A0 = 1) of the
PCL-AK pulse generator on the XP8800 specified by index. If the
RD register (ramp-down point) is selected before reading the status
with address = 3, bits 0 and 1 are status bits. If any other register is
selected, bits 0 and 1 represent bits 16 and 17, respectively, of the
counter register.

The function returns the status bits D0�D7 explained in Chapter 7,
�Status Bits.�

� unsigned int smcq_moveto(int index,
unsigned dest, int dir, unsigned accuracy)

Steps the motor on the XP8800 specified by index until the quadra-
ture decoder/counter reaches the specified dest ± accuracy. The
movement is done at the slow rate (specified in the FL register) of the
PCL-AK pulse generator. The movement continues until the quadra-
ture counter reaches the �zone of acceptance� and then stops.

The parameter dir is Boolean: if non-zero, motion is in the �+�
direction. Otherwise, motion is in the ��� direction.

The function returns the reading of the quadrature counter when the
function finally stops motion. Inertia and step locations may make this
value different from the final resting place of the motor�s encoder.

The function issues a software reset to the PCL-AK following the
operation.

Example

main(){
...
uplc_init(); // init master
sm_find_boards(); // init all XP8800s

smc_setspeed(0,100,200); // move at 200 pps
smcq_moveto(0,5000,1,25); // to location 5000±25

delay to allow time for motor to stop fully

loc=smq_read16(0); // check final pos
if(loc>5025){ // overshot?

smc_setspeed(0,100,20); // move back at 20 pps
smcq_moveto(0,5000,0,25);// to location 5000±25

}
...

XP8800 Software Reference s 87

!

The function smcq_moveto is not a PID loop. It is the appli-
cation�s responsibility to manage the final position of the mo-
tor. The move speed, encoder resolution, and motor degrees/
phase will affect how precise you can get. It is possible to
miss a stop point if you specify too much precision. Read the
quadrature counter after the operation (allowing time for the
motor to come to a stop) to obtain its correct location.

� void smq_hardreset(int index)

Sends a hardware reset command to the quadrature counter on the
XP8800 specified by index. The function resets the counter to zero.

� unsigned int smq_read16(int index)

Returns the entire 16-bit value of the quadrature counter on the
XP8800 specified by index.

� char smq_read8(int index);

Returns the lower 8 bits of the quadrature counter on the XP8800
specified by index, a number from 0 to 15 as in smq_read16.

Sample Program
The sample program simulates a single-axis system with end-limit and
slowdown sensors in both directions.

After initialization, the XP8800 first seeks the origin. Then the motor goes
back and forth a few times, moving in one direction until an �end-limit�
signal occurs, then switches direction. As the motor moves, it responds to
any �slowdown� signal it receives.

The following items are needed to run this program.

� A stepper motor connected to an XP8800 connected, via the
PLCBus, to a Z-World PK2200 or PK2100 controller.

� A length of wire or a test probe to connect various signals to
ground. This simulates the occurrence of end-limit, slowdown or
origin conditions.

The sample program prompts you to make the appropriate connections.

XP880088 s Software Reference

/***
Simulate origin signal.
***/
void wait_origin(int id){

#define ORG 0x04 // bit 2

printf(“Connect /ORG to GND “);
printf(“to simulate origin signal... “);
while(!(smc_stat0(id) & ORG)) runwatch();
printf(“ORG detected.\n”);

}

/***
Simulates end-limit signal. Dir = CW or CCW.
***/
void wait_EL(int id, int dir){

int mask; // bit 0 for EL-, bit 1 for EL+
char sign; // “+” or “-”

if(dir){
mask = 2; sign = ‘+’; // + direction (CW)

}else{
mask = 1; sign = ‘-’; // - direction (CCW)

}
printf(“Connect /EL%c to GND “, sign);
printf(“to simulate end-limit... “);
while(!(smc_stat0(id) & mask))runwatch();
printf(“end-limit detected.\n”);

}
/**/
#define CCW 0 // counterclockwise direction (-)
#define CW 1 // clockwise direction (+)
/**/
main(){

int FL = 10; // low speed 10 pps
int FH = 100; // high speed 100 pps
int ADR = 500; // accel/decel “rate” = 500
int MUL = 732; // makes FL and FH units “pps”
int ID = 0; // board index
int i;
uplc_init(); // assume PK2200 or PK2100
Reset_PBus(); // reset PLCBus with delay
Reset_PBus_Wait();

// Search PLCBus. Build table

if(sm_find_boards() == 0){
printf(“No XP8800s.”); exit(0);

}

// Use first board. Set up operation

sm_board_reset(ID);
sm_drvoe(ID, 1); // motor driver on
sm_led (ID, 1); // LED on
smc_setmove(ID,0L,FL,FH,ADR,0,MUL);

// registers

XP8800 Software Reference s 89

// find origin

smc_seek_origin(ID, CCW, 1); // high speed
wait_origin(ID);
smc_softreset(ID);

// back & forth

for(i=0; i<3; i++){

// move till EL+ slowing down upon SD+
// 0x42 = 01xx 0010.
// Op-mode: pos. dir. not preset. SD yes. ORG no.

smc_cmd(ID, 0x42);
// 0x15 = 00x 10 101.
// Start. High-speed. FH register

smc_cmd(ID, 0x15);
wait_EL(ID, CW); // wait for EL signal
smc_softreset(ID);

// move till EL- slowing down upon SD-
// 0x4A = 01xx 1010.
// Op-mode: neg. dir. not preset. SD yes. ORG no.

smc_cmd(ID, 0x4A);
// 0x15 = 00x 10 101.
// Start. High-speed. FH register

smc_cmd(ID, 0x15);
wait_EL(ID, CCW); // wait for EL signal
smc_softreset(ID);

}
sm_board_reset(ID); // cleanup

}/*end*/

XP880090 s Software Reference

Blank

APPENDICES

This page is intentionally blank.

Blank

XP8700/XP8800 PLCBus s 93

APPENDIX A: PLCBUS

Appendix A provides the pin assignments for the PLCBus, describes the
registers, and lists the software drivers.

XP8700/XP880094 s PLCBus

PLCBus Overview
The PLCBus is a general-purpose expansion bus for Z-World controllers.
The PLCBus is available on the BL1200, BL1600, BL1700, PK2100, and
PK2200 controllers. The BL1000, BL1100, BL1300, BL1400, and
BL1500 controllers support the XP8300, XP8400, XP8600, and XP8900
expansion boards using the controller�s parallel input/output port. The
BL1400 and BL1500 also support the XP8200 and XP8500 expansion
boards. The ZB4100�s PLCBus supports most expansion boards, except
for the XP8700 and the XP8800. The SE1100 adds expansion capability
to boards with or without a PLCBus interface.

Table A-1 lists Z-World�s expansion devices that are supported on the
PLCBus.

Multiple expansion boards may
be linked together and con-
nected to a Z-World controller
to form an extended system.

Figure A-1 shows the pin layout

for the PLCBus connector.

Table A-1. Z-World PLCBus Expansion Devices

Device Description

Exp-A/D12 Eight channels of 12-bit A/D converters

SE1100 Four SPDT relays for use with all Z-World controllers

XP8100 Series 32 digital inputs/outputs

XP8200 “Universal Input/Output Board”
—16 universal inputs, 6 high-current digital outputs

XP8300 Two high-power SPDT and four high-power SPST relays

XP8400 Eight low-power SPST DIP relays

XP8500 11 channels of 12-bit A/D converters

XP8600 Two channels of 12-bit D/A converters

XP8700 One full-duplex asynchronous RS-232 port

XP8800 One-axis stepper motor control

XP8900 Eight channels of 12-bit D/A converters

2
4

1
3

6 5
8 7

10 9
12 11
14 13
16 15
18 17
20 19
22 21
24 23
26 25

GND
D7X
D5X
D3X
D1X

LCDX
A0X

GND

GND
 attention /AT
strobe /STBXGND
A3XGND
A2XGND
A1X

/RDX
VCC (+5 V)

D0X
/WRX

D4X
D2X

D6X

+24 V
(+5 V) VCC

Figure A-1. PLCBus Pin Diagram

XP8700/XP8800 PLCBus s 95

The PLCBus consists of the following lines.

� /STBX�negative-going strobe.

� A1X�A3X�three control lines for selecting bus operation.

� D0X�D3X�four bidirectional data lines used for 4-bit operations.

� D4X�D7X�four additional data lines for 8-bit operations.

� /AT�attention line (open drain) that may be pulled low by any device,
causing an interrupt.

The PLCBus may be used as a 4-bit bus (D0X�D3X) or as an 8-bit bus
(D0X�D7X). Whether it is used as a 4-bit bus or an 8-bit bus depends on
the encoding of the address placed on the bus. Some PLCBus expansion
cards require 4-bit addressing and others (such as the XP8700) require
8-bit addressing. These devices may be mixed on a single bus.

Two independent buses, the LCD bus and the PLCBus, exist on the single
connector.

The LCD bus consists of the following lines.

� LCDX�positive-going strobe.
� /RDX�negative-going strobe for read.
� /WRX�negative-going strobe for write.
� A0X�address line for LCD register selection.
� D0X-D7X�bidirectional data lines (shared with expansion bus).

The LCD bus is used to connect Z-World�s OP6000 series interfaces or to
drive certain small liquid crystal displays directly. Figure A-2 illustrates
the connection of an OP6000 interface to a PLCBus header.

Yellow wire
on top

PLCBus Header
Note position of connector

relative to pin 1.

From OP6000
KLB Interface Card
Header J2

Pin 1

Figure A-2. OP6000 Connection to PLCBus Header

XP8700/XP880096 s PLCBus

There are eight registers corresponding to the modes determined by bus
lines A1X, A2X, and A3X. The registers are listed in Table A-2.

Table A-2. PLCBus Registers

Register Address A3 A2 A1 Meaning

BUSRD0 C0 0 0 0 Read data, one way

BUSRD1 C2 0 0 1
Read data, another
way

BUSRD2 C4 0 1 0 Spare, or read data

BUSRESET C6 0 1 1
Read this register to
reset the PLCBus

BUSADR0 C8 1 0 0
First address nibble
or byte

BUSADR1 CA 1 0 1
Second address
nibble or byte

BUSADR2 CC 1 1 0
Third address
nibble or byte

BUSWR CE 1 1 1 Write data

Writing or reading one of these registers takes care of all the bus details.
Functions are available in Z-World�s software libraries to read from or
write to expansion bus devices.

To communicate with a device on the expansion bus, first select a register
associated with the device. Then read or write from/to the register. The
register is selected by placing its address on the bus. Each device recog-
nizes its own address and latches itself internally.

A typical device has three internal latches corresponding to the three
address bytes. The first is latched when a matching BUSADR0 is de-
tected. The second is latched when the first is latched and a matching
BUSADR1 is detected. The third is latched if the first two are latched and
a matching BUSADR2 is detected. If 4-bit addressing is used, then there
are three 4-bit address nibbles, giving 12-bit addresses. In addition, a
special register address is reserved for address expansion. This address, if
ever used, would provide an additional four bits of addressing when using
the 4-bit convention.

If eight data lines are used, then the addressing possibilities of the bus
become much greater�more than 256 million addresses according to the
conventions established for the bus.

XP8700/XP8800 PLCBus s 97

Place an address on the bus by writing (bytes) to BUSADR0, BUSADR1
and BUSADR2 in succession. Since 4-bit and 8-bit addressing modes
must coexist, the lower four bits of the first address byte (written to
BUSADR0) identify addressing categories, and distinguish 4-bit and 8-bit
modes from each other.

There are 16 address categories, as listed in Table A-3. An �x� indicates
that the address bit may be a �1� or a �0.�

This scheme uses less than the full addressing space. The mode notation
indicates how many bus address cycles must take place and how many bits
are placed on the bus during each cycle. For example, the 5 × 3 mode
means three bus cycles with five address bits each time to yield 15-bit
addresses, not 24-bit addresses, since the bus uses only the lower five bits
of the three address bytes.

Table A-3. First-Level PLCBus Address Coding

First Byte Mode Addresses Full Address Encoding

– – – – 0 0 0 0
– – – – 0 0 0 1
– – – – 0 0 1 0
– – – – 0 0 1 1

4 bits × 3 256
256
256
256

0000 xxxx xxxx
0001 xxxx xxxx
0010 xxxx xxxx
0011 xxxx xxxx

– – – x 0 1 0 0
– – – x 0 1 0 1
– – – x 0 1 1 0
– – – x 0 1 1 1

5 bits × 3 2,048
2,048
2,048
2,048

x0100 xxxxx xxxxx
x0101 xxxxx xxxxx
x0110 xxxxx xxxxx
x0111 xxxxx xxxxx

– – x x 1 0 0 0
– – x x 1 0 0 1

6 bits × 3 16,384
16,384

xx1000 xxxxxx xxxxxx
xx1001 xxxxxx xxxxxx

– – x x 1 0 1 0 6 bits × 1 4 xx1010

– – – – 1 0 1 1 4 bits × 1 1 1011 (expansion register)

x x x x 1 1 0 0 8 bits × 2 4,096 xxxx1100 xxxxxxxx

x x x x 1 1 0 1 8 bits × 3 1M xxxx1101 xxxxxxxx xxxxxxxx

x x x x 1 1 1 0 8 bits × 1 16 xxxx1110

x x x x 1 1 1 1 8 bits × 1 16 xxxx1111

XP8700/XP880098 s PLCBus

Z-World provides software drivers that access the PLCBus. To allow
access to bus devices in a multiprocessing environment, the expansion
register and the address registers are shadowed with memory locations
known as shadow registers. The 4-byte shadow registers, which are saved
at predefined memory addresses, are as follows.

SHBUS1 SHBUS1+1
SHBUS0 SHBUS0+1 SHBUS0+2 SHBUS0+3

Bus expansion BUSADR0 BUSADR1 BUSADR2

Before the new addresses or expansion register values are output to the
bus, their values are stored in the shadow registers. All interrupts that use
the bus save the four shadow registers on the stack. Then, when exiting the
interrupt routine, they restore the shadow registers and output the three
address registers and the expansion registers to the bus. This allows an
interrupt routine to access the bus without disturbing the activity of a
background routine that also accesses the bus.

To work reliably, bus devices must be designed according to the following
rules.

1. The device must not rely on critical timing such as a minimum delay
between two successive register accesses.

2. The device must be capable of being selected and deselected without
adversely affecting the internal operation of the controller.

Allocation of Devices on the Bus

4-Bit Devices
Table A-4 provides the address allocations for the registers of 4-bit
devices.

Table A-4. Allocation of Registers

A1 A2 A3 Meaning

000j 000j xxxj
digital output registers, 64 registers
64 × 8 = 512 1-bit registers

000j 001j xxxj analog output modules, 64 registers

000j 01xj xxxj
digital input registers, 128 registers
128 × 4 = 512 input bits

000j 10xj xxxj analog input modules, 128 registers

000j 11xj xxxj 128 spare registers (customer)

001j xxxj xxxj 512 spare registers (Z-World)

j controlled by board jumper
x controlled by PAL

XP8700/XP8800 PLCBus s 99

Digital output devices, such as relay drivers, should be addressed with
three 4-bit addresses followed by a 4-bit data write to the control register.
The control registers are configured as follows

bit 3 bit 2 bit 1 bit 0
A2 A1 A0 D

The three address lines determine which output bit is to be written. The
output is set as either 1 or 0, according to D. If the device exists on the
bus, reading the register drives bit 0 low. Otherwise bit 0 is a 1.

For digital input, each register (BUSRD0) returns four bits. The read
register, BUSRD1, drives bit 0 low if the device exists on the bus.

8-Bit Devices
Z-World�s XP8700 and XP8800 expansion boards use 8-bit addressing.

Expansion Bus Software
The expansion bus provides a convenient way to interface Z-World�s
controllers with expansion boards or other specially designed boards. The
expansion bus may be accessed by using input functions. Follow the
suggested protocol. The software drivers are easier to use, but are less
efficient in some cases. Table A-5 lists the libraries.

Table A-5. Dynamic C PLCBus Libraries

Library Controller

DRIVERS.LIB All controllers

EZIOTGPL.LIB BL1000

EZIOLGPL.LIB BL1100

EZIOMGPL.LIB BL1400, BL1500

EZIOPLC.LIB BL1200, BL1600, PK2100, PK2200, ZB4100

EZIOPLC2.LIB BL1700

EZIOBL17.LIB BL1700

PBUS_TG.LIB BL1000

PBUS_LG.LIB BL1100, BL1300

PLC_EXP.LIB BL1200, BL1600, PK2100, PK2200

XP8700/XP8800100 s PLCBus

There are 4-bit and 8-bit drivers. The 4-bit drivers employ the following
calls.

� void eioResetPlcBus()

Resets all expansion boards on the PLCBus. When using this call,
make sure there is sufficient delay between this call and the first
access to an expansion board.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� void eioPlcAdr12(unsigned addr)

Specifies the address to be written to the PLCBus using cycles
BUSADR0, BUSADR1, and BUSADR2.

PARAMETER: addr is broken into three nibbles, and one nibble is
written in each BUSADRx cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� void set16adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 16-bit physical address. The high-order
nibble contains the value for the expansion register, and the remaining
three 4-bit nibbles form a 12-bit address (the first and last nibbles
must be swapped).

LIBRARY: DRIVERS.LIB.

� void set12adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

PARAMETER: adr is a 12-bit physical address (three 4-bit nibbles)
with the first and third nibbles swapped.

LIBRARY: DRIVERS.LIB.

� void eioPlcAdr4(unsigned addr)

Specifies the address to be written to the PLCBus using only cycle
BUSADR2.

PARAMETER: addr is the nibble corresponding to BUSADR2.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

XP8700/XP8800 PLCBus s 101

� void set4adr(int adr)

Sets the current address for the PLCBus. All read and write operations
access this address until a new address is set.

A 12-bit address may be passed to this function, but only the last four
bits will be set. Call this function only if the first eight bits of the
address are the same as the address in the previous call to set12adr.

PARAMETER: adr contains the last four bits (bits 8�11) of the
physical address.

LIBRARY: DRIVERS.LIB.

� char _eioReadD0()

Reads the data on the PLCBus in the BUSADR0 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR0
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� char _eioReadD1()

Reads the data on the PLCBus in the BUSADR1 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR1
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� char _eioReadD2()

Reads the data on the PLCBus in the BUSADR2 cycle.

RETURN VALUE: the byte read on the PLCBus in the BUSADR2
cycle.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� char read12data(int adr)

Sets the current PLCBus address using the 12-bit adr, then reads four
bits of data from the PLCBus with BUSADR0 cycle.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.

XP8700/XP8800102 s PLCBus

� char read4data(int adr)

Sets the last four bits of the current PLCBus address using adr bits 8�
11, then reads four bits of data from the bus with BUSADR0 cycle.

PARAMETER: adr bits 8�11 specifies the address to read.

RETURN VALUE: PLCBus data in the lower four bits; the upper bits
are undefined.

LIBRARY: DRIVERS.LIB.

� void _eioWriteWR(char ch)

Writes information to the PLCBus during the BUSWR cycle.

PARAMETER: ch is the character to be written to the PLCBus.

LIBRARY: EZIOPLC.LIB, EZIOPLC2.LIB, EZIOMGPL.LIB.

� void write12data(int adr, char dat)

Sets the current PLCBus address, then writes four bits of data to the
PLCBus.

PARAMETER: adr is the 12-bit address to which the PLCBus is set.

dat (bits 0�3) specifies the data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

� void write4data(int address, char data)

Sets the last four bits of the current PLCBus address, then writes four
bits of data to the PLCBus.

PARAMETER: adr contains the last four bits of the physical address
(bits 8�11).

dat (bits 0�3) specifies the data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

The 8-bit drivers employ the following calls.

� void set24adr(long address)

Sets a 24-bit address (three 8-bit nibbles) on the PLCBus. All read
and write operations will access this address until a new address is set.

PARAMETER: address is a 24-bit physical address (for 8-bit bus)
with the first and third bytes swapped (low byte most significant).

LIBRARY: DRIVERS.LIB.

XP8700/XP8800 PLCBus s 103

� void set8adr(long address)

Sets the current address on the PLCBus. All read and write operations
will access this address until a new address is set.

PARAMETER: address contains the last eight bits of the physical
address in bits 16�23. A 24-bit address may be passed to this func-
tion, but only the last eight bits will be set. Call this function only if
the first 16 bits of the address are the same as the address in the
previous call to set24adr.

LIBRARY: DRIVERS.LIB.

� int read24data0(long address)

Sets the current PLCBus address using the 24-bit address, then reads
eight bits of data from the PLCBus with a BUSRD0 cycle.

RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).

LIBRARY: DRIVERS.LIB.

� int read8data0(long address)

Sets the last eight bits of the current PLCBus address using address
bits 16�23, then reads eight bits of data from the PLCBus with a
BUSRD0 cycle.

PARAMETER: address bits 16�23 are read.

RETURN VALUE: PLCBus data in lower eight bits (upper bits 0).

LIBRARY: DRIVERS.LIB.

� void write24data(long address, char data)

Sets the current PLCBus address using the 24-bit address, then writes
eight bits of data to the PLCBus.

PARAMETERS: address is 24-bit address to write to.

data is data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

� void write8data(long address, char data)

Sets the last eight bits of the current PLCBus address using address
bits 16�23, then writes eight bits of data to the PLCBus.

PARAMETERS: address bits 16�23 are the address of the PLCBus
to write.

data is data to write to the PLCBus.

LIBRARY: DRIVERS.LIB.

XP8700/XP8800104 s PLCBus

Blank

XP8700/XP8800 Specifications s 105

APPENDIX B: SPECIFICATIONS

XP8700/XP8800106 s Specifications

XP8700 Hardware Specifications
Table B-1 summarizes the specifications for the XP8700 expansion board.

Table B-1. XP8700 Specifications

Parameter Specification

Board Size
2.835" × 2.2" × 0.58"
(72 mm × 56 mm × 15 mm)

Operating Temperature Range -40°C to +70°C

Humidity 5% to 95%, noncondensing

Power (quiescent, no output) 80 mA @ 5 V DC

I/O
One full-duplex asynchronous RS-232
port, baud rate up to 57,600 bps

Figure B-1 shows the dimensions of the XP8700 expansion board.

Figure B-1. XP8700 Board Dimensions

0.125 typ
(3.2)

2.2
(56)

0.187 dia, 4x
(4.7)

~
0.

45
(1

2)

~
0.

58
(1

5)

2.
83

5
(7

2)

0.
12

5
ty

p
(3

.2
)

XP8700/XP8800 Specifications s 107

Table B-2. XP8800 Series Specifications

Parameter Specification

Board Size
2.835" × 4.0" × 0.58"
(72 mm × 102 mm × 15 mm)

Operating Temperature Range -40°C to +70°C

Humidity 5% to 95%, noncondensing

Power (quiescent, no output) 40 mA @ 5 V DC

Output One-axis stepper motor control rated at 35 V

• 1.25 A per phase in full-step mode

• 1.0 A per phase in half-step mode

XP8800 Hardware Specifications
Table B-2 summarizes the specifications for the XP8800 expansion board.

Figure B-2. XP8800 Board Dimensions

0.187 dia, 4x
(4.7)

2.
83

5
(7

2)

4.0
(102)

~
0.

45
(1

2)

~
0.

58
(1

5)

0.1625
(4.1)

0.
14

25
(3

.6
)

Figure B-2 shows the dimensions of the XP8800 Series expansion boards.

XP8700/XP8800108 s Specifications

Blank

XP8700/XP880 Connecting and Mounting Multiple Boards s 109

APPENDIX C: CONNECTING AND

MOUNTING MULTIPLE BOARDS

XP8700/XP8800110 s Connecting and Mounting Multiple Boards

Connecting Multiple Boards
Eight or more expansion boards can be connected (�daisy chained�) at one
time. The actual number of expansion boards may be limited by capacita-
tive loading on the PLCBus.

Be sure that each expansion board has a unique address to prevent commu-
nication problems between the controller and the expansion board.

Follow these steps to install several expansion boards on a single PLCBus.

1. Place all expansion boards right side up.

2. Use the ribbon cable supplied with the boards.

3. Connect one board to the main controller.

4. Connect another expansion board to the first expansion board,
connecting each board�s header P1 to the adjacent board�s header P2.

Figure C-1 illustrates a controller with expansion boards attached.

When several expansion boards are connected, there may be a voltage
drop along the network of expansion boards. No action is necessary as
long as the digital voltage, VCC, is greater than 4.9 V on the last board.

Do not twist the ribbon cable or mount the expansion
boards upside down! Damage may occur. Be sure Pin 1 of
P1 and P2 of each board matches up with Pin 1 of the
previous board. Pin 1 should be at the lower right when the
expansion board is right side up, that is, the board markings
are right side up.

VCC can be measured at pin 2 on header P1, and GND is
pin 1 on header P1.!

P1

EPROM

RAM

PIO

Z180

XP8700 XP8400 Controller

R
el

ay
 0

R
el

ay
 2

R
el

ay
 4

R
el

ay
 5

R
el

ay
 7

R
el

ay
 1

R
el

ay
 3

R
el

ay
 6

P2 P1 P2

Figure C-1. Connecting Multiple Expansion Boards

XP8700/XP880 Connecting and Mounting Multiple Boards s 111

There are two ways to compensate for the voltage dropoff. The easiest
way is to connect +5 V DC and ground from the host controller to pins 2
and 1 of header P1 on the last expansion board. Another solution, which
can approximately double the number of boards that could otherwise be
connected to a single controller, is a Y cable available from Z-World.
Figure C-2 illustrates the use of the Y cable.

H
2

C11

J3

P1

E
P

R
O

M

R
A

M

PIO

Z180

Controller

Relay 0

Relay 2

Relay 4

Relay 5

Relay 7

Relay 1

Relay 3

Relay 6
H

2

C11

J3

P1

Relay 0

Relay 2

Relay 4

Relay 5

Relay 7

Relay 1

Relay 3

Relay 6

P2P2

P1

P2

P1

P2

Figure C-2. Use of Y Cable to Connect Multiple Expansion Boards

For more information, call your Z-World Technical
Support Representative at (530) 757-3737.(

XP8700/XP8800112 s Connecting and Mounting Multiple Boards

Bus Connectors
Controller

Modular PC
Board Holders

DIN Rail

Expansion Boards

Figure C-2. Mounting Expansion Boards on DIN Rail

Mounting Expansion Boards
The XP8700 and XP8800 expansion boards can be installed in modular
plastic circuit-board holders attached to a DIN rail, a widely used mount-
ing system, as shown in Figure C-3.

The circuit-board holders are 77 mm wide and come in lengths of
11.25 mm, 22.5 mm, and 45 mm. The holders, available from Z-World,
snap together to form a tray of almost any length. Z-World�s expansion
boards are 72 mm wide and fit directly in these circuit-board holders.

Z-World�s expansion boards can also be mounted with plastic standoffs to
any flat surface that accepts screws. The mounting holes are 0.125 inches
(1/8 inch) in from the edge of a board, and have a diameter of 0.190 inches.

For information on ordering DIN rail mounts, call your
Z-World Sales Representative at (530) 757-3737.(

XP8700/XP8800 Index s 113

INDEX

Symbols

#INT_VEC 31
#use 35, 76
/AT 30, 95
/DRVOE 56
/EL+ 57, 59
/EL- 57, 59
/ORG 57, 59
/PFO ... 57
/PULSE 57
/RDX .. 95
/SD+ 57, 59
/SD- 57, 59
/STBX .. 95
/WDO ... 57
/WRX .. 95
4-bit bus operations 95, 96, 98
5 × 3 addressing mode 97
8-bit bus operations 95, 97, 99

A

A0X .. 95
A1X, A2X, A3X 95, 96
acceleration

XP8800 65
ACR 24, 25
addresses

encoding................................. 97
logical

XP8700 34
XP8800 75

modes 97
physical

XP8700 34
XP8800 74

PLCBus 18, 54, 96, 97
XP8700 18, 34
XP8800 54, 74

AIN 57, 59

attention line 95
auxiliary control register 24, 25

B

background routine 98
baud rates

XP8700 21
bidirectional data lines 95
BIN 57, 59
block diagram

XP8800 62
board layout

XP8700 16
XP8800 52

bus
control registers 99
expansion 94,

................ 95, 96, 97, 98, 99
4-bit drivers 100
8-bit drivers 102
addresses 98
devices 98, 99
functions .. 100, 101, 102, 103
rules for devices 98
software drivers 99

LCD 95
operations

4-bit 95, 96, 98
8-bit 95, 99

BUSADR0 74, 96, 97
BUSADR1 74, 96, 97
BUSADR2 96, 97
BUSADR3 102, 103
BUSRD0 31,

......... 37, 99, 100, 101, 103
BUSRD1 37, 99, 100
BUSRESET 37
BUSWR 100

XP8700/XP8800114 s Index

C

cabling
special 17, 53

channel status register 37
circular buffer 36
clock select register 24
COM port 29
connectors

26-pin
pin assignments 94

control register 99
XP8700 14, 21, 34
XP8800 60, 70, 74, 77, 78

counter
XP8800 66

counter/timer registers 25
CR 23, 27, 38
CSR ... 24
CTL .. 25
CTLR ... 25
CTS/RTS

XP8700 39
CTU .. 25
CTUR ... 25
CUARTREM.C 45

D

D0X�D7X 95
daisy chaining 18, 54, 110
data register

XP8700 28, 29, 34
Ddelay_1sec 42
Ddelay_5sec 42
deceleration

XP8800 65
delay

XP8700 31
Dget_modem_command 41
digital inputs 99
dimensions

XP8600 106
XP8900 107

DIN rails 112

Dinit_uart 29, 38, 40
DIP relays 94
display

liquid crystal 95
Dkill_uart 40
downloading

XP8700 36, 40
Dread_uart 39
Dread_uart1ch 40
Dreset_uartrbuf 40
Dreset_uarttbuf 40
Drestart_uartmodem 42
drivers

expansion bus 99
4-bit 100
8-bit 102

relay 99
DRIVERS.LIB 35, 36, 76, 99
Duart_circ_int 38, 42
Duartmodem_chk 42
Duartsend_prompt 40
dumb terminal 29, 40, 42, 44
Dwrite_uart 40
Dwrite_uart1ch 40
Dxmodem_uartdown 40
Dxmodem_uartup 41

E

eioPlcAdr12 100
eioReadD0 101
eioReadD1 101
eioReadD2 101
eioResetPlcBus 100
eioWriteWR 102
Exp-A/D12................................. 94
expansion boards

connection to PLCBus 17, 53
reset 100

expansion bus 94,
............... 95, 96, 97, 98, 99

4-bit drivers 100
8-bit drivers 102
addresses 98
devices 98, 99

XP8700/XP8800 Index s 115

expansion bus
functions ... 100, 101, 102, 103
rules for devices 98
software drivers 99

expansion register 98
EZIOBL17.LIB 99
EZIOLGPL.LIB 99
EZIOMGPL.LIB 99
EZIOPL2.LIB 99
EZIOPLC.LIB 99
EZIOTGPL.LIB 99

F

FFULL 23, 25
FIFO ... 25
FIFO full 23, 25
fin ... 78
find_uart 37
framing errors 21
function libraries 96

H

half-step mode
XP8800 57

hardware reset
XP8800 60, 61, 63

Hayes compatible modem ... 29, 41
HSTEP 56

I

IMR .. 25
inport 100, 101, 103
inputs

digital 99
installation

expansion boards
...................17, 53, 110, 111

INT1
framework 30
XP8700 14, 30, 31

interrupt mask register 25
interrupt service request

XP8800 78

interrupt service routine 31, 42
interrupt status register 25
interrupts 95, 98

routines 98
XP8700 14, 30
XP8800 71, 77, 78

ismodem..................................... 29
ISR ... 25

J

jumper settings
XP8700 board address 34

K

K .. 58

L

LCD ... 95
bus .. 95
LCDX 95

LEDs
XP8800 74

libraries
function 96

liquid crystal display. See LCD
logical addresses

XP8700 34
XP8800 75, 77

M

memory-mapped I/O register 96
mirq .. 78
mode

addressing 97
mode register 2 27
modem 29

commands 42
communication 36, 41, 42

motor driver IC 50, 62, 67
modes 67

mounting expansion baords 112
DIN rails 112
end caps 112

XP8700/XP8800116 s Index

MR1 22, 23, 25
MR2 22, 27
multiplier register

XP8800 65

N

null byte 39
null modem 29

O

outport 100, 101, 103
overrun errors 21
overview

XP8700 14
XP8800 50

P

P1 ... 110
P2 ... 110
parity errors 21
PBUS_LG.LIB 35, 76
PBUS_TG.LIB 35, 76
PCL-AK pulse generator chip

.................................... 62, 63
commands 64
control registers 63
modes 63
modes of operation 63
speed registers 65
status 66

PDIR 56, 67
PFI ... 56
PHA 57, 67
PHB 57, 67
PHC 57, 67
PHD 57, 67
phy_adr 41
physical addresses

XP8700 34
XP8800 74

pin layout
XP8700 20
XP8800 56

PLC_EXP.LIB 35, 74
PLCBus ... 74, 94, 95, 96, 98, 99

26-pin connector
pin assignments 94

4-bit operations 95, 97
8-bit operations 95, 97
addresses 96, 97
installing boards 17, 53, 110
interrupt service request 77
reading data 96
reset .. 60
ribbon cables 110
special cabling 17, 53
writing data 96
Y cable111

plcbus_isr 31, 38, 42
power consumption 18, 54
power failure

XP8800 56, 57
power-up

XP8800 60
PROCOM 42, 43
prompt .. 40
pulse generator chip 62, 74

reset .. 61

Q

quadrature decoder 50,
...................... 60, 62, 69, 74

reference clock 70
reset 60, 61

quadrature inputs 57, 59

R

ramp-down point
XP8800 66

read12data 101
read24data 103
read24data0 34, 37
read24data1 37
read4data 102
read8data 103
read8data0 37

XP8700/XP8800 Index s 117

read8data1 37
reading data on the PLCBus

.................................. 96, 101
receive buffer 39
receiver holding register 25
receiver ready 23, 25
reference clock

quadrature decoder 70
relays

DIP ... 94
drivers 99

relocate_int1 31, 77
reset

expansion boards 100
XP8700 40
XP8800 60

RHR ... 25
ribbon cables 110
ROM code 31
RS-232 command register 23,

.................................... 27, 38
RS-232 communication 29,

............... 34, 40, 41, 42, 44
baud rates 24
CTS/RTS control 39
downloading 40
uploading 41

RTS .. 39
Rx .. 29
RxRDY 23, 25, 30

S

sample programs
XP8700 42
XP8800 87

SCC2691.................................... 21
screw terminal block

XP8800 56
SE1100....................................... 94
select PLCBus address 100
sense inputs 59
set12adr 100
set16adr 100
set24adr 34, 36, 102

set4adr 101
set81adr 74, 81
set82adr 74, 81
set8adr 36, 103
shadow registers 98
shadow variables

XP8800 77, 78
single-phase mode

XP8800 57
slow down

XP8800 66
sm_addr 78
sm_bdaddr 81
sm_board_reset 81
sm_ctlreg 82
SM_DEMO1.C 77
SM_DEMO2.C 77
SM_DEMO3.C 77
sm_drvoe 82
sm_find_boards ... 60, 75, 77, 82
sm_flag 78
sm_hitwd 60, 82
sm_int 77, 78, 83
sm_led 83
sm_poll 83
sm_sel00 83
sm_sel01 83
sm_sel10 84
sm_sel11 84
sm_shadow 78
sm_stat 78
smc_cmd 84
smc_hardreset 61, 84
smc_manual_move 84
smc_seek_origin 84
smc_setmove 85
smc_setspeed 85, 86
smc_softreset 61, 85
smc_stat0 85
smc_stat3 86
smcq_moveto 86
smq_hardreset 61, 87
smq_read16 87
smq_read8 87

XP8700/XP8800118 s Index

software
functions 35, 76
libraries 35, 76, 96
XP8700 .. 29, 36, 37, 38, 40, 41
XP8800 77, 79, 81

software reset
XP8800 63, 78

specifications
XP8600 106
XP8900 107

SR .. 37
status bits

PCL-AK 66
STEP.LIB 75
stepper motor controller 50
suspend 31, 42

T

TERMINAL 42, 43
terminating character 39
THR .. 25
time delay 42
transmitter holding register 25
two-phase mode

XP8800 57
Tx ... 29
TxEMT 30

U

UART 40, 41, 42
internal register 27
reading 26, 37, 39, 40
writing 26, 38, 39, 40

UART.LIB 27
uart_addr 37
UART_CR 38
uart_reg_rd 37
uart_reg_wr 38
uart_reset 27, 37
UART_SR 37
UART232.LIB 38
UARTADDR

definition 38

uartbinaryreset 38
uartbinaryset 38
uartmodemset 38
uartmodemstat 38
UARTREM.C 45
UCN5804

typical specifications 69
uploading

XP8700 36, 41
USE_STEPPER 77, 78
using XP8700 and XP8800 boards

.................................... 20, 60

W

watchdog timer
XP8800 60, 61

WAVE .. 57
write12data 102
write24data 34, 36, 103
write4data 102
write8data 36, 103
writing data on the PLCBus

.................................. 96, 102

X

xdata .. 41
XMODEM protocol 40, 41
XP8200 94
XP8300 94
XP8400 94
XP8600 94
XP8700 14, 54, 94, 95

addresses 34, 38
baud rates 21
connections 20
control register 14, 21, 34
data register . 14, 21, 28, 29, 34
H1

pin layout 20
H2

pin layout 20
headers

H1 20
H2 20

XP8700/XP8800 Index s 119

XP8700
input power 18
initialization 39
interrupts 30, 42
INT1 30, 31
jumper settings

J1 34
logical addresses 34
multiple boards 38
reading 39, 40
reset .. 40
sample projgram 42
software 29,

............... 36, 37, 38, 40, 41
writing 40

XP8800 50
+24 V 57, 58
+5 V 57, 58
/DRVOE 56
/EL .. 57
/EL+ 57
/ORG 57
/PFO 57
/PULSE 62, 66, 67
/RESET 63
/SD ... 57
/SD+ 57
addresses 74, 75
ADR 65
AIN ... 57
aternate uses 62
BIN ... 57
block diagram 62
board layout 52
control register 60, 70, 74

XP8800
end limits 62
features 50
FL ... 65
GND 56, 58
hardware reset 61
headers

H4 74
H5 56
H6 57

HSTEP 56, 57
input power 54
interrupts 71, 78
jumper settings

J1 61
K .. 58
LEDs 74
MUL 65
optically isolated inputs 59
origin 62
PDIR 56, 62
PFI ... 56
RD .. 66
reset .. 60
sample connections 58
SEL0 71
SEL1 71
slow down 62
software 77, 79, 81
watchdog 57
WAVE 56, 57

XP8900 94

Y

Y cables111

XP8700/XP8800120 s Index

Blank

Part No. 019-0056
Revision C

Printed in U.S.A.

Z-World, Inc.
2900 Spafford Street

Davis, California 95616-6800 USA

Telephone:
Facsimile:
Web Site:

E-Mail:

(530) 757-3737
(530) 753-5141
http://www.z w orld.com
zworld@zworld.com

