
LP3100
C-Programmable Controller

User’s Manual
Revision E

LP3100

LP3100 User’s Manual

Part Number 019-0049 • Revision E
Last revised on February 3, 2000 • Printed in U.S.A.

Copyright

© 1999 Z-World, Inc. • All rights reserved.

Z-World reserves the right to make changes and improvements to its products without pro-
viding notice.

Trademarks

• Dynamic C® is a registered trademark of Z-World, Inc.

• Windows® is a registered trademark of Microsoft Corporation

• Hayes Smart Modem® is a registered trademark of Hayes Microcomputer Products, Inc.

Notice to Users

When a system failure may cause serious consequences, protecting life and property
against such consequences with a backup system or safety device is essential. The buyer
agrees that protection against consequences resulting from system failure is the buyer’s
responsibility.

This device is not approved for life-support or medical systems.

All Z-World products are 100 percent functionally tested. Additional testing may include
visual quality control inspections or mechanical defects analyzer inspections. Specifica-
tions are based on characterization of tested sample units rather than testing over tempera-
ture and voltage of each unit. Z-World may qualify components to operate within a range
of parameters that is different from the manufacturer’s recommended range. This strategy
is believed to be more economical and effective. Additional testing or burn-in of an indi-
vidual unit is available by special arrangement.

Company Address
Z-World, Inc.
2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-3737
Facsimile: (530) 757-5141
Web site: http://www.zworld.com
E-mail: zworld@zworld.com

User’s Manual

About This Manual

Chapter 1: Overview 1
1.1 Features ...2
1.2 Standard Models ...3
1.3 Flexibility and Customization...3
1.4 Subsystems..4

1.4.1 Microprocessor, Memory, and Support Circuits...5
1.4.2 Power Control ...5
1.4.3 Digital Inputs/Outputs...5
1.4.4 Analog Inputs ..6
1.4.5 Serial Channels ...6
1.4.6 Real-Time Clock ...6
1.4.7 LPBus..6
1.4.8 LED...6

1.5 Development and Evaluation Tools..7
1.5.1 Development Kit Packing List ..7

1.6 Software ..7
1.7 CE Compliance ...8

Chapter 2: Getting Started 9
2.1 Operating Modes...10

2.1.1 Changing Operating Modes ..11
2.1.2 Using a SIB2 ...11

2.2 Connecting an LP3100 to a PC...12
2.3 Establishing Communication with an LP3100 ...15
2.4 Running a Sample Program ..15

Chapter 3: Subsystems 17
3.1 Subsystems Overview...18
3.2 Microprocessor, Memory, and Support Circuits ..19

3.2.1 Microprocessor Supervisor ...19
3.2.2 Flash EPROM ...19

3.3 Power Control ...21
3.3.1 Power Supplies..21
3.3.2 Power Supply Control ...23
3.3.3 Shutting Down VCC ...24
3.3.4 Clock Speed ..24
3.3.5 Microprocessor Operating Modes and Shutdown Mode ..25
3.3.6 Component Shutdown...27

3.4 Digital Input/Output..28
3.4.1 Digital I/O Operating Modes and Configuration ..28
3.4.2 Digital Inputs...28
3.4.3 Digital Outputs..30
3.4.4 Digital Inputs/Outputs...33

3.5 Analog Inputs..37
3.5.1 Scaling Input Range ..40

3.6 Operation ..42
3.6.1 The VOFF Voltage Divider ..42
3.6.2 DC Gain ..43
3.6.3 Finding VOFF...44
3.6.4 Practical Considerations..45
3.6.5 Input Impedance..46
3.6.6 Frequency Response ...46

TABLE OF CONTENTS

LP3100

3.6.7 Using the ADC ... 47
3.6.8 Using the Analog Inputs... 47

3.7 Serial Communication.. 48
3.7.1 Operation .. 48
3.7.2 RS-232 Communication ... 50
3.7.3 RS-485 Communication ... 50
3.7.4 Software.. 51

3.8 Real-Time Clock .. 51
3.8.1 Real-Time Clock Interrupts.. 52
3.8.2 Periodic Interrupts .. 53
3.8.3 Alarm Interrupts ... 54
3.8.4 Wake Up VCC.. 54

3.9 LPBus ... 55
3.9.1 LPBus Signals .. 57
3.9.2 Board ID ... 59

Chapter 4: Software Reference 61
4.1 Using Dynamic C Drivers .. 62
4.2 Digital Input/Output Functions .. 62
4.3 Analog Input Functions .. 68
4.4 Serial Communication Functions ... 72

4.4.1 RS-485 Functions ... 72
4.4.2 RS-232 Functions ... 73

4.5 Power Control Functions.. 74
4.6 RTC Functions ... 79
4.7 Flash EPROM Functions.. 82
4.8 LED Functions ... 82
4.9 LCD Functions ... 82
4.10 Keypad Functions... 85
4.11 Additional Software ... 87

Appendix A: Troubleshooting 89
A.1 Out of the Box ... 90
A.2 Dynamic C Does Not Start .. 90
A.3 LP3100 Repeatedly Resets .. 91
A.4 Dynamic C Loses Link with Application Program ... 91

Appendix B: Specifications 93
B.1 General Specifications... 94
B.2 Analog Inputs .. 97
B.3 Mechanical Specifications... 98

B.3.1 LP3100 Mounting Plate Dimensions... 99
B.4 Header Pinouts... 100

2.4.1 LCD Connections ... 101
B.5 Jumper Settings.. 102

Appendix C: Serial Interface Board 103
C.1 Features.. 104
C.2 External Dimensions.. 105

Appendix D: Development Board 107
D.1 Overview ... 108

D.1.1 LCD Interface .. 109
D.1.2 Keypad Interface.. 110
D.1.3 RS-232 Channel Connectors ... 111
D.1.4 I/O Header ... 112

User’s Manual

D.1.5 Power Supply Input Connector ..112
D.1.6 Reset Switch...112
D.1.7 Prototyping Area ..112

D.2 Dimensions ..113

Appendix E: LPBus Prototyping Board 115
E.1 Overview ..116

E.1.1 Installation of LPBus Prototyping Board ...117
E.1.2 Prototyping Area...117
E.1.3 LPBus Signals...118

E.2 Design Considerations..118
E.2.1 Electrical ...118
E.2.2 Board ID ...119
E.2.3 No Connect Pins ...121
E.2.4 Use of DS Lines..121
E.2.5 DMA...121

E.3 LPBus Timing ..122
E.4 LPBus DMA...123
E.5 Dimensions ...125

Appendix F: Power Management 127
F.1 Input Voltage ..128
F.2 Power-Failure Detection...130

F.2.1 Power Failure Sequence of Events ...130

Appendix G: Interrupts 133
G.1 Enabling/Disabling Interrupts ..134
G.2 Interrupt Service Routines ...134
G.3 Interrupt Vectors ..135
G.4 Jump Vectors ...136

Appendix H: Addresses 137
H.1 Simulated EEPROM Addresses...138
H.2 Microprocessor Register Addresses...138
H.3 LP3100 Peripheral Addresses ..138

Appendix I: Optional Second Flash EPROM 141
I.1 Optional Flash EPROM...142
I.2 Sample Program ..143

Index 145

Schematics

LP3100

User’s Manual

ABOUT THIS MANUAL

This manual provides instructions for installing, testing, configuring, and interconnecting
the LP3100 low-power controller.

Instructions to get started using Dynamic C software programming functions as well as
complete C and Dynamic C references and programming resources are referenced when
necessary.

Assumptions

Assumptions are made regarding the user’s knowledge and experience in the following
areas:

• Ability to design and engineer the target system that an LP3100 will control.

• Understanding of the basics of operating a software program and editing files under
Windows on a PC.

• Knowledge of the basics of C programming.

For a full treatment of C, refer to the following texts:

The C Programming Language by Kernighan and Ritchie (published by Prentice-
Hall).

and/or

C: A Reference Manual by Harbison and Steel (published by Prentice-Hall).

• Knowledge of basic Z80 assembly language and architecture..

For documentation from Zilog, refer to the following texts:

Z180 MPU User’s Manual
Z180 Serial Communication Controllers
Z80 Microprocessor Family User’s Manual.

�

�

LP3100

Acronyms

Table 1 lists and defines the acronyms that may be used in this manual.

Icons

Table 2 displays and defines icons that may be used in this manual.

Table 1. Acronyms

Acronym Meaning

EPROM Erasable Programmable Read-Only Memory

EEPROM
Electronically Erasable Programmable Read-Only
Memory

LCD Liquid Crystal Display

LED Light-Emitting Diode

NMI Nonmaskable interrupt

PIO
Parallel Input/Output
(Individually programmable input/output)

PRT Programmable Reload Timer

RAM Random Access Memory

RTC Real-Time Clock

SIB Serial Interface Board

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

Table 2. Icons

Icon Meaning Icon Meaning

� Refer to or see � Note

� Please contact ��� Tip

Caution High Voltage

Factory Default��

User’s Manual

Conventions

Table 3 lists and defines the typographic conventions that may be used in this manual.

Pin Number 1

A black square indicates pin 1 of all headers.

Measurements

All diagram and graphic measurements are in inches followed by millimeters enclosed in
parenthesis.

Table 3. Typographic Conventions

Example Description

while
Bold Courier font indicates a program, a fragment
of a program, or a Dynamic C keyword or phrase.

// IN-01… Program comments are in normal Courier font.

Italics
Courier italics indicate that something should be
typed instead of the italicized words (e.g., type a
file name where filename is shown).

Edit Bold sans serif font indicates a menu or menu
selection.

…
An ellipsis indicates that (1) irrelevant program
text is omitted for brevity, or that (2) the preceding
program text may be repeated indefinitely.

[]
Square brackets in a C function’s definition or
program segment indicate that the enclosed
directive is optional.

< >
Angle brackets are used to enclose classes of
terms.

a | b | c
A vertical bar indicates that a choice should be
made from among the items listed.

J1
Pin 1

LP3100

User’s Manual 1

CHAPTER 1. OVERVIEW

Chapter 1 provides an overview and description of the LP3100 low-power controllers.
The following sections are included.

• Features

• Standard Models

• Flexibility and Customization

• Subsystems

• Development and Evaluation Tools

• Software

• CE Compliance

2 LP3100

The LP3100 is a low-power controller designed for use in low-power and battery-powered
embedded applications.

Typical applications for the LP3100 include the following:

• Remote data acquisition

• Portable instrumentation

• Handheld equipment

• Solar powered instrumentation

• Battery powered systems

1.1 Features

The LP3100 has many features, including the following:

• Low-voltage design (3.3 V operation)

• Flexible power control system

• 6.144 MHz or 3.072 MHz system clock (software selectable)

• Flash EPROM (up to 512K)

• Static RAM with battery backup capability (up to 512K)

• 2 serial channels (RS-232 and RS-485)

• 4-channel 12-bit analog inputs with signal conditioning

• 4 digital inputs

• 8 digital outputs

• 8 configurable digital inputs/outputs (software configurable)

• Real-time clock

• Microprocessor supervisor IC

• Expansion bus (LPBus)

• Onboard diagnostic LED

• Dedicated programming port for Dynamic C

For details on customizing the LP3100, call a Z-World Sales Representative at
(530) 757-3737.�

User’s Manual 3

1.2 Standard Models

The LP3100 Series currently has four members: LP3100, LP3110, LP3120, and LP3130.
Table 1 lists the features of each model.

1.3 Flexibility and Customization

The LP3100 was designed for application flexibility. Two levels of flexibility allow
appropriate selection of the I/O for a specific application’s needs:

• Flexibility Level 1 — Out of the Box

Jumper-configurable serial communication channels.

Jumper-selectable supply voltage to output latches allows control of the output voltage
level (3.3 V or 5 V).

Bias and gain for conditioned analog input channel conditioning circuits configured
with resistors.

Flexible digital input/output channels (eight channels) configurable as inputs or outputs
under software control.

Software-controlled subsystem power (analog inputs, RS-232, memory and micropro-
cessor, real-time clock) allows selective power-down for maximum power savings.

• Flexibility Level 2 — Customization

For quantity orders, Z-World can tailor the LP3100 to meet custom specifications.
Once the application prototype is defined, Z-World’s automated surface-mount manu-
facturing facility can build the LP3100 with the exact hardware a specific application
requires.

Table 1. LP3100 Series Model Features

Model Features

LP3100

6.144 MHz clock, 512K flash EPROM, 128K SRAM,
2 RS-232 channels, RS-485 driver, 4-channel 12-bit
A/D converrter, 20 digital input/output lines, real-time
clock, LPBus expansion port.

LP3110
LP3100 with 256K flash EPROM, 32K SRAM, no
RS-485 driver.

LP3120
LP3100 with 256K flash EPROM, 32K SRAM, no
RS-485 driver, no A/D converter.

LP3130
LP3100 with 256K flash EPROM, 32K SRAM, no
RS-485 driver, no A/D converter, no real-time clock, no
5 V regulator, no LPBus expansion port.

4 LP3100

1.4 Subsystems

The LP3100 consists of several subsystems, including a microprocessor, memory, power
control, digital inputs and outputs, analog inputs, serial communication channels, a real-
time clock, and an LPBus expansion port. Figure 1 shows the board layout and Figure 2
illustrates the LP3100 subsystems.

Figure 1. LP3100 Board Layout

R
15

R
13

R
11

R
17

C16

U15

U
24

U2

Q1

C4
C2

R1D1

H1

U4

U9

U5

U10

U12

U16H2

Z180

Flash

U8U
6

Y2

U
14

U
7

U
11

C6

H4

R19

H3

U3
R2

C3

Y1

R5 R6

R18

C5

Flash

U25

U18U20

U
23

C12

U
31

U36

U33
U35

U19

U17

U
30

U27

U22

U32

U
21

U
26

RN2

R
N

3

RN1

U29

J3 J2

RAM

R25

C27

C31

C35

C30

C33

C26

C18

C15C
13

R39

R
21

C14 C10

R24R23

C23

R20

R22

C11
+

+

J1

J6

U
28

U1

RN5

U13

R
N

4

C1
+

C46

R42

C8
C9

C38 C39R33

Q2Q2
R4

C40

R
28

C36
C37

U34

R3

R
29

C
34

R27

C19

C42

R
36

R
35

R
34

R
37 R30

C44

R41C43

R43

J7

C21

C17

J5

R12R10

R14R16
R32C32

J4

C56

R31

C47

U37

C
22

C45

C
7

R
44

R
45R

26

C
20

C29

C
25

C
28

R40R9

R
38

C
41

Q3

R8

R7

C
53

C
51

C
49

C
55

C
52

C
50

C
48

C
54

C
24

Top View

Side View

Bottom View

User’s Manual 5

Figure 2. Subsystems Block Diagram

1.4.1 Microprocessor, Memory, and Support Circuits

The LP3100 uses a low-voltage microprocessor running at either 6.144 MHz or
3.072 MHz. Up to 512K of flash EPROM and 512K of static RAM are available. Up to
256K of the flash EPROM can be used for data-logging. A microprocessor supervisor IC
provides protection against software bugs and glitches in addition to providing a battery-
backup capability and brownout protection for the static RAM.

1.4.2 Power Control

Controlling the power supplies for the LP3100 subsystems enhances low-power operation.
Most subsystems on the LP3100, including the microprocessor and memory, can be pow-
ered down or operated in low-power modes. The low-power mode virtually eliminates
current draw for a subsystem that is not being used.

1.4.3 Digital Inputs/Outputs

The LP3100 series has the following three types of digital inputs/outputs.

1. Digital Inputs - Four dedicated digital input channels that include pull-up resistors.
DIN0 can be used to wake the board from sleep mode.

2. Digital Outputs - Eight dedicated digital outputs that can be configured for either
3.3 V or 5 V output and can sink or source up to 8 mA.

�������

��	

�������
���	����

�������
���	����

��
�

���	�
�������������

������

�������

������
���	��

�
����

���� ����

���!"!����

#���$
����%���

�&����

���
�	��
'���
 ��%���%���

�������
�(�

�������
��

�������
�	�

�

���

���

���

��
�

��
�����

����

���

����

6 LP3100

3. Configurable Digital Inputs/Outputs - Eight digital channels that can be configured
as either inputs or outputs with the same specifications as the dedicated inputs and out-
puts.

1.4.4 Analog Inputs

The LP3100 has four conditioned analog inputs. The inputs are multiplexed into a 12-bit
ADC.

By default, the analog inputs have an input range of 0–10 volts. The inputs can be config-
ured for almost any arbitrary range by replacing two configuration resistors.

1.4.5 Serial Channels

The LP3100 has two serial channels. One channel can be configured as either a 5-wire
RS-232 or as a 3-wire RS-232. The other channel can be configured as a 3-wire RS-232
or as a 2-wire RS-485. The serial channels operate at speeds up to 38,400 bps using a
6.072 MHz system clock.

1.4.6 Real-Time Clock

Date and time-of-day information can be read from the real-time clock (RTC). The RTC
provides the date and the day of the week in addition to the hour, minute, and second. The
RTC can also be used to wake the LP3100 from sleep mode or to provide a periodic alarm.

1.4.7 LPBus

The LPBus provides an expansion capability for the LP3100. The LPBus provides
address, data, and control signals for controlling add-on expansion modules.

1.4.8 LED

The onboard LED can be turned on or off under software control and can be used to indi-
cate the status of the diagnostics or the system.

User’s Manual 7

1.5 Development and Evaluation Tools

Z-World offers a Development Kit to help simplify prototyping with the LP3100.

1.5.1 Development Kit Packing List

• LP3100 Development Board

• LPBus Prototyping Board

• 2 × 20 character LCD with cable to connect to the LP3100 Development Board.

• Aluminum mounting plate

• Serial cable for software development

• DB25 to DB9 serial adapter

• 9 V DC power supply

• Battery holder and four AA size batteries

• Cable kit for 2 mm mass-termination connector

• Manual and schematics for all LP3100-related products

The Development Board, the LPBus Prototyping Board, the LCD, and the aluminum
mounting plate are available for purchase separately. The optional SIB2 allows full use of
all serial channels during development.

For information on the SIB2, or to order these items, call Z-World at (530) 757-3737.

1.6 Software

The LP3100 is easily programmed with Z-World’s Dynamic C, an integrated development
environment that includes an editor, optimizing C compiler, downloader, and debugger.
Dynamic C provides a large number of easy-to-use software drivers for the LP3100.

Refer to the Z-World catalog for more information about Dynamic C.

�

�

8 LP3100

1.7 CE Compliance

The LP3100 has been tested by an approved competent body, and was
found to be in conformity with applicable EN and equivalent standards.
Note the following requirements for incorporating the LP3100 in your
application to comply with CE requirements.

• The power supply provided with the Development Kit if for development purposes
only. It is the customer’s responsibility to provide a clean DC supply to the controller
for all applications in end-products.

• The LP3100 has been tested to Light Industrial Immunity standards. Additional shield-
ing or filtering may be required for an industrial environment.

• The LP3100 has been tested to EN55022 Class A emission standards. Additional
shielding or filtering may be required to meet Class B emission standards.

Visit the “Technical Reference” pages of the Z-World Web site at
http://www.zworld.com for more information on shielding and filtering.�

User’s Manual 9

CHAPTER 2. GETTING STARTED

Chapter 2 provides instructions for connecting an LP3100 series controller to a PC and
running a sample program. The following sections are included:

• Operating Modes

• Connecting an LP3100 to a PC

• Establishing Communication with an LP3100

• Running a Sample Program

10 LP3100

2.1 Operating Modes

The LP3100 has two operating modes, program mode and run mode.

• Program Mode

In Program Mode, the LP3100 runs under the control of Dynamic C. The LP3100 must
be in program mode to compile and debug code on the LP3100.

In Program Mode, the LP3100 matches the baud rate of the PC’s COM port up to
38,400 bps.

• Run Mode

In Run Mode, the LP3100 checks to see if the onboard memory contains a program. If
a program exists, the LP3100 executes the program immediately after powerup.

In Run Mode, the LP3100 does not respond to Dynamic C running on the PC. Pro-
grams cannot be compiled or debugged while the LP3100 is in Run Mode.

The operating mode is determined by jumper settings on header H4. Header H4, illus-
trated in Figure 3, is the eight-pin right-angle header near header H3.

Figure 3. LP3100 Header H4 Location

H4

H3

User’s Manual 11

Table 2 shows the LP3100 operating mode jumper settings.

2.1.1 Changing Operating Modes

To change the operating mode, place or remove the jumper on H4. Then press the reset
button on the LP3100 Development Board or cycle power to the LP3100 (remove and
reapply power).

2.1.2 Using a SIB2

Since the SIB2 uses header H4 for communicating with the LP3100, it is not possible to
change the operating mode via the jumper on header H4. Connecting the SIB2 to H4 auto-
matically places the LP3100 into Program Mode. The SIB2 communicates with the PC at
baud rates up to 57,600 bps. The SIB2 automatically sets its baud rate to match the PC’s
serial port.

Table 2. LP3100 Operating Mode Jumper Settings

Operating
Mode

Header H4 Permissible Activities

Program Mode

Connect
pins 1 and 2

Compile a program

Run a program under debugger control

Run a program without “polling.” See the Dynamic C
manuals for a description of polling.

Run Mode

No jumper
connected

Run program in memory

H4

1

Program Mode

H4

1

Run Mode

12 LP3100

2.2 Connecting an LP3100 to a PC

The LP3100 can be programmed with a PC through an RS-232 port using the program-
ming cable and Development Board provided in the Developer’s Kit or by using a SIB2.
Using the SIB2 frees all of the serial channels for the application during development.

The following steps describe how to connect the LP3100 to a PC.

1. Make sure that Dynamic C is installed on the PC as described in the Dynamic C Tech-
nical Reference Manual.

2. Make sure that power is not connected to either the LP3100 or to the Development
Board.

3. Mate the LP3100 Development Board to the LP3100. Make sure that H7, on the bot-
tom side of the Development Board, mates with H2 on the LP3100. Figure 4 illustrates
the correct placement.

Figure 4. Development Board Placement

Note that the cutout in the Development Board should be positioned over the
LP3100’s header H3. Both the LP3100 and the Development Board may be damaged
if the Development Board is installed incorrectly.

+

SW1

+

H2

H6

H1

H3

H4

LP3100 header H3

Development Board on top of LP3100.
Note cutout positioned over LP3100 header H3.

Reset
button

H7 on bottom side of PCB

H5

User’s Manual 13

4. Establish a serial communication link.

Method 1—Directly to LP3100 RS-232 serial port. Place a jumper across pins 1 and
2 on header H4 to place the LP3100 in Program Mode. Connect the 10-conductor
serial programming cable from header H4 on the LP3100 Development Board to an
available COM port on the PC. Make sure that pin 1 on the ribbon cable connector
(indicated by a small triangle on the connector) matches up with pin 1 (indicated by a
small white circle near the corner of the connector) on header H4. Figure 5 illustrates
the RS-232 programming connection.

Figure 5. LP3100 RS-232 Programming Connection

Use only the supplied programming cables and adapters.

Method 2—Via SIB2. Connect the telephone-style cable supplied in the Developer’s
Kit to the RJ-12/DB-9 adapter. Connect the adapter to an available serial port on the
PC. Connect the other end of the telephone-style cable to the SIB2.

Plug the SIB2’s 8-pin connector onto header H4 on the LP3100 as illustrated in
Figure 6. Make sure that pin 1 on the ribbon cable connector (on the striped side)
matches up with pin 1 on H4 (indicated by a small white dot next to the header).

Figure 6. SIB2 Connection (End View)

$�
��")**
��'����+���
���
,

��")**

&�
��
��
���
��
�

��
���
�
��
�++���
��-��

$�
%�,�
.	+��

��")**

&�
���!

���!
#���
��-��

$�
���!
�����/��

14 LP3100

Figure 7 illustrates a top view of the SIB2 connection.

Figure 7. SIB2 Connection

Use only the 3.3 V SIB2 with the supplied adapter and programming cable.

Do not use the 5 V SIB with an LP3100.

5. Connect the 9 V DC power supply to the LP3100 Development Board power connector
H1. The orientation of pin 1 is not important, but make sure that all three pins of H1
line up with the plug before connecting.

6. Plug the power supply into a wall socket.

Never connect or disconnect the SIB2 from the LP3100 while the LP3100 is pow-
ered. The SIB2 and the LP3100 may both be damaged.

6-conductor,
RJ-12 Cable

Pin 1

6-pin
RJ-12 Male

RJ12-to-DB9
 Adapter

Note:
Twist cable
for correct
connection.

6-pin
RJ-12 Male

��
��� �
�

cable stripe

To PC COM
Port

H4

+

User’s Manual 15

2.3 Establishing Communication with an LP3100

1. Double-click the Dynamic C icon to start the software. Each time Dynamic C starts, it
attempts communication with the LP3100.

2. If the communication attempt is successful, no error messages are displayed.

If an error message such as Target Not Responding or Communication Error is shown,
see Appendix A: “Troubleshooting.”

After making necessary changes to establish communication between the PC and the
LP3100, use the Dynamic C shortcut <Ctrl Y> to reset the controller and initialize commu-
nication.

2.4 Running a Sample Program

The following steps compile and run a sample program:

1. Open the sample program HELLO.C located in the Dynamic C SAMPLES\LP31XX
directory.

HELLO.C

/* Everybody’s first program . . . */

void main(void){
printf(“Hello world.\n”);
while (1) hitwd();

}

2. .Compile the program by pressing F3 or by choosing Compile from the COMPILE
menu. Dynamic C compiles and downloads the program into the LP3100’s flash mem-
ory.

3. During compilation, Dynamic C rapidly displays several messages in the compiling
window. This condition is normal.

If an error message such as Target Not Responding or Communication Error
appears, see Appendix A: “Troubleshooting.”

4. Run the program by pressing F9 or by choosing Run from the RUN Menu.

5. To stop program execution, press <Ctrl Z>. To restart program execution, press F9.

�

�

16 LP3100

User’s Manual 17

CHAPTER 3. SUBSYSTEMS

Chapter 3 discusses the LP3100 subsystems. The following sections are included:

• Subsystems Overview

• Microprocessor, Memory, and Support Circuits

• Power Control

• Digital Input/Output

• Analog Inputs

• Operation

• Serial Communication

• Real-Time Clock

• LPBus

18 LP3100

3.1 Subsystems Overview

The LP3100 consists of several subsystems including a microprocessor, memory, power
control, digital inputs and outputs, analog inputs, serial communication channels, a RTC,
and an LPBus expansion port. Figure 8 illustrates the LP3100 subsystems.

Figure 8. Subsystems Block Diagram

VBAT

WDI

/RESET

VRAM
VCC VCC

VCC

TX0
RX0
TX1 or RTS0
RX1 or CTS0

+

–

DCIN

/PWR

DLS

/PWR/KS

+5 V

VCCVCCU

BA

BD

/DS

DLS
/INT/KS
/DREQ0
/DREQ1

/BRESET
/BWR
/BRD

/INT1 PFI

/RESET

ENRAM

BI

OUT

data

IN

BI

LPBus

Digital I/O

Memory

Analog Inputs

Asynch. Serial

/ADENA

VREF

AIN

2.5 V

VCCU

VCC

Address 20

8

8

8

8

4

Address
Data

8
20

8

7

Z180

flashflash

U2
Reg

U3
Reg

H2

H3
ADC

ADM
696

RS-232

RS-485

/INT1

RAM

8

/BSEL

4

4

RTC

data8

Power

8

3.3 V

VCCU

VCC

“kickstart”

PUSHBUTTON

VCC

VCCU

(3.3 V)

data

J1

Address

Address

Data

VBAT

Data

User’s Manual 19

3.2 Microprocessor, Memory, and Support Circuits

The LP3100 was designed for low-voltage, low-power operation. The LP3100 uses an
enhanced, low-voltage Zilog Z180 microprocessor designed for 3.3 V operation. The use
of this microprocessor reduces power consumption and lowers the supply voltage require-
ments. The system clock speed can be set at 3.072 MHz or 6.144 MHz under software
control. Lowering the system clock speed reduces the amount of power required by the
LP3100.

The microprocessor also has several sleep modes that further decrease power require-
ments. The microprocessor has a Clocked Serial Input/Output (CSI/O) port for use with
the SIB2 as a dedicated programming port. Using the SIB2 for development allows full
use of both serial channels during development.

3.2.1 Microprocessor Supervisor

The LP3100 has an Analog Devices ADM696 microprocessor supervisor IC to provide
reset control, memory protection, battery backup, and watchdog timer functions.

The watchdog timer is configured for a timeout period of 300 ms. The watchdog timer
will reset the LP3100 if the watchdog is not “hit” by a software call function every 300
ms.

In addition to providing watchdog functions, the ADM696 monitors VCC. The ADM696
prevents spurious writes to the SRAM when VCC falls below a safe level.

The ADM696 also monitors the unregulated DCIN. As DCIN drops below a predefined
threshold, the ADM696 generates a microprocessor interrupt to alert the microprocessor
of imminent power failure. The microprocessor can then take precautions against data
corruption.

3.2.2 Flash EPROM

The LP3100 has locations for two flash EPROMs. The flash EPROMs are either Atmel
29LV010 (128K x 8) or 29LV020 (256K x 8). U8, the flash EPROM on the top (connec-
tor) side, is soldered directly to the PCB and is used to store programs.

U25, the other flash EPROM, is located in a socket on the bottom side of the PCB. U25 is
used for data-logging. U25 is socketed so that it can be easily replaced. When installing
the flash EPROM, make sure that the flat corner of the IC fits into the flat corner of the
socket as shown in Figure 9.

20 LP3100

Figure 9. Flash EPROM Installation

The flash EPROM is specified for a maximum of 10,000 write cycles per sector. There is
no limitation on reads. Evenly distributing the writes throughout the sectors will maxi-
mize the life of the flash EPROM.

Example: A data-logging application requires a data record 1K long with a 128K flash
EPROM. Using a fixed location in flash EPROM, 1K records can be written 10,000 times
before reaching the sector write limit. However, if the location of the record is alternated
in an even distribution through the flash EPROM, then the record could be written 10,000
times in 128 different locations, allowing 1,280,000 writes.

�!� �!"

�)

�
!�

�!0

#���
/�
��

User’s Manual 21

3.3 Power Control

There are several ways to reduce power consumption by the LP3100. Power supplies,
system clock speed, sleep modes, and shutdown modes for LP3100 peripherals and sub-
systems are all under software control, allowing flexible control of power consumption.

3.3.1 Power Supplies

Table 3 lists the subsystems and the name of each subsystem’s power supply. Figure 10
illustrates the power supplies.

Figure 10. Power Supplies

• VCCU is the primary power supply for the LP3100. Voltage regulator U3 provides
VCCU from the unregulated DCIN supply. In addition to suppling current for VCC
and ADVCC (via VCC), VCCU powers the LPBus, the RS-232 interface, and the RTC.
VCCU can be turned on and off by a device on the LPBus via the DLS signal. All cir-
cuits on the LP3100, except the RTC and SRAM, are unpowered while VCCU is off
(provided that backup power is supplied to the LP3100).

Table 3. LP3100 Power Supplies

Subsystem
Power Supply

Name

Power control, LPBus, RS-232, RTC VCCU

Microprocessor, MPU supervisor,
RS-485, flash EPROM, RTC, support
circuits

VCC

Analog-to-Digital converter ADVCC

Analog input AVCC

5 V for external digital interface +5 V

SRAM VRAM

SRAM and RTC backup source VBAK

DCIN

U3 Reg.

U2 Reg.

Q1

VCC, 3.3 V

VCCU, 3.3 V

/PWR

/ADENA

AVCC, ~3.3 V

+5 V

ADVCC, ~3.3 V

VBAK

VRAM
VCC

10

Q2

U36
Supervisor

DLS OFF

/PWR OFF

22 LP3100

• VCC is a secondary power supply that provides power to most of the LP3100 circuits
including the microprocessor, the microprocessor supervisor, the flash EPROM, and
the RTC. VCC is derived from VCCU. A software-controlled switch connects or dis-
connects the VCC supply from VCCU. VCC can be turned off under software control.
With VCCU is still active, restore VCC by any of the following actions:

– The RTC can generate an alarm (VCCU must still be providing power to the RTC)
and restore VCC and reset the Z180.

– VCCU can be shut down and brought back up. This cycling of VCCU will bring
VCC up and reset the Z180.

– The LPBus signal /INT/KS can be pulled low. This will restore VCC and reset the
Z180.

– If the /EN_DKS bit is asserted 0, a logic low on DIN0 will restore VCC and reset the
Z180.

The microprocessor stops running once VCCU or VCC is turned off.

• AVCC is the power supply for the A/D converter and signal conditioning circuits.
AVCC is derived from VCC. A software-controlled switch connects or disconnects the
ADVCC supply from VCC.

• The +5 V supply can be used to supply 5 V to the external digital interface. Voltage
regulator U2 provides +5 V DC from the unregulated DCIN supply.

• VRAM is the SRAM power supply. During normal operation, the microprocessor
supervisor IC provides power to the SRAM from VCC. If VCC is turned off, the
microprocessor supervisor powers the SRAM from VBAK. If there is no VBAK sup-
ply voltage, the contents of the SRAM are lost when VCC is turned off.

• VBAK is the backup voltage for the SRAM and RTC. The VBAK supply voltage
should be approximately 3 V (typically a battery or a supercapacitor). VBAK supplies
power to the SRAM when VCC is turned off and to the RTC when VCCU is turned off.

�

User’s Manual 23

3.3.2 Power Supply Control

The LP3100 Series is designed to consume less power than other Z-World controllers. In
additional to a lower power consumption during normal operation, an LP3100 series con-
troller also permits further power saving through the following special features:

• Shutdown Mode — VCC is turned off. ADVCC is also off since it is supplied by
VCC. VCCU is still active. The current draw in this mode varies from 300 µA to 400
µA. The LP3100 can be brought out of the shutdown mode by an external interrupt
event (/RESET, DIN0, LPBus, RTC) or by cycling power.

• Alternate External Supply — Allows the LP3100 to be powered by an external power
supply connected to the LPBus. The VCCU regulator is controlled via the DLS signal
on the LPBus. A high on DLS shuts down the VCCU regulator.

• Digital Output Supply — The digital outputs can be powered by either a 3.3 V or a 5
V supply. The +5 V supply for the digital outputs consumes an additional 2 mA. Use
the +5 V supply only if external devices require a 5 V interface. Jumper J1 selects the
digital output voltage supply. The +5 V supply can be turned on or off under software
control.

• Analog Input Supply — The analog input supply voltage, AVCC, can be turned off if
the analog inputs are not being used. The analog input section consumes approxi-
mately 1.5 mA. The analog input supply can be turned on or off under software con-
trol.

When deciding which power-saving features to use, consider the following important criteria.

• Overall power consumption requirement — This average power consumption
requirement is often related to the power supply constraints, such as the rating of batter-
ies. If the power supply system can constantly supply 25 mA, there is no need for any
power conservation methods.

• Power-up/resumption time requirement — Some applications require the controller
to respond quickly to external or internal events, while others have more relaxed
requirements. Any requirement with a reaction time less than 300 µs rules out shutting
down VCC.

• Power-up/resumption source options — Most power conservation schemes discussed
in this manual require the suspension of execution (the only exception is shutting down
individual components). Different power conservation schemes provide different
options to resume execution. The application engineer should make sure the options
match the requirements of the application. For example, if the application is to be
“awakened” by serial communication, the standby mode is not a power conservation
option.

• Application-specific requirements — The application may have requirements that do
not seem related to power conservation schemes. For example, if the application needs
to maintain timing accuracy of less than one second, shutting down VCC will no longer
be a useable alternative. The application engineer must evaluate the actual resources
on an LP3100 that are required by the application, then determine if the chosen power
conservation scheme may affect the required resources.

24 LP3100

• Application complexity - Some power conservation schemes, such as shutting down
VCC and the standy mode, present more issues for software design and development.
If there is more than one power conservation option available, the application engineer
should balance between power conservation and software complexity.

If you have further questions about special low-power considerations, contact Z-World
Technical Support at (530)757-3737.

3.3.3 Shutting Down VCC

LP3100 series controllers are equipped with VCCU (unconditional VCC), VCC (condi-
tional VCC), and provision for a back-up battery. Some chips are powered by VCCU, but
most are powered by VCC. The RTC can resume VCC as long as VCCU is available.
More information is provided about the RTC features in a following subsection.

The most important advantage of shutting down VCC is that it minimizes power con-
sumption. However, VCC can only be resumed from two software configurable sources.
VCC can also be resumed by system reset and VCCU power cycling. The two software
configurable VCC resumption sources are time-based wake up and kick start. The time-
based wake up feature relies on a pre-set date/time in the RTC to restart VCC. The kick
start approach relies on a negative edge on the kick start pin (DIN0) to resume VCC.

When VCC is resumed, the stack is rewound and control is passed to the main function. If
it is necessary to resume the program thread, the application engineer must not assume the
stack is the same as before VCC is shut down. The granularity of program thread resump-
tion is coarse.

Furthermore, when VCC resumes, the system requires some overhead time even before
control is passed to the main function. Therefore, shutting down VCC is not suitable for
applications that require fast recovery time.

In addition, the RTC can wake up VCC at a maximum frequency of 1 Hz. Where periodic
power-up of more than 1 Hz is needed, the application must depend on external circuitry
that pulses the kickstart line (DIN0). If external circuitry is not available, do not shut
down VCC.

3.3.4 Clock Speed

The LP3100 can switch the system clock speed between 3.072 MHz and 6.144 MHz. A
lower clock speeds reduces computing power, but also reduces power consumption. The
clock speed can be changed on the fly without affecting the state of the system. The 6.144
MHz clock speed is selected for computation-intensive operation. The system clock can
be slowed to 3.072 MHz when the additional speed is not needed. The LP3100 requires
an additional 4 mA when running at 6.144 MHz.

�

User’s Manual 25

Changing Clock Speed

The application can change the clock speed to reduce power consumption. However,
changing the clock speed has many side effects. All peripherals that depend on the clock
speed will be affected by a change of clock speed. In particular, the Z180 PRTs (program-
meable reloadable timers), ASCIs (asynchronous serial communication interfaces) and
CSI/O devices will be affected.

Dynamic C (5.25 and later versions) provides support to change the clock speed. The
application can call lp31Clk3MHz() to change the clock speed to 3 MHz, or call
lp31Clk6MHz() to change the clock speed to 6 MHz. When developing software via
communication port 0 (instead of the SIB2 port), these functions help to adjust communi-
cation port 0 so you can continue to debug the software after changing the clock speed. If
you plan to change clock speed in the application, it is best to use the SIB2 or use commu-
nication port 0 at 19,200 bps. Note that these functions do not adjust the PRT or ASCIs
not used for development purposes. If the application uses a PRT or an ASCI port, the
application program must adjust the PRT or ASCI port to maintain functionality after
clock speed change.

Changing system clock speed can affect many system resources including timers, serial
channels, DMA channels, and LPBus. Be careful to consider all of the possible effects
of changing the system clock speed when developing an application.

3.3.5 Microprocessor Operating Modes and Shutdown Mode

The microprocessor used on the LP3100 has several low-power modes. Each mode has a
unique set of tradeoffs. Following is a brief description of each mode:

• Standby Mode – void sysStandby()

The system clock is shut down. Uses minimum power consumption relative to the
other two modes. On-chip peripherals are also stopped in this mode. The only methods
to get out of standby mode are a system reset, power cycling, and external interrupts
(INT0, INT1, INT2 and NMI). The longest recovery time and the greatest power sav-
ings occur when the MPU is in Standby Mode. Since on-chip devices are not running,
only external sources (/RESET, DIN0, LPBus, RTC) can bring the MPU out of Standby
Mode. The recovery time of 64 cycles is greater than other modes because the oscilla-
tor needs to be restarted.

• Sleep Mode – void sysSleep()

The system clock continues to operate, but is blocked from the CPU core and DMA
channels. All other on-chip peripherals continue to operate. System reset, power cyling
and any interrupt resumes execution immediately. Current draw is less than Halt Mode
and greater than Standby Mode. Recovery time is longer than Halt Mode and shorter
than Standby Mode. The LP3100 will leave Sleep Mode in response to a logic low sig-
nal on the /RESET line, an interrupt from an internal source, or an interrupt from an
external source (DIN0, LPBus, RTC).

�

26 LP3100

• Halt Mode – void sysHalt()

The system clock, the CPU core, and DMA channels continue to operate. However, the
CPU does not fetch the next instruction. This mode does not save much power since it
draws the most current, but it has the shortest recovery time. The LP3100 will leave
Halt Mode in response to a logic low signal on the /RESET line, an interrupt from an
internal source, or an interrupt from an external source (DIN0, LPBus, RTC).

• Shutdown Mode - VCC is turned off. ADVCC is also off since it is supplied by VCC.
VCCU is still active. The current draw in this mode varies from 300 µA to 400 µA.
The LP3100 can be brought out of the shutdown mode by an external interrupt event
(/RESET, DIN0, LPBus, RTC) or by cycling power.

When the CPU is interrupted in any of the low-power operating modes (except the shut-
down mode), the CPU executes the appropriate interrupt handling routine, then returns to
the instruction after the sleep or halt instruction. In other words, execution of the main
thread is resumed after the interrupt handler returns.

If the Standby Mode is used, the on-chip timer can no long keep track of the time in
SEC_TIMER and MS_TIMER. The application should reinitialize SEC_TIMER immediately
after sysStandby() if SEC_TIMER is used either explicitly or implicitly.

The following lines of code define how to reinstate SEC_TIMER.

struct tm t;
sysStandby(); // enter standby mode

// some external interrupt
// resumes execution

tm_rd(&t); // get the real time
SEC_TIMER = mktime(&t); // reinitialize SEC_TIMER

It is impossible to resynchronize MS_TIMER when execution resumes after the Standby
Mode is engaged. Furthermore, the potential jump of SEC_TIMER and the discontinuity
of MS_TIMER may cause concurrent timing logic in the application to fail. The program-
mer should make sure that all concurrent threads are prepared for entering the Standby
Mode.

One interrupt source (an external interrupt to the Z180) to resume execution from the
Standby Mode is the RTC. The RTC can generate interrupts (via INT0) at up to 8 kHz
using the periodic interrupt feature, or down to once a month using the alarm feature.

When using DIN0 to bring the microprocessor out of the Halt, Sleep, Standby, or Shut-
down mode, set the /EN_DKS bit and apply a logic low signal to DIN0.

The Standby, Sleep, and Halt modes are supported by the Zilog enhanced Z180
(SL1919) processor. Refer to the Zilog Z180 Databook for more details about these
modes.

�

User’s Manual 27

3.3.6 Component Shutdown

Some components on an LP3100 series controller can be shut down by software. All shut-
down controls are mapped to the digital output map (use eioBrdDO to control the shut-
down features). Table 4 lists each shutdown feature, the eioBrdDO map, and actual I/O
address.

To assert active low signals, pass zero for the state argument in the call to eioBrdDO, or
pass zero to the output byte argument in outport. Pass non-zero for the state argument in
the call to eioBrdDO to turn off an active low signal, or pass 1 to the output byte argument
in outport. For example, to turn off the ADC reference voltage, call eioBrdDO(29,1)
or outport(0x40a5,1). Note that if you use the outport approach, bit 0 and only bit 0
of the output byte is used to control the feature. In other words, outport(0x40a5,2)
enables the ADC reference voltage.

The RS-232 transceiver has two software-selectable low-power modes.

• Driver Disable Mode — Current draw is reduced by 70 µA from normal operating
mode. The charge pumps are turned off and the driver outputs are placed in a high-
impedance mode. Both receivers are still active.

• Shutdown Mode — Current draw is about 200 µA. The entire transceiver is turned
off.

Table 4. Shutfown Control Map

Feature
(“/” signals are active low)

eioBrdDO
Index

Actual
Port No.

/232TEN RS-232 transmit driver enable 18 0x4082

232EN RS-232 receive driver enable 19 0x4083

/CTSEN RS-232 CTS enable 20 0x4084

LED LED enable 24 0x40A0

485TE RS-485 transmit enable 25 0x40A1

/485RE RS-485 receive enable 26 0x40A2

DOE Digital output enable 28 0x40A4

/ADENA ADC reference voltage eneable 29 0x40A5

28 LP3100

3.4 Digital Input/Output

The LP3100 has 20 digital input and output channels. Four channels are dedicated inputs,
eight channels are dedicated outputs, and eight channels can be configured as either inputs
or outputs. All digital input/output channels are brought out on header H2.

3.4.1 Digital I/O Operating Modes and Configuration

The eight dedicated digital outputs can be configured for 5 V or 3 V output signal levels.
This configuration applies to all eight channels. The output voltage is jumper config-
urable.

The eight digital input/output channels can be configured as either digital inputs or digital
outputs. If the input/output channels are configured as outputs, they can also be config-
ured for 5 V or 3.3 V operation. The input/output mode is software configurable and can
be changed at any time. The output voltage is jumper configurable.

The 3.3 V or 5 V configuration applies to the DOUT and DINOUT (when in output
mode) signals. All digital outputs are either 3.3 V or 5 V.

3.4.2 Digital Inputs

There are four dedicated digital inputs available on header H2: DIN0, DIN1, DIN2, and
DIN3. DIN0 can also be used to wake the system from a powerdown condition. Table 5
lists the H2 pin number and software channel for the digital input channels.

Each of the four digital inputs has a 10 kΩ pull-up resistor. DIN1 through DIN3 are pulled
up to VCC. DIN0 is pulled up to VCCU, allowing it to remain pulled high even if VCC is
turned off. This allows kick start resetting of an LP3100 when VCC is turned off.

The four digital inputs are connected to a 74VHC541 buffer. The 74VHC541 is a high-
speed, low-power CMOS device connected to a 3.3 V supply rail.

The buffer will tolerate a maximum input voltage of 7 V. Thus, reading 5 V logic signals
requires no additional interfacing. The minimum input high voltage is 2.3 V. The maxi-
mum input low voltage is 1.0 V.

Table 5. Digital Inputs

Pin No. Signal
Dynamic C

Channel No.

22 DIN0 8

23 DIN1 9

24 DIN2 10

25 DIN3 11

�

User’s Manual 29

The buffer is mapped into the Z180 I/O space at 4040H. DIN0 to DIN3 are mapped to the
low order nibble. DIN0 is the LSB.

The inputs can be read using two methods: (1) Z-World drivers or (2) the inport function.
Z-World drivers provide the easiest method of reading the inputs and will help make soft-
ware compatible with future versions of the LP3100 as well as other Z-World products.

Program 3-1 illustrates the use of Dynamic C functions for reading the digital inputs.

Program 3-1. Reading Digital Inputs with Functions

/* Read the Digital inputs using Z-World drivers*/
/* note this is a bitwise access to the port */

#use eziolp31.lib // use the correct library
#define INPUTCHAN 8 // Read DIN0
void main(void){

auto int result;
eioBrdInit(0); // initialize the board
while(1) {

hitwd();
result = eioBrdDI(INPUTCHAN);
switch (result) {

case -1: printf("digital input channel doesn’t
exist!\n", INPUTCHAN);

break;
case 0: printf("digital input channel %d reads

low\n", INPUTCHAN);
break;
case 1: printf("digital input channel %d reads

high/n", INPUTCHAN);
break;

}
}

}

printf statements must be on one continuous line in an executable program. In this
sample program, the printf statement is shown as more than one line only for dis-
play.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

DIN3 DIN2 DIN1 DIN0

�

30 LP3100

Program 3-2 shows how to use the inport function for reading the digital inputs.

Program 3-2. Reading Digital Inputs with inport Function

/* Read the Digital inputs using inport()*/

void main (void) {
while(1) {

printf("\nDIN=%X",(int)inport(0x4040));
hitwd();

}
}

3.4.3 Digital Outputs

There are eight dedicated digital outputs, DOUT0 through DOUT7. These eight outputs
are available on header H2. Table 6 lists the H2 pin numbers and software channels for
the digital outputs.

The eight digital outputs are connected to a 74VHCT574 latch. The 74VHCT574 is a
high-speed low-power CMOS device that will sink or source up to 8 mA. The output volt-
age will decrease as the output current increases. Table 7 shows the minimum output high
voltage, maximum output low voltage, and output current for both 3.3 V and 5 V supplies.

Table 6. Digital Outputs

Pin No. Signal
Dynamic C

Channel No.

14 DOUT0 8

15 DOUT1 9

16 DOUT2 10

17 DOUT3 11

18 DOUT4 12

19 DOUT5 13

20 DOUT6 14

21 DOUT7 15

Table 7. Digital Output Specifications

Parameter 3.3 V Supply 5.0 V Supply

Minimum High-Voltage Output*

* With loads < 50 µA

3.2 V 4.9 V

Maximum Low-Voltage Output<Superscript>* 0.1 V 0.1 V

Maximum Output Current (sinking or sourcing) 4 mA 8 mA

User’s Manual 31

A jumper on header J1 determines whether the output latch is supplied by the 3.3 V or the
5 V supply. J1 controls the supply voltage of both the DOUT latch and the DINOUT
latch. Use the supply voltage that is appropriate for the devices connected to the digital
outputs.

Figure 11. J1 Jumper Settings

When changing the J1 jumper setting, make sure that only pins 1 and 2 or pins 2 and
3 are connected. If pin 1, pin 2, and pin 3 are all connected, the LP3100 may be
damaged.

The DOUT latch is mapped to the Z180 I/O space at 4060H. DOUT0 is the least-signifi-
cant bit.

The outputs can be written using two methods: Z-World drivers or the outport function.
Z-World drivers provide the easiest method of writing to the outputs, and will help make
the software more compatible with future versions of the LP3100 as well as other Z-World
products.

�1"

.)

�!*�!)

�)2

�1�

�!0

�!)

.)
��
��/���,
��
-����+
��,�
�3
���4
,�
�/��5
-���6
7��,�

$!

�����/�
����
!
��,
"
3�

�
�
�	��	�

�����/�
����
)
��,
!
3�

"8"
�
�	��	�

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

DOUT7 DOUT6 DOUT5 DOUT4 DOUT3 DOUT2 DOUT1 DOUT0

32 LP3100

The code segment in Program 3-3 illustrates the use of Dynamic C functions to write digi-
tal outputs. Program 3-4 shows how to use the outport function to read digital inputs.

Program 3-3. Writing Digital Outputs with Z-World Drivers

/* Write a Digital output using Z-World drivers*/
/* note this is a bitwise operation */

#use eziolp31.lib
#define OUTPUTCHAN 8 // Use DOUT0
void main(void){

auto int result;
auto unsigned char value;
while(1) {

hitwd();
eioBrdInit(0);
value = 0; // Write a zero to output channel
result = eioBrdDO(OUTPUTCHAN, value);
if (result == -1)

printf("digital output channel %d doesn’t
exist!\n", INPUTCHAN);

}
}

printf statements must be on one continuous line in an executable program. In this sample
program, the printf statement is shown as more than one line only for display.

Program 3-4. Read Digital Inputs Using outport

/* Read the Digital inputs using outport()*/

void main(void){
unsigned char c;
c=0;
while(1) {

outport(0x04060, c++);
printf("\nwrote %d",(int) c);
hitwd();

}
}

�

User’s Manual 33

3.4.4 Digital Inputs/Outputs

There are eight combination digital input/output channels, DINOUT0 through DINOUT7.
The digital inputs/outputs are brought out on header H2. Table 8 lists the H2 pins and
software channel numbers for the digital inputs/outputs.

The eight DINOUT pins are connected to a 74VHC541 buffer for the inputs and a
74VHCT574 latch for the outputs. The buffers and latches are high-speed, low-power
CMOS devices. Each digital input/output has a 10 kΩ pull-up resistor to VCC. The input
buffer will accept input voltages up to 7 V. Thus, reading 5 V logic signals requires no
additional interfacing. The output latches source or sink up to 8 mA with a
5 V supply and up to 4 mA with a 3.3 V supply.

Table 9 lists input and output logic threshold values as well as the output current. Output
voltages are shown for both 3.3 V and 5 V supplies. Output voltages listed in Table 9 are
for output currents of 50 µA or less. The output voltages will drop as the output current
increases..

Table 8. Digital Input/Output Channel Numbers

Pin No. Signal
Dynamic C

Channel No.

6 DINOUT0 0

7 DINOUT1 1

8 DINOUT2 2

9 DINOUT3 3

10 DINOUT4 4

11 DINOUT5 5

12 DINOUT6 6

13 DINOUT7 7

Table 9. Digital I/O Channel Specifications

Parameter 3.3 V Supply 5.0 V Supply

Input Minimum High Voltage 2.3 V 2.3 V

Input Maximum Low Voltage 1.0 V 1.0 V

Output Minimum High Voltage 3.2 V 4.9 V

Output Maximum Low Voltage 0.1 V 0.1 V

Maximum Current (sinking or sourcing) 4 mA 8 mA

34 LP3100

The input buffer is mapped into the Z180 I/O space at 4020H. DINOUT0 is the least-sig-
nificant bit. The output latch is mapped into the I/O space at 4040H. DINOUT0 is the
least-significant bit.

During power-up or reset, the bit-addressable latch, U30, resets, and the output latch (U4)
outputs are enabled momentarily even if DINOUT0–DINOUT7 will be used as inputs.

The DINOUT channels can be used as outputs and inputs simultaneously. Excessive load-
ing on the output lines can be detected by reading an input while an output is active.

Configuring as Outputs

1. Enable the output latch by writing a 0 to the bit-addressable latch, U30, at address
40A4H (/DOE).

2. The status of the output latch signals is indeterminate at startup. Write an initialization routine to place

the outputs in the desired default state.

Do not connect DINOUT0–DINOUT7 to inputs or machinery that could be damaged or
cause injury because the output state cannot be guaranteed on power-up or reset.

The outputs can be written by using Z-World drivers or the outport function and read by
using the drivers or the inport function.

Program 3-5 illustrates the use of inport function for writing the digital input/outputs.

Program 3-5. Exercising DINOUT Channel Using inport

/* Read the Digital inputs using inport()*/

void main(void){
unsigned char c;
c=0;
outport(0x40A4, 0); /* enable output latch */

/* outport(0x40A4, 1) is the complementary function used to
put output latch outputs into a high Z mode. */

while(1) {
outport(0x04040, c++);
printf("\nwrote %d",(int) inport(0x04020);
hitwd();

}
}

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

DINOUT
7

DINOUT
6

DINOUT
5

DINOUT
4

DINOUT
3

DINOUT
2

DINOUT
1

DINOUT
0

User’s Manual 35

Program 3-6 illustrates the use of the Z-World driver for the DINOUT lines.

Program 3-6: Exercising DINOUT CHannel with Z-World Drivers

/* Use the DINOUT lines as outputs with read back verifica-
tion. Interface using Z-World drivers*/

#use eziolp31.lib

#define OUTPUTCHAN 0 // DINOUT0
#define INPUTCHAN 0 // DINOUT0

void main(void){
auto unsigned char value;
auto int result;
eioBrdInit(0); // initialize the board
while(1) {

hitwd();
eioBrdInit(0);
value = 0; // Write a zero to output channel
result = eioBrdDO(OUTPUTCHAN, value);
if (result == -1)
printf("digital output channel %d doesn’t

exist!\n", INPUTCHAN);
result = eioBrdDI(INPUTCHAN);
switch (result) {

case -1: printf("digital input channel %d
doesn’t exist!\n", INPUTCHAN);

break;
case 0: printf(“digital input channel %d reads

low\n”, INPUTCHAN);
break;
case 1: printf(“digital input channel %d reads

high/n”, INPUTCHAN);
break;

}
}

}

printf statements must be on one continuous line in an executable program. In this
sample program, the printf statement is shown as more than one line only for dis-
play.

�

36 LP3100

Configuring as Inputs

Z-World recommends removing the output latch, U4, when DINOUT0–DINOUT7 are to
be used as inputs. If U4 is not removed, place the output latch into a high-impedance state
by writing a 1 to the bit-addressable latch, U30, at address 40A4H (/DOE).

If U4 is not removed, DINOUT0–DINOUT7 become enabled as outputs at power-up
or reset before the initialization routine configures them. Exercise care when con-
necting DINOUT0–DINOUT7 to outputs or machinery that could be damaged or
cause injury when momentarily connected to an output signal.

User’s Manual 37

3.5 Analog Inputs

The LP3100 has four analog input channels that are brought out on header H2. The analog
inputs are designated AIN0 to AIN3, and are listed in Table 10.

The analog input channels can be configured for a wide range of input voltages. The
default input range of the analog inputs is 0 V to 10 V. The analog inputs can be config-
ured for almost any input range by replacing two resistors in the input amplifier circuit.

Each analog channel consists of an inverting amplifier referenced to a user-defined offset
voltage, as shown in Figure 12.

Figure 12. Analog Input Amplifier

Table 10. Analog Input Channel Numbers

Pin No. Signal
Dynamic C

Channel No.

35 AIN0 0

36 AIN1 1

37 AIN2 2

38 AIN3 3

0.001 µF

Rg

RBOTTOMRTOP

VREF

Input

To ADC

100 kΩ

10 kΩ

RIN

CFB

10 µF100 µF

38 LP3100

Table 11 lists the analog input amplifier components.

Changing the values of Rg and Rbottom sets the gain and offset of the channel. Figure 13
illustrates the locations for Rg and Rbottom on an LP3100 printed circuit board.

Figure 13. Location of Rg and Rbottom Resistors

Table 11. Analog Input Component References

Channel RIN Rg RTOP RBOTTOM Capacitor

AIN0 R30 R10 R34 R11 C36

AIN1 R31 R12 R35 R13 C37

AIN2 R32 R14 R36 R15 C38

AIN3 R33 R16 R37 R17 C39

U17

U
30

U27

U32

J6 J7

R12R10

R14R16

R
15

R
13

R
11

R
17

U10

U12

U16H2

Z180

RN5

U13

Q2

U34 U15
Z180

Top View

Bottom View

User’s Manual 39

Table 12 lists resistor values for some common analog input voltage ranges.

If the application requires an input voltage range not shown in Table 12, the correct values
of Rg and Rbottom can be determined using the formulas presented in the next section.

Rg and Rbottom are both 1206-size SMT resistors.

Exercise caution when replacing any of the analog input resistors or capacitors. Use the
proper SMT rework equipment for removing and replacing these parts.

Table 12. Resistor Values for Common Input Ranges

Channel Input Range
(V)

Rg (kΩ) RBOTTOM (kΩ)

–10.0 to +10.0 11.8 8.06

–5.0 to +5.0 23.2 6.65

–2.5 to +2.5 47.5 4.99

–2.0 to +2.0 59.0 4.53

–1.0 to +1.0 118 2.87

–0.5 to +0.5 237 1.69

–0.25 to +0.25 464 0.953

–0.1 to +0.1 1180 0.392

*0 to +10.0

* Default values

23.7 39.2

0 to +5.0 46.4 19.6

0 to 2.5 93.1 10.0

0 to 1.0 226 4.02

+1.0 to +2.0 237 13.3

+2.0 to +7.0 47.5 140.0

+0.020 to +0.100 3010 0.402

�

40 LP3100

3.5.1 Scaling Input Range

Once the input range has been determined, the appropriate resistor values must be
selected. The following steps enumerate how to achieve the appropriate register values.

1. Choose a gain resistor. Use Equation (3-1) to determine the value of the gain resistor.

(3-1)

2. Select RBOTTOM using Equation (3-2).

(3-2)

3. Select the appropriate resistor values. Standard resistor values can be found in many
electronics references and catalogs. Using 1% resistors will give better accuracy and a
greater number of choices than using 5 % resistors.

• For Rg, select the next standard value less than the standard value closest to the
computed value. Choosing a lower value helps insure that the input signal does
not exceed the 2.5 V reference voltage for the ADC.

• For RBOTTOM, select the nearest standard value.

If the computed values exceed 3 MΩ, it may be necessary to change the values of RTOP

and RIN. Calculations for these resistors are presented in the next section.

4. To verify that the calculated values provide the correct gain and offset, plug VINmin
 and

VINmax
 into Equation (3-3).

 (3-3)

VINmin
 should yield a positive VOUT just less (within 50 mV) than 2.5 V. VINmax

 should

yield a positive VOUT just greater (within 50 mV) than zero.

5. Test the circuit to verify that it works properly.

Rg
2.5 10

5×
VINmax

VINmin
–

-------------------------------------=

RBOTTOM

Rg VINmax
10

4⋅ ⋅

Rg 2.5 VINmax
–() 2.5 10

5×()+⋅
--=

VOUT

RBOTTOM

RBOTTOM 10
4

+
--- 2.5 VIN–⋅

 
 
  Rg

10
5

 
 
 

RBOTTOM

RBOTTOM 10
4

+
--- 2.5⋅

 
 
 

+

=

�

User’s Manual 41

Scaling Input Range: Example

Given a sensor with an output of -1 V to 2 V, VINmin
 and VINmax

 are as follows.

 VINmax
 = 2 V, VINmin

 = -1 V

1. Determine the value of the gain resistor using Equation (3-1).

2. Select RBOTTOM using Equation (3-2).

3. Select resistor values:
• The next lower standard 1% value for Rg is 80.6 kΩ.

• The closest standard 1% value for RBOTTOM is 5.76 kΩ.

4. Now, check values by plugging VINmin
 and VINmax

 into Equation (3-3).

• Check VOUT for VINmin
.

This value of VOUT is within 50 mV of 2.5 V using VINmin
.

Rg
2.5 10

5×
2 1–()–

83.3 kΩ (ideal value)

=

=

RBOTTOM
83.3 10

3
2 10

4⋅ ⋅×

83.3 10
3×() 2.5 2–() 2.5 10

5⋅+⋅
---=

VOUT
5.76 10

3×
5.76 10

3
10

4
+×

-- 2.5 1–()–⋅
 
 
  80.6 10

3×
10

5

 
 
 

5.76 10
3×

5.76 10
3

10
4

+×
--

 
 
 

2.5⋅+

2.456 V

=

=

42 LP3100

• Check VOUT for VINmax
.

This value of VOUT is within 50 mV of 0 V using VINmax
.

VOUT falls within the acceptable output range.

In this example, with Rg = 80.6 kΩ and RBOTTOM = 5.76 kΩ, the analog channel will accept

inputs from -1 V to 2 V. The amplifier output is in the range 0 V to 2.5 V, with a little mar-
gin (~30 mV) for system error (e.g., ADC or op-amp offset).

3.6 Operation

This section presents a complete analysis of the analog input circuit (see Figure 12).

The first-order approximation of the op-amp assumes the following criteria:

• Infinite open-loop gain

• Zero output impedance

• Zero voltage offset

• Infinite input impedance

• Zero input bias currents

• Noiseless components

3.6.1 The VOFF Voltage Divider

The voltage divider formed by RTOP and RBOTTOM provides an offset voltage for the

amplifier. The offset voltage VOFF is given by Equation (3-4).

(3-4)

VREF for the LP3100 is 2.5 V.

VOUT
5.76 10

3×

5.76 10
3

10+
4

×
-- 2.5 2()–⋅

 
 
  80.6 10

3×
10

5

 
 
 

5.76 10
3×

5.76 10
3

10
4

+×
--

 
 
 

2.5⋅+

0.038 V

=

=

VOFF

RBOTTOM

RBOTTOM RTOP+
--

 
 
 

VREF⋅=

User’s Manual 43

3.6.2 DC Gain

Examine the DC gain of the circuit.

An amplifier in a negative feedback topology will force the error between the amplifier’s
inputs to zero.

This implies that V(INVERTING) = V(NONINVERTING) = VOFF .

Since there is infinite impedance at the op-amp’s inputs, the current through RIN must

equal the current through Rg. The current through RIN is determined by Equation (3-5).

(3-5)

The current through Rg, IRg
, is determined by Equation (3-6).

(3-6)

Setting Equation (3-5) and Equation (3-6) equal and solving for VOUT yields Equation (3-7).

(3-7)

When VOFF is zero, the circuit scales VIN by a factor of -Rg/RIN. This is the DC gain. The

DC gain can be determined by Equation (3-8).

(3-8)

This result agrees with the gain of a classic op-amp inverting amplifier.

Given a desired input range, it is possible to compute the required circuit gain. The ampli-
fier needs to map the input voltage range to the 0 V to VREF input range of the ADC.

(3-9)

The LP3100 has VREF = 2.5 V and RIN is shipped as 100 kΩ.

Once the gain has been computed, Equation (3-8) can be used to compute Rg.

IRIN

VIN VOFF–

RIN
-----------------------------=

IRIN

VOFF VOUT–

Rg
-----------------------------------=

VOUT

VOFF VIN–

RIN

 
 
 

Rg VOFF+⋅=

g

R– g

RIN
--------- g⇒

Rg

RIN
---------= =

g
VREF

VINmax
VINmin

–
-------------------------------------=

44 LP3100

3.6.3 Finding VOFF

Once the gain is known, the VOFF required to center the output in the range 0 V to VREF

can be determined.

Examine VOFF when VIN is at minimum and maximum.

First, take the case of a maximum VIN. Because the circuit is an inverting amplifier, VINmax

must map VOUT to zero.

Start with Equation (3-7) and substitute VOUT = 0 and VIN = VINmax
 to get Equation (3-10).

(3-10)

Now, simplify using Equation (3-8). Substitute Equation (3-8) into Equation (3-10) to get
Equation (3-11).

(3-11)

Then,

(3-12)

0
VOFF VINmax

–

RIN

 
 
 

Rg VOFF+⋅

VOFF VINmax
–()

Rg

RIN

 
 
 

VOFF+

=

=

0 VOFF VINmax
–() g–() VOFF+

VINmax
V–

OFF
()g VOFF+

=

=

VOFF VINmax

g
g 1+
------------ 

  .=

User’s Manual 45

Do the same thing for VIN = VINmin
. When VINmin

 is presented at VIN, VOUT = VREF has

to be true. Start with Equation (3-7) and substitute VOUT = VREF and VIN = VINmin
 to get

Equation (3-13).

(3-13)

Rearrange and solve for VOFF. Either Equation (3-12) or Equation (3-14) may be used to

calculate VOFF.

(3-14)

3.6.4 Practical Considerations

Resistors are available only in discrete standard values. Once ideal values are computed, a
standard value must be selected. There are more 1% resistor values to choose from than
there are 5% resistor values. Also, 1% resistors have a lower temperature drift. There is
only a slight difference in cost between 1% and 5% resistors.

Resistors over 3 MΩ should be avoided. Two reasons to avoid large resistor values are the
susceptibility of the circuit to noise and the availability of parts. Reducing RIN or adding

an external pre-amp are alternative methods of increasing gain if a large DC gain is
needed.

The op-amp in the LP3100 has a ±7.5 mV maximum offset voltage (at 25°C). This offset
is multiplied by the DC gain and added to VOUT. This means if the DC gain is 10, VOUT

may have a 75 mV offset in it.

The input bias currents of the op-amp will also produce error voltages at the inputs that get
multiplied by the DC gain, and will show up as an offset in VOUT.

VREF

VOFF VINmin
–

RIN

 
 
 

Rg() VOFF+

VOFF VINmin
–()

Rg

RIN

 
 
 

VOFF+

VOFF VINmin
–() g–() VOFF+

VINmin
VOFF–()g VOFF+

VINmin
g VOFF 1 g–()+

=

=

=

=

=

VOFF

VINmin
g() VREF–

g 1–()
---=

46 LP3100

To avoid these offsets pushing VOUT beyond the 0 V to VREF range of the ADC, select Rg to be
a smaller standard value than computed. This will sacrifice some dynamic range of the
ADC for improved reliability.

Selecting RBOTTOM is a matter of picking the standard value closest to the computed value.

3.6.5 Input Impedance

The input impedance looking into the circuit from VIN is just RIN. Note also that RIN is

connected to the inverting input, which is maintained (by the op-amp’s negative feedback)
at VOFF.

Gain can be increased by sacrificing input impedance. A fixed value of Rg will produce a

larger DC gain if RIN is reduced. However, a smaller RIN will require the source of VIN

(often a transducer) to provide additional current, as shown in Equation (3-15).

(3-15)

3.6.6 Frequency Response

The capacitor in the feedback loop fixes a pole as shown in Equation (3-16).

(3-16)

Fc, the 3 dB point for the single-pole filter, is in hertz, and C is capacitance. The filter will

roll off at the 20 dB decade after Fc.

This low-pass filter helps eliminate noise in the channel. The pole should be set as low as
possible for the application. The standard capacitor shipped is 0.001 µF.

IRIN

VIN VOFF–

RIN
-----------------------------=

Fc
1

2π Rg CFB⋅ ⋅
--------------------------------=

User’s Manual 47

�

3.6.7 Using the ADC

The best way to use the ADC is with the Z-World Dynamic C drivers. Using the Dynamic
C drivers helps ensure that the code will be compatible with future versions of the LP3100
as well as other Z-World products. Program 3-7 illustrates the use of the Dynamic C ADC
functions.

Program 3-7. Reading Analog Inputs with Dynamic C Functions

/* Read the analog inputs using Dynamic C Functions */

#use eziolp31.lib

#define INPUTCHAN 0

main() {
float raw, analog;
eioBrdInit(0); /* initialize the I/O driver */
eioBrdDO(nADENA, 0); /* enable analog inputs */
eioErrorCode = 0; // clear error flag
raw = eioBrdAI(INPUTCHAN+16); /* read the raw chan.*/

/* read channel, scale with calibration constants */

eioErrorCode = 0; // clear error flag
analog = eioBrdAI(INPUTCHAN);
if (eioErrorCode & EIO_NODEV) {

printf("analog input channel %d doesn’t exist!\n",
INPUTCHAN);

}
else {

printf("analog input channel %d reads 0x%04x,
interpreted to %f\n", INPUTCHAN, (int)raw,
analog);

}
}

printf statements must be on one continuous line in an executable program. In this
sample program, the printf statement is shown as more than one line only for dis-
play.

3.6.8 Using the Analog Inputs

The factory calibrates each LP3100, storing each unit’s individual zero offset and actual
gain for each channel in simulated EEPROM. The library function eioBrdAI uses these
calibration values to provide adjusted readings for the analog inputs.

48 LP3100

3.7 Serial Communication

The serial channels provide a simple method for connecting the LP3100 to other serial
devices. The LP3100 has hardware drivers for both RS-232 and RS-485 signals. Speeds
up to 38,400 bps are possible when the system clock is set to 6.144 MHz. The maximum
speed is 19,200 bps when the clock is set to 3.072 MHz.

3.7.1 Operation

The LP3100 has two serial channels. These serial channels can be configured in the fol-
lowing three ways:

1. One 5-wire RS-232 channel and one RS-485 channel.

2. One 3-wire RS-232 channel and one RS-485 channel.

3. Two 3-wire RS-232 channels.

The serial channels, Z0 and Z1, originate from UARTs on the Z180 microprocessor used
on the LP3100. Serial Channel Z0 has handshaking signals available when configured as
a 5-wire RS-232 port. Serial Channel Z1 does not support hardware handshaking.
Table 13 summarizes the serial channel signals for channels Z0 and Z1.

Serial Channel Z0 can be configured as either a 3- or 5-wire RS-232 interface. Z0 can
only be configured for RS-232. Z1 can be configured either as a 3-wire RS-232 or as an
RS-485 interface.

The RS-232 converter (LTC1385) has two inputs and two outputs. When Z0 is configured
as a 5-wire interface, all four LTC1385 I/O lines are used. Table 14 lists how resources are
allocated for a Z0 5-wire interface.

Table 13. Serial Channel Signals

Serial Channel Z0 Serial Channel Z1

TXA0—Transmit channel 0 TXA1—Transmit channel 1

RXA0—Receive Channel 0 RXA1—Receive channel 1

RTS0—Request to send, channel 0

CTS0—Clear to send, channel 0

Table 14. 5-wire RS-232 Configuration Signals

Z0 Signal RS-232 Converter (LTC1385)

TXA0—Transmit channel 0 TX0—RS-232 transmit

RXA0—Receive Channel 0 RX0—RS-232 receive

RTS0—Request to send, channel 0 TX1—RS-232 RTS

CTS0—Clear to send, channel 0 RX1—RS-232 CTS

User’s Manual 49

When Z0 is configured as a 3-wire RS-232 interface, only two LTC1385 I/O lines are
used. Table 15 lists the resource allocation for one 3-wire RS-232 interface.

When Z0 is configured as a 3-wire RS-232 interface, there are enough LTC1385 resources
left to have a second 3-wire interface. Table 16 lists the resource allocation for two 3-wire
RS-232 interfaces. Z0 is a dedicated RS-232 interface (3- or 5-wire). Z180 Channel Z1
can be either an RS-232 or an RS-485 interface.

LP3100 resources are configured using both hardware and software. The jumper settings
are shown in Table 17.

The jumper settings for the last two configurations are the same. Software drivers set up
Channel Z0 for a 3- or 5-wire RS-232 interface. The jumpers are used to route the Z180
Channel Z1 signals to either the RS-232 transceiver or the RS-485 transceiver.

Table 15. 3-wire RS-232 Configuration Signals

Z0 Signal RS-232 Converter (LTC1385)

TXA0—Transmit channel 0 TX0—RS-232 transmit

RXA0—Receive Channel 0 RX0—RS-232 receive

Table 16. Two 3-wire RS-232 Configuration Signals

Channel Signal RS-232 Converter (LTC1385)

Z0
TXA0—Transmit channel 0 TX0—RS-232 transmit channel 0

RXA0—Receive Channel 0 RX0—RS-232 receive channel 0

Z1
TXA1—Transmit channel 1 TX1—RS-232 transmit channel 1

RXA1—Receive Channel 1 RX1—RS-232 receive channel 1

Table 17. Serial Channel Jumper Settings

Configuration J2 J3

Two 3-wire RS-232

2–3 2–3

One 3-wire RS-232 and one RS-485 1–2 1–2

One 5-wire RS-232 and one RS-485 1–2 1–2

�� ��

50 LP3100

3.7.2 RS-232 Communication

The RS-232 channels and the supplied Dynamic C software allow the LP3100 to communicate with other

computers or controllers. By adding a modem, remote communication can be achieved (including remote

downloading) using the X-modem protocol. Software driver examples for RS-232 can be found in the

Dynamic C SAMPLES\AASC subdirectory. For additional information on remote downloading, refer to the

Dynamic C user’s manuals.

Use the optional Z-World SIB2 to make all serial channels available to the application during software

development.

See Chapter 2, “Getting Started,” and Appendix C, “Serial Interface Board,” for more
information.

3.7.3 RS-485 Communication

The LP3100 can be configured for one RS-485 communication channel using Serial
Channel Z1. The LP3100 provides a two-wire RS-485 interface. The + signal is available
on pin 32 of H2 and the – signal is available on pin 31 of H2. Using RS-485, signals can
be carried up to 4,000 feet, assuming the line is properly terminated and the baud rate is
9,600 bps or less. As a general rule, the maximum transmission distance is halved for
each doubling of the baud rate.

Some manufacturers refer to + and – as A and B, although the assignment of A to + and
B to – varies from company to company. Z-World uses + and – exclusively and consis-
tently on all controllers that support RS-485.

With the RS-485 port, an LP3100 can be connected to other controllers, expansion boards,
or a variety of third-party devices. The RS-485 transceiver of the LP3100 is capable of
driving up to 31 other RS-485 devices. If more than 32 devices (including the LP3100)
are required on a network, then RS-485 repeaters must be used.

RS-485 repeaters are available from companies such as Black Box and B&B Electronics.

Figure 14 illustrates the wiring of an RS-485 network.

Figure 14. RS-485 Network Wiring

+ –

Master

+ –

Slave

15–75 Ω

+ –

Slave

15–75 Ω

8
8
8

8
8
8
8
8
8

220 Ω

0.1 µF

220 Ω

0.1 µF

10 kΩ

10 kΩ

�

�

�

User’s Manual 51

For most RS-485 systems, simply running two wires (+ and –) is sufficient. However, a
third wire may be required over long distances and in electrically noisy systems. Rather
than using a traditional ground for the third wire, connect a wire to the ground of the net-
work master and then to the ground of each slave unit through a small resistor. The resis-
tor value is typically 15 Ω to 75 Ω. This grounding technique eliminates significant
grounding differences that may prevent the RS-485 transceiver from communicating.
Another added benefit of this grounding technique is that it provides a return path for cur-
rent sent by the RS-485 transmitter without forcing a common ground that could create
other electrical problems for nodes on the network.

On a traditional RS-485 network, the master node provides network biasing that holds the
RS-485 in an idle state when no transmitters are active. Typically, bias resistors are also
included on slave units, and must be removed for the slave units to operate properly.
However, the LP3100 uses a small pull-up resistor (10 kΩ), which can remain on the slave
units and still allow proper operation.

Termination resistors are recommended in a multidrop network to reduce reflections. Ter-
mination resistors are typically installed on the master controller and on the slave unit
located at the opposite end of the network. For termination, install a 220 Ω resistor across
the RS-485+ and RS-485– connections on the LP3100 as shown in Figure 14.

3.7.4 Software

Serial channel drivers are located in the AASC library. Other drivers are also available.
Comprehensive information on the serial channel software and programming can be found
in the Dynamic C Function Reference Manual and the other Dynamic C manuals.

3.8 Real-Time Clock

The Dallas Semiconductor DS1685 RTC provides several functions for the LP3100. This
RTC keeps track of time while proving an alarm function, system power control, a unique
64-bit serial number, and additional user RAM.

For detailed information on the DS1685 RTC, see the Dallas Semiconductor Timekeep-
ing and NV SRAM Databook.

During normal operation, the RTC is powered from VCC. If VCC is shut down, the RTC
is powered by VCCU. If both VCC and VCCU are shut down, the RTC can be backed up
with the battery that backs up the RAM. This allows the RTC to keep time even when the
main power source is removed.

The RTC uses a 32,768 Hz crystal as a time base. This low frequency keeps radiated elec-
tromagnetic interference to a minimum.

Z-World provides drivers to access the most commonly used features. The functions
tm_rd() and tm_wr() read and write data to the real-time clock. These functions are
documented in the Dynamic C Function Reference Manual.

Refer to the DS1685 data sheet for more details if there is a need to access the RTC hard-
ware directly. The RTC address space is accessed by a two-step operation. First, a RTC

�

52 LP3100

address is latched into the RTC address latch. This is accomplished by a Z180 I/O write to
0x4020. For example, use the following function call to access REG A in the RTC
address space (RTC 0x0A):

outport(0x4020, 0x0A); // set up address for REG A

Second, the RTC data can be read or written with another I/O cycle to 0x4000. For exam-
ple, use the following command to write 0x03 to the RTC address currently latched into
the RTC:

outport(0x4000, 0x03); // write byte to RTC

3.8.1 Real-Time Clock Interrupts

An important function is generating interrupts to support application features. The inter-
rupts can be generated for the following causes:

• Periodic - The application may specify a frequency at which the RTC interrupts.

• Alarm - The application may specify a particular time (per second, per minute, per
hour, per day and per month) at which the RTC interrupts.

• Update ended - The RTC can interrupt at the end of each update cycle. This is not
used in the Dynamic C RTC drivers.

• Wake up - The RTC can reenable VCC of the controller and interrupt at a particular
time (per second, per minute, per hour, per day and
per month).

• Kick start - The RTC can reenable VCC of the controller and interrupt by monitoring
a kick start line.

• RAM clear - Not used on the LP3100 series controllers.

The periodic, alarm, wake up and kick start interrupts are particularly useful on the LP3100
series controllers. If an application needs a high-frequency periodic interrupt (2 Hz to
8.192 kHz), the periodic interrupt feature can be used. If your application needs a low-fre-
quency periodic interrupt (per second to per month), the alarm feature can be used. In
order to save power, shut down VCC on the controller, and rely on either the wake up or
kick start feature of the RTC to enable VCC at a pre-set time or when an external event
happens.

Hardware Connection

The /IRQ line (active low) of the RTC is connected to /INT0 of the Z180.

Software Setup

The following procedure should be followed to set up the RTC for interrupt generation
and servicing.

1. Write interrupt service routine. The ISR can be written in C or assembly. If it is a C
routine, make sure the definition is qualified by interrupt reti. If it is an assembly
routine, make sure the routine returns by the instruction reti.

User’s Manual 53

2. Vector to the custom interrupt routine. This is normally accomplished by using the
directive #JUMP_VEC RST38_VEC myISR, in which myISR should be replaced by the
name of the interrupt routine.

3. INT0 should be disabled when the interrupt is being set up. Note that by default, when
the main function is called, INT0 is disabled. INT0 is maskable by resetting bit 0 in the
I/O register ITC (address 0x34) or via the global DI (disable interrupt) instruction. The
application can call rtcIRQ(0) to reset bit 0 in register ITC.

4. If the RTC cannot be assumed initialized, call rtcInit() to initialize it. Also, use the
following macros to disable all interrupt sources for initialization: rtcSwAIE(0),
rtcSwKSE(0), rtcSwPIE(0), rtcSwUIE(0), rtcSwRIE(0), and rtcSwWIE(0).

5. Call rtcClrIRQ() to clear the interrupt flags for each interrupt source.

6. Set up the registers for each interrupt source. This is interrupt source dependent.

7. Enable INT0 by calling rtcIRQ(1).

8. Enable the interrupt source. This is interrupt source dependent.

3.8.2 Periodic Interrupts

Use the macro rtcSetPIRate(x) to specify the frequency of interrupts. The mapping
between x and the period of the interrupt is listed in Table 18.

Use the macro rtcSwPIE(1) to enable the interrupt source and rtcSwPIE(0) to disable
the interrupt source. In the interrupt service routine, either read register C (use macro
rtcRdRegC()) explicitly or use the macro rtcChkPF() to clear the interrupt flag. Note
that if the flag is not cleared (by reading), the interrupt stays asserted. If you are also using
the alarm or update-ended interrupts, you should read register C to determine the exact
cause(s) of the interrupt. The periodic interrupt flag is bit 6 of register C. The following
code illustrates the idea.

flags = rtcRdRegC();
if (flags & 0x40) {
 // handle periodic interrupt here
}
 // check other bits of flag here if required

Refer to the sample program SAMPLES/LP31XX/RTCPER.C.

Table 18. Interrupt Mapping

Value of x Interrupt Period Value of x Interrupt Period Value of x Interrupt Period

1 3.90625 ms 6 976.5625 µs 11 31.25 ms

2 7.8125 ms 7 1.953125 ms 12 62.5 ms

3 122.070 µs 8 3.90625 ms 13 125 ms

4 244.141 µs 9 7.8125 ms 14 250 ms

5 488.281 µs 10 15.625 ms 15 500 ms

54 LP3100

3.8.3 Alarm Interrupts

An alarm can be set using the rtcSetAlmTime function. The alarm will cause the RTC
to generate an interrupt (/INT0) when the alarm expires. This can be used to wake the
Z180 from a sleep mode or initiate periodic actions. Alarms are typically used in systems
taking periodic samples over long periods of time (hours, days, weeks, or months).
VCCU must be active in order for an alarm to wake the microprocessor.

The alarm has four fields to specify when to generate the alarm interrupt. There are fields
to specify the second, minute, hour and month-day to generate the alarm interrupt. Each
field, including the second field, can be initialized with a “don’t care” (0xc0) value. The
interrupt is generated if the current time in the RTC matches all the alarm fields. A “don’t
care” value in the alarm field matches all RTC values of the same field. For example, if
you need an interrupt every hour, specify 00 for the second and minute alarm fields, and
use 0xc0 for the hour and month-day fields.

The function rtcSetAlmTime(struct tm *t) is used to initialize the alarm fields. Initial-
ize a struct tm variable first, then call the rtcSetAlmTime function to initialize fields in
the RTC. Use the macro rtcSwAIE(1) to enable the interrupt source and rtcSwAIE(0)
to disable the interrupt source. In the interrupt service routine, either read register C (use
macro rtcRdRegC()) explicitly or use the macro rtcChkAF() to clear the interrupt flag.
Note that if the flag is not cleared (by reading), the interrupt stays asserted. If you are also
using the periodic or update-ended interrupts, you should read register C to determine the
exact cause(s) of the interrupt. The periodic interrupt flag is bit 5 of register C. The fol-
lowing code illustrates the concept.

if (flags & 0x20) {
 // handle alarm interrupt here

}

Refer to the sample program SAMPLES/LP31XX/RTCALM.C.

3.8.4 Wake Up VCC

VCC on the LP3100 series controllers can be shut down by software. When VCC is shut
down, the application can set up the RTC to power-up VCC again when either the kick-
start pin is toggled or at a particular time. VCCU must be available for these operations.

Call lp31Shutdown to shut down VCC. This function takes two arguments. The first
argument is a flag to indicate whether kickstart should be enabled. If the parameter is non-
zero, the kickstart feature is enabled. The second argument is a flag to indicate whether
the wake-up feature should be enabled. If the parameter is non-zero, the wake-up feature
is enabled. lp31Shutdown does not return to the caller.

When power is resumed, the application’s main function will be called again. At this
point, the application should check the kick start flag and wake up flag to determine the
cause of the power-up. The kick start flag is checked with the macro rtcChkKF(), and
the wake up flag is checked with the macro rtcChkWF(). As soon as the flags (kickstart
and wake up) are checked, they should be cleared. To clear the kick start flag, use the

User’s Manual 55

macro rtcSwKF(0). To clear the wake up flag, use the macro rtcSwWF(0). Further-
more, in order not to interfere with other sources of interrupts from the RTC, kick start and
wake up should not generate interrupts. The application can disable kickstart and wake up
from generating interrupts by using the macros rtcSwKSE(0) and rtcSwWIE(0)
respectively.

For a simple example, refer to the sample program SAMPLES/LP31XX/RTCWAKE.C.

3.9 LPBus

The LPBus is an expansion bus that allows boards to be added to a system to extend its I/O
capabilities. The LPBus is designed to support as many as eight expansion boards, avail-
able from either Z-World or they may be a customer design. Appendix E, “LPBus Proto-
typing Board,” provides information on designing LPBus expansion boards.

The LPBus is based on the Z180’s microprocessor bus. One LPBus bus cycle corresponds
to an I/O cycle on the Z180 bus. All of the LPBus signals are buffered so that loading on
the expansion bus will not affect the microprocessor bus. LPBus control signals provide
ample set-up and hold time to make design of expansion boards easy and reliable. The
LPBus protocol permits each expansion board to have an address jumper that selects one
of eight Device Selects (/DS0–/DS7). Each board on the bus must be assigned a unique
Device Select.

The mechanical interface for the LPBus is H3, a 40-pin, 2 mm pitch header. There is
another 40-pin header, H2, at the opposite end of the LP3100 board for other I/O signals.
It is mechanically possible to plug an adapter board into the LP3100 incorrectly by rotat-
ing the board 180 degrees, swapping the position of the LPBus and I/O headers. This
could damage the electronic components if power is applied. Note that headers H2 and
H3 are offset from the center of the board by about 0.050 inches. If the boards are plugged
in incorrectly, the board edges and mounting holes will not be aligned.

Figure 15 illustrates the location of header H3.

�

56 LP3100

Figure 15. LPBus Header Connection Location

Expansion boards can be mounted on the LP3100 in one of two ways as shown in Figure 16.

1. Flat — Use a multidrop ribbon cable to connected adjacent boards.

2. Vertical stacking — Use female connectors on the bottom side of the expansion board.

Figure 16. LPBus Expansion Board Arrangements

The LPBus protocol has provision for slave board powerup and powerdown. This allows
each expansion board to have independent power control. The buffer logic on the pow-
ered-down expansion board isolates the buses to prevent leakage between powered and
unpowered subsystems. Also, any expansion board can remain powered while the
LP3100 controller is powered down. The active expansion board can wake the controller
via the /INT/KS pin.

U15

C4

H1

H2

Z180

U8U
6

H4
H3

+

C19

H3

LPBus
header

User’s Manual 57

3.9.1 LPBus Signals

Table 19 details the 40-pin LPBus header H3 and lists each pin function.

VCCU, GROUND, DCIN

GND (or GROUND) is tied to the LP3100’s ground plane. VCCU is an unswitched power
supply that is on whenever DCIN is in the acceptable input range. DCIN is the raw supply
voltage supplied to the board.

/PWR

/PWR is the line that controls the switched VCC supply on the LP3100. It is driven low
by the power control logic to turn on VCC and is pulled up to VCCU with a resistor. It
can also be used by an expansion board to monitor the state of VCC on the LP3100. In
some applications, an expansion board may need to have control of this line.

Table 19. H3 LPBus Pinout and Signals

H3 Pin Signal H3 Pin Signal

1 VCCU 2 GROUND

3 DCIN 4 /PWR

5 /BRESET 6 DLS

7 /ENFSH 8 /INT/KS

9 /DREQ0 10 /DREQ1

11 GROUND 12 BD0

13 BD1 14 BD2

15 BD3 16 BD4

17 BD5 18 BD6

19 BD7 20 GROUND

21 BA0 22 BA1

23 BA2 24 BA3

25 BA4 26 BA5

27 BA6 28 /DS0

29 /DS1 30 /DS2

31 /DS3 32 /DS4

33 /DS5 34 /DS6

35 /DS7 36 /BRD

37 /BWR 38 BE

39 GROUND 40 VCCU

58 LP3100

/BRESET

This active-low output is the Bus Reset line that can be used to reset expansion boards
during a power-on reset or under software control. /BRESET is controlled by a bit-addres-
sable latch at address 4081H.

DLS

By driving this input high, an expansion board can disable the LP3100’s onboard regula-
tors. It would normally only be driven high if an auxiliary power supply is installed in the
system to supply power to the LP3100 in addition to supplying power to the rest of the
system. For example, a switching boost regulator operating from a single 1.5 V battery
cell may be installed. In that case, the 1.5 V source is too low to be used by the LP3100’s
regulators and they would need to be disabled by driving this line high. Leave this line
unconnected if it is not used.

/ENFSH

/ENFSH is reserved for use by Z-World and should not be connected. This active-low
input line is not used in normal LPBus operations, but is used to program a blank or cor-
rupted flash memory on the LP3100. Access to the local flash memory is inhibited when
this control line is externally driven low during a power-up cycle. Instead, memory read
cycles are diverted to the LPBus so that data are supplied by an external memory board
that causes the flash programming code programming the flash memory to execute.

/INT/KS

/INT/KS is an active-low input. By driving this input line low, an expansion board can
either “awaken” or kick start the LP3100 out of a power-off “sleep” state, or if power is
already on, generate an interrupt.

/DREQ0 and /DREQ1

These active-low inputs are DMA request lines for the Z180. The DMA channels can be
used for high-speed I/O transfers to and from LPBus expansion boards.

BD0–BD7

These are a bidirectional buffered extension of the Z180 data bus.

BA0–BA6

These outputs are a buffered extension of the A0–A7 of the Z180 I/O address bus.

In addition to the eight decoded Device Select (/DSx) lines, there are seven address lines
available on the LPBus. This allows up to 128 I/O addresses for each device select. BA6
has a dual purpose and can be used to implement power on/off control for expansion
boards. If BA6 is used for this purpose, there are 64 I/O addresses per device select line.

The BA6 power control is active for any write to an I/O location corresponding to the
addressed boards. When BA6 is used for power control, setting BA6 to 0 causes the
addresses board to power up. Setting BA6 to 1 causes the board to power down.

User’s Manual 59

/DS0–/DS7

The active-low Device Select outputs are asserted during an LPBus I/O cycle and reflect
the portion of the I/O address map that the Z180 is addressing during that cycle. Typically
an LPBus expansion board would use one of these device select lines together with the
BA0–BA6 address lines to completely specify a particular I/O address.

/BRD, /BWR

These active-low outputs are the equivalent of the Z180 I/O read and write lines. /BRD
and /BWR are buffered and ANDed with the Z180 Auxiliary strobe line “E” to insure
plenty of setup time for decoding a board’s address.

BE

This output is a buffered copy of the Z180 auxiliary strobe line “E.”

3.9.2 Board ID

LPBus expansion boards supplied by Z-World have a jumper array that allows user selec-
tion of the device select line used for each board. Each board in a system would be jum-
pered to use a different line.

Table 20 lists the LPBus decoded addresses.

Each LPBus expansion board type has a board ID register containing a unique code that
can be read by the LP3100. This allows the LP3100 to determine what types of boards
exist in a system. By Z-World convention this ID register can be read at the lowest I/O
address within the address range corresponding to the Device Select line assigned to the
board. For example, to read the Board ID of the board that has been jumpered to use
/DS0, the LP3100 would read I/O address 8000H; for /DS1 it would read 8080H, and so
on. Z-World suggests following this convention for any boards designed by the customer.
Z-World has reserved a set of ID codes for user-designed LPBus expansion boards to avoid
any conflict over the use of an ID code that Z-World may use in the future for its own
designs. Appendix E, “LPBus Prototyping Board,” lists the current and reserved codes.

Table 20. LPBus Decoded Addresses

Select I/O Address BA0–BA5 BA0–BA6*

* When BA6 is not used for power control

/DS0 8000–803F (8000–807F) 00–3F 00–7F

/DS1 8080–80BF (8080–80FF) 80–BF 80–FF

/DS2 8100–813F (8100–807F) 00–3F 00–7F

/DS3 8180–81BF (8180–81FF) 80–BF 80–FF

/DS4 8200–823F (8200–827F) 00–3F 00–7F

/DS5 8280–82BF (8280–82FF) 80–BF 80–FF

/DS6 8300–833F (8300–837F) 00–3F 00–7F

/DS7 8380–83BF (8380–83FF) 80–BF 80–FF

60 LP3100

User’s Manual 61

CHAPTER 4. SOFTWARE REFERENCE

Chapter 4 describes functions for controlling an LP3100 and peripherals. The following
sections are included.

• Using Dynamic C Drivers

• Digital Input/Output Functions

• Analog Input Functions

• Serial Communication Functions

• Power Control Functions

• RTC Functions

• Flash EPROM Functions

• LED Functions

• LCD Functions

• Keypad Functions

• Additional Software

62 LP3100

4.1 Using Dynamic C Drivers

To use the functions discussed in this chapter, the library containing that function must be
“included” in the program source code. For example, the following line of code at the top
of a program will allow use of all of the functions in the EZIOLP31 library:

#use eziolp31.lib

See the Dynamic C manuals for more information on the #use directive and using libraries.

4.2 Digital Input/Output Functions

Table 21 lists channel numbers for the digital I/O channels and peripheral control regis-
ters. The channel numbers are for use with the Dynamic C drivers. The physical
addresses are listed in Table 22 and in Appendix H.

Table 21. Digital Input/Output Channel Numbers

eioBrdDO eioBrdDI
Channel

No.
eioBrdDO eioBrdDI

Channel
No.

DINOUT0 DINOUT0 0 /EN_DKS N/A 16

DINOUT1 DINOUT1 1 /MBR N/A 17

DINOUT2 DINOUT2 2 /232TEN N/A 18

DINOUT3 DINOUT3 3 232EN N/A 19

DINOUT4 DINOUT4 4 /CTSEN N/A 20

DINOUT5 DINOUT5 5 /PWREN N/A 21

DINOUT6 DINOUT6 6 N/A N/A 22

DINOUT7 DINOUT7 7 N/A N/A 23

DOUT0 DIN0 8 /LED N/A 24

DOUT1 DIN1 9 485TE N/A 25

DOUT2 DIN2 10 /485RE N/A 26

DOUT3 DIN3 11 /AD_CS N/A 27

DOUT4 N/A 12 /DOE N/A 28

DOUT5 N/A 13 /ADENA N/A 29

DOUT6 N/A 14 N/A N/A 30

DOUT7 N/A 15 N/A N/A 31

User’s Manual 63

Table 22 lists addresses for the digital input, digital output, and digital input/output chan-
nels. Use these addresses with the inport and outport functions.

Table 22. Digital Input, Digital Output, and Digital Input/Output Addresses

Channel inport Address outport Address

DIN 0–3 4040H N/A

DOUT 0–7 N/A 4060H

DINOUT 4020H 4040H

64 LP3100

int eioBrdDI(unsigned int eioAddr)

Reads the state of one of the digital inputs. Table 21 lists the channel numbers corresponding to
specific LP3100 resources.

PARAMETER

eioAddr specifies the input to be read. Valid numbers are from 0 to 11: 0–7 represent the

eight digital input/output channels, and 8–11 represent the four dedicated digital inputs.

RETURN VALUE

0 if input reads low

1 if input reads high

–1 if eioAddr is out of range

ERROR: If eioAddr is out of range, eioErrorCode is bit-ored with the constant

EIO_NODEV. eioErrorCode is a global int defined in the library.

LIBRARY

EZIOLP31.LIB

eioErrorCode is not cleared by eioBrdDI.

EXAMPLE

void main (void) {
int x;
eioBrdInit(0); // reset all LP3100 resources to default states
while(1) {

hitwd(); // hit watchdog to prevent reset
eioErrorCode = eioErrorCode & ~EIO_NODEV;

// clear the error flag
x = eioBrdDI(8); // read channel 8, which is DIN0
if (eioErrorCode & EIO_NODEV) {

printf("\n\rChannel requested is out of range");
while(1) hitwd(); // wait forever

}
switch (x) {

case 0: printf("\n\rDIN is low");
// x was zero

default: printf("\n\rDIN is high");
// x was non-zero

}
}

}

�

User’s Manual 65

int eioBrdDO(unsigned int eioAddr, int state)

Sets or clears a digital output. A channel number is passed to eioBrdDO via eioAddr.
Table 21 lists the channel numbers corresponding to specific LP3100 resources.

eioBrdDO does not abstract the activation or assertion level for a resource. The programmer
must be aware of the activation level of the device being controlled. For example, the onboard
LED, which is an active high device, is turned on with eioBrdDO(24,1). To turn on the
power to the analog section, /ADENA is low and so use eioBrdDO(29,0).

PARAMETERS

eioAddr specifies the digital output to be set. Valid numbers are from 0 to 31: 0–7 represent
the eight digital input/output channels, 8–15 represent the eight digital outputs, and 16–31 rep-
resent the internal outputs listed in Table 21. Channel numbers 22, 23, 30, and 31 are unused.

state determines whether a one or a zero is written as the digital output state for the specified
output (-32,768 < state � 32,767). When a non-zero value is written to the digital output, the
digital output assumes a high-voltage (VCC level) state and the digital output is on. A zero
makes the digital output assume ground potential, and so the digital output is off.

RETURN VALUE

0 if successful
–1 if eioAddr is out of range

ERROR: If eioAddr is out of range, eioErrorCode is bit-ored with the constant
EIO_NODEV. eioErrorCode is a global int defined in the library.

eioErrorCode is not cleared by eioBrdDO.

LIBRARY

EZIOLP31.LIB

EXAMPLE

void main (void) { // blink the LED using eioBrdDO
int x;
eioBrdInit(0); // reset all LP3100 resources to default states
while(1) {

hitwd(); // hit watchdog to prevent reset
eioErrorCode = 0; // clear the error flag
x = eioBrdDO(24,1); // turn LED on
for (x = 0; x < 6000; x++) // wait for a while
x = eioBrdDO(24,0); // turn LED off
for (x = 0; x < 6000; x++) // wait for a while

}
}

66 LP3100

unsigned int inport(unsigned int port)

Reads a value from a Z180 I/O port. When inport reads from the address space, A16…A19
are held low—only the lower 16 bits of the address bus are significant. Table 22 lists the
addresses for some of the digital resources on the LP3100.

The inport function is useful when more than one digital input needs to be read simultaneously.
For example, if the DIN0…3 inputs are tied to DIP switches, and the binary combination of the
DIP switches was meaningful, then the inport function would be the function of choice. If
only a single bit neeeds to be sampled, eioBrdDI would suffice.

When using inport, be aware of the context of the data returned. inport is a low-level func-
tion, and the hardware determines the position of the bit values and their position in a byte. The
returned byte needs to be anded with a mask to remove bits that are not of interest.

PARAMETER

port is the LP3100 port address to read (0 � port � 65,535).

RETURN VALUE

Byte value read from the port.

LIBRARY

 BIOS.LIB

EXAMPLE

void main (void) {
int x;
eioBrdInit(0); // reset all LP3100 resources to default states
while() {

hitwd(); // hit watchdog to prevent reset
x = inport(0x4040);
x = x&0x000F; // mask all high-order meaningless bits
switch (x) {

case 0: printf("\n\rDIN0..3 set to 0");
break;

case 1: printf("\n\rDIN0..3 set to 1");
break;

case 2: printf("\n\rDIN0..3 set to 2");
break;

case 3: printf("\n\rDIN0..3 set to 3");
break;

case 4: printf("\n\rDIN0..3 set to 4");
break;

case 5: printf("\n\rDIN0..3 set to 5");
break;

case 6: printf("\n\rDIN0..3 set to 6");
break;

case 7: printf("\n\rDIN0..3 set to 7");
break;

default: printf("\n\rNever should get here!");
break;

}
}

}

User’s Manual 67

void outport(unsigned int port, unsigned int value)

Writes data to a Z180 I/O port. The address written to is specified by port. The lower 8 bits
of the second parameter, value, are written to the I/O address. The upper four bits of the
Z180 address bus, A16…A19, are held low during the write operation. Table 4-2 lists some of
the I/O address spaces for the Z180.

This function is useful for manipulating digital I/O resources on a bytewide basis. The outport
function enables the application to write bits directly to the hardware without the need to use
other drivers. However, Z-World recommends using the other drivers whenever they are avail-
able to maintain code portability between products and product revisions.

PARAMETERS

port is the LP3100 port address to be written (0 � port � 65,535).

value is the data to be written to the port (0 � value � 65,535). Only the lower byte (F)
value is written to the port.

LIBRARY

BIOS.LIB

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
outport(0x040A0, 0x01);

// turn LED on (see table in schematic)
}

68 LP3100

4.3 Analog Input Functions

void lp31ADCInit(void)

Initializes the analog inputs. This includes turning on the power supply for the analog section
and resetting the ADC.

eioBrdInit calls lp31ADCInit to turn on and reset the analog section. lp31ADCInit
affects only the analog section, whereas eioBrdInit also configures other LP3100
resources.

lp31ADCDis is used to shut down the power supply for the analog section (AVCC).

LIBRARY

EZIOLP31.LIB

EXAMPLE

void main (void) {
int x;
eioBrdInit(0); // reset all LP3100 resources to default states
lp31ADCInit(); // turn on, reset, and reconfigure

// analog input section
x = (int)eioBrdAI(16);

// read the raw ADC value from AIN0
printf("\n\rAnalog channel 0 = %d",x);
lp31ADCDis(); // shut down analog section

}

User’s Manual 69

float eioBrdAI(unsigned int eioAddr)

Reads the analog-to-digital converter and returns the data. The parameter eioAddr determines
which channel will be read and how the data will be returned. The mode is unipolar input, 12-
bit data length, most significant bit first.

PARAMETER

eioAddr must be 0 to 3 or 16 to 19. eioAddr values 0 through 3 represent analog inputs
AIN0–AIN3. The function returns a calibrated measurement. The LP3100 is factory calibrated
to return volts. The customer may use eioBrdACalib to specify another unit such as degrees
Celsius or grams. The calibration is a simple two-point interpolation/extrapolation.

eioAddr values 16 through 19 also represent physical channels AIN0–AIN3, but cause the
function to return a 12-bit raw data value (0–4095) for the analog input. No scaling or offset
compensation is done.

RETURN VALUE

For eioAddr values 0 through 3, the function will return the voltage read if the read is suc-
cessful. For eioAddr values 16 through 19, the function returns the 12-bit raw data value
read from the A/D converter if the read is successful.

ERROR: Sets bit 1 of eioErrorCode if eioAddr is out of range.

LIBRARY

 EZIOCMMN.LIB

EXAMPLE

void main (void) {
int x;
eioBrdInit(0); // reset all LP3100 resources to default states
lp31ADCInit(); // turn on, reset, and reconfigure

// analog input section
x = (int)eioBrdAI(16);
 // read the raw ADC value from AIN0

printf("\n\rAnalog channel 0 = %d",x);
lp31ADCDis(); // shut down analog section

}

70 LP3100

void eioBrdInit(int flags)

Sets all LP3100 hardware resources to their default states.

The following tasks are performed by eioBrdInit.

• Analog section powered up

• ADC reset

• DINOUT output latch set to 0xFF

• DOUT output latch set to 0xFF

• Stored ADC calibration constants are read

Call eioBrdInit whenever the LP3100 is recovering from a VCC power off. For eioBrdDO to
perform correctly, the digital hardware resources must be synchronized with a software mask.
eioBrdInit does this synchronization.

PARAMETER

flags is not used at this level and should be set to 0.

LIBRARY

EZIOCMMN.LIB

Call eioBrdInit before calling eioBrdAI.

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
printf("\n\rYou are in a twisted maze of passages.");

}

int eioBrdACalib(int eioAddr, unsigned int d1,
unsigned int d2, float v1, float v2)

Computes and stores calibration constants for an analog input channel. The calibration con-
stants are stored in simulated EEPROM space allocated out of the onboard flash EPROM.

The calibration constants allow eioBrdAI to return data values in engineering units rather than
simply as raw analog-to-digital converter codes. For example, a temperature sensor that pro-
duces a voltage output may be connected to an analog channel. The channel may be calibrated
in units of temperature to simplify the measurement process.

PARAMETERS

eioAddr is the analog input channel (0–3).

d1 is the raw data corresponding to v1 (0 � d1 � 65,535)

d2 is the raw data corresponding to v2 (0 � d2 � 65,535)

v1 (any float) is the known SI unit (voltage) corresponding to d1

v2 (any float) is the known SI unit (voltage) corresponding to d2

RETURN VALUE

0 if successful, –1 if eioAddr is out of range.

�

User’s Manual 71

LIBRARY

EZIOLP31.LIB

Since the LP3100 is factory-calibrated for volts, it is only necessary to use this function to reca-
librate the LP3100 for other units.

EXAMPLE

#use eziolp31.lib
#define AINPUT 0 // adc input 0
#define LOVOLT 0.0 // voltage for first reading
#define HIVOLT 9.0 // voltage for second reading
#define SETRAW 16 // offset to get raw data

void AnyKeyPress (void);

main (){
auto unsigned rawdata;
auto unsigned data1, data2;
float volt_equ, volt1, volt2;
auto unsigned inputnum;

VdInit();
eioBrdInit(0);
inputnum = AINPUT;
volt1 = LOVOLT;
volt2 = HIVOLT;

// get raw data from two known voltages

printf("Adjust for voltage to %.2fV for first reading
and press spacebar to continue\n", LOVOLT);

AnyKeyPress();
data1 = eioBrdAI(inputnum+SETRAW);

printf("Adjust for voltage to %.2fV for second reading
and press spacebar to continue\n", HIVOLT);

AnyKeyPress();
data2 = eioBrdAI(inputnum+SETRAW);

// define gain and offset and store in memory

eioBrdACalib(inputnum, data1, data2, volt1, volt2);

// use the stored values to compute equivalent voltage

while (1){
rawdata = eioBrdAI(inputnum+SETRAW);
volt_equ = eioBrdAI(inputnum);
printf("Voltage at AIN%d is %.2f from raw data

%d\n", inputnum, volt_equ, rawdata);
}

}

void AnyKeyPress (void){
while (!kbhit())
hitwd();
getchar();

}

�

72 LP3100

4.4 Serial Communication Functions

There are several libraries that can be used for serial communication. Serial communica-
tion functions, constants, and definitions are described in the Dynamic C Function Refer-
ence Manual and the Dynamic C Application Frameworks Manual. AASC.LIB is the
recommended serial communication library.

4.4.1 RS-485 Functions

void on_485(void)

Turns on the RS-485 transmitter for Z180 Port 1. This must be done before sending data on an
RS-485 network.

LIBRARY

DRIVERS.LIB

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
on_485(); // turn on RS-485 transmitter

}

void off_485(void)

Turns off the RS-485 transmitter for Z180 Port 1. This needs to be done to allow other devices
on the RS-485 network to send data.

LIBRARY

DRIVERS.LIB

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
off_485(); // turn off RS-485 transmitter

}

User’s Manual 73

4.4.2 RS-232 Functions

void on_232(void)

The macro on_232 turns on the LTC1385 charge pump and enables the RS-232 drivers. Be
sure to use this function before sending or receiving data via an RS-232 port. Shutting down
the charge pump will reduce the current draw by 70 µA and conserve a small amount of pattery
power.

LIBRARY

EZIOLP31.LIB

The RS-232 drivers are on by default when the LP3100 is in program mode, and are off when
the LP3100 is in run mode. The RS-232 drivers must be turned on if the RS-232 channels are
going to be used when the LP3100 is in run mode.

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
on_232(); // turn on RS-232 charge pump

}

void off_232(void)

The macro off_232 turns off the LTC1385 charge pump and disables the RS-232 drivers, which
draw 70 µA. If no RS-232 communication is needed, use off_232 to shut down the RS-232 cir-
cutis and save power.

LIBRARY

EZIOLP31.LIB

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
off_232(); // turn off RS-232 charge pump

}

74 LP3100

4.5 Power Control Functions

void lp31ADCDis(void)

Turns off power to the analog section (AVCC) of the LP3100. The analog section draws about
1.1 mA.

When analog measurements are not being made, the analog section should be turned off to con-
serve power.

The preferred function to turn on and initialize the analog section is lp31ADCInit.

LIBRARY

EZIOLP31.LIB

EXAMPLE

void main (void) {
int x;
eioBrdInit(0); // reset all LP3100 resources to default states
lp31ADCInit(); // turn on, reset, and reconfigure

// analog input section
x = (int)eioBrdAI(16);

// read the raw ADC value from AIN0
printf("\n\rAnalog channel 0 = %d",x);
lp31ADCDis(); // shut down analog section

}

void sysHalt(void)

Puts the Z180 into HALT mode. In HALT mode, the Z180 continuously fetches, but does not
execute the instruction after the halt instruction. The Z180 clock continues running at full
speed. The Halt(L) processor signal is held low. All on-chip I/O and DMA are enabled. Inter-
rupts are active.

HALT is not a useful power-saving tool because the Z180 continues to run at full speed.

The Z180 can recover (wake up) from the HALT mode by a reset, an NMI, an on-chip IRQ, or
an external IRQ.

LIBRARY

SYS.LIB

EXAMPLE

#use sys.lib
void main (void) {

eioBrdInit(0); // reset all LP3100 resources to default states
sysHalt(); // Enter HALT mode
while(1) // Get here only after wake-up event occurs

hitwd();
}

User’s Manual 75

void sysSleep(void)

Puts the Z180 into SLEEP mode. In SLEEP mode, the Z180 clock continues to run, but is
blocked from the CPU core. All Z180 signals are held high, except Halt(L), which is held low.

SLEEP is a useful power-saving tool.

The Z180 can recover (wake up) from the SLEEP mode by a reset, an NMI, or an external IRQ.

LIBRARY

SYS.LIB

EXAMPLE

#use sys.lib
void main (void) {

eioBrdInit(0); // reset all LP3100 resources to default states
sysSleep(); // Enter SLEEP mode
while(1) // Get here only after wake-up event occurs

hitwd();
}

void sysStandby(void)

Puts the Z180 into STANDBY mode. In STANDBY mode, the Z180 clock is stopped and on-
chip peripherals are turned off. This is the lowest power Z180 operating mode available.

The Z180 can recover (wake up) from the STANDBY mode by a reset, an NMI, or an external
IRQ.

LIBRARY

SYS.LIB

EXAMPLE

#use sys.lib
void main (void) {

eioBrdInit(0); // reset all LP3100 resources to default states
sysStandby(); // Enter STANDBY mode
while(1) // Get here only after wake-up event occurs

hitwd();
}

76 LP3100

void lp31Shutdown(int enbKS, int enbWE)

This function shuts down the LP3100 (VCC is turned off). The Z180, flash EPROM, analog
section, serial drivers, and digital I/O are all unpowered. The SRAM and RTC may be backed
up by an external 3 V battery. The RTC may be programmed to draw its current from VCCU
instead of the external battery. The DC current consumed in the shutdown mode is typically
300 µA to 400 µA. Note that this function does not return.

VCC may be restored in one of four ways based on the parameters enbKS and enbWE.

PARAMETERS

If enbKS is non-zero, pulling DIN0 low or an interrupt on the LPBus will restore VCC and
reset the Z180.

If enbWE is non-zero, the RTC wakeup feature is enabled. Be sure to set up an alarm event
(see rtcSetAlmTime) before shutting down VCC.

A third way to restore VCC is to remove and restore DCIN. This will always turn on VCC and
reset the Z180.

The PB_RST signal on pin 40 of header H2 can be used to remove and restore DCIN when pin
40 is connected to a pushbutton reset like the one provided on the LP3100 Development Board.

LIBRARY

EZIOLP31.LIB

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
lp31Shutdown(); // Enter SHUTDOWN mode
while(1) // Never gets here—lp31Shutdown never returns

hitwd(); // On wake-up, execution starts at top of main()
}

User’s Manual 77

void lp31PFO(char onOff)

Enables or disables the power-fail interrupt (PFI). PFI is disabled on power-up. PFI must be
enabled each time VCC is turned on if the PFI feature is being used. If the PFI is enabled, the
power-fail output (PFO) from the ADM696 supervisor chip will trigger the PFI when DCIN
drops below the trip point. The time available for the interrupt service routine to perform an
orderly shutdown is determined by how fast DCIN drops.

Do not enable the PFI if the nominal DCIN < 4.5 V. The DCIN trip point can be anywhere from
3.7 V to 4.5 V because of component tolerances (mainly the ADM696 supervisor chip).

PARAMETER

If onOff is zero, the PFI is disabled. Otherwise the PFI is enabled for 0 < onOff � 255.

LIBRARY

EZIOLP31.LIB

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
lp31PFO(1); // Enable power-fail interrupt

}

unsigned int lp31Clk3MHz(void)

Changes the CPU clock speed to 3 MHz, assuming an external 6 MHz crystal is in place. The
Z180 has an internal clock divider that is under software control. This function invokes the
Z180 clock divider. Running the CPU at half speed reduces the CPU current draw.

If the LP3100 is in program mode, lp31Clk3MHz will adjust the internal baud rate generator
for Serial Port Z0 so as not to disrupt communication with the Dynamic C debugger.

If the LP3100 is in run mode, lp31Clk3MHz will not adjust any of the serial port parameters.
For standalone applications, be sure to initialize the serial ports after the processor speed is set.

RETURN VALUE

0 if no change was made (the CPU was already running at 3 MHz); non-zero if the CPU speed
was changed to 3 MHz.

LIBRARY

EZIOLP31.LIB

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
lp31Clk3MHz(); // Switch CPU clock speed to 3 MHz

}

�

78 LP3100

unsigned int lp31Clk6MHz(void)

Changes the CPU clock speed to 6 MHz, assuming an external 6 MHz crystal is in place. The
Z180 has an internal clock divider that is under software control. This function disables the
Z180 clock divider.

If the LP3100 is in program mode, lp31Clk6MHz will adjust the internal baud rate generator
for Serial Port Z0 so as not to disrupt communication with the Dynamic C debugger.

If the LP3100 is in run mode, lp31Clk6MHz will not adjust any of the serial port parameters.
For standalone applications, be sure to initialize the serial ports after the processor speed is set.

RETURN VALUE

0 if no change was made (the CPU was already running at 6 MHz); non-zero if the CPU speed
was changed to 6 MHz.

LIBRARY

EZIOLP31.LIB

EXAMPLE

void main (void) {
eioBrdInit(0); // reset all LP3100 resources to default states
lp31Clk6MHz(); // Switch CPU clock speed to 6 MHz

}

User’s Manual 79

4.6 RTC Functions

void rtcInit(void)

Initializes the RTC in 24-hour mode. Call this funciton once before using the RTC.

LIBRARY

EZIOLP31.LIB

int tm_wr(struct tm *t)

Sets the RTC date, day of the week, and time. The tm structure is defined as follows.

struct tm {
char tm_sec; // seconds 0-59
char tm_min; // 0-59
char tm_hour; // 0-59
char tm_mday; // 1-31
char tm_mon; // 1-12
char tm_year; // 00-150 (1900-2050)
char tm_wday; // 0-6 0==Sunday

};

This structure is defined in the library DRIVERS.LIB. Do not redefine this structure in a pro-
gram.

PARAMETER

Structure that will hold the time/date data.

RETURN VALUE

0 if successful; –1 if clock fails or is not installed.

LIBRARY

DRIVERS.LIB

int tm_rd(struct tm *t)

Reads the current system time into the structure tm.

PARAMETER

Structure that will hold the time/date data.

RETURN VALUE

0 if successful; –1 if clock fails or is not installed.

LIBRARY

DRIVERS.LIB

80 LP3100

void rtcSetAlmTime(struct tm *t)

Sets the alarm for the RTC. Note that this function does not enable the interrupt from the RTC
or enable alarm interrupts. See rtcIRQ and rtcClrIRQ for more information about creating
and handling interrupts generated by the RTC.

In order for the RTC to wake up the system, the application must assert wake up interrupt
enable and clear the wakeup flag before powering down. See lp31Shutdown for more
details about shutting down the main power of the LP3100.

PARAMETER

Pointer structure that specifies the alarm time.

LIBRARY

EZIOLP31.LIB

void rtcSwAIE(int sw)

Enables or disables the alarm.

PARAMETER

If sw is 0, the alarm is disabled. If sw is non-zero, the alarm is enabled.

LIBRARY

EZIOLP31.LIB

int rtcChkAF(void)

Returns the alarm enable/disable status.

RETURN VALUE

0 if the alarm is disabled; non-zero otherwise.

LIBRARY

EZIOLP31.LIB

void rtcClrIRQ()

Clears all the interrupt flags that can cause the /IRQ line to assert. Note that this function does
not enable or disable the interrupt from each source. Call

rtcSwAIE(x)for alarm interrupt enable

rtcSwPIE(x)for periodic interrupt enable

rtcSwUIE(x)for update-ended interrupted enable

rtcSwWIE(x)for wakeup interrupt enable

rtcSwKSE(x)for kickstart interrupt enable

rtcSwRIE(x)for RAM clear interrupt enable

In all these routines, pass non-zero to x to enable and pass zero to disable. See rtcIRQ for
more information about causing and handling interrupts generated by the RTC.

LIBRARY

EZIOLP31.LIB

User’s Manual 81

void rtcIRQ(int enable)

This function enables the Z180 to receive IRQ from the RTC. Mode 1 on INT0 is supported.
The programmer should write the custom ISR (interrupt service routine) and instruct Dynamic
C to vector it using the following directive.

#JUMP_VEC RST38_VEC myInt0ISR

where myInt0ISR is the actual ISR name.

The ISR should return with reti instead of ret.

In the interrupt routine, use the following macros to check the cause of the interrupt.

rtcChkAF() returns the alarm flag

rtcChkKF() returns the kickstart flag

rtcChkPF() returns the periodic flag

rtcChkRF() returns the RAM clear flag

rtcChkUF() returns the update-ended flag

rtcChkWF() returns the wakeup flag

Note that the periodic flag, alarm flag, and update-ended flag reside in the same physical regis-
ter C. If more than one flag needs to be tested, the program should read register C to a variable
using rtcRdRegC(), then examine bits 4, 5, and 6 respectively. Reading register C automat-
ically clears all of the periodic, alarm, and update-ended flags.

To clear the kickstart, RAM clear, and wakeup flags, call the following macros.

rtcSwKF(x) switches the kickstart flag

rtcSwRF(x) switches the RAM clear flag

rtcSwWF(x) switches the wakeup flag

Pass 0 for x to turn the flag off and 1 to turn it on.

Reading register C via rtcRdRegC() will clear the alarm flag, periodic flag, and update-
ended flag.

To enable a particular source of interrupt, call the following macros.

rtcSwAIE(x)for alarm interrupt enable

rtcSwPIE(x)for periodic interrupt enable

rtcSwUIE(x)for update-ended interrupt enable

rtcSwWIE(x)for wake up interrupt enable

rtcSwKSE(x)for kickstart interrupt enable

rtcSwRIE(x)for RAM clear interrupt enable

In all these routines, pass non-zero to x to enable and zero to disable.

The /IRQ line remains asserted (low) as long as both the interrupt enable flag and the status flag
are asserted for any of the six causes (alarm, periodic, update-ended, wake up, kickstart, and
RAM clear). The IRS must ensure that /IRQ is not asserted when the ISR returns.

LIBRARY

EZIOLP31.LIB

�

82 LP3100

4.7 Flash EPROM Functions

int WriteFlash(unsigned long physical_addr,
char *buf, int count)

Writes count number of bytes pointed to by buf to the flash EPROM absolute data location
physical_addr. Allocate the data location by declaring the byte arrays as initialized arrays
or declare an initialized xdata array. If a byte array is declared, convert the logical memory to
physical memory with phy_adr(array). For initialized xdata, the array name can be
passed directly.

PARAMETERS

physical_addr is the absolute data location in flash EPROM.

buf is a pointer to the bytes to write.

count is the number of bytes to write.

RETURN VALUE

0 if WriteFlash is successful.

–1 if flash EPROM is not used.

–2 if physical_addr is inside the BIOS area.

–3 if physical_addr is within the symbol area or the simulated EEPROM area.

–4 if the write to the flash EPROM times out.

LIBRARY

DRIVERS.LIB

4.8 LED Functions

int swLED(unsigned int state)

Turns the LED on or off.

PARAMETER

state is 1 to turn the LED on, 0 to turn it off.

RETURN VALUE

0 if state is valid, –1 otherwise.

LIBRARY

EZIOLP31.LIB

4.9 LCD Functions

void lcdEnCur(void)

Enables cursor.

LIBRARY

TL.LIB

User’s Manual 83

void lcdDisCur(void)

Disables cursor.

LIBRARY

TL.LIB

void lcdEnBlink(void)

Enables blinking of the LCD cursor.

LIBRARY

TL.LIB

void lcdDisBlink(void)

Disables the blinking of the LCD cursor.

LIBRARY

TL.LIB

void lcdPos(char row, char col)

Positions the cursor on the LCD.

PARAMETERS

row is the row of the cursor (starts with 0).

col is the column of the cursor (starts with 0).

LIBRARY

TL.LIB

int lcdVprintf(char fmt, void *firstArg)

Equivalent to vprintf, but prints to the current cursor position on the LCD .

PARAMETERS

fmt is the format string. Note that tabs, line feeds, returns and other special characters will not
be interpreted by the LCD.

firstArg points to the address of the first argument.

RETURN VALUE

0 if the string is sent successfully, –1 if the LCD times out.

LIBRARY

TL.LIB

84 LP3100

int lcdPrintf(char fmt, ...)

Equivalent to printf, but prints to the current cursor position on the LCD.

PARAMETER

fmt is the format string. Note that tabs, linefeeds, returns and other special characters will not
be interpreted by the LCD.

RETURN VALUE

0 if the string is sent successfully, –1 if the LCD times out.

LIBRARY

TL.LIB

int lcdLongWait(void)

Similar to lcdWait, but waits for four times as long for the longest operation on the LCD.

RETURN VALUE

0 if the LCD is free, –1 if the LCD times out.

LIBRARY

TL.LIB

int lcdInit(void)

Initializes the LCD hardware and library. Blanks the screen and sets cursor to blink on the first
row at the first column.

RETURN VALUE

0 if the initialization is successful, –1 if the LCD times out.

LIBRARY

TL.LIB

int lcdRead(void)

Reads the status of the LCD.

RETURN VALUE

The status of the LCD. If the seventh bit is set, the LCD is not free yet.

LIBRARY

TL_LP31.LIB

void lcdWrite(char ch)

Writes one character to the LCD control register.

PARAMETER

ch is the bytes to write to the LCD control register.

LIBRARY

TL_LP31.LIB

User’s Manual 85

int lcdWait(void)

Waits for LCD to be done. Times out if LCD is not responding.

RETURN VALUE

0 if all is fine (LCD is not free), –1 if LCD is always busy (timed out).

LIBRARY

TL_LP31.LIB

int lcdCtrl(char ch)

Sends a character to the LCD control register. This function waits for the LCD becomes free
before sending the control byte.

PARAMETER

ch is the character to send.

RETURN VALUE

0 if all is fine, –1 if the LCD is always busy (timed out). Note that the character is sent even if
the LCD times out.

LIBRARY

TL_LP31.LIB

4.10 Keypad Functions

void kpInit(int(*changeFn)())

Initializes the keypad module. This function should be called before other functions of this
module are called.

PARAMETER

changeFn points to a function that will be called when the driver detects a change (when
kpScanstate is called). Two arguments are passed to the callback function. The first argument
is a pointer to an array that indicates the current state of the keypad. The second pointer points
to an array that indicates what keypad positions are changed and detected by kpScanstate.
The byte offset in the array represents the line pulled high (row number), and the bits in a byte
represents the positions (column number) read back.

LIBRARY

KP.LIB

86 LP3100

int kpScanstate(void)

Scans the keypad and detects any changes to the keypad status. It returns non-zero if there is
any change. If kpInit is called with a non-NULL function pointer, that function will be
called with the state of the keypad. This function should be called periodically to scan for key-
pad activities.

RETURN VALUE

0 if there is no change to the keypad, non-zero if there is any change to the keypad.

LIBRARY

KP.LIB

int kpDefStChgFn(char *curState, char *changed)

This function is the default state change function for the default get key function kpDefGetKey.
This function is called back by kpScanstate when there is a change in the keypad state. If
the current key is not read by kpDefGetKey, the new key pressed will not be registered.

PARAMETERS

curState points to an array that holds the current state of the keypad (bitmapped, 1 indicates
key is not currently pressed).

changed points to an array that reflects the change of keypad state from the previous scan
(bitmapped, 1 indicates there was a change).

RETURN VALUE

–1 if no key is pressed. Otherwise it returns the normalized key number. The normalized key
number is 8*row+col+edge*256. edge is 1 if the key is released, and 0 if the key is
pressed.

LIBRARY

KP.LIB

int kpDefGetKey(void)

This function is the default get key function. It returns the key previously pressed (i.e., from
the one-keypress buffer). The key pressed is actually interpreted by kpDefStChgFn, which
is called back by kpScanstate. kpDefInit should be used to initialize the module.

RETURN VALUE

–1 if no key is pressed. Otherwise it returns the normalized key number. The normalized key
number is 8*row+col+edge*256. edge is 1 if the key is released, and 0 if the key is
pressed.

LIBRARY

KP.LIB

User’s Manual 87

int kpDefInit(void)

This function initializes the module to use the default state change function to interpret key
presses when kpScanstate is called. Use kpDefGetKey to get the code of the last key
pressed.

LIBRARY

KP.LIB

4.11 Additional Software

• For watchdog information, refer to descriptions of the function hitwd in the Dynamic
C manuals.

• For reading and writing simulated EEPROM data, refer to descriptions of the functions
ee_rd and ee_wr in the Dynamic C manuals.

• For power fail flag information, refer to the descriptions of the functions
_sysIsPwrFail and sysIsPwrFail in the Dynamic C manuals.

• For resetting the board information, refer to descriptions of the functions sysForce-
SupRst, sysIsSuperReset, _sysIsSuperReset, sysForceReset,
_sysIsWDTO, and sysIsWDTO in the Dynamic C manuals.

• If an error message such as Target Not Responding or Communication Error
appears, see Appendix A, “Troubleshooting.”

88 LP3100

User’s Manual 89

APPENDIX A. TROUBLESHOOTING

Appendix A provides procedures for troubleshooting system hardware and software.

90 LP3100

A.1 Out of the Box

Check the items mentioned in this section before starting development.

• Do not connect any boards to the LPBus, RS-485, or any other I/O devices until verify-
ing that the LP3100 runs standalone. If using the RS-232 channel on the Development
Board, make sure that the Development Board is aligned correctly.

• Verify that the entire system has a good, low-impedance ground. The LP3100 is often
connected between the PC and other devices. Any differences in ground potential from
unit to unit can cause serious, hard-to-diagnose problems.

• Use the supplied Z-World cables. Double check the connecting cables to make sure
they are properly connected.

• •Verify that the PC’s COM port actually works. Try connecting a known-good serial
device to the COM port. Remember that COM1/COM3 and COM2/COM4 on a PC
share interrupts. User shells and mouse software often interfere with proper COM-port
operation. For example, a mouse running on COM1 may prevent running Dynamic C
on COM3 unless the interrupt is changed.

• Use the supplied Z-World power supply. Verify that the power supply has enough
capacity to support the LP3100 plus any attached devices and is adequately filtered.

• Experiment with each peripheral device connected to the LP3100 to determine how it
affects LP3100 operation when it is powered up, powered down, when its connecting
wiring is open, and when its connecting wiring is shorted.

A.2 Dynamic C Does Not Start

If Dynamic C does not start, an error message will usually appear on the Dynamic C
screen (for example, “Target Not Responding” or “Communication Error”), announcing a
communication failure.

There could be one or more of the following problems in series:

• The wrong COM port is selected.

• The wrong baud rate is selected. The LP3100 has a maximum baud rate of 38,400 bps.
Make sure that the baud rate setting in Dynamic C is 9600 bps, 19,200 bps, or 38,400
bps when using the RS-232 port for programming. If the SIB2 is used for development,
use one of the following baud rates: 9600 bps, 19,200 bps, 28,800 bps, or 57,600 bps.
Choose the fastest setting first. Try lower baud rates if communication attempts fail.

• The LP3100 needs to be reset. Press the reset switch on the development board or
cycle power.

• Serial communication wiring is incorrect or improperly connected.

User’s Manual 91

The first thing to check is the hardware and software setup of the PC’s COM port. Check
the following two items.

1. Make sure that all wiring and cables are connected properly.

2. Make sure that the correct COM port is selected.

Most PCs have at least two COM ports (COM1 and COM2), and some computers have
additional COM ports. Sometimes a PC assigns COM1 or COM2 to an internal modem,
leaving the other COM port available on the back of the PC.

Some computers have special programs to reconfigure the port assignments. If necessary, run
such a program to make a specific COM port appear at an external back-panel “D” connector.

Repeat the following procedure until a COM port that works with Dynamic C and your
LP3100 is found.

1. Use the Serial command of Dynamic C’s Options menu to try a different COM port.

2. Reset the LP3100 by pressing the reset switch SW1.

3. Select Reset Target from the Run menu. Dynamic C will try to establish communica-
tion again.

A.3 LP3100 Repeatedly Resets

If the program fails to hit the watchdog timer periodically, the watchdog timer causes a
reset approximately every second. Dynamic C hits the watchdog timer when debugging a
program using the Dynamic C debugger. If the program loaded in the LP3100 does not hit
the watchdog timer, the watchdog will reset the board and the program will restart. (To hit
the watchdog, make a call to the Dynamic C library function hitwd).

If there is no battery is connected to the LP3100, it may be necessary to short the VBAK
line to ground. This can be done by shorting out the two pins on H1.

A.4 Dynamic C Loses Link with Application Program

Dynamic C may lose its link with the LP3100 if the program disables interrupts for more
than 50 ms.

�

92 LP3100

User’s Manual 93

APPENDIX B. SPECIFICATIONS

Appendix B provides comprehensive LP3100 physical, electronic, and environmental
specifications.

94 LP3100

B.1 General Specifications

Table B-1 lists the electrical, mechanical, and environmental specifications for an LP3100.

Table B-1. LP3100 General Specifications

Parameter Specification

Board Size 2.5" W × 3.5" L × 0.5" H (64 mm × 89 mm × 13 mm)

Operating
Temperature

–40°C to +70°C

Humidity 5% to 95%, noncondensing

Input Voltage and
Current

3.5 V to 24 V DC, 200 µA standby, 16 mA to 24 mA
(19 mA typ) at 6.144 MHz, 11 mA typical at 3.072 MHz

linear regulators

Digital Inputs 4 (accept 3.3 V or 5.0 V logic signals)

Digital Outputs
8 (generate 3.3 V or 5.0 V logic signals, jumper
selectable)

Configurable I/O
8 digital lines form a bidirectional parallel I/O port
(bytewide programmable)

Analog Inputs 4 conditioned 12-bit inputs, default range 0 V to 10 V

Microprocessor Z180

Clock 6.144/3.072 MHz, software selectable

SRAM 32K–512K

Flash EPROM 128K–512K

Serial Ports
One RS-232 (with or without RTS/CTS) configurable as
RS-232 (3-wire) or RS-485

Serial Rate Up to 38,400 bps

Watchdog/Superviso
r

Yes

Time/Date Clock Yes

Backup Battery Connection provided for external 3 V battery

User’s Manual 95

Tables B-2 and B-3 list the specifications for the digital inputs and outputs.

Table B-2. Digital Input Specifications

Parameter Specification

Number of Inputs 4

3.3 V Compatible Yes

5.0 V Compatible Yes

Type of Input 3.3 V powered by VHC logic

Voltage Threshold Low (max) 1.0 V

Voltage Threshold High (min) 2.3 V

ESD Performance Human Body
Model

>2000 V

ESD Performance Machine
Model

>200 V

Table B-3. Digital Output Specifications

Parameter Specification

Number of Outputs 8

3.3 V Compatible Yes

5.0 V Compatible

Onboard regulator supplies optional
5.0 V to the output latch. This draws
an additional 4 mA of quiescent
current.

Type of Output VHCT logic

Output Voltage Low (max)
3.3 V rail, < 50 µA

0.1 V

Output Voltage High (min)
3.3 V rail, < 50 µA

3.2 V

Output Voltage Low (max)
5.0 V rail, < 50 µA

0.1 V

Output Voltage High (min)
5.0 V rail, < 50 µA

4.5 V

Maximum Output Current
(sourcing or sinking)

25 mA

ESD Performance No specs available at this time

96 LP3100

Bit Addressable
Yes, only using Z-World’s drivers.
The physical latch is byte addressable
only.

Table B-3. Digital Output Specifications

Parameter Specification

User’s Manual 97

The specifications for the eight configurable digital input/outputs are identical to those for
the digital inputs and outputs. This bytewide port can be configured to be a 3.3 V or 5 V
output or input port. The inputs/outputs are configured for inputs or outputs as a whole,
and are not individually configurable.

B.2 Analog Inputs

Table B-4 lists the specifications for the analog input.

Table B-4. Analog Input Specifications

Parameter Specification

Number of Inputs 4 conditioned channels

Resolution 12 bits — no missing codes

Effective Resolution 10 bits

Input Range
0 V to 10 V (user-configurable on per
channel basis)

Conversion Time 10 µs

Input Impedance 100 kΩ

Integral Nonlinearity ±1 LSB

Differential Nonlinearity ±1 LSB

98 LP3100

B.3 Mechanical Specifications

Figure B-1 illustrates the mechanical dimensions of an LP3100.

Figure B-1. LP3100 Dimensions

Table B-5 lists the functions of the LP3100 headers and the pin 1 locations.

Table B-5. LP3100 Header Functions and Pin 1 Locations
(in inches)

Header Function Location

H1 Backup Battery 0.425, 2.200

H2 Application I/O 0.1955, 2.023

H3 LPBus Expansion Port 3.2255, 2.023

H4 SIB Programming Port N/A

Z180

+

0.15, typ
(3.8)

0.
15

, t
yp

(3
.8

)

0.125 dia, 4x
(3.2)

H2

~
0.

27
(6

.9
)

~
0.

5
(1

3)3.50
(89)

2.
50

(6
4)

H1

H3

H4

User’s Manual 99

B.3.1 LP3100 Mounting Plate Dimensions

Figure B-2 illustrates the dimensions of an LP3100 aluminum mounting plate.

Figure B-2. Aluminum Mounting Plate

4-40 posts, 4x

3.75
(95)

3.20
(81)

0.275, typ
(7.0)

0.166 thru, 4x
(4.2)

0.
25

(6
.4

)
0.

06
(1

.5
)

0.125R, 4x
(3.2)

3.
10

(7
9)

2.
83

(7
2)

0.
45

, t
yp

(1
1)

0.
13

5,
 ty

p
(3

.4
)

100 LP3100

B.4 Header Pinouts

The LP3100’s digital input/output, analog inputs, serial channels, and LPBus use headers
H1, H2, and H3 for physical connection to the outside world. H1 is a 1 × 2 header with
0.100 inch spacing. H2 and H3 are 2 × 20 SMT headers with a 2 mm pin spacing as illus-
trated in Figure B-3.

Figure B-3. H2 and H3 Pin Spacing

H1 does not have a header installed on standard LP3100 controllers. This allows the user
to solder wires directly to the LP3100 or to install an appropriate header for the backup
battery. H1 is able to accommodate a 2 × 1 header with 0.100 inch spacing. Pin 1 of H1 is
the positive input for the backup battery. Pin 2 is the ground connection.

Connections to headers H2 and H3 can be made using mass-termination connectors, PCB-
mount header receptacles, or pin-insertable housings. Figure B-4 shows the pinouts for
headers H2 and H3.

Figure B-4. H2 and H3 Pinouts

!++ !++

��1)
��1�
��1!

��1"

���1

91�

91�

91�

&:)(�&�*
�:*
��1"
��1)

��1��&)

����

���&2
���&�
���&"
���&)

��1��&2
��1��&�
��1��&"

��
�
���;
��1��&*

��1��&0
��1��&�
��1��&!

���&0
���&�
���&!
���&*

��1!
��1*

91�

�:)(�&�*
&:*

(��<��&

��

 �

�� ��

���#
���� �= ���� ��

(��2
��
(���

(�>�

���1

91�

(���

91�

��0
���
��!

(�1#�$

����

���?*

91�

(�1&(;�
���

���?)

���
��!
��*

��"
��)
91�
��0

(��*
���

(��!

(��0
(���

����

��

��

(�����&

��2
���
��"
��)

��*

(��"
(��)

�

��

(�>�

User’s Manual 101

2.4.1 LCD Connections

Although there is no dedicated LCD port on the LP3100, the LP3100 can be interfaced to
a LCD by using the digital I/O channels. The LP3100 Development Board provides a
connector designed to interface to a 2 × 20 LCD. A 4 × 20 LCD can also be attached to
the LCD connector on the Development Board, but might require a special cable (refer to
the LCD’s specifications for wiring information). Z-World provides software drivers that
will support 2 × 20 and 4 × 20 LCDs.

The LP3100 supports LCDs with 10- or 11-wire parallel interfaces. using the DOUT and
DINOUT pins. The software must simulate a read or write cycle for the LCD using the
output latches. Table B-6 lists the wire connections necessary to use the LCDs with
Z-World drivers.

Table B-6. LP3100 to LCD Wiring Connections

H2 Pin No.
LP3100
Signal

LCD Module
Signal

4 × 20 LCD
Module
Pin No.

2 × 20 LCD
Module
Pin No.

2 × 20 LCD
Connector*

Pin No.

* The right-angle header on the 2 × 20 module is numbered in a nonstandard fashion. The odd
and even positions are swapped.

39 GND GND 1 1 2

2 +5 V VIN 2 2 1

33 GND Contrast†

† Connect the contrast line to a source between 0 V and 1 V for variable contrast.

3 3 4

21 DOUT7 RS 4 4 3

20 DOUT6 R/W 5 5 6

17 DOUT3 E 6 6 5

6 DINOUT0 D0 7 7 8

7 DINOUT1 D1 8 8 7

8 DINOUT2 D2 9 9 10

9 DINOUT3 D3 10 10 9

10 DINOUT4 D4 11 11 12

11 DINOUT5 D5 12 12 11

12 DINOUT6 D6 13 13 14

13 DINOUT7 D7 14 14 13

102 LP3100

B.5 Jumper Settings

Three of the seven jumpers control the digital output latch voltage and the serial channel
configuration. Table B-7 lists the jumper configurations.

The headers are located on the bottom side of the LP3100, as shown in Figure B-5. The jump-
ers are standard 0402 size SMT zero-ohm resistors. Jumper wire or solder may be used.

Figure B-5. LP3100 Header Locations

Table B-7. LP3100 Jumper Settings

Header Pins 1–2 Connected Pins 2–3 Connected

J1
Digital output latch
supplied with 3.3 V

Digital output latch
supplied with 5.0 V

J2
Selects /RTS0 for channel
Z0, 5-wire RS-232 mode

Selects TXA1 for channel
Z1, 3-wire RS-232 mode

J3
Selects RS-485 driver for
channel Z1 RXA1, channel
Z1 RS-485 mode

Selects RS-232 driver for
channel Z0, two channel
3-wire RS-232 mode

J4, J5, J6, J7 All four headers are reserved for Z-World factory defaults.

��

��

��

��

)!"
.!

)!"
."

)

!

"

.)

C16

U
24

Flash

U25

U18U20

U
23

C12

U
31

U36

U33
U35

U19

U17

U
30

U27

U22

U32

U
21

U
26

RN2

R
N

3

RN1

U29

J3 J2

RAM

R25

C27

C31

C35

C30

C33

C26

C18

C15C
13

R39

R
21

C14 C10

R24R23

C23

R20

R22

C11
+

+

J1

J6

U
28

R
N

4

C44

R41 C43

R43

J7

C21

C17

J5

R12R10

R14R16
R32C32

J4

C56

R31

C47

U37

C
22

C45

R40R9

R
38

C
41

Q3

R8

R7

C
53

C
51

C
49

C
55

C
52

C
50

C
48

C
54

Bottom View

User’s Manual 103

APPENDIX C.
SERIAL INTERFACE BOARD

Appendix C provides technical details and baud rate configuration data for Z-World’s
SIB2.

104 LP3100

C.1 Features

The SIB2 is an interface adapter used to program the LP3100. The SIB2 is contained in an
ABS plastic enclosure, making it rugged and reliable. The SIB2 enables the LP3100 to
communicate with Dynamic C via the Z180’s clocked serial I/O (CSI/O) port, freeing the
LP3100’s serial ports for use by the application during programming and debugging.

The SIB2’s 8-pin cable plugs into the target LP3100’s processor through an aperture in the
backplate, and a 6-conductor RJ-12 phone cable connects the SIB2 to the host PC. The
SIB2 automatically selects its baud rate to match the communication rates established by
the host PC (9600, 19,200, or 57,600 bps). However, the SIB2 determines the host’s com-
munication baud rate only on the first communication after reset. To change baud rates,
change the COM baud rate, reset the target LP3100 (which also resets the SIB2), then
select Reset Target from Dynamic C.

Chapter 2 provides detailed information on connecting the SIB2 to the LP3100.

The SIB2 receives power and resets from the target LP3100 via the 8-pin connector J1.
Therefore, do not unplug the SIB2 from the target while power is applied. To do so could
damage both the LP3100 and the SIB2; additionally, the target may reset.

Never connect or disconnect the SIB2 with power applied to the LP3100.

The SIB2 consumes approximately 60 mA from the +5 V supply. The target-system cur-
rent consumption therefore increases by this amount while the SIB2 is connected to the
LP3100.

�

User’s Manual 105

C.2 External Dimensions

Figure C-1 illustrates the external dimensions for the SIB2.

Figure C-1. SIB2 External Dimensions

Top View

Side View

2.25
(57.2)

12.0
(305)

3.60
(91.4)

0.8
(20)

1.525
(38.7) 1.625

(41.3)

106 LP3100

User’s Manual 107

APPENDIX D. DEVELOPMENT BOARD

108 LP3100

D.1 Overview

The LP3100 Development Board provides a quick and easy method of developing and
evaluating simple LP3100 applications. The Development Board provides an LCD con-
nector, a keypad connector, two RS-232 channel connectors, an I/O header, a power-sup-
ply connector, a reset switch, and a prototyping area. All headers on the LP3100
development board use 0.025" square pins on 0.100" centers.

Figure D-1 illustrates the top view of the LP3100 Development Board and identifies the
headers discussed in this appendix.

Figure D-1. Development Board Layout

Power
connector

Access to LP3100
H2 I/O connector

LCD connector Keypad connector

Reset switch Serial channel connectors Prototyping area

SW1

+

H2

H5 H6

H1

H3

H4

User’s Manual 109

D.1.1 LCD Interface

Table D-1 lists the pinouts for the LCD connector (H5) on the LP3100 Development
Board.

A 2 × 20 LCD can be connected to the Development Board with a 14-conductor ribbon cable.

Drivers for the LCD are listed in Chapter 4, “Software Reference.” Sample programs for the
LCD are located in the Dynamic C SAMPLES\LP31XX subdirectory.

Table D-1. LP3100 Development Board LCD Connector

H5 Pin No. LP3100 Signal LCD Module Signal

1 +5 V VIN

2 GND GND

3 DOUT7 RS

4 N/A Contrast

5 DOUT3 E

6 DOUT6 R/W

7 DINOUT1 D1

8 DINOUT0 D0

9 DINOUT3 D3

10 DINOUT2 D2

11 DINOUT5 D5

12 DINOUT4 D4

13 DINOUT7 D7

14 DINOUT6 D6

�
�

110 LP3100

D.1.2 Keypad Interface

The LP3100 Development Board has a through-hole connector (H6) for connecting a key-
pad to the LP3100. Table D-2 lists the pinout for H6. The Development Board will sup-
port keypads sizes up to 4 rows × 4 columns.

Drivers for the keypad are listed in Chapter 4, “Software Reference.” Sample programs for the
keypad are located in the Dynamic C SAMPLES\LP31XX subdirectory.

Table D-2. LP3100 Development Board Keypad Connector

H6 Pin No. LP3100 Signal Keypad Signal

1 DIN0 Sense 0

2 DIN1 Sense 1

3 DIN2 Sense 2

4 DIN3 Sense 3

5 DOUT4 Scan 0

6 DOUT5 Scan 1

7 DOUT6 Scan 2

8 DOUT7 Scan 3

9 not connected N/A

10 not connected N/A

�

User’s Manual 111

D.1.3 RS-232 Channel Connectors

The two LP3100 RS-232 channels are brought out on 10-pin headers (H3 and H4) on the
Development Board. H4 is connected to Serial Channel Z0. H3 is provides connections
to either Serial Channel Z1 or the handshaking signals RTS0 and CTS0 from Serial Chan-
nel Z0.

Table D-3 lists an LP3100 Development Board’s serial channel connections.

Table D-3. LP3100 Development Board Serial Channel Connections

H3 and H4 Pin No. H3 Signal H4 Signal

1 not connected not connected

2 not connected not connected

3 TX1/RTS0 TX0

4 not connected not connected

5 RX1/CTS0 RX0

6 +5 V pullup +5 V pullup

7 not connected not connected

8 not connected not connected

9 GND GND

10 not connected not connected

112 LP3100

D.1.4 I/O Header

The LP3100 Development Board provides
access to the LP3100 I/O header H2. The
Development Board I/O header (H2) is a 2 ×
20 header. The pinout is identical to the pinout
for LP3100 header H2 (see Figure D-2).

D.1.5 Power Supply Input Connector

The power supply input connector H1 is used
for connecting an external power supply to the
LP3100 and to the Development Board. H1 is
a three-pin single-row header. Pins 1 and 3 are
ground, and pin 2 is input voltage.

D.1.6 Reset Switch

Reset switch SW1 is connected to the PB_RST
signal on the LP3100. Pressing the switch
causes the PB_RST signal to go low.

D.1.7 Prototyping Area

The Development Board has a prototyping area consisting of a grid of plated through-
holes with 0.100" spacing to accommodate standard DIP ICs and through-hole compo-
nents. Copper areas, covered with a solder mask, surround the holes in the grid. The cop-
per on the top (component) side is connected to a 3.3 V DC power supply. The copper on
the bottom side is connected to ground. Connections to the 3.3 V supply or GND can be
made by scratching the solder mask and soldering to the copper area.

��1)
��1�
��1!

��1"

���1

91�

91�

91�

&:)(�&�*
�:*
��1"
��1)

��1��&)

����

���&2
���&�
���&"
���&)

��1��&2
��1��&�
��1��&"

��
�
���;
��1��&*

��1��&0
��1��&�
��1��&!

���&0
���&�
���&!
���&*

��1!
��1*

91�

�:)(�&�*
&:*

(��<��&

��

 �

�� ��

���#
���� �= ���� ��

Figure D-2. LP3100 Header H2 Pinout

User’s Manual 113

D.2 Dimensions

Figure D-3 illustrates the dimensions of an LP3100 Development Board.

Figure D-3. LP3100 Development Board Dimensions

1. Header H7 is not centered on the board, but is offset by 0.050" (1.3 mm).

H7

0.
15

, t
yp

(3
.8

)

0.55, 2x
(14) 0.15, 2x

(3.8)

Swaged posts, 4x

~
0.

25
(6

.4
)

~
0.

59
(1

5)

3.9
(99)

1.
85

(4
7)

0.45
(11)

2.
50

(6
4)

0.
32

5
(8

.3
)

SW1

R5 +

U1

H2

R4 R3

C1

C2

H5 H6

H1

R1

R2

H3

H4

C3

H7

H7

114 LP3100

User’s Manual 115

APPENDIX E.
LPBUS PROTOTYPING BOARD

Appendix E provides information about using the LPBus Prototyping Board to design
LPBus expansion boards.

116 Jackrabbit

E.1 Overview

The LPBus is an expansion bus that provides a simple method of expanding the I/O capability of the LP3100
and other Z-World controllers. Z-World expansion boards or customer designed boards can be easily con-
nected to the LPBus via ribbon cable or stacking connectors. This appendix outlines some of the electrical
and mechanical considerations of designing LPBus expansion boards. Following the recommendations in
this appendix will increase the reliability of expansion boards and maintain compatibility with other Z-
World expansion boards.

The LPBus Prototyping Board provides a quick and easy method of developing and evalu-
ating expansion boards for the LP3100. The LPBus Prototyping Board provides the
LPBus signals and a prototyping area.

Figure E-1 illustrates the top view of the LPBus Prototyping Board and identifies the loca-
tion of the headers with signals that are discussed in this appendix.

Figure E-1. LPBus Prototyping Board Layout

+

C1

R1
R2

U2

C4

RN1

C2 C3

R
N

2
U

1
U

3

C6

H1

H2

H3

J1 J2 J3

H4

J4
J5R3

U
4

C5

Top View

Side View

Headers H4 and H5 are not centered, but are offset).050" (1.3 mm)

Header H5 located
on bottom side of PCB

User’s Manual 117

E.1.1 Installation of LPBus Prototyping Board

Mate the LPBus Prototyping Board to the LP3100. Make sure that header H5 on the bot-
tom side of the Prototyping Board mates with header H3 on the LP3100. Figure E-2 illus-
trates the correct placement.

Figure E-2. LPBus Prototyping Board Alignment

DCIN can be connected to pin 3 of header H4 on the LPBus Prototyping Board, and GND
can be connected to pin 39 of header H4 as shown in Figure E-2.

E.1.2 Prototyping Area

The Development Board has a prototyping area consisting of a grid of plated through-
holes with 0.100" spacing to accommodate standard DIP ICs and through-hole compo-
nents. Copper areas, covered with a solder mask, surround the holes in the grid. The cop-
per on the top (component) side is connected to a 5 V DC power supply. The copper on
the bottom side is connected to ground. Connections to the 5 V supply or GND can be
made by scratching the solder mask and soldering to the copper area.

Z180

+

+

LPBus Prototyping Board on top of LP3100.

91�

���1

LP3100 header H3

H5 on bottom side of PCB
connects to H3 on LP3100

H4

118 Jackrabbit

E.1.3 LPBus Signals

The LPBus signals are brought to the LPBus Prototyping Board via headers H5 and H4
from header H3 on the LP3100. Figure E-3 shows the pinout for the various signals avail-
able on the LPBus Prototyping Board.

Figure E-3. LPBus Signal Pinouts on Prototyping Board

E.2 Design Considerations

E.2.1 Electrical

To avoid excessive loading of the LPBus, do not load any bus line with more than one
input. If a bus line must drive more than one input, the line should be buffered. Since the
/DS0–/DS7 lines are usually used by only a single board in each system, they do not usu-
ally need to be buffered. It is also important to keep connector and cable lengths as short
as possible. The LPBus was designed to work reliably with up to eight expansion boards
in the system, as long as all boards meet the specified design parameters.

The VHC logic family is well suited for use on LPBus expansion boards. VHC logic has
the following advantages:

• Available from multiple sources (National Semiconductor, Motorola).

(;�
(�1&

��)

���

�1)
�1"

��2

��"

��&"
��&)
(��

(>�"
(>�!
(>�)
(>�*

��*
��!
���

(��)
(��*
��0

���&0
���&�
(��"
(��!

��1!
��1*

91�

�:)(�&�*
&:*

����
��) ���� ��

(��2
��
(���

(�>�

���1

91�

(���

91�

��0
���
��!

(�1#�$

����

���?*

91�

(�1&(;�
���

���?)

���
��!
��*

��"
��)
91�
��0

(��*
���

(��!

(��0
(���

����

�
����

(�����&

��2
���
��"
��)

��*

(��"
(��)

(�>�
)
"
�
2
@
))
)"
)�
)2
)@
!)
!"
!�
!2
!@
")
""
"�
"2
"@

!
�
0

)*
)!
)�
)0
)
!*
!!
!�
!0
!
"*
"!
"�
"0
"
�*

��&�
��&2

)
"
�
2
@
))
)"
)�
)
"
�
2
@
))
)"
)�
)
!
"

!
�
0

)*
)!
)�
)0
!
�
0

)*
)!
)�
)0
)
!
"

(���?)
(��?

(���?*

��

��

���

) ! "

(�
�
*

(�
�
)

(�
�
!

��

) ! "

(�
�
"

(�
�
:

(�
�
�

��

) ! "

(�
�
�

(�
�
0

(�
�
2

��

User’s Manual 119

• Operation is well specified for both 3.3 V and 5 V supplies.

• Tolerant of inputs of up to 7 V.

• Low cost.

HC logic may be used, but its operation is not specified at 3.3 V. Programmable logic
devices such as PALs may also be used, although their power consumption may be higher
than VHC logic.

E.2.2 Board ID

Since different types of expansion boards can reside at different I/O addresses, it is useful
for the software to be able to identify the type of board residing at a particular I/O slot
(selected from one of eight /DS lines). The Board ID is read from the lowest address
within the selected board’s I/O space.

A board can have either a 4-bit or 7-bit Board ID. D7 identifies the width of the Board ID.

Table E-1 lists the LPBus ID types.

Table E-1. LPBus Device ID Types

D7 of Board ID Location Mode Board ID Data Bits

0 4-bit Board ID D[3..0]

1 7-bit Board ID D[6..0]

120 Jackrabbit

If a board is present, the Board ID defined below will be read. If no board is present, 255
decimal (binary 11111111) will be read.

Table E-2 lists the 4-bit Board IDs.

7-bit Board IDs

The use of 7-bit Board IDs has not yet been defined by Z-World.

The 7-bit Board ID 255 (binary 11111111) is not a useable Board ID since this is what is
read when no Board ID is found.

If a 7-bit Board ID is required, contact Z-World at (530) 757-3737.

Table E-2. 4-bit Board IDs

Board ID, Decimal
(Binary)

Reserved

0 (0000) Customer use

1 (0001) Customer use

2 (0010) Customer use

3 (0011) Customer use

4 (0100) Z-World future expansion board

5 (0101) Z-World future expansion board

6 (0110) Z-World future expansion board

7 (0111) Z-World future expansion board

8 (1000) Z-World future expansion board

9 (1001) Z-World future expansion board

10 (1010) Z-World future expansion board

11 (1011) Z-World future expansion board

12 (1100) Z-World LPBus Prototyping Board

13 (1101) Z-World LPBus Prototyping Board

14 (1110) Z-World LPBus Prototyping Board

15 (1111) Z-World LPBus Prototyping Board

�

User’s Manual 121

E.2.3 No Connect Pins

Signals not used on the expansion board should be left unconnected. However, all 40 sig-
nals should be routed through if a pass-though connector is used. Always leave /ENFSH
unconnected.

E.2.4 Use of DS Lines

The LPBus provides eight Device Selects for selecting slave boards. It is possible to have
LPBus boards share the same DS address if additional qualification is done on other
address lines.

E.2.5 DMA

Direct memory access is available on the LPBus. There are two DMA request lines on the
LPBus: /DREQ0 and /DREQ1.

A typical application of DMA would be a high-speed sampling analog-to-digital conver-
sion board. In sample mode, the A/D would make a conversion, then request a transfer of
converted data directly to memory via DMA. This approach permits faster data transfer
than using I/O instructions does. This is particularly important if the microprocessor is
running at the slower 3 MHz speed. In addition to the improved speed, DMA transfers
also uses less microprocessor time.

122 Jackrabbit

E.3 LPBus Timing

Figure E-4 shows the read-cycle timing for the LPBus with a 6.144 MHz system clock.

Figure E-4. LPBus Read-Cycle Timing

Figure E-5 shows the write-cycle timing for the LPBus 6.144 MHz system clock.

Figure E-5. LPBus Write-Cycle Timing

�����

���,
�5/��

���
��+��
��
������/��,�

!2

��*���0

")

(��*�(��2

��*���2

*
$���
&�%�)02

(���

!") !�)

��

!� !!)

�����

>
���
�5/��

���
��+��
��
������/��,�

)*@

��*���0

))"

(��*�(��2

��*���2

) "

(�>�

!"))�@

��

)00!!)

)*

User’s Manual 123

The LPBus timing shown in Figures E-4 and E-5 is based on calculations using worst-case
delays over the entire operating temperature range. A 50 pF load is assumed for the
LPBus driver IC’s for the worst-case timing calculations. A 50 pF capacitance per line
would represent a load of three expansion boards and their associated cables. Each addi-
tional expansion board and length of interconnecting cable adds approximately 15 pF to
the load, and increases the bus delay by approximately 1 ns.

There is a 231 ns delay for write cycles after a device select line is lowered until the /BWR
line goes low. This is the time available for decoding the device select and I/O address to
qualify an internal write line on an expansion board. For a read operation, the selected
board must present valid data on BD0-BD7 no later than 167 ns after the assertion of
/BRD. The data hold time is 0 ns.

E.4 LPBus DMA

DMA can be used to provide high-speed I/O operations to or from the expansion boards.
The DMA request lines, /DREQ0 and /DREQ1, are request lines for the Z180’s two DMA
channels.

/DREQ0 and /DREQ1 are active low and have a resistor pull-up to VCC. Since /DREQ0
and /DREQ1 can be driven by more than one source, they should only be driven low. If
more than one board uses a DMA request line, ensure that multiple boards do not attempt
DMA transfers simultaneously. /DREQ0 has priority over /DREQ1 in case of simulta-
neous requests.

The Z180 microprocessor may be programmed to respond to DMA requests on level or
edge sense. Once a board has been initialized by software, the board can request a DMA
transfer by pulling one of the request lines low.

The Z180 microprocessor samples the DMA request lines on the rising edge of the clock
cycle just prior to state T3 (i.e., either T2 or Tw) of an instruction cycle. Since the expan-
sion boards have no means to determine T-states directly, the request line should be held
low until a DMA cycle results to insure that it has been recognized. What happens then
depends on the request sense mode that has been programmed.

Once the requested I/O cycle has started, the point at which the Z180 microprocessor sam-
ples the request line for a subsequent cycle occurs just prior to the assertion of the /BRD or
/BWR line. For the edge-sense mode, the board can use the assertion of the /BRD or
/BWR lines to release the /DREQn line. Another cycle will not be initiated until the
/DREQn line is lowered again.

For the level-sense mode, the request line can be held low until the next to last I/O cycle.
During that cycle, the /BRD or /BWR line can be used to release the request line. Having
sampled the line still low just prior to the assertion of /BRD or /BWR, the DMA channel
will execute one more, final cycle. The /DREQn line can be raised and lowered during a
level-sense DMA transfer if the transfer needs to be synchronized with some other event
on your board, for example, as a buffer fills and empties. In that case the same timing sit-
uation applies regarding the assertion and release of the request line: hold it after assertion

124 Jackrabbit

to ensure that the Z180 has sampled it, and one additional cycle will occur upon releasing
it after /BRD and /BWR .

For the board to control the release of the /DREQn line, it is possible to use the assertion
of the device select line, /DSn. In that case, the assertion of /DSn could force the release
of DREQn before the assertion of /BRD or /BWR, which would cause no additional DMA
cycles to occur after the cycle in which the request line was released. For this case to work
correctly, the design would have to implicitly know the I/O address of the source or desti-
nation of the DMA transfer since the device select alone does not specify a particular
address. The device select line is safe to use in this way since it is gated by /IORQ on the
LP3100 before being placed on the LPBus. It is risky to try to decode an I/O address using
BA0-BA6 together with the leading edge of /DSn as a condition to release /DREQn since
the address lines are in state of transition at that time. A false decode is possible because
of uneven delays and races conditions in the decode logic. This is not a reliable design
approach unless a synchronous design is used to delay and sample the /DSn by a couple of
clock periods.

The DMA controller can be programmed to operate in either the burst mode or the cycle-
steal mode. In the cycle-steal mode, DMA cycles are interleaved with normal program
cycles. Since the expansion bus does not provide a means to determine whether or not an
I/O cycle is a DMA cycle, it should be assumed to be a DMA cycle once a board is appro-
priately initialized by software and until the end of the transfer. In other words, the soft-
ware should perform the initialization needed to set up the board to participate in a DMA
transfer before the final I/O access that “arms” it. The software should not poll the board’s
status by reading from the board while a DMA transfer is taking place. These restrictions
do not apply if the I/O address programmed for the DMA transfer is different from the
setup and status registers and if the address is fully decoded during the DMA cycle.

The Z180’s /TEND0 and /TEND1, which signal the last cycle of a DMA transfer, are not
available on the LPBus. Therefore, a programmable counter or similar mechanism must
be included on an expansion board to terminate the DMA requests (i.e., stop asserting
/DREQn) after the correct number of I/O cycles has taken place.

User’s Manual 125

E.5 Dimensions

Figure E-6 illustrates the dimensions of an LPBus Prototyping Board.

Figure E-6. LPBus Prototyping Board Dimensions

Headers H4 and H5 are not centered, but are offset 0.050" (1.3 mm).

+

0.15 (3.8), typ
3.50
(89)

swaged posts, 4x

2.
50

(6
4)

~
0.

27
(6

.9
)

~
0.

61
(1

6)

0.
15

, t
yp

(3
.8

)

C1

R1
R2

U2

C4

RN1

C2 C3

R
N

2
U

1
U

3

C6

H1

H2

H3

J1 J2 J3

H4

J4
J5R3

U
4

C5

C10

U
5

U
6

U
7

R
N

3
U

8

H5

H1

H2

H3

J2 J1

C9
C8

J3
J4
J5

C7

126 Jackrabbit

User’s Manual 127

APPENDIX F. POWER MANAGEMENT

Appendix F provides information about hardware and software specific to power manage-
ment.

128 LP3100

F.1 Input Voltage

The minimum direct current input voltage to the LP3100 is 5.2 V if the +5 V supply is
used for the digital outputs. If the +5 V supply is not used, the minimum input voltage is
3.5 V. The maximum input voltage depends on the ambient air temperature and current
draw from the 3.3 V regulator, but should never exceed 24 V.

When calculating the maximum input voltage, measure the temperature of the LP3100
exposed to the same conditions and environment that will exist in the field. Temperature
of the LP3100 should be measured on the surface of voltage regulators U2 and U3. If the
LP3100 is enclosed, heat may be retained within the enclosure and cause the ambient air
temperature to rise. If the operating temperature is near or below the ambient tempera-
ture, the air acts as an insulator and device’s temperature will rise. Try to simulate a worst
case scenario. If a worst-case scenario cannot be simulated, determine the rise in temper-
ature within the enclosure and add this to the expected maximum temperature outside the
enclosure.

Determine the current used by the circuits external to the LP3100. Add this to the current
draw of the LP3100. The current draw for various conditions is shown in Table F-1.

Compute the maximum DC input voltage by using Equation (F-1).

(F-1)

TJmax is 125°C. This is the maximum allowable junction (die) temperature for the regula-

tors.

A regulator’s life expectancy doubles with every 10°C reduction in junction temperature.

θJA is the thermal resistance between the junction and the ambient air around the regula-

tors. This is a function of the PCB construction and the air movement across the regulator.
Assuming static air movement, use a value of 160° C per watt.

Table F-1. LP3100 Resource Current Draw

LP3100 Resource Current Draw

Microprocessor (3.072 MHz) 11 mA

Microprocessor (6.144 MHz) 15 mA

Analog Input Section 1.5 mA

RS-232 Transceiver 1.0 mA

Diagnostic LED 5.0 mA

5 V Supply for Output Latches 4.0 mA

VIN 3.3
1

IMAX θJA⋅
--------------------------- 

  TJmax
Tambient–()⋅+=

�

User’s Manual 129

Example:

A data logging system that uses an LP3100, a sensor, and a seven-segment LED display is
placed inside a small enclosure with no air flow.

The LP3100 is running at 3.072 MHz and is using the analog input section. The current
draw in this configuration is about 12.5 mA. The sensor draws about 3 mA and the seven-
segment LED draws 35 mA (seven segments at 5 mA). The total current draw is 50.5 mA.
The worst case ambient temperature inside the enclosure is 85° C. Add a safety margin,
about 20 percent in this case, to get 61 mA. Substituting these values into Equation (F-1)
yields

(F-2)

The maximum input voltage for this system would be 7.4 V. Lowering the current draw or
the ambient temperature will increase the input voltage limit. Increasing the current draw
or the ambient temperature will decrease the input voltage limit. See Figure F-1.

Figure F-1. LP3100 Input Voltage vs. Ambient Temperature

VIN 3.3 V 125°C 85°C–() 1
61 mA 160°C/W⋅
-- 

 +

3.3 V 0.10 V/°C 40°C⋅+

7.4 V

=

=

=

Ambient Temperature (°C)

-40 -20 0 20 40 60

0

5

10

15

20

25

30

M
ax

im
um

 D
C

IN
 (

V
)

39 mA

62 mA

96 mA

max DCIN = 24V

130 LP3100

F.2 Power-Failure Detection

Figure F-2 shows the power-fail detection circuitry of an LP3100.

Figure F-2. LP3100 Power-Failure Detection Circuit

F.2.1 Power Failure Sequence of Events

The following events occur as the input power fails.

1. The power-management IC triggers a power-fail interrupt (/INT1) when the DC input
voltage falls within the range of 4.33 V to 3.61 V DC.

2. At some point, the raw input voltage will not be sufficient for the regulator to provide
3.3 V DC to the LP3100 because of the dropout voltage. At that point the regulated
output begins to drop.

Use a power supply with large capacitance to increase the holdup time. This will provide addi-
tional time for the LP3100 to execute a safe shutdown.

3. The power management IC switches power for SRAM to the backup battery when the
regulated voltage falls below the battery input voltage.

4. The power management IC keeps the system in reset until the regulated voltage drops
below 1 V DC. At this point the power-management IC ceases operating. By this time,
the portion of the circuitry not battery-backed has already ceased functioning.

The ratio of the power supply’s output capacitor value to the circuit’s current draw deter-
mines the actual holdup time.

A situation similar to a continuous low input (“brownout”) can occur if the power supply
is overloaded. For example, when a high-current device such as a relay turns on, the raw
voltage supplied to the LP3100 may dip below the power-failure threshold. The interrupt
routine performs a shutdown. This shutdown turns off the relay, clearing the problem.
However, if the cause of the overload persists, the system oscillates, alternately experienc-
ing an overload and then resetting. Using a power supply with a greater capacity will cor-
rect this problem.

If the power source is removed abruptly from the LP3100, then only the capacitors on the
board provide power, reducing computing time to a few microseconds. These times can
vary considerably depending on the system configuration and loads on the LP3100 power

DLS

DCIN

U3 Reg.
VCCU

R8
205K

R7
100K

PFI

VIN

OFF

VOUT

C10
0.1u

to supervisor

VCC

U36 Watchdog

VBAT

WDI

LLIN
PFI

VOUT

/WDO

/LLINE

/PFO

/RESET

/INT1
OSCI

OSCS
/RESET

User’s Manual 131

supplies. External power supply capacitance determines the time it takes for power to
completely fail.

Figure F-3 summarizes the power-failure sequence.

Figure F-3. Power-Fail Sequence

The supervisor switches VRAM to VBAK or VCC, whichever is greater. Since the super-
visor has some hysteresis, it does not keep switching. At some time during a power fail-
ure, VCC falls Below VBAT.

When VCC falls to approximately 3.0 V, a voltage divider trips the LLIN input to the
supervisor, causing it to assert RESET and /RESET.

Time

0

0.5

R
eg

ul
at

or
 V

ol
ta

ge

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

696
asserts
/PFO

696
ceases

operation

DCIN (unregulated)
VCC (regulated 3.3 V)

Voltage
Dropout

PFI

132 LP3100

User’s Manual 133

APPENDIX G. INTERRUPTS

Appendix G presents a suggested interrupt vector map. Most of these interrupt vectors
can be altered under program control. The addresses are given here in hex, relative to the
start of the interrupt vector page, as determined by the contents of the I-register. These are
the default interrupt vectors.

134 LP3100

G.1 Enabling/Disabling Interrupts

Interrupts can be enabled or disabled by including the following commands in the code:

• Enable “ON” Interrupt 0

outport(ITC,inport(ITC) | 1)

• Enable “ON” Interrupt 1

outport(ITC,inport(ITC) | 2)

• Disabled “OFF” Interrupt 0

outport(ITC,inport(ITC) & 0xFE)

• Disabled “OFF” Interrupt 1

outport(ITC,inport(ITC) & 0xFD)

G.2 Interrupt Service Routines

Interrupt service routines (ISRs) are packets of code that the microprocessor jumps to and
executes when it receives an interrupt request.

Refer to the Dynamic C Technical Reference Manual for instructions on writing interrupt ser-
vice routines.

Refer to the Zilog Z180/180 User’s Manual (available from Z-World) for complete details on
using Z180 interrupts.

�

User’s Manual 135

G.3 Interrupt Vectors

To “vector” an interrupt to a user function in Dynamic C, use a directive such as the fol-
lowing:

#INT_VEC 0x10 myfunction

The above example causes the interrupt at offset 10H (serial port 1 of the Z180) to invoke
the function myfunction(). The function must be declared with the interrupt keyword:

interrupt myfunction() {
...
}

Table G-1 lists the Z180 internal interrupt vectors.

Table G-1. Z180 Internal Device Interrupt Vectors

Address Name Description

0x00 INT1_VEC /INT1

0x02 INT2_VEC /INT2

0x04 PRT0_VEC
Programmable Reload Timer
Channel 0

0x06 PRT1_VEC
Programmable Reload Timer
Channel 1

0x08 DMA0_VEV DMA Channel 0

0x0A DMA1_VEC DMA Channel 1

0x0C CSIO_VEV Clocked Serial I/O

0x0E SER0_VEC Serial 0

0x10 SER1_VEC Serial 1

136 LP3100

G.4 Jump Vectors

Jump vectors are similar to interrupt vectors, except that instead of loading the address of
the interrupt routine from the interrupt vector, these interrupts cause a jump directly to the
address of the vector, which contains a jump instruction to the interrupt routine. Below is
an example of a jump vector:

0x66non-maskable power-failure interrupt

Because nonmaskable interrupts (NMI) can be used for Dynamic C communication, the
interrupt vector for power failure is normally stored just in front of the Dynamic C pro-
gram. Store a vector there by using the following compiler directive.

#JUMP_VEC NMI_VEC name

The Dynamic C communication routines jump to the NMI vector when a power failure
causes the NMI rather than a serial interrupt.

Table G-2 lists the interrupt priorities.

Table G-2. Interrupt Priorities

Interrupt Priorities

(Highest Priority) Trap (Illegal Instruction)

NMI (Nonmaskable Interrupt)

INT0 (Maskable Interrupt, Level 0)

INT1 (Maskable Interrupt, Level 1)

INT2 (Maskable Interrupt, Level 2)

Programmable Reload Timer, Channel 0

Programmable Reload Timer, Channel 1

DMA Channel 0

DMA Channel 1

Clocked Serial I/O

Serial Channel Z0

(Lowest Priority) Serial Channel Z1

User’s Manual 137

APPENDIX H. ADDRESSES

Appendix H presents information on EEPROM, microprocessor registers, and LP3100
peripheral addresses.

138 LP3100

H.1 Simulated EEPROM Addresses

The LP3100 uses a section of the flash EPROM to simulate EEPROM. The size of the
simulated EEPROM is 512 bytes (not 512K). Locations 0x02 through 0x19 are used for
storing the analog input calibration constants. The rest of the simulated EEPROM is free
for use by the application.

H.2 Microprocessor Register Addresses

The Z180’s internal I/O registers occupy the first 40H addresses. Refer to the Zilog
Z80180/Z180 MPU internal I/O register map.

H.3 LP3100 Peripheral Addresses

Table H-1 lists the addresses that control the I/O devices external to the Z180 micropro-
cessor.

Table H-1. LP3100 External I/O Device Registers

Address R/W Name Function

4000H R /RDRTC RTC read

4000H W /WRRTC RTC write

4020H R /CS1R DINOUT read

4020H W ALERTC RTC address latch enable

4040H R /CS2R DIN read, DLS and watchdog monitor, ADC

4040H W /CS2W DINOUT write

4060H R HITWD Watchdog timer

4060H W /CS3W DOUT write

4080H R /EN_DKS DIN0 kickstart enable

4081H W /BRESET LPBus reset

4082H W /232TEN RS-232 transmit enable

4083H W 232EN RS-232 driver enable

4084H W /CTSEN 5-wire RS-232

4085H W /PWREN Power supply enable

40A0H W LED LED control

40A1H W 485TE RS-485 transmit enable

40A2H W /485RE RS-485 receive enable

40A3H W /AD_CS ADC select

40A4H W /DOE DINOUT output enable

40A5H W /ADENA AVCC power supply enable

User’s Manual 139

8000H–807FH W /DS0 LPBus Device Select 0

8080H–80FFH W /DS1 LPBus Device Select 1

8100H–817FH W /DS2 LPBus Device Select 2

8180H–81FFH W /DS3 LPBus Device Select 3

8200H–827FH W /DS4 LPBus Device Select 4

8280H–82FFH W /DS5 LPBus Device Select 5

8300H–837FH W /DS6 LPBus Device Select 6

8380H–83FFH W /DS7 LPBus Device Select 7

Table H-1. LP3100 External I/O Device Registers

Address R/W Name Function

140 LP3100

User’s Manual 141

APPENDIX I.
OPTIONAL SECOND FLASH EPROM

142 LP3100

I.1 Optional Flash EPROM

The LP3100 series controllers can have an optional second flash EPROM installed. If an
application needs to use flash EPROM storage to log information or store information that
can be updated at run-time, a second flash EPROM is better than using the only flash
EPROM on the system. With a second flash EPROM, the system does not have to disable
interrupts when writing to the flash EPROM. Writing to the flash EPROM can potentially
take up to 10 ms. Furthermore, since the second flash EPROM is not used to store code or
the debugger kernel, a software bug in the application using the second flash EPROM is
less likely to corrupt the application itself or the debugger kernel.

The Dynamic C SYS.LIB and XMEM.LIB libraries provide functions to check for the
existence and type of the second flash EPROM as well as functions to access it. The fol-
lowing functions are provided.

int sysChk2ndFlash(struct _flashInfo *pInfo)

Checks for the existence and configuration of the second flash EPROM mapped to memory
space.

PARAMETER

*pInfo is a pointer to a struct _flashInfo that stores the configuration of the flash
EPROM.

RETURN VALUE

0 if the second flash EPROM exists and the configuration is valid. Otherwise, a negative num-
ber is returned.

void sysRoot2FXmem(struct _flashInfo *pInfo,
void *src, unsigned long int dest, unsigned int len)

Copies memory content from root memory to second flash EPROM.

PARAMETERS

*pInfo is a pointer to a struct _flashInfo (initialized by sysChk2ndFlash).

*src is a pointer to the beginning of the block in root memory to be copied to the second flash
EPROM.

dest is the physical address that points to the beginning of the block in the second flash
mapped to memory space.

len is the length of the block to be copied.

void xmem2root(unsigned long int src,
void *dest, unsigned int len)

Stores len characters from physical address src to logical address dest.

User’s Manual 143

I.2 Sample Program

The following sample program, WRFLASH.C, writes the literal string Test 2nd flash\r\n
to fixed locations in the second flash EPROM, then reads back the locations and displays
them in the STDIO window.

WRFLASH.C

/*This program demonstrates how to write information into the second flash
EPROM (if equipped) and read the information back. To initialize, call
sysChk2ndFlash to initialize parameters of the second flash. To write
information to the flash, use sysRoot2FXmem (much like root2xmem, but
writes to flash space instead of RAM space). To read information from the
flash to root space, use xmem2root.*/

#use eziolp31.lib
#use xmem.lib

main() {
char strbuf[50];
struct _flashInfo pInfo;
unsigned long cur_addr;
int i;

_GLOBAL_INIT();

// check to see that 2nd flash exists

if (sysChk2ndFlash (&pInfo) != 0) {
printf("No 2nd Flash - cannot log data!!");

}

hitwd();
cur_addr = 0x40000;
sprintf (strbuf, "Test 2nd flash\r\n");
printf ("Starting logging test\n");
for (i = 0; i < 10; i++) {

sysRoot2FXmem(&pInfo, strbuf, cur_addr, 16);
printf (“\ncur_addr = %ld”, cur_addr);
cur_addr += 16;
hitwd();

}
hitwd();
printf ("\nreading from 2nd flash\n");
hitwd();
cur_addr = 0x40000;
for (i = 0; i < 10; i++) {

xmem2root (cur_addr, strbuf, 16);
printf ("\n%3d %7ld : %s", i, cur_addr, strbuf);
cur_addr += 16;
hitwd();

}

}

144 LP3100

User’s Manual

Symbols

+5 V22
/DREQ0123
/DREQ1123
/DS0_S7118
/DSx58
/EN_DKS22
/ENFSH58
/INT/KS22, 56, 58
/PWR57

A

addresses
EEPROM (simulated)138
microprocessor registers ..138
peripheral138

ADVCC22
analog inputs6

calibration constants70
configuration37, 38
frequency response46
gain calculation40
gain resistors38, 40
initializing70
input impedance46
Input ranges39
offset resistors38
offset voltage44

calculation40
reading47, 69
sample program47
scaling inputs40
signal conditioning37

applications2

B

battery backup21, 100
board layout

Development Board108
LPBus Prototyping Board 116

C

CE compliance8
clock speed5, 19, 24

change 3 MHz
lp31Clk3MHz25

change 6 MHz
lp31Clk6MHz25

clocked serial I/O
interrupt priorities136

Compile
sample program15

component shutdown27
CSI/O25

D

data logging5, 19
DCIN19, 57, 130, 131
Development Board12, 108
device select

lines58
outputs59

digital I/O
configuring34
input voltage33
output voltage33
sample program35

Digital inputs
sample program29

digital inputs
input voltage28
pull-up resistors28
reading29, 64, 66

digital outputs
output voltage30
sample program32
writing65, 67

DIN022
pull-up resistor28

DIN0âN328
DLS ..21
DMA Channel 0

interrupt priorities136
DMA Channel 1

interrupt priorities136
DMA request58
driver disable mode

RS-23227
DS168551

E

EEPROM (simulated)
addresses138

eioBrdACalib70
eioBrdAI69
eioBrdDI64
eioBrdDO27, 65

eioBrdInit70
EZIOLP31.LIB62

F

flash EPROM5, 138
write cycle limit20

G

GND57

H

H1 (LP3100)100
H2 (LP3100)28

pinout100
H3 (LP3100)

pinout100
halt mode26
header locations

Development Board108
LPBus Prototyping Board 116

holdup time130

I

inport66
input voltage

digital inputs28
digital inputs/outputs33

INT0
interrupt priorities136

INT1
interrupt priorities136

INT2
interrupt priorities136

interrupt priorities
clocked serial I/O136
DMA Channel 0136
DMA Channel 1136
INT0136
INT1136
INT2136
nonmaskable interrupt136
PRT Timer Channel 0136
Serial Channel Z0136
Serial Channel Z1136
trap136

interrupts
alarm54
power failure130

INDEX

146 LP3100

J

J1
output latch 31

jump vectors 136

K

keypad
detecting keypresses 86
initialization 87

kpDefGetKey 86
kpDefInit 87

L

LCD
delay 84
disabling blinking cursor ... 83
enabling blinking cursor 83
initialization 84
positioning cursor 83
printing text 83, 84
reading status 84
wait 85
writing control characters . 84,

85
lcdCtrl 85
lcdDisBlink 83
lcdEnBlink 83
lcdInit 84
lcdLongWait 84
lcdPos 83
lcdPrintf 84
lcdRead 84
lcdVprintf 83
lcdWait 85
lcdWrite 84
low-power modes 75
LP3100 versions 3
lp31Clk3MHz 77
lp31Clk6MHz 78
lp31PFO 77
lp31Shutdown 76
LPBus 6

/ENFSH 121
addresses 58
BA6 power control 58
board ID 59
capacitive loading 123
device select 55, 121
DMA 121
expansion board

design 116
mounting 55

LPBus (continued)
interface logic 118
kick start 58
mechanical interface 55
power control 57
read 59
reset 58
write 59

LPBus Prototyping Board ... 116
LPBus Prototyping Board Di-

mensions 125

M

microprocessor 5
operating modes

halt 26
sleep 25
standby 25

register addresses 138
supervisor 5

MS_TIMER 26
multidrop network 51

N

nonmaskable interrupts 136
interrupt priorities 136

O

operating modes 25
outport 67
output voltage

digital inputs/outputs 33
digital outputs 30

P

periodic interrupts
flag 54

pinouts
H3 (LP3100) 100

power
SIB2 104

power control 5, 57
power failure

detection circuit 130
interrupt 130

power monitoring 19
power supply control

analog inputs 23
digital outputs 23
features 23
powerdown mode 23, 26
shutdown mode 23

powerdown mode 23, 26
wake up 28

PRT Channel 0
interrupt priorities 136

PRT Channel 1
interrupt priorities 136

R

RBOTTOM 38
Rg .. 38
RJ-12 104
RS-232 serial communication ...

48, 49, 50
AASC.LIB 50
low-power modes

shutdown 27
RS-485 serial communication ...

48, 49, 50
Serial Channel Z1 50
termination resistors 51

RTC ... 6
alarm 54
alarm enabling/disabling ... 80
alarm fields 54

"don’t care" 54
alarm status 80
battery backup 51
drivers 51
interrupts 52
periodic interrupts 53
software 51

rtcChkAF 80
rtcSwAIE 80

S

SEC_TIMER 26
Serial Channel Z0 48, 49

interrupt priorities 136
Serial Channel Z1 48, 49, 50

interrupt priorities 136
serial channels 6

baud rates 48
configuration 48
handshaking 48
RS-232 50
sample programs

AASC 50
software 51

shutdown mode
RS-232 27

SIB2 12, 13, 19
baud rate 104
power 104

User’s Manual

sleep mode25
SRAM5
standby mode25
static RAM5
sysHalt26
sysSleep25, 75
sysStandby26, 75
system clock speed19

T

trap
interrupt priorities136

troubleshooting
board resets91
cables90
communication error90
grounding90
PC COM ports90

V

VBAK22
VCC22

restoring22
shutdown24

VCC resumption
kick start24
time-based24

VCCU21
alarm interrupts54

VRAM22

W

wakeup
kick start24
time-based24

watchdog
timeout19

148 LP3100

User’s Manual

SCHEMATICS

	About This Manual
	Chapter 1. Overview
	1.1 Features
	1.2 Standard Models
	1.3 Flexibility and Customization
	1.4 Subsystems
	1.4.1 Microprocessor, Memory, and Support Circuits
	1.4.2 Power Control
	1.4.3 Digital Inputs/Outputs
	1.4.4 Analog Inputs
	1.4.5 Serial Channels
	1.4.6 Real-Time Clock
	1.4.7 LPBus
	1.4.8 LED

	1.5 Development and Evaluation Tools
	1.5.1 Development Kit Packing List

	1.6 Software
	1.7 CE Compliance

	Chapter 2. Getting Started
	2.1 Operating Modes
	2.1.1 Changing Operating Modes
	2.1.2 Using a SIB2

	2.2 Connecting an LP3100 to a PC
	2.3 Establishing Communication with an LP3100
	2.4 Running a Sample Program

	Chapter 3. Subsystems
	3.1 Subsystems Overview
	3.2 Microprocessor, Memory, and Support Circuits
	3.2.1 Microprocessor Supervisor
	3.2.2 Flash EPROM

	3.3 Power Control
	3.3.1 Power Supplies
	3.3.2 Power Supply Control
	3.3.3 Shutting Down VCC
	3.3.4 Clock Speed
	3.3.5 Microprocessor Operating Modes and Shutdown Mode
	3.3.6 Component Shutdown

	3.4 Digital Input/Output
	3.4.1 Digital I/O Operating Modes and Configuration
	3.4.2 Digital Inputs
	3.4.3 Digital Outputs
	3.4.4 Digital Inputs/Outputs

	3.5 Analog Inputs
	3.5.1 Scaling Input Range

	3.6 Operation
	3.6.1 The VOFF Voltage Divider
	3.6.2 DC Gain
	3.6.3 Finding VOFF
	3.6.4 Practical Considerations
	3.6.5 Input Impedance
	3.6.6 Frequency Response
	3.6.7 Using the ADC
	3.6.8 Using the Analog Inputs

	3.7 Serial Communication
	3.7.1 Operation
	3.7.2 RS-232 Communication
	3.7.3 RS-485 Communication
	3.7.4 Software

	3.8 Real-Time Clock
	3.8.1 Real-Time Clock Interrupts
	3.8.2 Periodic Interrupts
	3.8.3 Alarm Interrupts
	3.8.4 Wake Up VCC

	3.9 LPBus
	3.9.1 LPBus Signals
	3.9.2 Board ID

	Chapter 4. Software Reference
	4.1 Using Dynamic C Drivers
	4.2 Digital Input/Output Functions
	int eioBrdDI(unsigned int eioAddr)
	int eioBrdDO(unsigned int eioAddr, int state)
	unsigned int inport(unsigned int port)
	void outport(unsigned int port, unsigned int value)

	4.3 Analog Input Functions
	void lp31ADCInit(void)
	float eioBrdAI(unsigned int eioAddr)
	void eioBrdInit(int flags)
	int eioBrdACalib(int eioAddr, unsigned int d1, unsigned int d2, float v1, float v2)

	4.4 Serial Communication Functions
	4.4.1 RS-485 Functions
	void on_485(void)
	void off_485(void)

	4.4.2 RS-232 Functions
	void on_232(void)
	void off_232(void)

	4.5 Power Control Functions
	void lp31ADCDis(void)
	void sysHalt(void)
	void sysSleep(void)
	void sysStandby(void)
	void lp31Shutdown(int enbKS, int enbWE)
	void lp31PFO(char onOff)
	unsigned int lp31Clk3MHz(void)
	unsigned int lp31Clk6MHz(void)

	4.6 RTC Functions
	void rtcInit(void)
	int tm_wr(struct tm *t)
	int tm_rd(struct tm *t)
	void rtcSetAlmTime(struct tm *t)
	void rtcSwAIE(int sw)
	int rtcChkAF(void)
	void rtcClrIRQ()
	void rtcIRQ(int enable)

	4.7 Flash EPROM Functions
	int WriteFlash(unsigned long physical_addr, char *buf, int count)

	4.8 LED Functions
	int swLED(unsigned int state)

	4.9 LCD Functions
	void lcdEnCur(void)
	void lcdDisCur(void)
	void lcdEnBlink(void)
	void lcdDisBlink(void)
	void lcdPos(char row, char col)
	int lcdVprintf(char fmt, void *firstArg)
	int lcdPrintf(char fmt, ...)
	int lcdLongWait(void)
	int lcdInit(void)
	int lcdRead(void)
	void lcdWrite(char ch)
	int lcdWait(void)
	int lcdCtrl(char ch)

	4.10 Keypad Functions
	void kpInit(int(*changeFn)())
	int kpScanstate(void)
	int kpDefStChgFn(char *curState, char *changed)
	int kpDefGetKey(void)
	int kpDefInit(void)

	4.11 Additional Software

	Appendix A. Troubleshooting
	A.1 Out of the Box
	A.2 Dynamic C Does Not Start
	A.3 LP3100 Repeatedly Resets
	A.4 Dynamic C Loses Link with Application Program

	Appendix B. Specifications
	B.1 General Specifications
	B.2 Analog Inputs
	B.3 Mechanical Specifications
	B.3.1 LP3100 Mounting Plate Dimensions

	B.4 Header Pinouts
	2.4.1 LCD Connections

	B.5 Jumper Settings

	Appendix C. Serial Interface Board
	C.1 Features
	C.2 External Dimensions

	Appendix D. Development Board
	D.1 Overview
	D.1.1 LCD Interface
	D.1.2 Keypad Interface
	D.1.3 RS-232 Channel Connectors
	D.1.4 I/O Header
	D.1.5 Power Supply Input Connector
	D.1.6 Reset Switch
	D.1.7 Prototyping Area

	D.2 Dimensions

	Appendix E. LPBus Prototyping Board
	E.1 Overview
	E.1.1 Installation of LPBus Prototyping Board
	E.1.2 Prototyping Area
	E.1.3 LPBus Signals

	E.2 Design Considerations
	E.2.1 Electrical
	E.2.2 Board ID
	E.2.3 No Connect Pins
	E.2.4 Use of DS Lines
	E.2.5 DMA

	E.3 LPBus Timing
	E.4 LPBus DMA
	E.5 Dimensions

	Appendix F. Power Management
	F.1 Input Voltage
	F.2 Power-Failure Detection
	F.2.1 Power Failure Sequence of Events

	Appendix G. Interrupts
	G.1 Enabling/Disabling Interrupts
	G.2 Interrupt Service Routines
	G.3 Interrupt Vectors
	G.4 Jump Vectors

	Appendix H. Addresses
	H.1 Simulated EEPROM Addresses
	H.2 Microprocessor Register Addresses
	H.3 LP3100 Peripheral Addresses

	Appendix I. Optional Second Flash EPROM
	I.1 Optional Flash EPROM
	int sysChk2ndFlash(struct _flashInfo *pInfo)
	void sysRoot2FXmem(struct _flashInfo *pInfo, void *src, unsigned long int dest, unsigned int len)
	void xmem2root(unsigned long int src, void *dest, unsigned int len)

	I.2 Sample Program

	Index
	Schematics

