
T
em

perature M
easurem

ent w
ith the P

C
87365/6

www.national.com

A
N

-1128

1999 National Semiconductor Corporation AN101119

Temperature Measurement
with the PC87365/6

National Semiconductor
Application Note AN-1128
Ernest Bron
May 1999

The PC87365 and PC87366 are the latest additions to
National Semiconductor’s PC8736x family of LPC-based
SuperI/O devices. These devices integrate most of the usu-
al SuperI/O functions. Their prime feature, however, is the
incorporation of analog functions such as temperature and
voltage measurement.

This Application Note describes the new temperature mea-
surement module. Both the PC87365 and the PC87366
include a diode-based temperature sensor. In addition, the
PC87366 includes a thermistor-based temperature sensor.

DIODE-BASED TEMPERATURE MEASUREMENT
SENSOR (TMS)

The PC87365 and PC87366 include sophisticated diode-
based temperature measurement, using an on-chip multi-
level current source. A Sigma-Delta A/D converter, which
effectively reduces the circuit’s susceptibility to noise, im-
proves the accuracy of the temperature measurement.
Automatic averaging ensures stable and reproducible readings.

Architecture

A separate logical device (number 0xE) is assigned to the
TMS module. Figure 1 is a simplified block diagram of this
module, showing one external diode, although two external
diode connections are available. Once enabled, the TMS
module continuously measures the temperature of up to
two external diodes, and an internal diode (PC87366 only).
The host system may read the measured temperature at
any time. When the main system indicates it is in power-
down mode (by inactivating SLPS3), the TMS module stops
measuring temperature. Measurements resume once
SLPS3 reactivates, and the internal wake-up sequence is
completed. During this power-down period, the contents of
the TMS registers are maintained by VSB.

Figure 1. TMS Simplified Block Diagram

Figure 1 shows the basic operation of the TMS module. On
the left side, the diode is connected to the DPi and DNi ter-
minals. A diode selector module selects one of two diodes
(PC87365), or one of three diodes (PC87366). The diode
terminals are connected to the Temperature Sensor circuit-
ry which forces two fixed currents through the diode. A
Delta-Sigma Analog-to-Digital converter measures the volt-
age across the diode, while these currents are forced
through it. These two voltages are used to calculate the
temperature of the diode. The resulting 8-bit value is fed to
the Read Channel Temperature register (RDCHT), and to
the Enable and Configure Logic block. This block compares
the measured temperature with previously programmed

limit values, and generates alarms if the measured temper-
ature exceeds the set limits. Three types of temperature
alarms are available, High Limit, Low Limit and OverTemp.
Each of these alarms has an associated status bit.

There are two independent alarm output terminals, OTS
and ALERT:

• The OTS output is associated with an OverTemp
event. If the measured temperature exceeds the Over-
Temp setting, the OTS output can be programmed to
go active

• The ALERT output is associated with both High and
Low Limit events. If the measured temperature falls
outside the High or Low Limit temperature setting, the
ALERT output can be programmed to go active. Note
that the ALERT output is unconnected in the device.

Either ALERT or OTS can be enabled, or disabled, and can
be routed to IRQ, SMI or both. Figure 2 shows the temper-
ature alarm block diagram per channel. Figure 4 is an over-
view of the entire module and device.

Two OTS outputs can be activated: OTS1 and OTS2. Bits
0-2 of the SuperI/O Configuration A register, SIOCFA, con-
trol the OTS output number and OTS function enabling on
pins.

Table 1 shows the programmed setting versus the value of
bits 0-2 of SIOCFA. In Table 1 a ‘Y’ indicates that the re-
spective OTS pin is activated for a particular channel, pro-
vided the OTS functionality is enabled for that channel.
Typically the configuration of how many or which OTS pins
to use is performed at the BIOS basis level.

This Application Note deals with the TMS module only, and
assumes that one, or more, OTS outputs are enabled on
one, or more pins. Throughout this Application Note, a sin-
gle signal called OTS is used to reference the internal Over-
Temp event, regardless of the actual method programmed
to output that event on one or more pins.

Table 1. OTS Pin Enabling and Functionality
Temperature

Sensor

Circuitry

DPi
DNi

∆−Σ
8-Bit

A/D Converter

Diode

Selector

Control
Logic

Temperature
Readout

Overtemp.
Shutdown
Setpoint

High and
Low Limit
Setpoints

Conversion
Rate

OTS

IRQ

SMI

TMS Module

ALERTOvertemp

High

Low

Enable
 and
Config
Logic

Enable
Bits

VDD
VSS

VSB

1 OTS Pin 2 OTS Pins

SIOCFA

xxxxxxx0b

xxxxx001b

xxxxx011b

xxxxx111b

xxxxx101b

Source OTS1 OTS1 OTS2

Remote 1 Y Y N

Remote 2 Y N Y

Local Y Y N

VLM
(PC87366 only)

Y Y N

2www.national.com

Figure 2. TMS Channel OverTemp and Limit Detection

Figure 3 shows a simplified diagram where the PC87365, or PC87366, is connected to a chipset that provides a thermal alarm input.
The OTS output of the TMS module can be connected to this THRM input. There are various ways a chipset may handle a thermal
alarm event from the TMS module. In the example shown in Figure 3, the chipset provides WakeOnLAN support, which allows au-
tomatic error reporting to a Network Controller. In addition, or alternatively, OTS or ALERT events can be reported to the chipset via
the SMI or SERIRQ signals.

A pull-up may be required on OTS, since this pin is open drain. The pull-up can be tied to VSB or VDD, depending on the application,
however in the example of Figure 3 it is assumed that the THRM input requires a low level on its THRM input when VDD is not applied.
Such system configurations require the pull-up to be tied to VDD.

Figure 3. OTS and ALERT System Connection Scheme

OTS>

Channel
OverTemp
Value

Channel
Measured
Value

OTS
Output
Enabled

>

Channel
High Limit
Value

Channel
Measured
Value

ALERT
Output
Enabled

Channel
Temp High
Limit
Exceeded

<
Channel
Low Limit
Value

Channel
Temp Low
Limit
Exceeded

ALERT

Channel
Overtemp
Limit Exceeded OverTemp

Limit

TCHCFST

TCHCFST

TCHCFST

bit 1

bit 2

bit 3

TCHCFST
bit 4

TCHCFST
bit 5

OTS

SMI

SERIRQ

ALERT

CHIPSET

THRM

SERIRQ

ExtSMI

Cfg

PC8736x

WakeOnLAN

VDD

3 www.national.com

Figure 4. TMS Status Mapping

Temperature Data Format and Conversion

Temperature data is stored in the RDCHT, CHTH, CHTL and CHOTL registers as an 8-bit, 2’s complement word with a Least Sig-
nificant Bit (LSB) equal to 1˚ C.

To convert read temperatures, that are in 2’s complement, software should check bit 7. If set, the measured temperature is below zero.

To convert the number to a real temperature, subtract the value 256 from it. If bit 7 is clear, the value read is the real temperature.

Limit
OverTemp

OTS
ALERT

Channel 0

Limit
OverTemp

OTS
ALERT

Channel 1

Limit
OverTemp

OTS
ALERT

Channel 2

OTS

ALERT

IRQ

SMI

Ch0

Ch1

Ch2

Ch0

Ch1

Ch2

Ch0

Ch1

Ch2

Ch0

Ch1

Ch2

TEVIRQ

ALERT Event
to IRQ Enable

bit0

TEVIRQ
bit2

TEVIRQ
bit4

TEVIRQ
bit1

TEVIRQ
bit3

TEVIRQ
bit5

TEVSMI
bit0

TEVSMI
bit2

TEVSMI
bit4

TEVSMI
bit1

TEVSMI
bit3

TEVSMI
bit5

NOTE:
Ch0: Remote Diode 1
Ch1: Remote Diode 2
Ch2: Internal Diode
 (PC87366 only)

ALERT Event
to SMI Enable

OverTemp Event
to IRQ Enable

OverTemp Event
to SMI Enable

4www.national.com

Diode Fault Protection

To protect against invalid temperature readings, the TMS module contains specialized protection circuitry that enables software to
detect potential hardware problems and decide on the appropriate course of action. If the D1P or the D2P line is shorted to VDD or
floating, the temperature reading is 127˚ C and the Open bit in TCHCFST is set. Upon completion of a conversion, the setting of the
Open bit in TCHCFST generates both an ALERT and an OTS event.

If the D1P or the D2P line is shorted to GND or D1N or D2N respectively, the temperature reading is 0˚ C and the Temperature Low
Limit bit of TCHCFST is not set.

Programming Model

The registers that control the TMS are partially organized in banks. Figure 5 and Figure 6 show all the registers. The lower 10 offsets
are common to all three banks (Figure 5). The upper six offsets are unique registers per bank (Figure 6). A bank effectively controls
the measurements on a single diode. One bank is available per diode, which implies that two banks are available in the PC87365,
and three banks are available for the PC87366. Bank 0 is for remote diode 1, bank 1 for remote diode 2, and bank 2 for the internal
diode (PC87366 only).

To access a specific register in a bank, write the bank number into the TMSBS register. Subsequent read or write accesses to offsets
0xA to 0xE access the registers of that particular bank. The following pseudo C-code example demonstrates a read access of RD-
CHT of bank 1, effectively reading the measured temperature on remote diode 2.

outp(TMS_BASE + TMSBS,0x01h);
Temp = inp(TMS_BASE + RDCHT);

This example, as all following examples, assumes that the base address of the TMS module is TMS_BASE. This value must be as-
signed.

Figure 5. TMS Control and Status Registers

Figure 6. TMS Channel Registers

Register Bits

Offset Mnemonic 7 6 5 4 3 2 1 0

00h TEVSTS Reserved

Remote 2
Overtemp

Event
Status

Remote 2
ALERT
Event
Status

Remote 1
Overtemp

Event
Status

Remote 1
ALERT
Event
Status

01h Reserved

02h TEVSMI Reserved

Remote 2
Overtemp
Event to

SMI
Enable

Remote 2
ALERT
Event to

SMI
Enable

Remote 1
Overtemp
Event to

SMI
Enable

Remote 1
ALERT
Event to

SMI
Enable

03h Reserved

04h TEVIRQ Reserved

Remote 2
Overtemp
Event to

IRQ
Enable

Remote 2
ALERT
Event to

IRQ
Enable

Remote 1
Overtemp
Event to

IRQ
Enable

Remote 1
ALERT
Event to

IRQ
Enable

05h-
07h Reserved

08h TMSCFG Reserved
External

VREF

Standby
Mode

09h TMSBS Reserved Bank Select

Register Bits

Offset Mnemonic 7 6 5 4 3 2 1 0
0Ah TCHCFST

End of
Conversion Open

OTS
Output
Enable

ALERT
Output
Enable

Channel
OverTemp

Limit
Exceeded

Channel
Temp High

Limit
Exceeded

Channel
Temp Low

Limit
Exceeded

Channel
Enable

0Bh RDCHT Channel Temperature Value
0Ch CHTH Channel Temperature High Limit Value
0Dh CHTL Channel Temperature Low Limit Value
0Eh CHOTL Channel OverTemp Value
0Fh Reserved

5 www.national.com

Measuring Temperature

As mentioned above, if enabled, the TMS module continuously measures temperature. Therefore, the first step towards measuring
temperatures is to enable the module itself. This is accomplished by clearing bit 0 of TMSCFG. In addition, the designer must decide
what reference voltage to use in the system.

To operate, the TMS module requires a reference voltage (VREF). This voltage can be applied from either an internal, or an external,
source. Bit 1 of TMSCFG selects the source. It is recommended to use the internal VREF. This ensures that the VREF level is optimal,
and saves the cost of an additional, external, reference voltage device. This Application Note assumes the use of the internally gen-
erated VREF. To enable the TMS module, and to select the internal VREF:

outp(TMS_BASE + TMSCFG, 0x00) // Select internal V REF, out of standby

The TMS block is now enabled. Each channel also has its own channel enable bit. To enable temperature measurements on any
particular channel, set this bit. For example, to enable channel 1:

outp(TMS_BASE + TMSBS, x01) // Select bank 1
outp(TMS_BASE + TCHCFST, 0x01) // Enable channel

The TMS module can now make some basic temperature measurements. Bit 7 of TCHCFST (Valid bit) indicates if a new measure-
ment was made since the last time this bit was cleared. However, since reading the RDCHT register always returns the last temper-
ature measured, it is not essential to read this bit. To simply read temperature:

inp(TMS_BASE + RDCHT) // Read temperature

In some special cases, temperatures must be read only when a new measurement has been made, i.e. the valid bit has been set.
To use the valid bit, check its status before reading the temperature:

Status = inp(TMS_BASE + TCHCFST) // Get current Status
if (Status&0x80) == 0x80) // Valid (i.e. New) data?
{ outp(TMS_BASE + TCHCFST, Status) // Write back, clear all pending flags

inp(TMS_BASE + RDCHT) // Read temperature
} // if

Diode Fault Detection

An even more advanced temperature reading routine would also include open/short circuit checks when reading the temperature.
The following is a representative routine that checks for open, or short, circuits. Note the check for the programmed lower limit before
verifying that the actual temperature read is 0˚ C, and that there is no lower limit event detected. This ensures that the non-
occurrence of a lower limit event is due to a diode short, and not simply because the lower limit is set below 0˚ C:

Status = inp(TMS_BASE + TCHCFST) // Get current Status
if (Status&0x40) == 0x40) // Diode Open??

return(OPEN_FAULT); //
LowLimit = inp(TMS_BASE+CHTL); // Read Lower limit
if (LowerLimit)&0x80) == 0x00) // Lower limit >= 0?
{ if ((Temperature == 0x00) && // If Temperature is 0 and no low limit temp detected

(Status &0x02)==0x00))
return(SHORT_ERROR);

} // if
return(NO_ERROR); // No error detected

Using ALERT and/or OverTemp

To detect OverTemp and/or an out-of-limit temperature, the required OverTemp and limits, must first be defined, and programmed
into the relevant registers. To program OverTemp, and limits, for channel 1 (remote diode 2):

outp(TMS_BASE+TMSBS,0x01); // Select bank/channel 1
outp(TMS_BASE+CHOTL,OverTemp); // Program OverTemp
outp(TMS_BASE+CHTH,HighLimit); // Program High Limit
outp(TMS_BASE+CHTL,LowLimit); // Program Low Limit

Once these values are initialized, the TMS module automatically updates the relevant flags in the TCHCFST and TEVSTS registers.
To enable the OTS output, set bit 5 of TCHCFST.

Status = inp(TMS_BASE + TCHCFST) // Get current Status
Status |= 0x20; // Set bit 5
outp(TMS_BASE + TCHCFST, Status) // Write back

To enable either an OverTemp or ALERT event to SMI or IRQ, the relevant bit in either TMSSMI or TMSIRQ must be set. For ex-
ample, to enable ALERT event of channel 1 (remote diode 2) onto SMI:

SMIConf = inp(TMS_BASE + TMSSMI) // Get current Configuration
Status |= 0x04; // Set bit 2
outp(TMS_BASE + TMSSMI, SMIConf) // Write back

Before enabling any status onto IRQ or SMI it is always good practice to clear all pending flags. To clear all pending flags of channel
1 (remote diode 2):

6www.national.com

outp(TMS_BASE+TMSBS,0x01); // Select bank/channel 1
Status = inp(TMS_BASE+TCHCFST); // Get current status
outp(TMS_BASE+TCHCFST,Status); // Clear all flags

Generating Functions

Using the code examples shown above, general-purpose functions that operate the TMS module can be generated.

Initialize the TMS

// ***
// * TMSInit Initializes TMS Module
// * Inputs: Vref: Selects VREF source, 0 for internal, 1 for external
// * SMIConf: Alert or Overtemp status to SMI Mapping
// * Bit 0 Set to enable Remote Diode 1 Alert Event to SMI
// * Bit 1 Set to enable Remote Diode 1 OverTemp Event to SMI
// * Bit 2 Set to enable Remote Diode 2 Alert Event to SMI
// * Bit 3 Set to enable Remote Diode 2 OverTemp Event to SMI
// * Bit 4 Set to enable Local Diode Alert Event to SMI
// * Bit 5 Set to enable Local Diode OverTemp Event to SMI
// * IRQConf: Alert or Overtemp status to IRQ Mapping
// * Bit 0 Set to enable Remote Diode 1 Alert Event to IRQ
// * Bit 1 Set to enable Remote Diode 1 OverTemp Event to IRQ
// * Bit 2 Set to enable Remote Diode 2 Alert Event to IRQ
// * Bit 3 Set to enable Remote Diode 2 OverTemp Event to IRQ
// * Bit 4 Set to enable Local Diode Alert Event to IRQ
// * Bit 5 Set to enable Local Diode OverTemp Event to IRQ
// * Outputs: None
// ***
void TMSInit(int Vref, int SMIConf, int IRQConf)
{ int TMSConf;

TMSConf = inp(TMS_BASE+TMSCFG);
if (Vref) outp(TMS_BASE+TMSCFG.(TMSConf|2));// External V REF
else outp(TMS_BASE+TMSCFG.(TMSConf&0xFD));// Internal V REF
outp(TMS_BASE+TEVSMI,SMIConf);
outp(TMS_BASE+TEVIRQ,IRQConf);

}

Enabling or Disabling TMS Altogether

// ***
// * TMSStandby Places TMS module into standby, or takes it out of it
// * Inputs: Enable: 1 to put into standby, 0 to take out of standby
// * Outputs: None
// ***
void TMSStandby(int Enable)
{ int TMSConf;

TMSConf = inp(TMS_BASE+TMSCFG);
if (Enable) outp(TMS_BASE+TMSCFG.(TMSConf|0x01));// Enable standby mode
else outp(TMS_BASE+TMSCFG.(TMSConf&0xFE));// Disable standby mode

Enabling or Disabling Measurements of a Particular Channel

// ***
// * EnableChannel Enables or disables single channels in TMS module
// * Inputs: Channel: Selects the channel, must be between 0 and 2
// * Enable: 1 to enable, 0 to disable
// * Outputs: None
// ***
void EnableChannel(int Channel, int Enable)
{ int Status;

outp(TMS_BASE+TMSBS,Channel); // Select bank #
Status = inp(TMS_BASE+TCHCFST);
if (Enable) { outp(TMS_BASE+TCHCFST, Status); // Clear all flags

Status |= 0x01; // Set enable bit
outp(TMS_BASE+TCHCFST, Status); // Enable the channel

} // if
else { Status &= 0x30; // Keep bits 4 and 5

outp(TMS_BASE+TCHCFST, Status); // Disable the channel, retain flags
} // else

}

7 www.national.com

Enabling or Disabling OTS Output of a Particular Channel

// ***
// * OTSEnable Enables or disables OTS output for a single channel
// * Inputs: Channel: Selects the channel, must be between 0 and 2
// * Enable: 1 to enable OTS, 0 to disable OTS
// * Outputs: None
// ***
void OTSEnable(int Channel, int Enable)
{ int Status;

outp(TMS_BASE+TMSBS,Channel); // Select bank #
Status = inp(TMS_BASE+TCHCFST);
if (Enable) { outp(TMS_BASE+TCHCFST, Status);// Clear all flags

Status |= 0x020; // Set enable bit
outp(TMS_BASE+TCHCFST, Status);// Enable OTS

} // if
else { Status &= 0x11; // Keep bit 4 and 0

outp(TMS_BASE+TCHCFST, Status);// Disable OTS, retain flags
} // else

}

Basic Reading Temperature of a Particular Channel

// ***
// * ReadTemp Read back latest temperature read from channel, no attempt is
// * made to verify that any new measurement has been made since the
// * last time the temperature was read (i.e. Valid bit is not checked)
// * Inputs: Channel: Selects the channel, must be between 0 and 2
// * Outputs: Integer value of measured temperature. Value is between

0 and 255
// ***
int ReadTemp(int Channel)
{ outp(TMS_BASE+TMSBS,Channel); // Select bank #

return(inp(TMS_BASE+RDCHT);
}

Diode Fault Verification

// ***
// * ChannelCheck Check the selected channel for diode faults
// * Inputs: Channel: Selects the channel, must be between 0 and 2
// * Temperature: The previously read temperature
// * Outputs: SHORT_ERROR if diode Short was detected
// * OPEN_FAULT if diode Open was detected
// * NO_ERROR if No Error was detected
// ***
int ChannelCheck(int Channel, int Temperature)
{ int Status, LowLimit;

outp(TMS_BASE+TMSBS,Channel); // Select bank #
Status = inp(TMS_BASE + TCHCFST) // Get current Status
if (Status&0x40) == 0x40) // Diode Open??

return(OPEN_FAULT); // Yes, return Error
LowLimit = inp(TMS_BASE+CHTL); // Read Lower limit
if (LowerLimit)&0x80) == 0x00) // Lower limit >= 0?
{ if ((Temperature == 0x00) && // If Temperature is 0 and no low limit

(Status &0x02)==0x00)) // temperature detected
return(SHORT_ERROR); // return error

} // if
return(NO_ERROR); // no error detected

}

Initializing OverTemp and Limiting Temperature Values

// ***
// * InitLimits Initializes the Values set to OverTemp, lower limit
// * and upper limit
// * Inputs: Channel: Selects the channel, must be between 0 and 2
// * OverTemp: OverTemp value
// * HighLimit: High Limit value
// * LowLimit: Low Limit value
// * Outputs: None
// ***
void InitLimits(int Channel, int OverTemp, int HighLimit, int LowLimit)

8www.national.com

{ int Status
outp(TMS_BASE+TMSBS,Channel); // Select bank/channel #
outp(TMS_BASE+CHOTL,OverTemp); // Set OverTemp
outp(TMS_BASE+CHTH,HighLimit); // Set Higher limit
outp(TMS_BASE+CHTL,LowLimit); // Set Lower limit

}

Converting Temperature Values (0 to 255) to Real Temperature and Vice Versa

// ***
// * Val2Temp Converts 2’s complement temperature value to corresponding
// * temperature
// * Inputs: Value: Byte value (MUST between 0 and 255)
// * Outputs: Real temperature
// ***
int Val2Temp(int Value)
{ int Temperature

if (Value&0x80) Temperature = (Value-0x100);// Negative temperature
else Temperature = Value; // Positive
return(Temperature);

}

// ***
// * Temp2Val Converts real temperature to 2’s complement temperature value
// * that can be used for the TMS
// * Inputs: Temperature: Real temperature (MUST between -128 and 127)
// * Outputs: Temperature: 2’s complement number
// ***
int Temp2Val(int Temperature)
{ int Value

if (Temperature <0) Value = Temperature + 0x100;// If below zero, simply add
else Value = Temperature; // Else NOP
return(Value);

}

Combining

To operate the TMS module using some of the functions described here, perform all initializations while the channels are disabled.
Only after all initializations are finished should the channels be enabled. The recommended order of initialization is: disable chan-
nel(s), initialize, enable channel(s).

See the example code below that initializes the TMS to operate from an internal VREF, and maps all possible events to IRQ. Chan-
nels 0 to 2 are enabled with no OTS outputs. Limits are set to −20˚ C to +75˚ C. OverTemp is set at +90˚ C. On entry, it is assumed
that the TMS is in its default state, i.e. in standby, and all individual channels are disabled.

TMSInit(0,0x00,0x3F); // Int V REF, map all events to IRQ;
SetLimits(0,Temp2Val(90),Temp2Val(75),Temp2Val(-20)); // Set channel 0 limit values
SetLimits(1,Temp2Val(90),Temp2Val(75),Temp2Val(-20)); // Set channel 1 limit values
SetLimits(2,Temp2Val(90),Temp2Val(75),Temp2Val(-20)); // Set channel 2 limit values
TMSStandby(0); // Take TMS out of standby
EnableChannel(0,1); // Enable channel 0
EnableChannel(1,1); // Enable channel 1
EnableChannel(2,1); // Enable channel 2

.

.

.
CPUTemp = Val2Temp(ReadTemp(0)); // Get channel 0 temperature
Error = ChannelCheck(0,CPUTemp); // Make Sure No Diode Fault

Using the functions described above, a basic temperature measurement system can be implemented. The functions can easily be
extended to add additional functionality.

THERMISTOR-BASED TEMPERATURE MEASUREMENT

The PC87366 can measure temperatures on channels 11 to 13 of its internal Voltage Level Measurement module (VLM). The mea-
sured signal is a voltage, but by using a thermistor as part of the resistive voltage divider on the voltage input, the temperature can
be measured. Figure 7 shows examples of connecting thermistors to the VLM. In these examples, a higher temperature results in a
lower measured voltage.

9 www.national.com

Figure 7. Thermistor-based Temperature Measurement

The channels of the VLM that support temperature measurement include standard OverTemp and ALERT event notification
schemes.

Principle of Operation

There are two types of thermistors, Negative Temperature Coefficient (NTC) and Positive Temperature Coefficient (PTC). The re-
sistance of an NTC decreases with increasing temperature. The resistance of a PTC increases with increasing temperature. Usually,
NTC thermistors are used. This Application Note assumes the use of NTC thermistors for temperature measurement purposes. Most
NTCs are specified by a resistance value at 25˚C, and a constant, B, valid for temperatures between 25°C and 85°C. Figure 8 shows
typical curves for NTC resistance versus temperature.

Figure 8. NTC Resistance vs. Temperature

The theoretical resistance of an NTC can be expressed as:

Where RT is the resistance of the NTC, A and B are constants, and T is the temperature in degrees Kelvin. B depends on the ma-
terial, and typically lies between 2000 and 5500˚K. This implies that a temperature change of 1˚C would result in a resistance change
of 2-6% (at a nominal temperature of 25˚C).

The VLM measures voltages using the following equation:

Using the NTC thermistor-based voltage divider, as shown in Figure 7, the input voltage to the VLM is:

Using the above equations, system performance and measurements can be evaluated. For example, assume an NTC with nominal
resistance of 10K at 25˚C and B of 3820 between 28 and 85˚C. From these values A can be calculated, and a table of temperature
versus Vi and measured voltage can be generated. Table 2 shows the numbers generated using an NTC with parameters as de-
scribed above and a 10K pull-up resistor (R in Figure 7). Actual system temperature can be measured using such a table, and im-
plementing a lookup table to determine temperature from measured voltage.

R

AVDD

NTS

TSi

PTS

R

TSi

AVDD

AVSS AVSS

Different materials

Temperature

R
es

is
ta

nc
e

RT A e
B T⁄•=

Vi 2.45 V× re f RDCHVi 256⁄×=

Vi AVDD

RT

R RT+
----------------- 

 ×=

10www.national.com

Table 2. Lookup Table Example

Other Resistance Versus Temperature Profiles

The method described in the previous section assumes that the resistance of the thermistor follows the theoretical formula. For all
practical purposes, the system designer must always verify the real life resistance/temperature curve. Although some thermistor
vendors specify the temperature/resistance characteristics of their devices using the parameters described above, other vendors
supply different data including a complete temperature vs. resistance table and/or figures, or other formulas and parameters.

Lookup Table Implementation

In practise it is hard to implement a thermistor-based temperature measurement system without the use of a lookup table:

• The wide variety of methods used by thermistor vendors to specify the resistance vs. temperature characteristics of their ther-
mistors, prohibits the use of a standard (universal) Readout-to-Temperature conversion function. Such a function could be im-
plemented, but any change in the type of thermistor used could require significant changes in this function.

• Thermistor vendors supply resistance vs. temperature data using either formulas, curves or tables. In all cases, the behavior
is an approximation and only provides conversion from thermistor resistance to thermistor temperature.

— If a logarithmic formula is provided, a higher level language, such as C, could do the conversion easily. However, most BIOS
is written in assembly, and the overhead of doing these kind of calculations at the assembly level is significant.

— If a polynomial approximation formula is provided, higher level languages can be used without problems, but implementation
in assembly is a problem for both code size and speed. An example of a polynomial approximation is:

Where:
T = Temperature
RT = Thermistor Resistance
ak = Coefficient
n = Number of iterations

T (K) T (C) Rt Vi RDCHV
298 25 10000 1.65 142
300 27 9181 1.58 136
302 29 8438 1.51 130
304 31 7765 1.442 124
306 33 7152 1.376 118
308 35 6596 1.312 113
310 37 6088 1.249 107
312 39 5626 1.188 102
314 41 5204 1.129 97
316 43 4818 1.073 92
318 45 4465 1.019 87
320 47 4142 0.967 83
322 49 3846 0.917 79
324 51 3575 0.869 74
326 53 3325 0.824 71
328 55 3096 0.78 67
330 57 2885 0.739 63
332 59 2691 0.7 60
334 61 2512 0.662 57 Where:
336 63 2346 0.627 54 T (K) = Temperature in de grees Kelvin
338 65 2194 0.594 51 T (C) = Temperature in de grees Centi grade
340 67 2053 0.562 48 Rt = NTC Resistance
342 69 1922 0.532 45 Vi = Volta ge applied to VLM in put
344 71 1801 0.504 43 RDCHV = Measured number b y VLM (decimal)
346 73 1689 0.477 41
348 75 1585 0.452 38
350 77 1489 0.428 36
352 79 1399 0.405 34
354 81 1316 0.384 33
356 83 1239 0.364 31
358 85 1167 0.345 29

T ak RT
k×

k 1=

n

∑=

11 www.national.com

— If a graph is provided, its behavior must be approximated which results in the same practical problem as described above.
Alternatively, a table can be built from the figure. In this case, a lookup table is required to convert temperature to resistance.

In conclusion, it is strongly recommended to implement a lookup table to convert read values into real temperatures. An example of
such a function is:

; ***
; * _GetTemp: Procedure to get the temperate based on
; * read value. Table lookup is implemented
; * Input: AX - Value read from PC87366 (index into table)
; * Output: AL - Actual Thermistor temperature, based
; * on value read

; * Registers Used: BX, DI, AX
; ***

PUBLIC _GetTemp
_GetTemp PROC near

mov bx, offset _TABLE
mov di, ax
mov al, [bx+di]
ret

_GetTemp ENDP

.

.

.

;***** Here we define the table that translates the value read from the
;***** PC87366 into the temperature of the thermistor.
;***** NOTE: THIS TABLE MUST BE MODIFIED ACCORDING TO THE
;***** SYSTEM EXTERNAL RESISTORS AND THE THERMISTOR TYPE.
;***** THE DATA IN THIS TABLE IS PROVIDED AS AN EXAMPLE
;***** AND SHOULD NOT BE USED FOR REAL APPLICATIONS.

_TABLE db 60h,5Fh,5Eh,5Ch,5Ah,59h,57h,56h
db 51h,50h,49h,48h,47h,45h,44h,43h

.

.

.
db 07h,07h,06h,06h,06h,06h,06h,06h
db 05h,05h,05h,05h,05h,05h,05h,05h

Architecture

Thermistor-based temperature measurement is performed using the VLM module. For channels 11 to 13, OverTemp and limit set-
tings, similar to those of the TMS, are provided. OverTemp, or ALERT, events can be enabled to generate IRQ and/or SMI similar
to the TMS module. The major difference is that all configuration must be done from within the VLM module. For details on voltage
measurement techniques using the PC87366, refer to the datasheet.

Additional Thermistor-based Temperature Measurement Information

To ensure the best thermistor-based temperature measurement performance, it is strongly recommended to initially test the design
using standard resistors instead of a resistor/thermistor combination. This can be done by replacing the thermistor with a resistor
that has a resistance equal to the nominal resistance of the thermistor to be used. Only if these measurements are stable, and AVCC
is observed clean and free of noise, should the thermistor be replaced in the circuit.

Take care to avoid self-heating of the thermistor. If the bias current of the thermistor is too high, the device heats itself, thereby re-
ducing the resistance and inadvertently causing error to the measurement. Consult your thermistor vendor for specific data of self-
heating versus power.

Thermistors are used in a wide variety of applications. This Application Note is not intended to describe all possible ways and meth-
ods to implement thermistor-based temperature measurement. For further, detailed, information on using thermistors and their tem-
perature curves contact the following suppliers:

• Quality Thermistor Inc. www.thermistor.com

• Iksan Technology Co. Ltd. www.iksan.co.kr

• Alpha Sensors, Inc. www.alphasensors.com

• BetaTHERM Corp. www.betatherm.com

• US Sensors Corp. www.ussensor.com

or any other sensor and/or thermistor vendor.

12www.national.com

Noise and Layout Issues

The TMS and VLM modules are essentially analog functions. Separate Analog VSS and VDD planes are provided inside the PC87365
and PC87366. To minimize noise that could cause invalid temperature and/or voltage readings, adhere to the following rules and
guidelines.

TMS Related Guidelines

• High frequency EMI is best filtered at DXP and DXN with an external 2200 pF capacitor. This value can be increased to
about 3300 pF, including cable capacitance. Capacitance higher than 3300 pF introduces errors due to the rise time of the
switched current source. Adding a 0.1 µF filter at DXP and DXN may improve noise performance in some systems.

• Place the PC87365/6 as close as practical to the remote diode. In a noisy environment, such as a computer motherboard,
this distance can be 4 to 8 inches (typical) or more, as long as the worst noise sources (such as CRTs, clock generators,
memory buses, and ISA/PCI buses) are avoided.

• Do not route the DXP and DXN lines next to high inductance signals. Do not route the traces across a fast memory bus,
which can easily introduce 30˚C error, even with good filtering. Otherwise, most noise sources are fairly benign.

• Route the DXP and DXN traces in parallel, and in close proximity to each other, away from any high-voltage traces such as
+12VDC. Beware of leakage currents from PC board contamination; e.g., a 20 MΩ leakage path from DXP to ground causes
about 1˚C error.

• Connect guard traces to GND on either side of the DXP and DXN traces (Figure 9). With guard traces in place, routing near
high-voltage traces is not a problem. Provide a GND plane under the traces, if possible.

• Route traces to remote diodes through as few vias and cross-unders as possible, to minimize copper/solder thermocouple
effects.

• When introducing a thermocouple in traces to remote diodes, make sure that both the DXP and the DXN paths have match-
ing thermocouples. In general, PC board-induced thermocouples are not a serious problem. A copper-solder thermocouple
generates 3V/˚C, and it takes about 200V of voltage error at DXP and DXN to cause a 1˚C measurement error. Thus most
parasitic thermocouple errors are negligible.

• Use wide traces for routing to remote diodes. Narrow traces are more inductive, and tend to pick up radiated noise. The 10
mil widths and spacings recommended in Figure 9 are not absolutely necessary (as they offer only a minor improvement in
leakage and noise), but try to use them where practical.

• For remote sensor distances longer than 8 in., or in particularly noisy environments, a twisted pair is recommended. Its prac-
tical length is 6 to 12 feet (typical) before noise becomes a problem, as tested in a noisy electronics laboratory. For longer
distances, the best solution is a shielded twisted pair, like that used for audio microphones. Connect the twisted pair to DXP
and DXN, and the shield to GND, and leave the shield’s remote end unterminated.

• Excess capacitance at DXP or DXN limits practical remote sensor distances. For very long cable runs, the cable’s parasitic
capacitance often provides noise filtering, and the 2200 pF capacitor can be removed, or reduced in value. Cable resistance
also affects remote sensor accuracy; a 1Ω series resistance introduces about 1/2˚C error.

General Guidelines for TMS and VLM

• Supply analog AVDD though an external RC or LC filter.

• Analog AVDD. Place a 0.1 µF capacitor, and a 10-47 µF tantalum capacitor, on the AVDD pins, as close as possible to the pin.

• A separate, low-impedance, ground plane for analog ground is recommended. This plane provides the ground point for the
voltage dividers. Although such a plane provides the best performance, it is not mandatory, and systems with a sufficiently
low noise level can be designed without it. Figure 10 shows an example plane layout.

• For thermistor-based temperature measurements, the voltage dividers should be physically located as close as possible. This
may be problematic, but every effort should be made to reduce the distance between the thermistor and the PC87366.

Figure 9. DXP/DXN PC Traces

DXP

GND

GND

DXN

10 mil

Minimum

10 mil

10 mil

10 mil

13 www.national.com

Figure 10. V SS Plane Layout Example

Pin 1 Marking

1 38

39

64

65102

103

128

AVSS

VSS

A
N

-1
12

8
T

em
pe

ra
tu

re
 M

ea
su

re
m

en
t w

ith
 th

e
P

C
87

36
5/

6

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.

2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

National Semiconductor
Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: sea.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

