August 2000

LM160/LM360 High Speed Differential Comparator

General Description

The LM160/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the μ A760/ μ A760C, for which it is a pin-for-pin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 400 mV.

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disk file systems.

Connection Diagrams

Metal Can Package

TOP VIEW DS005707-4

Order Number LM160H/883 (Note 1) See NS Package Number H08C

Note 1: Also available in SMD# 5962-8767401

Features

- Guaranteed high speed: 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

Order Number LM360M, LM360MX or LM360N See NS Package Number M08A or N08E

Absolute Maximum Ratings (Notes 6, 8)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Positive Supply Voltage	+8V
Negative Supply Voltage	-8V
Peak Output Current	20 mA
Differential Input Voltage	±5V
Input Voltage	$V^+ \ge V_{IN} \ge V^-$
ESD Tolerance (Note 9)	1600V
Operating Temperature Range	
LM160	–55°C to +125°C
LM360	0°C to +70°C

Storage Temperature Range	–65°C to +150°C	
Lead Temperature		
(Soldering, 10 sec.)	260°C	
Soldering Information		
Dual-In-Line Package		
Soldering (10 seconds)	260°C	
Small Outline Package		
Vapor Phase (60 seconds)	215°C	
Infrared (15 seconds)	220°C	
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.		

Electrical Characteristics

 $(T_{MIN} \le T_A \le T_{MAX})$

Parameter	Conditions	Min	Тур	Max	Units
Operating Conditions					
Supply Voltage V _{CC} ⁺		4.5	5	6.5	V
Supply Voltage V _{CC}		-4.5	-5	-6.5	V
Input Offset Voltage	$R_{S} \le 200\Omega$		2	5	mV
Input Offset Current			0.5	3	μA
Input Bias Current			5	20	μA
Output Resistance (Either Output)	V _{OUT} = V _{OH}		100		Ω
Response Time	$T_A = 25^{\circ}C, V_S = \pm 5V$ (Notes 2, 7)		13	25	ns
	$T_A = 25^{\circ}C, V_S = \pm 5V$ (Notes 3, 7)		12	20	ns
	$T_A = 25^{\circ}C, V_S = \pm 5V$ (Notes 4, 7)		14		ns
Response Time Difference between Outputs					
$(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } - V_{IN2})$	$T_{A} = 25^{\circ}C$ (Notes 2, 7)		2		ns
$(t_{pd} \text{ of } + V_{IN2}) - (t_{pd} \text{ of } - V_{IN1})$	$T_{A} = 25^{\circ}C$ (Notes 2, 7)		2		ns
$(t_{pd} \text{ of } + V_{IN1}) - (t_{pd} \text{ of } + V_{IN2})$	$T_{A} = 25^{\circ}C$ (Notes 2, 7)		2		ns
$(t_{pd} \text{ of } -V_{IN1}) - (t_{pd} \text{ of } -V_{IN2})$	$T_{A} = 25^{\circ}C$ (Notes 2, 7)		2		ns
Input Resistance	f = 1 MHz		17		kΩ
Input Capacitance	f = 1 MHz		3		pF
Average Temperature Coefficient of	$R_{S} = 50\Omega$		8		µV/°C
Input Offset Voltage					
Average Temperature Coefficient of			7		nA/°C
Input Offset Current					
Common Mode Input Voltage Range	$V_{\rm S} = \pm 6.5 V$	±4	±4.5		V
Differential Input Voltage Range		±5			V
Output High Voltage (Either Output)	$I_{OUT} = -320 \ \mu A, V_S = \pm 4.5 V$	2.4	3		V
Output Low Voltage (Either Output)	$I_{SINK} = 6.4 \text{ mA}$		0.25	0.4	V
Positive Supply Current	$V_{\rm S} = \pm 6.5 V$		18	32	mA
Negative Supply Current	$V_{\rm S} = \pm 6.5 V$		-9	-16	mA

Note 2: Response time measured from the 50% point of a 30 mVp-p 10 MHz sinusoidal input to the 50% point of the output.

Note 3: Response time measured from the 50% point of a 2 Vp-p 10 MHz sinusoidal input to the 50% point of the output.

Electrical Characteristics (Continued)

Note 4: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold. Note 5: Typical thermal impedances are as follows:

Cavity DIP (J):	θjA	135°C/W	Header (H)	θjA	165°C/W	(Still Air)
Molded DIP (N):	θjA	130°C/W			67°C/W	(400 LF/min Air Flow)
				θjC	25°C/W	

Note 6: The device may be damaged if used beyond the maximum ratings.

Note 7: Measurements are made in AC Test Circuit, Fanout = 1

Note 8: Refer to RETS 160X for LM160H, LM160J-14 and LM160J military specifications.

Note 9: Human body model, 1.5 k Ω in series with 100 pF.

Typical Performance Characteristics

Supply Current vs Ambient Temperature

Common-Mode Pulse Response

Input Current vs Ambient Temperature

Propagation Delay vs Ambient Temperature

Input Characteristics

DS005707-10

Delay of Output 1 With Respect to Output 2 vs Ambient Temperature

LM160/LM360

AC Test Circuit

$V_{IN}=\pm 50 \text{ mV}$	FANOUT=1	FANOUT=4
V+=+5V	R=2.4k	R=630Ω
V ⁻ =-5V	C=15 pF	C=30 pF

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)