
RabbitCore 2000
C-Programmable Core Module

Getting Started
001004 - C

RabbitCore 2000 Getting Started

Part Number 019-0080 • 001004 - C • Printed in U.S.A.

Copyright

© 2000 Z-World, Inc. • All rights reserved.

Z-World, Inc. reserves the right to make changes and improvements to its products with-
out providing notice.

Trademarks

• Dynamic C® is a registered trademark of Z-World, Inc.

• Windows® is a registered trademark of Microsoft Corporation

Notice to Users

When a system failure may cause serious consequences, protecting life and property
against such consequences with a backup system or safety device is essential. The buyer
agrees that protection against consequences resulting from system failure is the buyer’s
responsibility.

This device is not approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional testing may include
visual quality control inspections or mechanical defects analyzer inspections. Specifica-
tions are based on characterization of tested sample units rather than testing over tempera-
ture and voltage of each unit. Rabbit Semiconductor may qualify components to operate
within a range of parameters that is different from the manufacturer’s recommended
range. This strategy is believed to be more economical and effective. Additional testing
or burn-in of an individual unit is available by special arrangement.

Company Address

Z-World, Inc.
2900 Spafford Street
Davis, California 95616-6800
USA
Telephone: (530) 757-3737
Facsimile: (530) 753-5141
Web site: http://www.zworld.com
E-mail: zworld@zworld.com

Rabbit Semiconductor
2932 Spafford Street
Davis, California 95616-6800
USA
Telephone: (530) 757-8400
Facsimile: (530) 757-8402
Web site: http://www.rabbitsemiconductor.com
E-mail: sales@rabbitsemiconductor.com
RabbitCore 2000

Table of Contents

About This Manual

1. Installing Dynamic C ..1
1.1 Requirements...2

1.2 Installation...2

1.3 Desktop Icons..6

2. Introduction to Dynamic C ...7
2.1 The Nature of Dynamic C ...8

2.1.1 Speed..8

2.2 Dynamic C Libraries ...9

2.3 Using Dynamic C ..10

2.4 Upgrading Dynamic C ..11
2.4.1 Workarounds ..11
2.4.2 Upgrades ..12

3. Hardware Connections..13
3.1 Connections...14

3.2 Starting Dynamic C ...16

3.3 Run a Sample Program..16

 Installing Dynamic C ...16

3.4 Where Do I Go From Here?..17

4. Sample Programs ..19
4.1 Running Sample Program FLASHLED.C ..21

4.2 Single-Stepping ...22
4.2.1 Watch Expression...22
4.2.2 Break Point ..22
4.2.3 Editing the Program ...23
4.2.4 Watching Variables Dynamically...23
4.2.5 Summary of Features ...23

4.3 Cooperative Multitasking..24

4.4 Advantages of Cooperative Multitasking..26

Schematics
Getting Started

RabbitCore 2000

About This Manual

Z-World customers develop software for their programmable controllers using Z-World’s
Dynamic C development system running on an IBM-compatible PC. Dynamic C provides
an interactive compiler, editor, and source-level debugger. The controller is connected to
a COM port on the PC (COM1 by default) whose default operation is at 115,200 bps.

This manual introduces the Dynamic C development system to write software for a Rab-
bitCore 2000 based on the Rabbit microprocessor. The Rabbit 2000 microprocessor is a
new high-performance 8-bit microprocessor developed by Rabbit Semiconductor, a com-
pany affiliated with Z-World. The Rabbit 2000 can handle C language applications of
approximately 1 megabyte (50,000+ C statements).

Conventions

Table 1 lists and defines the typographic conventions that may be encountered in Dynamic C.

Table 1: Typographic Conventions

Example Description

while
Bold Courier font indicates a program, a fragment of a
program, or a Dynamic C keyword or phrase.

// IN-01… Program comments are in normal Courier font.

Italics
Courier italics indicate that something should be typed
instead of the italicized words (e.g., type a file name where
filename is shown).

Edit Bold sans serif font indicates a menu or menu selection.

…
An ellipsis indicates that (1) irrelevant program text is
omitted for brevity, or that (2) the preceding program text
may be repeated indefinitely.

[]
Square brackets in a C function’s definition or program
segment indicate that the enclosed directive is optional.

< > Angle brackets are used to enclose classes of terms.

a | b | c
A vertical bar indicates that a choice should be made from
among the items listed.
Getting Started

Development and Evaluation Tools

Development Kit

The Development Kit has the essentials that you need to design your own a microproces-
sor-based system, and includes a complete software development system (Dynamic C).

The items in the Development Kit and their use are as follows:

• CD-ROM with Dynamic C® SE software, RabbitCore 2000, and Rabbit™ 2000 micro-
processor documentation. You may install this software by inserting the disk into your
CD-ROM drive. If it doesn’t start automatically, click on “setup.exe.” This software
runs under Windows ‘95, Windows ‘98, Windows 2000, and Windows NT. We sug-
gest taking the option to load the documentation to your hard disk. The documentation
is in both HTML and Adobe PDF format, and may be viewed with a browser.

• RabbitCore 2000 (RCM2020). This is a complete controller board that includes a Rab-
bit 2000 processor, 256K of flash memory, 128K of SRAM.

• Prototyping Board. The RabbitCore 2000 can be plugged into this board. The Protoyp-
ing Board includes a 5 V supply for powering the RabbitCore 2000, and various acces-
sories such as pushbutton switches, and LEDs. In addition, you can add your own
circuitry using through-hole or surface mount parts in the prototyping space provided.

• Programming cable. The programming cable is used to connect your PC serial port
directly to the RabbitCore 2000 to write and debug C programs that run on the Rabbit
2000.

• AC adapter. The AC adapter is used to power the Prototyping Board and the Rabbit-
Core 2000. The wall transformer is supplied only for Development Kits sold for the
North American market. The RabbitCore 2000 can also be powered from any DC volt-
age source between 7.5 V and 25 V, but 12 V is recommended. The linear regulator
becomes rather hot for voltages above 15 V.

Documentation

• Our documentation is provided in paperless form on the CD-ROM included in the
Development Kit. (A paper copy of the “Getting Started” page is included.) Most doc-
uments, including this comprehensive RabbitCore 2000 User’s Manual, are provided
in two formats: HTML and PDF. HTML documents can be viewed with an Internet
browser, either Netscape Navigator or Internet Explorer. HTML documents are very
convenient because all the documents are hyperlinked together, and it is easy to navi-
gate from one place to another. PDF documents can be viewed using the Adobe Acro-
bat reader, which is automatically invoked from the browser. The PDF format is best
suited for documents requiring high resolution, such as schematics, or if you want to
print the document. Don’t print a hard copy from the HTML version because the
HTML version has no page numbers and the cross-references and table of contents
links only work if viewed on line. The PDF versions contain page number references
to allow navigation when reading a paper version of the manual. To view the online
documentation with a browser, open the file default.htm in the docs folder.
RabbitCore 2000

1. INSTALLING DYNAMIC C
Getting Started 1

1.1 Requirements

Dynamic C software comes on CD. To install Dynamic C, your system must be running
one of the following.

• Windows 95

• Windows 98

• Windows 2000

• Windows NT

Your PC should have at least one free COM port

1.2 Installation

Insert the CD in the CD-ROM disk drive on your PC. As long as auto-install is enabled,
the CD installation will begin automatically. If not, issue the Windows Start > Run...
command and type the following.

The installation program will then guide you through the installation process described below.
2 RabbitCore 2000

Click the Next > button to continue to the license agreement.

After reading and agreeing to the terms of the license, continue with the Next > button to
select the destination folder where the files will be installed.

Click the Next > button to continue the installation. The Installation Wizard will prompt
you to select a Compact, a Custom, or a Typical installation.

• Compact Installation—Dynamic C files only, no documents

• Custom Installation—your choice of Dynamic C files and documents

• Typical Installation—all Dynamic C files and all documents
Getting Started 3

After choosing the installation, click the Next > button to continue. The files selected for
installation are check-marked. Now select the PC COM port, usually, COM1.

Click the Next > button to continue.
4 RabbitCore 2000

A status indicator shows the progress of the installation.

Before the installation is complete, the installation wizard will ask you what icons to dis-
play on your PC desktop. Separate icons are available for Dynamic C itself and for the
manuals and other documents.

Click the Finish button to end the installation. Notice that there is a check mark option to
start Dynamic C immediately once the installation is complete.
Getting Started 5

1.3 Desktop Icons

Once your installation of Dynamic C and the documentation is complete, you will have
two icons on your PC desktop: one for Dynamic C and one for the documentation.
Double-click the corresponding icon start Dynamic C or to access the documentation.

It is also possible to start Dynamic C or access the documentation by double-clicking the
corresponding launch file on the drive where you installed Dynamic C and the documenta-
tion. The default file locations for a typical installation are shown.

• C:\DCRABBIT_652\DcRab652.exe to start Dynamic C

• C:\DCRABBIT_652\Docs\default to display the documentation screen.
6 RabbitCore 2000

2. INTRODUCTION TO DYNAMIC C

Dynamic C is an integrated development system for writing embedded software. It runs
on an IBM-compatible PC and is designed for use with Z-World controllers and other con-
trollers based on the Rabbit microprocessor.
Getting Started 7

2.1 The Nature of Dynamic C

Dynamic C integrates the following development functions

• Editing

• Compiling

• Linking

• Loading

• Debugging

into one program. In fact, compiling, linking and loading are one function. Dynamic C
has an easy-to-use built-in text editor. Programs can be executed and debugged interac-
tively at the source-code or machine-code level. Pull-down menus and keyboard shortcuts
for most commands make Dynamic C easy to use.

Dynamic C also supports assembly language programming. It is not necessary to leave C
or the development system to write assembly language code. C and assembly language
may be mixed together.

Debugging under Dynamic C includes the ability to use printf commands, watch
expressions, breakpoints and other advanced debugging features. Watch expressions can
be used to compute C expressions involving the target’s program variables or functions.
Watch expressions can be evaluated while stopped at a breakpoint or while the target is
running its program.

Dynamic C provides extensions to the C language (such as shared and protected variables,
costatements and cofunctions) that support real-world embedded system development.
Interrupt service routines may be written in C. Dynamic C supports cooperative and pre-
emptive multi-tasking.

Dynamic C comes with many function libraries, all in source code. These libraries sup-
port real-time programming, machine level I/O, and provide standard string and math
functions.

2.1.1 Speed

Dynamic C compiles directly to memory. Functions and libraries are compiled and linked
and downloaded on-the-fly. On a fast PC, Dynamic C might load 30,000 bytes of code in
5 seconds at a baud rate of 115,200 bps.
8 RabbitCore 2000

2.2 Dynamic C Libraries

With Dynamic C running, click File > Open, and select Lib. The following list of
Dynamic C libraries will be displayed.

Let’s examine the libraries.

• Bioslib—libraries specific to running a BIOS, apply to all controllers. Although the
functions in these libraries are required by the BIOS, they are not exclusive to the
BIOS.

• Cofunc.lib—enables multitasking cofunctions to be defined starting with cofunc.
Cofunctions may be nested within costatements.

• Costate.lib—enables multitasking costatements to be defined starting with costate.
Also contains a library of commonly used costatements.

• Fft.lib—fast Fourier transform functions.

• Math.lib—math functions.

• Program.lib—does program initialization before calling main.

• Rs232.lib—interface designed to provide users with a set of functions that send and
receive data without yielding to other tasks, and a set of single-user cofunctions that
send and receive data but yield to other tasks.

• Rtclock.lib—real-time clock drivers.

• Slice.lib—library functions that allow multitasking.

• Stdio.lib—standard Dynamic C terminal window I/O functions.

• String.lib—string operations.

• Sys.lib—support libraries.
Getting Started 9

• Vdriver.lib—generic virtual drivers.

• Xmem.lib—extended memory support functions.

The Bioslib folder contains libraries required by the BIOS, but not exclusive to the BIOS.

• Biosfsm.lib—support libraries.

• Clone.lib—functions used to “clone” boards by copying BIOS and programs from
one board to another via a special cloning cable.

• Csupport.lib—support libraries.

• Dbugkern.lib—debugging kernel support functions.

• Flashwr.lib—utility functions for writing to flash EPROM.

• Idblock.lib—functions to access the ID block in Z-World product flash devices, also
contains general CRC checking functions.

• Mutil.lib—integer math utility functions.

• Mutilfp.lib—floating-point math utility functions.

• Stack.lib—base data structure for maintaining stack allocation information.

• Sysio.lib—support libraries.

• Util.lib—utility functions.

2.3 Using Dynamic C

Chapter 4., “Sample Programs,” provides sample programs and explains how to use the
basic features of Dynamic C.

More complete information on Dynamic C is provided in the Dynamic C (Rabbit Version)
User’s Manual. Functions specific to the RabbitCore 2000 are described in the Rabbit-
Core 2000 User’s Manual.
10 RabbitCore 2000

2.4 Upgrading Dynamic C

Dynamic C upgrades and patches are available from time to time. An upgrade may either
enhance the features and libraries, or it may focus on bug fixes. Check the Web sites

www.zworld.com/support/supportcenter.html

or

www.rabbitsemiconductor.com/support.html

for the latest updates, patches, workarounds, and bug fixes.

2.4.1 Workarounds

Workarounds describe problems and recommended ways around them. The figure below
shows a typical workaround panel from one of the two Web sites.
Getting Started 11

http://www.zworld.com/support/supportcenter.html
http://www.rabbitsemiconductor.com/support.html

2.4.2 Upgrades

Upgrades are also available on the Web site, and are first downloaded to your PC. The
downloaded application is then run, much like an installation would be.

The default installation of an upgrade is to install the new release of Dynamic C in a direc-
tory (folder) different from that of the original installation. Z-World recommends using a
different directory so that you can verify the operation of the new release without over-
writing the previous release. If you have made any changes to the BIOS or to libraries, or
if you have programs in the old directory (folder), make these same changes to the BIOS
or libraries in the new directory containing the upgraded release of Dynamic C. Do not
simply copy over an entire file since you may overwrite a bug fix; of course, you may
copy over any programs you have written. Once you are sure the new release works
entirely to your satisfaction, you may retire the older release, but keep it available to han-
dle legacy applications.
12 RabbitCore 2000

3. HARDWARE CONNECTIONS

Before proceeding with the hardware connections described in this chapter, locate the fol-
lowing items.

• RabbitCore 2000 (model RCM2020)

• RCM2000 Prototyping Board

• Power supply (a 12 V, 500 mA power supply is included with Development Kits sold
for the North American market)

• 10-pin to DE9 programming cable
Getting Started 13

3.1 Connections

1. Attach RabbitCore 2000 to Prototyping Board

Turn the RabbitCore 2000 so that the Rabbit 2000 microprocessor is facing as shown
below. Plug RabbitCore 2000 Headers J1 and J2 into the sockets of headers J1 and J3 on
the Prototyping Board.

Figure 1. Attaching RabbitCore 2000 to Prototyping Board

It is important that you line up the pins on the RabbitCore 2000 headers J1 and
J2 exactly with the corresponding pins of headers J1 and J3 on the Prototyping
Board. The header pins may become bent or damaged if the pin alignment is
offset, and the RabbitCore 2000 will not work.

��

��

���

��

��

��

	
�

	

	�
���

�

���

	

	�
	�

��

��

�
 �� ��

��

��

��

���

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
��

�
�
�
��
��
��
�
�
��
�
�
�
��
�
��
�
�
�

�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

���
�

�

�

�
��

�
!

�
�

�
�

�

�
�

	
��
�

�
�
�

�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�
�
�

�
�
�
�

	
�
�

��
	
�
�

�
�

�
��

�
�� �
"

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�

�
�

�
�
�
�

	
�
�

�
�
�

�

�

�
�
�

�
�
�

�
�

�
�
�

��
	
��

��
�
�

���

�
�
	
�
�

	
�

��

���

���

���

	

	

	�

� �

��

�#�

�#�

�
#
�

�
#
�

��

�

�	$�
�

����������	

����

����������
�����������

��

�� ��

����

��

�

��
��

��
��

���

�� ���

�

��
���

�

���
���
��

���
���
����

� �

�

��

��
������
������
��
���
������
��� ����
����� �

���
��

���
���
���
��

��
���
���
���
���
���
���

��
���

��
���
���
�"
��
��
��
��

���
�!
��
��
�

��
	���

���
���
���
���
��
��
��
��
��
����

���
��

���
���
��
�

��
��
���

	��

��

����
	��

���
���	���	��

����

�����������
�������	������
14 RabbitCore 2000

2. Connect RabbitCore 2000 to PC

Connect the 10-pin connector of the programming cable to header J3 on the RabbitCore
2000 as shown below. Connect the other end of the programming cable to a COM port on
your PC. Note that COM1 on the PC is the default COM port used by Dynamic C.

Figure 2. Power and Programming Connections to
RabbitCore 2000

3. Power Supply Connections

Hook up the connector from the wall transformer to header J5 on the Prototyping Board as
shown above. The orientation of this connector is not important since the VIN (positive)
voltage is the middle pin, and GND is available on both ends of the three-pin header J5.

Plug in the wall transformer. The power LED on the Prototyping Board should light up.
The RabbitCore 2000 and the Prototyping Board are now ready to be used.

A RESET button is provided on the Prototyping Board to allow a hardware reset.

��

��

���

��

��

��

	
�

	

	�
���

�

���

	

	�
	�

��

��

�
 �� ��

��

��

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
��

�
�
�
��
��
��
�
�
��
�
�
�
��
�
��
�
�
�

�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

���
�

�

�

�
��

�
!

�
�

�
�

�

�
�

	
��
�

�
�
�

�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�
�
�

�
�
�
�

	
�
�

��
	
�
�

�
�

�
��

�
�� �
"

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�

�
�

�
�
�
�

	
�
�

�
�
�

�

�

�
�
�

�
�
�

�
�

�
�
�

��
	
��

��
�
�

���

�
�
	
�
�

	
�

��

���

���

���

	

	

	�

� �

��

�#�

�#�

�
#
�

�
#
�

�

�	$�
���

�� ��

����

��

�

��
��

��
��

���

�� ���

�

��
���

�

���
���
��

���
���
����

� �

�

��

��
������
������
��
���
������
��� ����
����� �

���
��

���
���
���
��

��
���
���
���
���
���
���

��
���

��
���
���
�"
��
��
��
��

���
�!
��
��
�

��
	���

���
���
���
���
��
��
��
��
��
����

���
��

���
���
��
�

��
��
���

	��

��

����
	��

���
���	���	��

����

��	��
	 ���%

����������	

����

����������
�����������

�&��������'&()

�&*&(+,�-.,+
*./+-�0'�1.)2

'./��

�

Getting Started 15

3.2 Starting Dynamic C

Once the RabbitCore 2000 is connected as
described in the preceding pages, start
Dynamic C by double-clicking on the
Dynamic C icon or by double-clicking on the
.exe file associated with DcRab in the
Dynamic C directory.

Dynamic C assumes, by default, that you are
using serial port COM1 on your PC. If you
are using COM1, then Dynamic C should
detect the RabbitCore 2000 and go through a
sequence of steps to cold-boot the RabbitCore
2000 and to compile the BIOS. If an error message appears, you have probably connected
to a different PC serial port such as COM2, COM3, or COM4. You can change the serial
port used by Dynamic C with the OPTIONS menu, then try to get Dynamic C to recognize
the RabbitCore 2000 by selecting Recompile BIOS on the Compile menu. Try the differ-
ent COM ports in the OPTIONS menu until you find the one you are connected to. If you
can’t get Dynamic C to recognize the target on any port, then the hookup may be wrong or
the COM port is not working on your PC.

If you receive the “BIOS successfully compiled …” message after pressing <Ctrl-Y> or
starting Dynamic C, and this message is followed by “Target not responding,” it is possi-
ble that your PC cannot handle the 115,200 bps baud rate. Try changing the baud rate to
57,600 bps as follows.

1. Open the BIOS source code file, RABBITBIOS.C.

2. Change the line

#define USE115KBAUD 1 // set to 0 to use 57600 baud

to read as follows.

#define USE115KBAUD 0 // set to 0 to use 57600 baud

3. Locate the Serial options dialog in the Dynamic C Options menu. Change the baud
rate to 57,600 bps, then press <Ctrl-Y>.

If you receive the “BIOS successfully compiled …” message and do not receive a “Target
not responding” message, the target is now ready to compile a program.

3.3 Run a Sample Program

You are now ready to test your set-up by running a sample program.

Find the file FLASHLEDS.C, which is in the Dynamic C Samples/COREMODULE folder. To
run the program, open it using File > Open, compile it with Debug Compile to Target in the
Compile menu, and then run it by selecting Run in the Run menu. LEDs DS2 and DS3 on
the Prototyping Board should start flashing.

Installing Dynamic C
If you have not yet installed Dynamic C,
you may do so by inserting the CD from
the Development Kit in your PC’s CD-
ROM drive. The CD will auto-install
unless you have disabled auto-install on
your PC.

Chapter 1 provides detailed instructions
for the installation of Dynamic C and any
future upgrades.
16 RabbitCore 2000

3.4 Where Do I Go From Here?

If there are any problems at this point, call Z-World Technical Support at (530)757-3737
or Rabbit Semiconductor Technical Support at (530)757-8400.

If the sample program ran fine, you are now ready to go on to other sample programs in the next
chapter or to the RabbitCore 2000 User’s Manual (click the documentation icon on your PC
desktop or on Docs\default.htm in the Dynamic C directory).
Getting Started 17

18 RabbitCore 2000

4. SAMPLE PROGRAMS
Getting Started 19

Sample programs are provided in the Dynamic C Samples folder, which is shown below.

The various folders contain specific sample programs that illustrate the use of the corre-
sponding Dynamic C libraries. The sample program Pong.c demonstrates the output to
the STDIO window. The CoreModule folder provides sample programs specific to the
RabbitCore 2000. Let’s take a look at the CoreModule folder.

Each sample program has comments that describe the purpose and function of the program.

Before running any of these sample program, make sure that your RabbitCore 2000 is con-
nected to the Prototyping Board and to your PC as described in the RabbitCore 2000 Get-
ting Started manual.
20 RabbitCore 2000

4.1 Running Sample Program FLASHLED.C

This sample program will be used to illustrate some of the functions of Dynamic C.

First, open the file FLASHLED.C, which is in the Samples/CoreModule folder. The
program will appear in a window, as shown in Figure 3 below (minus some comments).
Use the mouse to place the cursor on the function name WrPortI in the program and type
<ctrl-H>. This will bring up a documentation box for the function WrPortI. In general,
you can do this with all functions in Dynamic C libraries, including libraries you write
yourself. Close the documentation box and continue.

Figure 3. Sample Program FLASHLED.C

To run the program FLASHLED.C, load it with the File menu, compile it using the Com-
pile menu, and then run it by selecting Run in the Run menu. The LED on the Prototyp-
ing Board should start flashing if everything went well. If this doesn’t work review the
following points.

• The target should be ready, which is indicated by the message “BIOS successfully com-
piled...” If you did not receive this message or you get a communication error, recom-
pile the BIOS by typing <ctrl-Y> or select Recompile BIOS from the Compile menu.

main(){

 int j;

 WrPortI(SPCR,&SPCRShadow,0x84);
 WrPortI(PADR,&PADRShadow,0xFF);

 while(1) {

 BitWrPortI(PADR,&PADRShadow,1,1);

 for(j=0; j<32000; j++);

 BitWrPortI(PADR,&PADRShadow,0,1);

 for(j=0; j<25000; j++);

 } // end while

 } // end of main

���������	�
������������

������������

�����������
���������
���������

��������������		�����

Note: See the Rabbit 2000 Microprocessor User’s Manual
(Software Chapter) for details on the routines that read and
write I/O ports.

�����������������������
��� �!�!������!��

���� �!�!������

���� �!�!����

�����������
���������
����"����
Getting Started 21

• A message reports “No Rabbit Processor Detected” in cases where the RabbitCore
2000 and the Prototyping Board are not connected together, the wall transformer is not
connected, or is not plugged in. (The red power LED lights whenever power is con-
nected.)

• The programming cable must be connected to the RabbitCore 2000. (The colored wire
on the programming cable is closest to pin 1 on header J3 on the RabbitCore 2000, as
shown in Figure 2.) The other end of the programming cable must be connected to the
PC serial port. The COM port specified in the Dynamic C Options menu must be the
same as the one the programming cable is connected to.

• To check if you have the correct serial port, select Compile, then Compile BIOS, or
type <ctrl-Y>. If the “BIOS successfully compiled …” message does not display, try a
different serial port using the Dynamic C Options menu until you find the serial port
you are plugged into. Don’t change anything in this menu except the COM number.
The baud rate should be 115,200 bps and the stop bits should be 1.

4.2 Single-Stepping

Compile or re-compile FLASHLED.C by clicking the Compile button on the task bar. The
program will compile and the screen will come up with a highlighted character (green) at
the first executable statement of the program. Use the F8 key to single-step. Each time
the F8 key is pressed, the cursor will advance one statement. When you get to the
for(j=0, j< ... statement, it becomes impractical to single-step further because you
would have to press F8 thousands of times. We will use this statement to illustrate watch
expressions.

4.2.1 Watch Expression

Type <ctrl-W> or chose Add/Del Watch Expression in the Inspect menu. A box will
come up. Type the lower case letter j and click on add to top and close. Now continue
single-stepping with F8. Each time you step, the watch expression (j) will be evaluated
and printed in the watch window. Note how the value of j advances when the statement
j++ is executed.

4.2.2 Break Point

Move the cursor to the start of the statement:

 for(j=0; j<25000; j++);

To set a break point on this statement, type F2 or select Toggle Breakpoint from the Run
menu. A red highlight will appear on the first character of the statement. To get the pro-
gram running at full speed, type F9 or select Run on the Run menu. The program will
advance until it hits the break point. Then the break point will start flashing and show
both red and green colors. Note that LED DS3 is now solidly turned on. This is because
we have passed the statement turning on LED DS3. Note that j in the watch window has
the value 32000. This is because the loop above terminated when j reached 32000.
22 RabbitCore 2000

To remove the break point, type F2 or select Toggle Breakpoint on the Run menu. To
continue program execution, type F9 or select Run from the Run menu. Now the LED
should be flashing again since the program is running at full speed.

You can set break points while the program is running by positioning the cursor to a state-
ment and using the F2 key. If the execution thread hits the break point, a break point will
take place. You can toggle the break point off with the F2 key and continue execution with
the F9 key. Try this a few times to get the feel of things.

4.2.3 Editing the Program

Click on the Edit box on the task bar. This will set Dynamic C into the edit mode so that
you can change the program. Use the Save as choice on the File menu to save the file
with a new name so as not to change the demo program. Save the file as MYTEST.C. Now
change the number 25000 in the for (.. statement to 10000. Then use the F9 key to
recompile and run the program. The LED will start flashing, but it will flash much faster
than before because you have changed the loop counter terminal value from 25000 to
10000.

4.2.4 Watching Variables Dynamically

Go back to edit mode (select edit) and load the program FLASHLED2.C using the File
menu Open command. This program is the same as the first program, except that a vari-
able k has been added along with a statement to increment k each time around the endless
loop. The statement:

runwatch();

has been added. This is a debugging statement that makes it possible to view variables
while the program is running.

Use the F9 key to compile and run FLASHLED2.C. Now type <ctrl-W> to open the watch
window and add the watch expression k to the top of the list of watch expressions. Now
type <ctrl-U>. Each time you type <ctrl-U>, you will see the current value of k, which is
incrementing about 5 times a second.

As an experiment, add another expression to the watch window:

k*5

Then type <ctrl-U> several times to observe the watch expressions k and k*5.

4.2.5 Summary of Features

So far you have practiced using the following features of Dynamic C.

• Loading, compiling and running a program. When you load a program it appears in an
edit window. You can compile by selecting Compile on the task bar or from the Com-
pile menu. When you compile the program, it is compiled into machine language and
downloaded to the target over the serial port. The execution proceeds to the first state-
ment of main where it pauses, waiting for you to command the program to run, which
you can do with the F9 key or by selecting Run on the Run menu. If want to compile
Getting Started 23

and start the program running with one keystroke, use F9, the run command. If the pro-
gram is not already compiled, the run command will compile it first.

• Single-stepping. This is done with the F8 key. The F7 key can also be used for single-
stepping. If the F7 key is used, then descent into subroutines will take place. With the
F8 key the subroutine is executed at full speed when the statement that calls it is
stepped over.

• Setting break points. The F2 key is used to turn on or turn off (toggle) a break point at
the cursor position if the program has already been compiled. You can set a break point
if the program is paused at a break point. You can also set a break point in a program
that is running at full speed. This will cause the program to break if the execution
thread hits your break point.

• Watch expressions. A watch expression is a C expression that is evaluated on command
in the watch window. An expression is basically any type of C formula that can include
operators, variables and function calls, but not statements that require multiple lines
such as for or switch. You can have a list of watch expressions in the watch window. If
you are single-stepping, then they are all evaluated on each step. You can also com-
mand the watch expression to be evaluated by using the <ctrl-U> command. When a
watch expression is evaluated at a break point, it is evaluated as if the statement was at
the beginning of the function where you are single-stepping. If your program is running
you can also evaluate watch expressions with a <ctrl-U> if your program has a run-
watch() command that is frequently executed. In this case, only expressions involv-
ing global variables can be evaluated, and the expression is evaluated as if it were in a
separate function with no local variables.

4.3 Cooperative Multitasking

Cooperative multitasking is a convenient way to perform several different tasks at the
same time. An example would be to step a machine through a sequence of steps and at the
same time independently carry on a dialog with the operator via a human interface. Coop-
erative multitasking differs from another approach called preemptive multitasking.
Dynamic C supports both types of multitasking. In cooperative multitasking each separate
task voluntarily surrenders its compute time when it does not need to perform any more
activity immediately. In preemptive multitasking control is forcibly removed from the
task via an interrupt.

Dynamic C has language extensions to support multitasking. The major C constructs are
called costatements, cofunctions, and slicing. These are described more completely in the
Dynamic C (Rabbit Version) User’s Manual. The example below, sample program
FLASHLEDS2.C, uses costatements. A costatement is a way to perform a sequence of
operations that involve pauses or waits for some external event to take place. A complete
description of costatements is in the Dynamic C (Rabbit Version) User’s Manual. The
FLASHLEDS2.C sample program has two independent tasks. The first task flashes LED
DS2 2.5 times a second. The second task flashes DS3 every 1.5 seconds.
24 RabbitCore 2000

#define DS2 0 // predefine for LED DS2
#define DS3 1 // predefine for LED DS3

// This cofunction flashes LED on for ontime, then off for offtime
cofunc flashled[4](int led, int ontime, int offtime) {

for(;;) {
waitfor(DelayMs(ontime)); // on delay
WrPortI(PADR,&PADRShadow,(1<<led)|PADR); // turn LED off
waitfor(DelayMs(offtime); // off delay
WrPortI(PADR,&PADRShadow,(1<<led)^0xff&PADR); // turn LED on

}
}

main {
// Initialize ports
WrPortI(SPCR,&SPCRShadow,0x84); // Set Port A all outputs, LEDs on

 WrPortI(PEFR,&PEFRShadow,0x00); // Set Port E normal I/O
WrPortI(PEDDR,&PEDDRShadow,0x01); // Set Port E bits 7…1 input, 0 output
WrPortI(PECR,&PECRShadow,0x00); // Set transfer clock as pclk/2

for(;;) { // run forever
costate { // start costatement

wfd { // use wfd (waitfordone) with cofunctions
flashled[0](DS2,200,200); // flash DS2 on 200 ms, off 200 ms
flashled[1](DS3,1000,500);// flash DS3 on 1000 ms, off 500 ms

}
} // end costatement

} // end for loop
} // end of main, never come here

Load and run the program.

The flashing of the LEDs is performed by the costatement. Costatements need to be exe-
cuted regularly, often at least every 25 ms. To accomplish this, the costatements are
enclosed in a while loop or a for loop. The term while loop is used as a handy way to
describe a style of real-time programming in which most operations are done in one loop.

The costatement is executed on each pass through the big loop. When a waitfor or a
wfd condition is encountered the first time, the current value of MS_TIMER is saved and
then on each subsequent pass the saved value is compared to the current value. If a wait-
for condition is not encountered, then a jump is made to the end of the costatement, and
on the next pass of the loop, when the execution thread reaches the beginning of the cos-
tatement, execution passes directly to the waitfor statement. The costatement has the
property that it can wait for long periods of time, but not use a lot of execution time. Each
costatement is a little program with its own statement pointer that advances in response to
conditions. On each pass through the big loop, as little as one statement in the costatement
is executed, starting at the current position of the costatement’s statement pointer. Consult
the Dynamic C (Rabbit Version) User’s Manual for more details.

This program also illustrates a use for a shadow register. A shadow register is used to keep
track of the contents of an I/O port that is write only - it can’t be read back. If every time a
write is made to the port the same bits are set in the shadow register, then the shadow reg-
ister has the same data as the port register.
Getting Started 25

4.4 Advantages of Cooperative Multitasking

Cooperative multitasking, as implemented with language extensions, has the advantage of
being intuitive. Unlike preemptive multitasking, variables can be shared between differ-
ent tasks without having to take elaborate precautions. Sharing variables between tasks is
the greatest cause of bugs in programs that use preemptive multitasking. It might seem
that the biggest problem would be response time because of the big loop time becoming
long as the program grows. Our solution for that is called slicing, which is further
described in the Dynamic C (Rabbit Version) User’s Manual.
26 RabbitCore 2000

SCHEMATICS
Getting Started

	About This Manual
	1. Installing Dynamic C
	1.1 Requirements
	1.2 Installation
	1.3 Desktop Icons

	2. Introduction to Dynamic C
	2.1 The Nature of Dynamic C
	2.1.1 Speed

	2.2 Dynamic C Libraries
	2.3 Using Dynamic C
	2.4 Upgrading Dynamic C
	2.4.1 Workarounds
	2.4.2 Upgrades

	Installing Dynamic C

	3. Hardware Connections
	3.1 Connections
	3.2 Starting Dynamic C
	3.3 Run a Sample Program
	3.4 Where Do I Go From Here?

	4. Sample Programs
	4.1 Running Sample Program FLASHLED.C
	4.2 Single-Stepping
	4.2.1 Watch Expression
	4.2.2 Break Point
	4.2.3 Editing the Program
	4.2.4 Watching Variables Dynamically
	4.2.5 Summary of Features

	4.3 Cooperative Multitasking
	4.4 Advantages of Cooperative Multitasking

	Schematics

