

T 530.757.3737 F 530.753.5141 E zworld@zworld.com

Alpha PK2300

- 9 user-configurable digital I/O lines easily adapt to your specific system requirements
- Can be networked in a masterslave configuration
- Rugged glass-filled nylon enclosure
- DIN rail mountable or stand-alone
- Protected inputs and high-current outputs
- Resistance measurement input suitable for a variety of sensors

Using a serial port, the PK2300 interfaces easily to touchscreen displays such as the OP7100, page 34.

The PK2300 is an ideal choice for rugged industrial applications, offering an excellent high-level control alternative to standard PLCs. User-definable I/O allows configuring multiple PK2300s differently within the same application. PK2300s can easily operate over a control network.

The PK2300's 19 I/O lines are shipped as 9 protected inputs, 8 high-current outputs, and 2 lines used for RS-485. Nine of the I/O lines are configurable, allowing combinations of level-sensitive interrupts, protected inputs, resistance measurement input, RS-485, and high-current digital outputs.

You can select the type of I/O specific to your needs. Up to 16 protected digital inputs or as many as 8 high-current outputs are possible.

Programming the PK2300

Software is developed for the PK2300 using the Dynamic C® 32 software development system. Please see page 6 for a complete description.

Alpha Tool Kit

The Alpha PK2300 Tool Kit contains all the hardware tools necessary for rapid development: manual with schematics, programming cable, AC adapter, and sourcing high-current driver. International orders do not include the AC adapter unless specifically requested.

PK2300 Specifications

Enclosure Size 5.00" x 2.96" x 1.81"

Operating Temp. -40°C to +70°C

Humidity 5–95%, non-condensing

Power Requirements 9–24 V DC, 120 mA. Linear regulator
Configurable I/O* 4 of the inputs, 5 of the outputs
Digital Inputs 7–16 protected, –20 V to +24 V
Digital Outputs 3–8 high-current channels. At 25°C, a channel can sink up to 500 mA con-

tinuously. Output is subject to package power limits and duty cycle. Load

limit is 48 V

Analog Inputs 1 resistance measurement input,

 $0-270~k\Omega$

Analog Outputs PWM, 4-7 channels using digital

outputs

Processor Z180 at 9.216 MHz

SRAM 32K, surface mount (supports 512K)
Flash EPROM 128K, surface mount (supports 256K)

Counters Software-implementable

Serial Ports Either 2 RS-232 or 1 RS-232 (with

RTS/CTS handshake) and 1 RS-485

(two-wire)

Serial Rate Selected baud rates up to 57,600 bps

Watchdog/Supervisor Yes Time/Date Clock Yes

Backup Battery 3 V lithium coin-type, 165 mA·h

Keypad and LCD No Expansion Port No

Versions

PK2300 Full-featured SBC. Specifications stated above PK2310 PK2300 without real-time clock or resistive measurement circuit

Options and Upgrades

DIN Rail Mounting Kit. Snap-on DIN rail mount (72 mm) **SIB2.** Serial Interface Board. Allows programming through the special programming port on the PK2300, leaving other serial channels available. Includes programming cable

Thermistor. Rugged temperature sensor in a 0.25" diameter epoxy-filled PVC housing. Resistance is nominally 10 kΩ at 25°C. Accuracy is ± 0.2 °C in the optimal range 0°C to 70°C. Dissipates 3 mW/°C. Range is -55°C to +150°C

Sourcing Driver Kit. Provides 2 (2985) sourcing driver chips. At 25°C, a channel can source up to 250 mA continuously. Output is subject to package power limits and duty cycle. Load limit is 30 V

SRAM. 128K or 512K. Factory installed **Flash EPROM.** 256K. Factory installed

PK2300 Inputs and Outputs

Signals identified by [A] comprise the PK2300 I/O configuration as shipped. Signals identified by [B] denote alternate user configurations. You can use any combination of [A] and [B]

RMI means resistance measurement input

IN denotes protected input

OUT denotes high-current output

PK2300 Dimensions

^{*} User configurable as protected digital inputs, digital outputs, RS-485 communications, and resistance measurement input.