
High Speed, Real-Time Machine Vision

Perry West – Automated Vision Systems, Inc.

Table of Contents
Introduction ...1

Latency ..3

Imaging..5
Triggering – The Stimulus ..5

External Sensor ...5
Part Detection Through Imaging ...6

Image Acquisition ...6
The Role of the Camera ..6
The Role of the Frame Grabber...14

Image Processing ...20
Processing Architecture...20

Processor Speed ..20
Instruction Set ...21
Software Development ..21
Single Processor ..21
Multi-Processor ...22

Operating System ..23
Application Software...23
Resynchronization...24

Latency Calculation ...26
Part Detector..26
Capture Command...26
Strobe/Shutter Trigger...26
Exposure Time ..26
Video Transfer ..27
Transfer to CPU ..27
Image Processing...27
Resynchronization...27
Time Base..28
Output Activation..28

Example 1 ...29
The Requirements ...29
Design ...29
Latency Evaluation..30

Example 2 ...31
The Requirements ...31
Initial Design...31
Solving the Uncertainty in Part Position ...33
Solving the Image Blur and Motion Tear Problems..33
Number of Cameras ..34
Frame Grabber ..36
Computer...36
Operating System ..36
Application Software...36
Ejector Operation ..36
Summary ...37

List of Figures
Figure 1 – Value Functions for Soft and Hard Real-Time ..1
Figure 2 – Event A ..4
Figure 3 – Event B ..4
Figure 4 – Events A & B Combined ...4
Figure 5 – Event C ..4
Figure 6 – Events A, B, & C Combined..4
Figure 7 – Simplistic CCTV Timing ...7
Figure 8 – Basic CCTV Image Acquisition Latency...7
Figure 9 – Interlace Scanning..8
Figure 10 – Interlace Timing...8
Figure 11 – Motion Tear ...9
Figure 12 – Progressive Scan Camera Timing ..9
Figure 13 – Asynchronous Camera Timing ..11
Figure 14 – Asynchronously Resettable Camera Timing..11
Figure 15 – Camera Timing with Strobe Illumination ..13
Figure 16 – Camera Timing with Electronic Shutter ..14
Figure 17 – Basic Frame Grabber ...15
Figure 18 – Simple Frame Grabber System Timing..15
Figure 19 – Frame Grabber with Ping-Pong Memory...16
Figure 20 – Ping-Pong Frame Grabber System Timing ..16
Figure 21 – PCI Bus Transfer Latency..17
Figure 22 – Single Processor...21
Figure 23 – Common Multi-Processor Approach ...22
Figure 24 – Inspecting Bottles...31
Figure 25 – Dual Camera Configuration ...35

List of Tables
Table 1 – Adding Up Latencies...3
Table 2 – Latency Compilation Template ...26
Table 3 – Latencies for Example 1..30
Table 4 – Initial Compilation of Latencies, Example 2...32
Table 5 – Final Latencies for Example 2...37

1

Introduction

A widget moves along a continuously moving conveyor belt, trips a sensor, the vision system performs its
inspection, and operates an ejector to remove a defective widget – all at high speed and in real-time. So,
exactly what is high-speed, what is real-time` and what is the difference?

High-speed has no formal definition. To most people it means a very short time elapses between the
command to take an image and the vision system’s output. A better meaning for high-speed is that the
vision system can take in image data at a high rate – continuously. That is, it can acquire and process
images at a high rate (frames per second). Another meaning of high-speed sometimes used in industrial
machine vision is that the machine vision system is always much faster than any other process step that
limits the manufacturing line speed. A final use for the term high-speed relates to its ability to image
products that are moving at rates that can cause significant image blurring. What these definitions don’t
tell us is what rate sets the threshold for a high-speed vision system. There is no technical definition of
high-speed such as 10 images/second. The implication, though, is that a high-speed system is one that can
operate faster or have a higher data rate than ordinary systems.

Real-time, on the other hand, doesn’t necessarily mean really fast. It does mean the system will be timely –
the results will be provided when they are needed. A vision system’s timeliness can be viewed as a value
function. In a typical machine vision application where the part stops for viewing and is not advanced until
the vision system has made its decision, there is some value to the vision system making a decision by a
certain time so that it is not the slowest element of the production process. If the vision system is earlier
than this time, its value is not increased because the production line cannot go any faster. If the vision
system is almost always on time, but very occasionally a little slower, its value might be diminished only
slightly. However, as the vision system becomes slower on average or more frequently, it becomes a
bottleneck, and its value declines eventually becoming negative. Such a system would be called soft real-
time.

In the example in the first paragraph above of a widget on a continuously moving conveyor, the value
function is high only when the reject decision is output while the widget is passing next to the ejector. If
the vision system is either too early or too late, its value is negative. This system would be called hard real-
time.

Figure 1 below shows value functions for soft and hard real-time.

Figure 1 – Value Functions for Soft and Hard Real-Time

2

In the example at the beginning the widget tripping the sensor is the event and the vision system’s decision
to operate or not operate an ejector is the response. In technical terms the time between an event and a
response to that event is the latency. The important characteristic in a real-time system is that latency is
deterministic. That is, the response will always happen at a predictable time after the event.

The requirements for a system’s speed and the determinism of its latency greatly affect the engineering
challenges in developing the system. The key to achieving high-speed is understanding how to combine
system components to get the best throughput. The key to achieving real-time performance is
understanding and managing latency.

Although high-speed and real-time are technically different criteria, they are most often found together.
This paper focuses more on real-time issues with discussions about how to achieve high-speed
performance. The paper starts with a description of latency and then focuses on high-speed and real-time
issues in two areas: imaging and image processing. Finally, this paper looks at two examples and
discusses how the systems can be engineered to meet requirements. These examples are composites of
real-world machine vision systems. In that regard they represent real engineering challenges that have been
faced and met. The examples do not show the complete development of a vision system. A comprehensive
design might affect the choices illustrated in the examples.

Special thanks go to the following people who provided input and discussion on the topics covered in this
white paper: Duke Bettis, Coleman Gormly, Allan Jackson, Brian Smithgall, Keith Vasilakes, and Jim
West.

3

Latency

Latency is the time between an activity’s initiation and its result. While a system has an overall activity,
from trigger event to output signal, the system itself is comprised of a number of internal events usually
occurring serially. Each latency in the system has some degree of uncertainty ranging, in our technology,
from a few nanoseconds to several seconds. A system’s latency is comprised of the latencies of the
individual processes within the system. In the example shown graphically below in Figure 2 through
Figure 6, there are three serial events A, B, and C, each with its own latency and uncertainty. The latency
is shown as a probability function for the time the event will complete. If we know the probability
functions for the latencies, we can combine them by convolving their probability functions together as
shown.

Fortunately, in real-time systems, the designer is usually not faced with convolving the latencies together.
Determining the total latency and its minimum and maximum from the individual latencies is sufficient.
For the example below:

Latency
Event Minimum Maximum

A 3 12
B 8 57
C 17 35

Total 28 104

Table 1 – Adding Up Latencies

Note that in designing a real-time system, typical latency is not meaningful unless the variation in latency is
negligible in comparison to the timeliness required. Following sections will discuss how to minimize
latency and its variation for different parts of the machine vision process and how to reduce the variation in
latency by resynchronizing the data flow. Resynchronization is a form of pipelining which removes the
variation in latency by using a time reference.

4

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100

Time Interval

P
ro

b
ab

ili
ty

o
f

E
ve

n
t

Figure 2 – Event A

0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80 100

Time Interval

P
ro

b
ab

ili
ty

o
f

E
ve

n
t

Figure 3 – Event B

0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80 100

Time Interval

P
ro

b
ab

ili
ty

o
f

E
ve

n
t

Figure 4 – Events A & B Combined

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100

Time Interval

P
ro

b
ab

ili
ty

o
f

E
ve

n
t

Figure 5 – Event C

0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80 100

Time Interval

P
ro

b
ab

ili
ty

o
f

E
ve

n
t

Figure 6 – Events A, B, & C Combined

5

Imaging

There are three major elements to real-time imaging: the trigger event that starts the process, acquisition of
the image by the camera, and the transfer of image data from the camera to frame grabber and from the
frame grabber to the processor.

Triggering – The Stimulus

From the perspective of designing a vision system, the trigger is a signal received by the vision system that
tells the vision system to acquire an image for processing. However, from a system design perspective, the
critical event is the arrival of a part in position to be imaged. There is always a difference in time between
the arrival of a part and the receipt of a trigger by the vision system that can range from nanoseconds to
milliseconds.

There are two principal methods of triggering a vision system. The first is to use an external device such as
a photosensor to signal the presence of a part in the viewing area. The second is to have the vision system
continuously image the viewing area and through image processing determine when a part is present. We
will discuss both methods from the perspective of real-time operation.

External Sensor

Perhaps the most common way to trigger a vision system is with a photosensor or other device that detects
the presence, or more accurately the arrival, of a part in the viewing area. There are certainly other
methods of externally triggering. For example, in some system a programmable logic controller (PLC)
monitors the motion of parts on an index table, and sends a trigger signal to a vision system after a part is
indexed into the viewing area.

The important characteristic with external triggering is to understand there is some delay and some
variability in timing. With the photosensor, the delay (latency) may be between a few microseconds to
several milliseconds, and the uncertainty may be less than a millisecond or even as short as a few
microseconds. In the case of the PLC and the index table, the uncertainty is the uncertainty of the signal
out of the PLC. In general, programmable controllers have a delay determined by their scan time: the time
for them to interrogate all inputs, determine a new state, and update all outputs. The scan time depends on
the speed of the PLC, the number of inputs, the number of outputs, and the complexity of the logic. A
typical PLC scan time is around 3 msec., but the uncertainty associated with the PLC is ±2/3rds of a scan
time.

The external trigger signal must be received by the vision system, and it must in turn initiate a response.
The response usually starts with the initiation of the camera’s exposure including controlling a shutter and
triggering a strobe light.

If the signal is received into a general-purpose input port on the vision system, it will be up to software to
detect the presence of the signal, and initiate events. Some frame grabbers accept an external signal
directly, and initiate the exposure without software intervention.

If software is used to detect the trigger signal, it will do this either by polling or by an interrupt. When
polling, the software periodically tests the input to see if the signal is present. The minimum latency is the
time it takes the processor to read the input port, to determine the trigger signal is present, and to issue a
capture command to the frame grabber that starts the image acquisition. The maximum latency is the
minimum latency plus the maximum interval between the processor checking the input port for the trigger

6

signal. This maximum time may not be just the software loop time to reread the input port, but it also
includes whatever overhead time may be imposed by the operating system and whatever delays are possible
through other concurrent tasks the processor is running.

When the trigger signal generates an interrupt, the minimum latency is the time it takes the processor to
recognize the interrupt, transfer control to the interrupt service routine, and issue a capture command to the
frame grabber to start the camera’s exposure. The maximum latency is the minimum latency plus whatever
delays the computer and operating system might impose in recognizing and servicing an interrupt.
Requiring the processor to service a higher priority interrupt might cause such a delay.

Frame grabbers that receive and process the trigger signal directly initiate image acquisition with negligible
latency; the delay is usually less than a microsecond. Depending on the frame grabber, it may also have the
option to send an interrupt to the CPU when acquisition is initiated as well as when acquisition is
completed.

Part Detection Through Imaging

There are some situations well suited to having the vision system examine the image data to detect the
presence of a part. In these cases, image acquisition must be commanded by software; the software triggers
the event. After image acquisition, some image processing is performed to determine if a part is present for
viewing. In some implementations of this technique, the same image that is used for detection (triggering)
is retained and analyzed as the primary image. In other cases, a new image is acquired by software
command and its contents analyzed.

The latency for part detection through imaging is the latencies for exposure, transfer of image data through
the system, and initial processing. If the same image can be used for analysis, there is no further latency for
image acquisition.

For discrete parts, part detection through imaging is generally more complex, less reliable, and has longer
latency than using an external sensor to trigger the process.

Image Acquisition

This section on image acquisition covers area cameras and their various operating modes together with the
frame grabber. It covers the challenges involved in high-speed and real-time image acquisition and how
components may be used to manage the system’s latencies. Image acquisition finishes with the image data
being transferred to the processor.

The Role of the Camera

The camera is the vision system’s sensing element. For economic reasons, television cameras came to
dominate machine vision applications, but when applied to machine vision they brought with them
compromises that limited the speed and real-time performance of systems. New camera technology has
evolved which addresses the needs in real-time and high-speed imaging. The material that follows
discusses the characteristics of television cameras, and shows how each limitation of camera performance
affecting real-time and high-speed performance has been addressed with other camera technology. It
should be noted that consideration of a camera with its unique characteristics must necessarily include the
camera’s interface, the frame grabber, which needs to support those characteristics.

7

CCTV Camera

To begin an examination of how camera exposure time affects both high-speed and real-time performance,
we will look at the classic case of where a CCTV camera is used in a machine vision application. The
simplified timing diagram below, Figure 7, shows how this might work. The basic scenario is that the
vision system receives a trigger and acquires the image from the camera. However, the CCTV camera is
continuously running. That is, while it may be synchronized to a frame grabber in a vision system, it is
always exposing and reading out images. So with a trigger arriving asynchronously with the camera’s
scanning, the vision system has to wait between 0 and 33 milliseconds1 before the camera’s image sensor
transfers the photogenerated charge to its output registers and begins sending a video signal to the frame
grabber. The video transfer time from camera to frame grabber adds an additional 33 msec. to the total
time to acquire an image.

Figure 7 – Simplistic CCTV Timing

Neglecting the trigger signal’s latency, we can look at this vision system’s latency in acquiring an image
combining both exposure and video transfer. This is shown in Figure 8.

0 33 66 99

Time (msec)

P
ro

b
ab

ili
ty

o
f

Im
ag

e
A

cq
u

is
it

io
n

Figure 8 – Basic CCTV Image Acquisition Latency

It is apparent that a basic CCTV based vision system will take from 33 to 66 msec. to acquire an image into
the frame grabber, not including the trigger signal latency or image transfer from the frame grabber to the
processor. For relatively slow speed applications (a few parts per second or slower) where the part is
stationary during imaging, this vision system is adequate. However, for systems needing higher speed or
imaging moving parts, this configuration is usually not satisfactory.

1 In this paper, a frame rate of 30 frames per second or 33 msec per frame will be used. For much of the
world, the frame rate is 25 frames per second or 40 msec per frame.

8

The latency variation of a CCTV based machine vision system can be cut in half by understanding how the
CCTV image is transferred as video, and having a more flexible frame grabber. The CCTV camera
exposes and transfers an image (frame) as video data in two interlaced fields. The first field (odd field)
consists of scan lines 1, 3, 5, 7, …. The second, or even, field consists of scan lines 2, 4, 6, 8, …. This is
shown below in Figure 9. Also shown below in Figure 10 is the timing diagram showing the exposure time
and video transfer for interlaced scanning.

Figure 9 – Interlace Scanning

Figure 10 – Interlace Timing

Note that there are two options for video transfer. Most basic frame grabbers only start acquisition when
the odd field is being transferred; for these, the uncertainty in latency is 33 msec. However, there are frame
grabbers that can begin acquisition with either the odd or the even field. These devices reduce latency
uncertainty by half to 17 msec.

9

Motion Tear

Many real-time and high-speed vision systems need to image moving parts. One of the first issues with
CCTV cameras imaging moving parts is that their exposure as well as their video output is interlaced. The
effect of interlaced exposure on a moving part’s image is that the vertical edges are offset giving the
appearance of a picket fence. This effect is called motion tear and is shown in Figure 11.

Figure 11 – Motion Tear

If the camera were turned 90 degrees to the direction of motion so that the normal horizontal image
direction was vertical, the interlace offset would not be apparent in the image. However, this would
introduce a one scan line (pixel) uncertainty in the location of vertical edges due to interlaced scanning. It
would also distort the edge waveform and make sub-pixel measurement impractical.

The magnitude of motion tear can be computed from the equation:

MT = VP * TF *NPh / FOVh

Where:
MT is the magnitude of motion tear in pixels
VP is the part velocity
TF is the time for each field
NPh is the number of pixels in a scan line
FOVh is the field-of-view size in the horizontal direction

One common solution to eliminate interlace offset is to use a progressive scan camera. A progressive scan
camera can have the same resolution as a CCTV camera, but does not use interlaced scanning. The
waveform for a progressive scan camera is shown in Figure 12.

Figure 12 – Progressive Scan Camera Timing

10

Progressive scan cameras do not usually conform to television standards. So the selection of a progressive
scan camera will also change the choice of a frame grabber. However, there are a few progressive scan
cameras which expose the entire frame at one time, transfer it into storage registers, and then read out the
storage register in an interlaced fashion. These cameras can be used with frame grabbers which do not
accommodate full-frame non-interlaced video data output.

Part Position Variation

In acquiring an image of a moving part, the variation in latency causes some part-to-part variation in the
position of parts in the field-of-view. The vision system must have a field-of-view large enough to tolerate
this positional variation. The positional variation is given by:

PV = LU * VP

Where:
PV us the variation in part location in the direction of part motion
LU is the uncertainty in latency in the acquisition of the image
VP is the speed of the part

For example, a part traveling at 1cm/sec imaged by a vision system with an uncertainty in image
acquisition latency of 33 msec. will have a position variation of:

PV = .033 sec * 1 cm/sec = .033cm

That is, a part traveling at only 1 cm/sec will have a position uncertainty of 1/3mm when imaged with a
standard CCTV camera. It should be emphasized that this is the uncertainty in position of the object in the
image, and not the blur in the image caused by the part’s motion. Concerns about blur are addressed
below.

Motion uncertainty can only be assessed in terms of its impact on the vision system’s performance. One
consideration must be any additional complexity of image processing to handle the variation in part
position. Another consideration is that allowing for positional change forces the field-of-view to be larger
than if there was no uncertainty in position, and this larger field-of-view reduces the vision system’s
resolution and accuracy. There are two approaches to working with part location uncertainty. The first
approach calculates the field-of-view taking location uncertainty into consideration, and from the field-of-
view determines the required image resolution of the camera. The second approach is to determine from
some given equipment, including the camera’s image resolution, the maximum field-of-view that meets
resolution and accuracy requirements, and from that field-of-view determine how much allowance for part
position variation is available. In this second approach where the maximum part location uncertainty is
known, the maximum latency uncertainty is:

LU = PU / VP

High Speed Cameras

Using a high-speed camera improves system speed, it also improves real-time performance, such as the
uncertainty in part location discussed above, by reducing both the latency and its uncertainty. There are
cameras that operate at 60 frames per second. These reduce the latency to between 17 and 33 msec.
Obviously these cameras do not conform to television standards; they do not have to implement interlaced
scanning. They are progressive scan cameras, and are discussed above.

There are also specialized cameras that provide even higher speeds that can be used in machine vision.
Typically, these cameras use two or more image data outputs in parallel to achieve the higher bandwidth.

11

They require special frame grabbers that can accept multiple simultaneous image data sources, and
reconstruct the image in memory.

Partial Scanning Cameras

Still another way to speed up image acquisition is to use a camera that offers the option of partial scanning.
In partial scanning, only a group of scan lines are transferred (e.g., scan lines 151 through 280). Data in the
remaining scan lines is discarded, and not sent to the frame grabber. This trades off reduced vertical
information for increased speed.

Asynchronous Cameras

An even more effective way to reduce latency is to use an asynchronous camera or an asynchronously
resettable camera. These cameras start their exposure and video transfer sequence on command. An
asynchronous camera works by holding the image sensor reset until a start signal is received. An
asynchronously resettable camera is constantly scanning and providing an output; even if the image sensor
is being held reset. Upon receiving a signal to start a new image, it resets the image sensor at the start of
the next video line. After receipt of a start signal, the exposure is begun, and at the conclusion of the
exposure time, the video image is transferred to the frame grabber. The timing diagram for an
asynchronous camera is shown in Figure 13 below. For an asynchronously resettable camera, the timing is
shown in Figure 14 below.

Figure 13 – Asynchronous Camera Timing

Figure 14 – Asynchronously Resettable Camera Timing

For the asynchronous camera, the latency is the sum of the exposure time, the charge transfer time (which
is negligible), and the time to transfer the video data to the frame grabber. Because these cameras do not
conform to any standards like those for CCTV, the actual latency is dependent on the particular camera and
how it is operated. One important factor is that the uncertainty in the camera’s latency is on the order of
one pixel clock − less than 100 nsec.

12

The asynchronously resettable camera adds a small additional latency uncertainty on the order of one
horizontal scan line time typically up to 63.49 µsec.

Image Blur

If part motion is possible during exposure, there will be image blur. The magnitude of the image blur
depends on the rate of part motion, the size of the field-of-view, and the exposure time. Suppose a camera
is viewing a 10cm field-of-view, its exposure time is 33 msec., the image is digitized into 640 pixels
horizontally, and the part is moving at a speed of 1 cm/sec. The magnitude of blur in pixels is:

B = VP * TE * NP / FOV

Where:
B is the blur in pixels
VP is the part velocity
FOV is the field-of-view size in the direction of motion
TE is the exposure time in seconds
NP is the number of pixels spanning the field-of-view

In the example above, VP is 1 cm/sec, TE is 33 msec., NP is 640 pixels, and FOV is 10cm. Then:

B = 1 cm/sec * .033 sec * 640 pixels / 10cm = 2.1 pixels

In most cases, blurring becomes an issue when it exceeds one pixel. However, in precision measurement
applications where sub-pixel precision is needed, even one pixel of blur may be too much.

A useful equation gives the exposure time (TE) for a Blur of one pixel:

TE = FOV / (VP * NP)

The only practical methods of reducing image blur are either to slow or stop the part motion or reduce the
exposure time. In a real-time system, and especially in a high-speed system, slowing the part is usually
impractical. There are very good methods for reducing the exposure time either by using an electronically
shuttered camera or by using strobed illumination or both.

Strobe Illumination

Using a strobe light, whether a xenon strobe or a pulsed LED light source, can freeze part motion in the
image. The light pulse out of a xenon strobe source is typically around 10 µsec, but can range from as little
as 250 nsec to as much as 8 msec. Pulsed LED light sources have been built which operate with a light
pulse shorter than 1 µsec, but normal light pulse widths range 5 µsec and longer. The timing diagram
below in Figure 15 shows typical strobe timing.

13

Figure 15 – Camera Timing with Strobe Illumination

Notice there is a delay or latency between the capture command signal and the firing of the strobe light.
This latency is the sum of the delay between the capture command and the command to the strobe plus the
delay between when the strobe source receives its command and the light pulse is generated. The strobe
lamp and its controller also contribute an uncertainty to the latency called jitter. Typical jitter time for
xenon strobes is on the same order as the duration of the light pulse.

It is critical that the strobe be fired during the camera’s exposure time and not during a time when the
camera’s image sensor is transferring the photogenerated charge to the output registers. For CCD image
sensors, both interline transfer and frame transfer, it is important that the strobe not fire during the charge
transfer time. For sequential readout image sensors such as CID and many CMOS sensors that do not use
an output register, the strobe should only fire during the period between image readouts. It is very difficult
to control strobe triggering through software because of the great uncertainty in software latency. Systems
that successfully use strobe illumination have the trigger signal received by and the strobe light triggered by
hardware circuits; typically these circuits are part of the frame grabber. Frame grabbers that can
automatically trigger the strobe normally have the circuitry to recognize when the strobe is allowed to fire
during the camera’s scanning cycle, and will hold off triggering the strobe until it is allowable. Using
hardware circuits such as on a frame grabber to control the strobe insures the latency and its uncertainty are
minimized. It also minimizes both the part’s blurring and its uncertainty in location in the image.

Strobed light sources are very intense for a very brief duration, but their average light output is not
necessarily as great as ambient illumination. Therefore, it may be necessary to shield the viewing area
from ambient light to insure good signal-to-noise (the ratio of engineered illumination to ambient
illumination). Also, the allowable intensity for a strobed light source is a function of the pulse repetition
rate.

Electronic Shutter

An alternative to a strobed light source is an electronic shutter. The sensing elements in a camera’s image
sensor are reset at the end of each exposure period as the charge from the sensing elements is transferred to
the output register. This reset on the sensing elements can be maintained, and released for a short time just
before transferring the charge from the sensing elements into the output register. The timing for a
progressive scan camera with electronic shuttering is shown in Figure 16. The maximum speed (shortest
duration) of electronic shutters varies from camera to camera; it is typically around 20 µsec, but can be as
low as 1.25 µsec.

14

Figure 16 – Camera Timing with Electronic Shutter

Depending on the design of the camera, an electronic shutter is controlled either by circuitry in the camera
or by an external timing signal provided from the vision system. In most cameras, the electronic shutter
causes exposure during the interval just prior to transfer to the image sensor’s output registers. Sony has
implemented a proprietary method, which they call Donpisha, to allow the electronic shutter to operate
during almost any period of the camera’s timing.

If the shutter duration is fixed in the camera (e.g., by jumpers), there are no special interface considerations.
If the shutter time is remotely selected or controlled, then the camera interface (frame grabber) must
provide that control. In the case of externally controlled shutter duration, the shutter time must be closely
coordinated with the rest of the camera timing. This can only be accomplished with a frame grabber with
the appropriate ability.

One use of an electronic shutter other than to stop motion, is to control the camera’s total exposure, the
product of light energy and exposure time. Some cameras implement this control in internal circuitry.
However, the camera’s means of internally sensing correct exposure may work well for surveillance, but
may not be well suited to a particular industrial application. For machine vision and scientific applications,
a better approach is to have the vision system determine the exposure requirements, and adjust the exposure
time through the frame grabber.

The Role of the Frame Grabber

In its most basic form, the frame grabber is the interface between a camera and a computer. However, even
in this simple view, there are architectural trade-offs in how the image data is stored and transferred that
may some more attractive for high-speed or real-time application than others.

Under the discussion of cameras above, there were a number of special camera features like progressive
scan, asynchronous operation, and partial scanning that can have real value in real-time or high-speed
systems. To realize the benefit of these camera features when needed, the frame grabber must support
them.

Real-time and high-speed systems often demand special I/O control managed by hardware and
synchronized with the camera, and this circuitry must be on the frame grabber. Some of these requirements
were discussed under cameras above, including external triggering, remotely controlled exposure time, and
strobe light triggering.

Image Transfer

In general, the industry is moving towards frame grabbers with shared memory and PCI bus master
designs. However, it is valuable to understanding the benefits of these designs to real-time and high-speed
systems to first review simple frame grabbers and ping-pong memory options as the basics of image
transfer.

15

Simple Frame Grabber

The principal issue with high-speed or real-time performance of frame grabbers is the speed at which they
make image data available to the processor. To understand this, look at the most basic frame grabber for a
CCTV camera shown in Figure 17 below.

The frame grabber receives the composite video data, and separates the video and synchronization
information. The video data is digitized and stored in the frame grabber’s memory. When the frame is
complete, the memory is switched onto the computer’s bus, and image data is now available to the
computer. Usually, the frame grabber also asserts an interrupt to the processor to notify it that data is
available. In addition to the latencies identified above that have to do with image acquisition, the transfer
of the image data from the frame grabber to the computer presents additional time challenges.

Video
Amplifier

Sync
Stripper

Timing and
Address

Generator

A/D
Converter

Memory
Control

Memory

Bus
Interface

Video
Only

Sync
Only

Composite
Video In

Sync In/Out
(Optional)

Figure 17 – Basic Frame Grabber

A critical latency is the time required to allow the CPU access to the image; only one image can be
acquired or processed at a time. This means that, for a CCTV camera, one or more images will be missed
depending on the length of time it takes the processor to access and perhaps process an image. The very
fastest this frame grabber can support acquiring and processing images is one every 67 msec. That is, the
maximum rate a system with this frame grabber can run is 15 images per second if the parts arrive at
exactly that rate. With asynchronous part arrival, considering the variability in acquisition latency, the
maximum rate for a system using this frame grabber is 7.5 images per second.

Figure 18 – Simple Frame Grabber System Timing

Ping-Pong Memory

A common modification to improve the speed of a vision system is to employ ping-pong memories on the
frame grabber. In this configuration, the frame grabber has two memories as shown in Figure 19. One of
the memories is available to receive incoming image data, and the other is connected to the computer’s bus
to make image data available. When the computer signals it is finished with the memory connected to the
bus and the frame grabber finishes loading new image data into the other memory, the two memories are
swapped. In this way, acquisition and image processing can always overlap (see Figure 20). A frame

16

grabber with ping-pong memories can theoretically support acquisition and processing of 30 images per
second; a practical maximum rate is 15 images per second.

Note that the use of a single memory or a ping-pong memory affects the system’s speed – the number of
images per second it can process. It does not affect the system’s real-time performance – whether or not its
output is timely with respect to the input. The use of a ping-pong memory does not increase the transfer
speed of image data into the processor; it does allow the activities of image acquisition and processing to
occur in parallel.

Video
Amplifier

Sync
Stripper

Timing and
Address

Generator

A/D
Converter

Memory A

Bus
Interface

Video
Only

Sync
Only

Composite
Video In

Sync In/Out
(Optional)

Memory B

Memory
Control

Figure 19 – Frame Grabber with Ping-Pong Memory

Figure 20 – Ping-Pong Frame Grabber System Timing

Improved Data Transfer

The transfer speed of image data from the frame grabber to the processor over the bus is one area where
frame grabbers have improved greatly over the years. Most current frame grabbers reside on the PCI or
compactPCI bus. The theoretical maximum transfer rate is 132 Mbytes/second2, and devices on the bus
can achieve this rate for short bursts of data; the best practical sustained average transfer rate is around 100
Mbytes per second when transferring four bytes in parallel. The actual transfer rate depends on the chip set
accompanying the CPU that manages the PCI bus and other data transfers that may be taking place on the
bus such as disk accesses. Needless to say, real-time, high-speed vision system designers check into the
chip set used with their CPU, closely manage how the computer is configured, and minimize other traffic
on the bus.

While the PCI bus is definitely fast by comparison to other, older computer buses, it does not compare with
the memory access speed a processor realizes when accessing data out of its local RAM. Individual byte

2 This is for the most common implementation of the PCI bus: 32 bits wide with a 33 MHz clock. The PCI
bus specification allows data widths of 32 or 64 bits and bus clock speeds of 33 or 66 MHz. The higher bus
capacity, while desirable is largely unsupported.

17

(pixel) accesses by the processor from the frame grabber over the PCI bus will be far slower than the
potential bus speed, and very much slower than similar accesses to the CPU’s local RAM. To minimize
memory access latency, high-speed systems usually transfer the image data out of the frame grabber into
main memory. While the CPU could handle this transfer, it is much faster, simpler, and more efficient to
have the frame grabber operate as a PCI bus master and manage the transfer itself. That way, the processor
is free to use its resources for other tasks while the image data is being transferred.

Frame grabbers that are bus masters do not usually need ping-pong memories. Many of them eliminate the
traditional frame grabber memory, and use a dual port memory or a FIFO to buffer image data onto the bus.
The frame grabber’s memory or FIFO must be large enough to hold image data that may be delayed while
waiting for bus access when other transfers are taking place.

The PCI bus transfer proceeds in blocks during the period the image is being acquired from the camera.
While it is possible for the CPU to begin processing the image data as it becomes available and before the
end-of-frame, this approach carries a reasonable risk that the processor will overrun the image data being
transferred from the frame grabber. Typically, the frame grabber issues an interrupt after a frame of data
has been transferred to inform the processor that it can start image processing. The transfer latency is the
delay between the end of transfer of the data from the camera and the end of servicing the end-of-frame
interrupt from the frame grabber.

Figure 21 – PCI Bus Transfer Latency

An important feature to look for on PCI bus master devices is that they handle scatter-gather. When an
application requests a block of memory, say to hold image data, the operating system allocates the required
amount of memory, but does not guarantee that the memory is physically contiguous. In a Pentium based
PC, the memory is a collection of 4 Kbytes pages. Between the processor and the memory, is a table that
translates the logical address issued by the processor into a physical address in memory. A device on the
PCI bus addresses physical, not logical memory. If the bus master does not have scatter-gather capability,
either the software must insure that the memory receiving the image data is contiguous, a difficult task, or
the software driver must control each block of data transferred, providing the logical to physical address
translation. However, with scatter-gather capability, the software driver for the board loads a table on the
board with the translation from logical to physical address space. The board can then manage the complete
image transfer without software intervention.

A final very high-speed memory option for frame grabbers is emerging. PCs are becoming available with
an AGP (accelerated graphics processing) slot. A board in this slot has direct access to system RAM and
very high bandwidth, and no on-board memory or even a FIFO is needed. The latency in image acquisition
added by an AGP board is just the latency to service the end-of-frame interrupt from the frame grabber.
Since AGP is intended for servicing a display interface board, frame grabbers using the AGP slot also
incorporate the display driver circuitry.

18

Region of Interest

Some frame grabbers have a programmable region of interest. With this feature, only image data within the
region is transferred over the bus to the CPU’s RAM. This can be a significant savings especially in
applications where there is significant data flow over the bus.

For example, if the full image resolution is 640 x 480 pixels, the time to transfer the entire image over the
bus would be about 4 msec. best case. With an ROI of 320 x 240 pixels, the bus transfer time is reduced to
one-quarter of that value.

Input/Output Control

In addition to its basic function of facilitating image transfer, a high-speed and a real-time system can place
additional responsibilities on the frame grabber to accept other input signals and coordinate other functions
through outputs. To minimize latencies and their variation, there are functions that must often be
coordinated by hardware circuits rather than by software. While it is possible to build special circuits to
monitor the camera timing and manage these functions, this would duplicates functionality already on the
frame grabber. Some frame grabbers include resident circuits to manage most critical I/O functions.

These functions commonly needed by real-time and high-speed vision systems were identified and
discussed earlier under triggering and cameras, and will be reviewed here. Finally, a new control signal,
the pixel clock will be discussed and shown how it can improve performance.

Most vision applications use an external trigger to start the process of image acquisition and analysis.
When time is critical, the software latency and its variation are unacceptable. Some frame grabbers have
the ability to accept the trigger and initiate the process with negligible latency.

When a vision system uses an asynchronous camera or an asynchronously resettable camera, a signal is
required to be sent to the camera to begin image acquisition. The most practical source for this signal is the
frame grabber, and since some cameras do not provide a signal when a commanded image is being
acquired, the frame grabber must have this control to work with the camera.

When a vision system uses a strobe lamp or pulsed LED light source for illumination. It is critical that the
light pulse occur at a specific time in the camera’s exposure time. Otherwise, the image will be seriously
degraded. Only the frame grabber that is synchronized to the camera can reliably provide this signal at the
correct time.

There are some cameras that require control of exposure time. In some cases, this is just the static assertion
of a particular signal line. In other cases, one or two pulses with the proper timing are required. Especially
in the latter case, the frame grabber is the logical, and perhaps only, choice to provide this control.

Pixel Clock

As a final subject on frame grabbers, the pixel clock can be a factor in high-speed systems. There are two
options for a pixel clock: a common clock shared by the camera and frame grabber or a clock replicated by
the frame grabber from synchronization signals. For a common pixel clock either the camera or the frame
grabber generates a pixel clock and sends it to the other device. In a replicated clock, the frame grabber
uses the camera’s synchronization signals to control circuitry that reproduces the pixel clock.

For a common clock, the favored technique is to have the camera send the clock to the frame grabber. The
advantage is that, if the same cable carries the image and clock, there is no phase error between the clock
and image data introduced by cable delay. In some instances, the frame grabber will generate the clock,
send it to the camera, and the camera will return the clock to the frame grabber. The reason for preferring
the clock be sent from the camera to the frame grabber is to compensate for cable delays. Propagation

19

delay for a signal is around 1.5 nsec/foot of cable length. For a round trip, the delay is 3 nsec/foot, and this
does not include any circuit delays contributed by line drivers and receivers or camera circuits. For a clock
period of 70 nsec, a 46 foot camera cable introduces a one-way error of one clock period; a 20 foot cable
introduces almost one-half clock period of error.

With a replicated clock, the concern is the stability of the replicated clock in the frame grabber with respect
to the original pixel clock in the camera. This is called clock jitter and is typically in the range of ±3 to ±10
nsec. Clock jitter is a source of measurement error. There is no clock jitter with a shared clock.

20

Image Processing

The aspects of image processing in a high-speed, real-time environment will be discussed as impacts of the
processor architecture, operating system, application software, and output timing. This last topic is
especially important in real-time systems, because it is where vision systems typically compensate for the
uncertainties in latencies.

Processing Architecture

The majority of vision systems, including real-time vision systems, use a single processor; usually a PC,
but many high-speed applications are addressed with multiple processors; operating in either a SIMD
(Single Instruction Multiple Data) or a MIMD (Multiple Instruction Multiple Data) mode. While an
understanding of multi-processing or parallel processing is valuable to the designer of high-speed vision
systems, the scope of the topic is too broad for this paper. This paper will touch on some of the issues in
processor architecture and common solutions.

In choosing a processor for a real-time, high-speed application, there are a number of important
considerations. Three will be briefly discussed: processor speed, instruction set, and software development.
There are also decisions about using a single processor or a multi-processor architecture.

Processor Speed

Obviously, processor speed is very important. While the CPU’s clock speed is a major determinant of
speed, the architecture of the circuits surrounding the CPU can have just as significant a bearing on the
actual processing speed as does the clock speed. The chips surrounding the CPU often determine the speed
of access to memory and other peripherals, and, if not efficiently implemented, can cause unnecessary wait
states to be inserted. The amount and speed of memory will have a bearing on the processor’s speed of
execution as will the amount and speed of cache memory if used by the processor.

Benchmark programs published on the Intel web site (www.intel.com) for current processors show that
processor speed increases at about 65% of the increase in clock speed. Depending on processor and chip
set, processor speed increased between 37% and 88% of clock speed increase. In one case, with a Pentium
III processor and an 815E chip set, the processor speed with a 750 MHz clock was slower than with a 733
MHz clock.

The speed of processors is often judged by the time it takes to complete one or a series of benchmark
algorithms. For this to be meaningful, the system developer needs to use benchmarks that have similar
processing characteristics to those the application requires. For example, most DSPs optimize their speed
for multiply-accumulate operations common to signal processing, but sacrifice all but rudimentary
input/output capability. An application environment that uses extensive correlation or convolution
algorithms, and only basic I/O will be well served by a DSP. Other applications that use, say, binary image
processing and require more sophisticated I/O will be served better by a more general purpose processor
than by a DSP.

To realize the processor’s speed potential, one requirement of a high-speed or a real-time vision system
using a computer is that concurrent tasks performed by the computer not add to the latency of the vision
task. In most implementations, this is accomplished simply by having the processor not perform any other
task than the primary vision task. In more sophisticated implementations using real-time multi-tasking
operating systems, there can be concurrent tasks running at a priority lower than the vision task. In multi-
tasking environments with priorities set appropriately, the activity of task switching uses up some available
processor time.

21

Instruction Set

In real-time applications, a processor with a more deterministic instruction set may be more desirable. A
deterministic instruction is one that executes in the same time regardless of the data. For example, logical
instructions (AND, OR, etc.) usually execute in a fixed time regardless of the data values. However, a
divide instruction often takes a variable amount of time depending on the values of the operands. The most
frequently used instructions in a real-time system need to be deterministic to insure a minimum variation in
latency.

Achieving a deterministic instruction set is only practical in embedded processors designed specifically to
provide this characteristic. Current general purpose computers make extensive use of pipeline scheduling,
data and instruction caches that make prediction of execution time for any instruction extremely difficult.
In addition, operating systems such as Windows 2000 will insert delays in the execution of the program to
handle task scheduling, interrupt processing, and virtual memory management.

An additional consideration in instruction sets is any provision for parallel calculations. The prime
example of this is the MMX instruction set in the Intel microprocessors. These instructions, operating on
64 bits of data representing up to 8 pixels of 8 bits each, are an implementation of SIMD parallel
processing. People using these instructions to code image processing routines report they accelerate image
processing by up to a factor of 4 over code using the traditional single operand instructions.

Software Development

As mentioned above, the ability to develop and support the application must be part of the selection
decision. Considerations include the development tools available to speed development and insure
software quality, and the availability of skilled programmers who can develop and support code written for
a specific processor. Some of the higher speed and more esoteric processors may be attractive until it is
realized the software support tools are minimal and only a few people have the skills necessary to program
them to achieve operation near their potential speed.

Single Processor

Figure 22 – Single Processor

Undoubtedly, the most prevalent processor used for machine vision and scientific imaging is the PC. This
is due to its very high performance to cost factor, availability of peripherals, availability of programming

22

and engineering talent that is familiar with the hardware and software environment, and its being available
in low-cost office or industrial packaging. However, even with its power, the PC does not have the
processing power to handle many high-speed applications. Other processors such as the Power PC from
Motorola and IBM have been used for image processing, usually in as embedded processors in a dedicated
application.

Multi-Processor

A multi-processor design may be used either to gain more raw processing power or to use different
processors, each for their individual strengths.

Figure 23 – Common Multi-Processor Approach

Perhaps the most common approach to multi-processor image processing is to use an embedded processor;
a DSP, Intel Pentium, or Power PC being the most common, within a PC. The embedded processor, which
does not have the system overhead of the main CPU, performs the data intensive image processing like
image transforms, correlation, and convolution. The CPU may be used to make a final decision and to
control the outputs. Sometimes the embedded processor also makes the decision and controls the real-time
outputs leaving the CPU to handle supervisory tasks. The embedded processor may be on a separate board
inside the PC and rely on image data being transferred over the computer’s bus, it may be on a separate
board with a private data interconnect to the frame grabber, or it may be integrated onto the frame grabber
itself. The embedded processor makes more processing power available, may have an architecture that is
faster at certain image processing functions, or may just be more efficient by virtue of not having to support
a complex operating system.

Another common approach to gaining processing power for image processing is to use ASICs. These
integrated circuits process image data in hardware, and are very fast. They can be designed to provide any
number of image processing functions, but they are usually not programmable by the user; the available
functions are determined by the design of the ASIC or its programming at the factory. The most common
functions available in ASIC processing are look-up tables (LUT) and certain convolutions. Commonly, the
ASIC chips are part of a frame grabber or a mezzanine board that plugs on to a frame grabber.

Still another common approach to multi-processor image processing is to use a PC with multiple CPUs;
typically either two or four. This multiplies the available processing power almost by the number of CPUs
available. The operating system still requires resources from one processor, but a portion of that processor
and the resources of the others are available for image processing. The successful use of such a multi-
processor environment requires an appropriate operating system that supports multi-processors (e.g.,
Windows 2000), application software written to run in a multi-processor environment, and careful attention
to competition for common resources (e.g., data transfers over the bus).

23

Other processing architectures used for high-speed applications have included dedicated array processors,
pipeline processors, and even arrays of PCs.

Operating System

Every processor needs an operating system or kernel3. The operating system or kernel manages system
resources. Most computers use a powerful, general-purpose operating system (e.g., Windows, Linux)
which provide a very rich array of capabilities to simplify the development of applications, but are not
particularly high-speed, and are definitely not real-time.

Developers have managed to configure some of these general-purpose operating systems to work
adequately for high-speed and real-time applications. Embedded Windows NT is common in this regard.
By installing only the absolute minimum part of the operating system and carefully avoiding any task, like
disk accesses, which can take up significant portions of the processor’s resources, the operating system can
perform adequately for some high-speed or real-time applications. However, the application usually must
be developed and debugged under a fully functional non-real-time operating environment, and then
transferred to the special operating environment for testing.

Some applications use an operating system or kernel developed specifically to support real-time
applications (e.g., VRTX, RTXC, QNX, VxWorks,). Real-time versions or extensions are becoming
available for the general-purpose operating systems. The latest version of Windows CE has real time
capabilities. Extensions are available for Windows NT and Windows 2000 that give them many, but not
necessarily all, the features of a real-time operating system. Real-time versions of Linux are available from
several suppliers, but Linux drivers for devices such as frame grabbers are still rare.

What distinguishes a real-time operating system or kernel is its facilities to support timeliness in
applications running under them. These features include preemptive interrupt processing with guaranteed
latencies, and the ability to prioritize software tasks or threads so that time critical tasks get executed before
more mundane tasks.

Device drivers for special devices like the frame grabber come either from the frame grabber supplier or
from a supplier of an application program or library. It is necessary to evaluate these device drivers for
efficiency. For example, device drivers for one frame grabber opened five threads. While most of these
threads are rarely used during system operation, each resident thread requires a certain amount of overhead
from the operating system to give them an opportunity to operate even if there is nothing for them to do.

Application Software

It is a given that the efficiency of the application code, especially data intensive image processing, will be a
prime determinant of system speed. Developers have adopted different courses to achieving application
software that executes at high speed. One common approach is to shift the burden off software
development and onto hardware, by using a higher speed processor, special ASIC chips, or multi-
processing architecture as discussed above. A second common approach is optimization of algorithms.

An example of where programmable hardware can enhance real-time, high-speed performance and reduce
the effort in developing application software was touched upon in image acquisition. If the frame grabber
has circuits controlled by software that can manage and respond to real-time events, the application
software can manage these functions in non-real-time and still achieve real-time performance.

3 A kernel is a subset of an operating system. It generally remains resident in memory, and manages
critical resources like memory. It does not provide the rich set of utilities (API) normally associated with
an operating system.

24

Application software may be written from scratch specifically for the application, or it may be developed
using a more general-purpose software package as its foundation. In writing a specific software package
from scratch, it is possible to optimize the code more than is possible when using routines out of a general-
purpose package. However, this requires programmers who are familiar with image processing techniques,
the specific hardware features of the processing being used, and the techniques for writing real-time
programs.

Because most common operating systems are not real-time nor particularly high-speed, many commercially
available software packages are not oriented toward supporting real-time operation and do not have all the
high-speed optimization possible. When selecting a commercial image processing package, it is necessary
to investigate them carefully. Using a software package can reduce development time significantly, and
should be considered as more desirable than writing the program from scratch unless the drawbacks of the
package are too great.

Here are some things the application software developer can do to speed up operations:
• Write specific code for specific image processing functions. For example, most convolutions are

symmetrical. A symmetrical convolution over an area can be decomposed into a row convolution
and a column convolution. Assuming the convolving kernel coefficients are stored in cache, a 3x3
convolution requires 9 memory reads, 9 multiplies, 8 adds, and one memory write. A 3x1 plus a
1x3 convolution require a total of 6 memory reads, 6 multiplies, 4 adds, and 2 memory writes. For
larger convolving kernels, like a 7x7, the savings are even more dramatic. For specific convolving
kernels, a programmer might find an even more cleverly efficient coding method.

• Design the application around image processing functions that allow efficient coding.
• Write code that uses the processor’s special features like MMX instructions in the Pentium

processors.
• Structure the code so that data is retained in cache to the extent possible. This minimizes wait

states for memory accesses.
• Avoid complex loops with embedded decisions. Not doing this increases the probability the

processor will need to go outside cache to fetch instructions.
• Write the application using threads, but only the number necessary. That allows the developer to

assign priority to different parts of the application program.
• Use compiler optimizations for all time-critical routines. Even more efficient is assembly

language programming. However, as processors migrate to more complex instruction sets, the
practicality of assembly language coding is reduced, and assemblers are not even made available.
The risk of assembly language coding is loss of portability to future generations of processors.

• Avoid creating or destroying objects (allocating and releasing memory) as part of the image
processing routine. These activities cause a variable amount of operating system overhead.

In special cases, developers have coded special purpose processors (e.g., DSP) so that the execution time
exactly matched the rate at which image data was being acquired and the latency is essentially zero with no
uncertainty. That is, the loop for processing each pixel took exactly the same time in clock cycles as the
period between each pixel being received by the vision system regardless of the image content. This
requires that the pixel clock and the processor clock be derived from the same source. It also requires very
careful attention to algorithm development and coding. Such code may be very fast, but it is very difficult
to maintain or update.

Resynchronization

While the techniques above can be used to advantage in high-speed systems, they do not offer any
particular advantage for real-time performance. A common characteristic of image processing is that,
except for low-level image processing, processing time is dependent on the image content. While it is
conceivable for the developer to write code that executes in constant time, such an effort is extremely
difficult and makes development and support virtually impractical.

25

A more practical technique is to resynchronize the results. To achieve resynchronization, the incoming
image is tagged with a time stamp. The time stamp need not be an actual time, but must be created from a
regular periodic event that is relevant to the application. One such time base for a continuously operating
system is the occurrence of a new image frame from a continuously operating camera whether or not the
frame is acquired and processed. Another time base might be a signal from an encoder tracking a conveyor
belt. The events that create the time base are input to the processor where the processor maintains a
running count; the count is the time stamp used by the application. One of the challenges in maintaining a
count is to anticipate and deal with the overflow of the counter.

The time stamp follows the image data as it is processed, and is also attached to the results. When the
result of processing an image is available, it is placed into an output queue according to its time stamp. The
output queue resembles a shift register in which any element of the shift register can be loaded (with output
results) at any time. However, rather than use processor resources to actually shift the contents, it is much
more common to use an address pointer to the next output data. The vision computes the location in the
output queue from the time stamp on the data, the current time count and the known distance (time) to the
output. It inserts the output data into the queue the calculated number of time intervals ahead of the current
queue output pointer. Placing the output into a queue based on time resynchronizes the result.

The requirements are:
• The vision system must always finish processing an image at least one time interval before the

result is needed.
• The vision system must know the time required between the trigger event and the time the output

must be activated in terms of the intervals of the time stamp.
• The output queue must be at least as long as the number of time (distance) intervals between the

imaging and output positions.

26

Latency Calculation

The table below provides an aid for calculating latencies and their effects. Some applications may not need
all the entries, while other applications will need some additional entries. For vision systems, latency times
are typically expressed in milliseconds.

Latency
Minimum Maximum

Part detector
Capture command

Strobe/shutter trigger
Subtotal Position Variation ⇒

Exposure time Blur ⇔
Video transfer

Transfer to CPU
Image processing

Subtotal
Resynchronization 0

Time Base 0
Output activation

Total

Table 2 – Latency Compilation Template

Part Detector

The latency for the part detector would be the time between when the part physically arrives in position
(e.g., breaks a beam in a photodetector) and when the trigger signal is received by the vision system.

Capture Command

The capture command latency is the time between when the trigger signal is received by the vision system
and the actual initiation of image acquisition starts.

Strobe/Shutter Trigger

This latency is the time between when the image acquisition starts and the pulse from the strobe light
begins or the electronic shutter opens. Of course, systems may not use these functions, in which case the
latency is zero.

Exposure Time

This is the time during which light is creating an exposure. It is controlled by the camera’s exposure time
and the duration of the light. If a steady light is used, it is just the camera’s exposure time. If a pulsed light

27

source is used, like a strobe light, then it is the duration of the strobe light pulse. In rare occasions when
both an electronic shutter and a pulsed light source are used, it is that time during which both the shutter is
open and the light pulse is present.

When an electronic shutter of fixed duration is used, the maximum and minimum latencies are both equal
to the duration of the exposure time. If an electronic shutter is used in a programmable mode to control
exposure through controlling time, than the latencies are the minimum and maximum times of the shutter.
A pulsed light source usually has a non-linear output, with a rise time and a fall time. Typically, the pulse
width is measured at the 50% points of the light output. There is always some variation in the width of the
light pulse.

Video Transfer

Video transfer time is the duration of time required to transmit the image data from the camera to the frame
grabber. Usually, if the image size is fixed, the video transfer time is also fixed, and the maximum and
minimum values for the latency will be the same.

Transfer to CPU

This is the time between the end of video transfer from the camera to the frame grabber to the end of the
transfer of image data from the frame grabber to the CPU. Some frame grabbers buffer the entire image,
and start transferring image data to the CPU only after the entire image has been received from the camera.
Other frame grabbers have a limited size buffer for image data, and start the transfer to the CPU shortly
after the video transfer begins. Other frame grabbers have the option to work in either mode.

The latency time will depend on the way the frame grabber transfers data to the CPU and on other bus
traffic competing with the frame grabber for bandwidth.

Image Processing

The image processing time is the time between when image transfer to the CPU ends and the result of
image processing is available. Although it is customary for the CPU to wait until the frame grabber
finishes transferring image data before starting the image processing, it is at least conceivable that it could
start after only a portion of the image data is received. The latency time will vary depending on the
complexity of the individual image and on competition for processor resources (e.g., cache memory, CPU
cycles) by the operating system and other processes that may be running. Generally, this time is either
estimated from experience, or measured using actual or simulated conditions.

Resynchronization

Resynchronization is the correction for latency variations that is accomplished by having a real-time time
base. It relies on the image being time stamped with the real-time time base, and computing a minimum
additional delay based on the value of the real-time time base when image processing is finished. Usually
the image is time stamped either when the capture command is issued or when the image transfer to the
CPU is complete. Frame grabbers often provide interrupts to the CPU for both of these events, and one or
the other of those interrupts can be used to create the time stamp.

28

Resynchronization is unique in that the maximum value is normally zero (no additional time is required),
and the minimum value is a positive number (a delay is introduced to attempt to make the total minimum
latency closer to the maximum latency).

To compute the resynchronization time, total the latencies for the steps from the time the image is time
stamped through image processing. Get a total for the maximum values and for the minimum values. The
difference in these values is the correction resynchronization will attempt to provide. However, since
resynchronization is based on discrete time periods of the time base, the difference must be divided by the
time base period, rounded down, and then multiplied by the time base period. Enter this value for
resynchronization in the minimum column. If resynchronization is not used, just leave the minimum value
zero.

Time Base

Because of the granularity of the time base used for resynchronization, the system may introduce an
additional latency of from zero to one time base interval into the process. Enter the time period for one
time base interval in the maximum column for the time base.

Output Activation

The output activation latency is the time between the end of image processing or resynchronization and the
final event in the process (e.g., operation of the reject mechanism). It includes processing overhead, any
delays in propagating the signal, and mechanical delays of any mechanism operated.

29

Example 1

The Requirements

A system is to inspect small circuit modules after assembly for correct component placement. The
inspection system must handle a variety of different modules. The assembly system sequentially indexes
the modules into position for each step in the assembly operation to be completed. Because the vision
system is being retrofit to the assembly system, it will have to view the modules between stationary
positions; that is, it will have to view the modules while they are moving. The inspection system is not to
reduce the throughput of the assembly system. The results of the inspection are needed when the module
reaches its next position, or the assembly system will be slowed. Control of the assembly system is through
a PLC. In addition to rejecting non-conforming modules, the inspection system is expected to create
reports on failures and quality levels and to make these reports available over a network.

• Module size 20mm x 30mm
• Accuracy of position measurement 0.03mm
• Production rate (time/module) 0.8 seconds
• Transfer time/module 0.5 seconds
• Distance between assembly stations 250mm

Design

A photosensor will be used to detect when a module is in position. The photocell has a latency of 600 ±150
µsec. The photosensor’s signal will be received by the frame grabber, which will initiate image
acquisition.

Assuming sub-pixel resolution can be used and that an accuracy of 1 pixel can be achieved, the needed
image resolution is:

20mm / .03mm = 667 pixels by 30mm / .03mm = 1000 pixels

A high-resolution camera having an image resolution of 1024 x 1024 pixels should work. At this
resolution, the camera will be a progressive scan camera. Sub-pixel analysis is necessary to meet the
accuracy requirements. To insure image quality free from timing artifacts that would degrade the sub-pixel
algorithms, the camera will supply its pixel clock to the frame grabber.

The field-of-view will be 30.72mm x 30.72mm.

The module must travel 250mm in 0.5 seconds. In most practical systems, the profile of velocity versus
time will be a trapezoid or similar shape to allow for acceleration. For simplicity in this example, a
uniform velocity is assumed. The velocity is 500mm/second.

To hold image blur to one pixel, the exposure time must be:

TE = FOV / (VP * NP) = 30.72 / (500 * 1024) = .00006 seconds (60 µsec)

This exposure time can be achieved with either an electronic shutter or strobed illumination. For many
cameras, the electronic shutter can only occur at a particular time in the video timing. The strobe, on the
other hand, can be triggered almost any time during the video timing except for a brief period, typically less

30

than one horizontal line time at the beginning of a frame. The video transfer takes place in 33 msec.; each
scan line can take no more than 32 µsec. Therefore, the maximum uncertainty in strobe triggering is 32
µsec.

The camera is free running. The video transfer to the frame grabber can begin any time within a 33 msec.
time after exposure (strobe lamp firing), and takes an additional 33 msec. to complete.

The inspection system views the module during motion. Assuming the inspection system is positioned half
way between two assembly positions, and that it must have its result ready by the time the module reaches
the next assembly position, the time available to the vision system is one-half the transfer time of a module,
or 0.25 seconds. The vision system will have 0.8 seconds - 0.25 seconds = 0.55 seconds of idle time
between inspecting parts. This time can be used to compile and save reports.

The image processing time depends on the complexity of the module and the competition for computer
resources. It is estimated to take between 10 and 80 msec. The output is a pass/fail signal sent to the PLC,
and is dependent only on the availability of the CPU’s resources. Typical output time could be a few
microseconds to perhaps 200 µsec.

Latency Evaluation

Latency
Minimum Maximum

Part detector .45 .75
Capture command nil nil

Strobe/shutter
trigger4

.02 .072

Subtotal .47 .822 Position Variation ⇒ .176mm
Exposure time .02 .02 Blur ⇔ .91 pixels
Video transfer 33 66

Transfer to CPU 13 26
Image processing 10 80

Subtotal 56.49 172.84
Resynchronization not used not used

Time Base not used not used
Output activation .005 0.2

Total 56.5 173.04

Table 3 – Latencies for Example 1

4 This is the total of the latencies for waiting for the camera to become available for the strobe event (0 to
32 µsec) and the strobe response to its trigger (20 to 40 µsec).

31

Example 2

The Requirements

A system is to image new bottles on a conveyor line to insure the bottle’s neck is centered on the bottle and
not leaning. Some of the important specifications are:

• Bottle diameter 3 to 6 inches in diameter
• Throughput 240 bottles/minute (0.25 seconds/bottle)
• Conveyor speed nominally 160 feet/minute (32 inches/second)
• Variation in conveyor speed ±16 feet per minute
• Ejector location 24 inches past the point of imaging

Initial Design

Figure 24 – Inspecting Bottles

We start the design by assuming the simplest system possible. One CCTV camera images the bottle. The
CCTV camera is continuously operating, and acquires one image every 1/30th of a second. The assumed
system will use a PC running Windows NT with an ordinary, simple frame grabber. Image resolution will
be 640 x 480 pixels. The design anticipates having sufficient processing power so that the processor can
acquire and analyze each image coming in. It will detect the presence of a bottle in the image, and find it’s
neck position.

We examine the latencies of the assumed simple system (see Table 4 below). There is no part detector, the
camera is free running, and a software trigger causes the frame grabber to acquire a new image and provide
it to the CPU. Since images are constantly being sent from the camera to the frame grabber, the time
between the software trigger and the start of image data transfer to the CPU ranges from 0 to 33 msec. This
represents the latency of the capture command. The exposure time and the video transfer time are both
fixed at exactly 33 msec. The transfer of image data from the frame grabber under CPU control over the
bus could take place in as little as 9 msec., but could be preempted by the operating system and other bus
activities; we can estimate that it might occasionally take as long as 100 msec. Again, it is not
unreasonable in a fast computer with good code to perform the image processing for the measurements

32

needed in as little as 10 msec. But again, the operating system may preempt the program, and the time
could stretch to 100 msec. on occasions.

These latencies total to a range of 85 to 299 msec. With bottles coming every 250 msec., it is apparent the
vision system might possibly be too slow on occasion, and some adjustment to the design will be needed.
However, it is good practice to work through the rest of the assumed design to identify any other possible
problems. The total uncertainty of these latencies along with the nominal conveyor speed gives us the
variation of the position of the bottle in the image:

PV = LU * VP = 0.214 sec * 32 in/sec = 6.85 inches

For a 6 inch diameter bottle, the horizontal field-of-view could probably as narrow as 7 inches if there were
no uncertainty in the bottle’s location. With the variation factored in, the field-of-view will need to be
13.85 inches horizontally. The uncertainty in latency almost doubles the required size of the field-of-view,
which halves the measurement precision.

Latency
Minimum Maximum

Capture command 0 33
Exposure time 33 33 Blur ⇔ 49 pixels
Video transfer 33 33

Transfer to CPU 9 100
Image processing 10 100

Subtotal 85 299 Position Variation ⇒ 6.85 inches
Resynchronization 33 0

Time Base 0 55
Output activation 0 10

Total 118 364

Table 4 – Initial Compilation of Latencies, Example 2

Another needed calculation is the blur due to the bottle’s motion.

B = VP * TE * NP / FOV = 32 in/sec * .033 sec * 640 pixels / 13.85 in. = 48.8 pixels

It is intuitively obvious that a reasonable measurement would be extremely difficult with a blur stretching
over 49 pixels. While there are some advanced image processing techniques used for image restoration of
reconnaissance images that remove much of the effects of motion, they are extremely computationally
intensive and impractical for on-line machine vision.

Another factor that must be considered when using interlaced cameras is motion tear caused by the
camera’s interlaced scanning. This is calculated as:

MT = VP * TF *NPh / FOVh = 32 in/sec * .0167 sec * 640 pixels / 13.85 in = 24.7 pixels

The motion tear is half the size of the image blur, and it also is generally unacceptable in this simple
system.

Assuming the vision system could somehow make sufficiently precise measurements, it could also tell the
lateral position of the bottle in the image. The vision system could compute the time from inspection to
ejector assuming certain nominal latencies to get its answer, and apply the correction based on the bottle’s
position in the image to the ejector time. However, the variation in position relates to when the image was
acquired (including the capture command above), but it does not include any uncertainty introduced in the

33

subsequent process steps. Correcting for the bottle’s position in the image is necessary, but only eliminates
the variation in what has been labeled the capture command. Thus, the resynchronization in the
compilation only corrects for this one factor that varies between 0 and 33 msec.

If we assume the design will use the PC’s internal clock that generates an interrupt 18.2 times/second or
about every 55 msec. Also, we can assume that the output (ejector) will be interrupt driven from the PC’s
clock, and the interrupt service time will vary between 70 µsec (virtually 0 msec.) and 10 msec. depending
on the operating system’s state.

In summary, we find this simple system will have a latency of between 118 and 364 msec. The uncertainty
in latency of 246 msec. represents about 7.9 inches of conveyor travel, or about 1 bottle on the conveyor.
Clearly the simple system is very inadequate. The remainder of this example will look at these and other
issues and at ways to improve the real-time performance of the system.

Solving the Uncertainty in Part Position

The original plan is to have the system analyze each image to see if a bottle is present for measurement.
However, the analysis of latencies uncovered several problems with this. The first was the uncertainty in
latencies for image processing meant the process might take too long to keep up with line rates. The other
is that the uncertainty in latency required a much larger field-of-view than desirable.

One way to mitigate some of these affects is to use an independent sensor like a photodetector to detect the
presence of a bottle. A typical photodetector that can work in this application responds in 600 ±150 µsec.

The application’s requirements present a challenge in using a photodetector. The photodetector must be
mounted so as not to interfere with the camera’s view. The most reasonable position is near the bottom of
the bottle. The vision system must handle change over to products of differing diameters. Experience
shows that repositioning an element of the system like the photodetector extends the time required for
changeover and presents risks of error in setup. Best practice in the design of a vision system is not to
move any of the system components. The result of a fixed photodetector position is that the position of the
neck in the camera’s image will be in different locations depending on the diameter of the bottle. While it
is more desirable to always have the bottle’s neck centered in the image, it would require positioning the
photodetector up stream from the inspection and timing the bottle’s movement into the camera’s view. At
this point in the system’s evolution, this additional complexity is not needed.

It might seem that using the photodetector alone, will reduce the latency uncertainty to capture an image
from 33 msec. to 300 µsec. However, since the camera is continuously operating, even when the
photosensor is triggered, the vision system will still have to wait between 0 and 33 msec. before reading out
the image data. However, by using an asynchronously resettable camera triggered by the photosensor
rather than a free-running camera, the camera’s latency uncertainty can be reduced to one scan line or 63.49
µsec maximum which is less than the 300 µsec of the photodetector. In order to avoid undesirable latency
uncertainty, the frame grabber should receive the trigger signal from the photodetector and handle the
timing of the asynchronous camera.

Solving the Image Blur and Motion Tear Problems

In the initial design with a CCTV camera, blur was 49 pixels and motion tear was 25 pixels. This is clearly
unacceptable. The solution for motion blur is to use either a strobed light source or a camera with an
electronic shutter. The solution to motion tear is to eliminate the effects of separate exposure time for the
two interlaced fields.

34

When selecting either strobe illumination or an electronic shutter time, we need to know the maximum
practical exposure time for tolerable blur. The calculation for exposure time requires knowing the size of
the field-of-view. In the initial design, the field-of-view was 13.85 inches; clearly too large. Until latency
uncertainties are reduced, the exact size of the field-of-view cannot be known. However, it must be at least
6 inches to accommodate the largest bottle. Using this lower bound, we calculate the maximum exposure
time to give only one pixel of blur:

TE = FOV / (VP * NP) = 6 inches / (32 in/sec * 640 pixels) = 293 µsec

Many system developers will choose to use the strobed illumination. Either a xenon strobe lamp or a
pulsed LED illuminator will easily give the short exposure time required. Other system designers prefer to
use cameras with electronic shutters. The electronic shutter on most cameras offering this capability is
more than fast enough for this application. We will assume a shutter speed of 1/4,000 second (250 µsec).

One consideration in using a strobed light source or an electronic shutter is the required intensity of the
light source. Assuming the intensity of the light source and lens aperture are known to get good image on
the CCTV camera and that the progressive scan camera has the same sensitivity as the CCTV camera, then
the light intensity reaching the sensor must increase in inverse proportion to the exposure time. Assuming
an exposure time of 200 µsec, the light intensity reaching the sensor needs to be:

.033 sec / .0002 sec = 165 times more intense.

This increase can be achieved by a combination of opening the lens aperture and increasing the intensity of
the light source. With today’s sensitive cameras, wide aperture lenses, and efficient light sources, this
increase is quite attainable.

If an electronic shutter is used to reduce blur, then a progressive scan camera must be used so that there is
no image tear. If a strobe light is used, then each field of an interlaced camera will need to be exposed for
an entire frame time (see Figure 10). This also eliminates image tear. The strobe light can be triggered any
time during the scan except during the charge transfer time in the camera’s image sensor. The latency
uncertainty for firing the strobe is one horizontal scan line, or 63.49 µsec.

The acceptable choices in cameras and lighting are between an asynchronously resettable, progressive scan
camera with electronic shutter and a steady light source or an asynchronously resettable, interlaced camera
with strobe light illumination. However, some interlaced asynchronously resettable cameras require a one
field delay before starting image data transfer. The system could be designed to accommodate this fixed
delay, but choosing a progressive scan camera and relying on the electronic shutter with a steady light
source avoids the delay.

Number of Cameras

The anticipated design has a significant flaw: a single camera cannot measure the position of the bottle’s
neck independently of the bottle’s rotation. To do this takes two cameras. The least complex arrangement
for image processing is to have the two cameras view at right angles to each other.

Another requirement for measurement precision is that both cameras view the bottle at exactly the same
time. That means that the cameras must be synchronized to each other and their images must be acquired
simultaneously. This can be done using two frame grabbers, each accommodating one of the cameras, or it
can be accomplished with a single frame grabber that has the ability to accept simultaneous camera image
data streams. Using a two frame grabbers requires that the frame grabbers be synchronized with each
other. For the evolving architecture using asynchronous cameras, the only requirement to achieve
sufficient synchronization is that the trigger signal from the photodetector goes to both frame grabbers
simultaneously.

35

There are frame grabbers that can handle two or more camera inputs simultaneously. However, the frame
grabber must assert a signal resetting the cameras to start the image acquisition process. Generally, the
outputs of a frame grabber are designed to drive only one load. This is especially true if the signal is a
differential signal such as RS-422 or LVDS. Normally, the camera’s input is terminated. It would be
possible to go into one of the cameras and modify it by removing the load. This would allow both cameras
to be driven from the one signal. However, now the two cameras are different, and servicing the system is
more complex. By using two frame grabbers, one for each camera, each frame grabber drives the reset
input of its corresponding camera. Because the cameras are not synchronized, the timing of the two images
can differ by as much as one scan line (63.49 µsec). The maximum discrepancy between the two images
can be calculated using the formula for blur and assuming the 6 inch field-of-view. It is:

VP * TE * NP / FOV = 32 in/sec * .00006349 sec * 640 pixels / 6 in. = 0.2 pixels

This value is essentially negligible for this application, and can be ignored.

For this system, we will select analog, progressive scan, asynchronously resettable cameras with an
electronic shutter, continuous illumination, and two compatible frame grabbers.

The system as configured presently, is shown below in Figure 25.

Figure 25 – Dual Camera Configuration

This arrangement is necessary, but it carries with it a certain risk. In the initial concept, the camera was
viewing perpendicular to the direction of motion. Any variation in timing for when the image was acquired
simply translated into a change in location for the bottle in the image. However, in the modified design,
both cameras are viewing at 45 degrees to the direction of motion. Now any uncertainty in timing of the
image results not only in a positional change but also in a magnification change as the object distance is
changed. Thus, the latency variation in the start of image exposure adds new processing burdens on the
image processing to compensate for magnification change (this can be done by knowing the position of the
bottle in the two images). It also can demand a larger depth-of-field from the optics to keep the bottle in
focus.

The uncertainty in acquisition latency due to the photosensor and the operation of the asynchronously
resettable cameras is 0.306 msec. This translates into about .001 inch of location uncertainty. With the
cameras viewing at 45 degrees, the variation in object distance is only .0007 inches; negligible in this
application.

36

Frame Grabber

So far, the design has evolved to require two frame grabbers that accept an external trigger from a
photosensor, can operate an asynchronously resettable camera, and accepts analog video data.

Our system only has to process one bottle every 250 msec.; a rather modest speed by current PC standards.
It might work with even a very simple frame grabber with only one image memory and requiring the
processor to manage image data transfer over the bus. However, most frame grabbers that work with
progressive scan, asynchronously resettable cameras, are designed for speed, and do not employ such a
slow architecture. Our frame grabber of choice will be a PCI bus master card with scatter-gather capability.

Computer

Next we turn our attention to the computer – both the hardware and the software. For inspecting the bottles
at the specified speed, a high-end PC has more than enough speed.

Operating System

This application can almost certainly work well with embedded Windows NT without any real-time
extensions. Its installation would have to be very careful to include only the minimum components needed,
to structure the hardware so interrupts are assigned to give the frame grabber the highest priority possible,
and to insure that no other application or operating system service was running. In addition, the application
program must be written using threads, and it must assign priorities to the threads to insure the most time-
critical threads execute when necessary.

Application Software

For this application we should choose a commercial software package as the foundation of the application
software. Its selection should come after evaluating several candidate packages for functions needed by
this application as well as for their speed and real-time compatibility.

Ejector Operation

Our final consideration in this example system is operating the ejector. The ejector is located downstream
of the inspection location, a common configuration for parts being inspected on a continuously moving
conveyor. In the initial design, it was planned to use the computer’s clock to time the ejector’s operation.
However, the interval between clock interrupts of 55 msec., means there is an uncertainty in the bottle’s
position of 1.76 inches due to just the clock interval alone.

Also, the speed of the conveyor can vary by ±16 feet per minute or, related to the conveyor speed of 240
feet per minute, ±6.7%. For a distance of 24 inches, the speed variation will add an uncertainty in the
bottle’s location of ±1.6 inches. The total uncertainty in the bottle’s position at the ejector is 1.76 + 2 * 1.6
= 4.96 inches.

A second scheme is to create an “inventory” of inspected bottles in a software simulation of a FIFO
memory, and use a second photodetector at the eject position to call out the results of an inspection as each
bottle arrives. The problem with this scheme is that any conveying problem, such as a jam, that might
cause the ejector’s photodetector to miscount bottles, either missing one or double counting one, will result

37

in an error that will continue until the vision system is reset. For this reason, most vision systems do not
use this scheme.

A better scheme is to use an encoder attached to the conveyor as a time base and resynchronize the output
as discussed earlier. The encoder can give a finer time (distance) resolution and inherently compensates for
conveyor speed variation. A reasonable implementation would have the encoder producing a pulse every
1/8th of an inch of conveyor movement or about every 3.9 msec. At this short a time interval, the signal
needs to be serviced by an interrupt. Some frame grabbers facilitate external signal lines in, and may allow
those signal lines to initiate an interrupt. If this is not the case, a separate digital I/O board is needed that
can use the encoder signal to generate an interrupt.

The encoder provides one more advantage. At the beginning, it was decided to use a photodetector to
detect the presence of a bottle. Because the equipment handles different diameter bottles, the position of
the bottle’s neck in the image can change with changes in bottle diameter. However, with the encoder, the
photodetector can be mounted a short distance upstream of the imaging area, and the known distance from
the photodetector to the imaging area along with the diameter of the bottle, which is known in advance, the
system can determine the elapsed time between the detection of the bottle and when it will be positioned in
the center of the field-of-view for imaging. Similar to the output queue for resynchronizing, an input queue
is established to time the bottles coming into view. Repeatability of results will be better if the bottles are
always positioned in the center of the field-of-view. If the frame grabber cannot accept the photodetector
signal and produce an interrupt without starting image acquisition, its output will need to be serviced with a
general purpose digital I/O board that has interrupt capability.

Summary

The latencies can be recompiled as shown below in Table 5.

Latency
Minimum Maximum

Part detector 0.45 0.75
Capture command nil nil

Strobe/shutter trigger 0 .064
Subtotal 0.45 0.814 Position Variation ⇒ .01 inch

Exposure time 0.25 0.25 Blur5 ⇔ 0.8 pixel
Video transfer 33 33

Transfer to CPU6 6.2 16
Image processing 10 20

Subtotal 49.9 70.1
Resynchronization 19.5 0

Time Base 0 3.9
Output activation 0 10

Total 69.4 84.0

Table 5 – Final Latencies for Example 2

The maximum latency of 84 msec. is well within the 250 msec. rate at which bottles appear. The final
uncertainty in latency of 15 msec. means the uncertainty in bottle location at the ejector is no more than
0.48 inch total (±0.24 inch); well within workable parameters for a mechanical ejector.

5 Assumes a 7 inch wide field-of-view spanned by 640 pixels.
6 Allows time for the transfer of two images, one per frame grabber.

38

To summarize the changes from the original conception to a design meeting real-time and high-speed
requirements, the following changes were made:

• One CCTV camera was replaced with two progressive scan, asynchronously resettable cameras
with electronic shutters set to 250 µsec.

• A photodetector was added to detect bottles coming into view. The photodetector is positioned
upstream from the imaging area, and its output is placed in an input queue to let the application
software time the start of image acquisition.

• An encoder is added to the conveyor to be the system’s clock. It provides timing pulses that
enable the system to time the arrival and rejection of bottles.

• An elementary analog frame grabber is replaced two frame grabbers that can accept an external
trigger and control the camera’s asynchronous reset. The frame grabber will be a bus master that
has scatter-gather capability.

• Either the frame grabber or a separate digital I/O board will also be able to accept the signals from
the encoder and the photodetector and generate an interrupt without starting image acquisition.

• The processor is a high-end PC running the very minimum version of embedded Windows NT.
• The application software will be built around a commercially available package that has good

performance.

Written by:
Perry C.West
President
Automated Vision Systems, Inc.
127 Belcrest Dr.
Los Gatos, CA 95032 U.S.A.
(408) 356-2171
www.autovis.com

Commissioned by:
CyberOptics - Imagenation
10220 SW Nimbus, Suite K5
Portland, OR 97223 U.S.A.
(503) 495-2200
(800) 366-9131
www.imagenation.com

Copyright © 2001, Imagenation and Automated Vision Systems, Inc.

All rights reserved. All trademarks are the registered property of

their respective owners.

