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Abstract

In thisthesis | assume that the Time Domain Electromagnetic (TEM) response of a buried axisymmet-
ric metallic object can be modelled as the sum of two dipoles centered at the midpoint of the body. The
strength of the dipoles depends upon the relative orientation between the object and the sourcefield, and
also upon the shape and physical properties of the body. Upon termination of the sourcefield, each dipole
isassumed to decay as k (¢ + a)_ﬁ e~t/7. The parameters k, o, 8 and v depend upon the conductivity,
permeability, size and shape of the object, and these can be extracted from field or laboratory measure-
ments by using anonlinear parametricinversion algorithm. Aninvestigation carried out using an analytic
solution for asphere and laboratory measurementsof steel and aluminum rectangular prisms, suggest the
following methodology. The value of 3 might be used as a diagnostic to assess whether the metallic ob-
ject is non-magnetic or magnetic. If the object is thought to be magnetic, then the ratios of &, /k, and
81/ B+ arediagnosticindicatorsasto whether the geometry is plate-like (uninteresting) or rod-like (ahigh
candidate for being a UXO).
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Chapter 1

Introduction

An explosive ordnance is a munition that is either launched or fired with the intent of detonation at a
specified target. Ordnance include small arms munitions, grenades, rockets, rifle grenades, and bombs
(Figure 1.1). An unexploded ordnance (UXO) is an explosive ordnance that, due to some malfunction,
remains undetonated. As aresult, the ordnance can be found at the ground surface, partially buried, or
buried at a depth of up to 8 m beneath the surface. Although they rangein length from lessthan 10 cmto
several meters, UXO have two identifying features. Firstly, they are generally axi-symmetric and rod-
likein shape and typically aUXO has alength to diameter aspect ratio of about 4. Secondly, most UXO
are made of steel.

Thereexists 15 million acres of UXO-contaminated land in the United States (not including undersea
UXO contamination) (Federal Advisory Committee, 1996). The mgjority of acreage consists of approx-
imately 1500 different sites designated for weapons system testing and troop training by the Department
of Defense (DoD). UXO are hazardous because they can explode when being struck or incinerated, or
they canreleasetoxic chemicalsif the UX O casing has been compromised through impact or decay. The
remediation of these sites has been made ahigh priority by the DoD in order to either maintain safe usage
for continuing military operations or to permit land transfer to the private sector. Effective methods for
clearing UX O contaminated land are crucia in order to ensure public safety and to eliminate environ-
mental concerns.

The cleanup of UXO-contaminated lands have been hampered by labour, cost, and timeintensive site
remediation methods. Thetwo mainimpedimentsto site remediation arethe lack of an effective method
of UXO characterization and the time and labour intensive methods required to excavate each suspect
UXO. At some sites the ratio of non-ordnance to ordnance items exceeds 100:1. Developing the ability
to discriminate between ordnance and non-ordnanceitemsisessential in reducing the costs of cleanup. It
has been estimated that aremediation program using current technol ogiesto cleanup only 5% of the UXO
contaminated land would require an investment of over 15 billion dollars and severa decades of 1abour
(United States Dept.of Defense, 1998). Several decades of research and millions of dollars have been
invested towards devel oping UX O detection and identification technologies. Thisinvestment hasyet to
yield a system capable of efficiently and accurately finding and identifying UXO. It has been reported
that approximately 70% of remediation costs are currently being used to excavate non-ordnance items
(Butler et a., 1998).

Thetraditional technique for UXO remediation is”Mag and Flag”. This techniqueinvolves survey-
ing the areawith ametal detector and marking each location at which aburied object is detected with a
flag. Theterm”Mag” isrelated to earlier times when a hand-held magnetometer would be the detection
instrument. However, the term "Mag and Flag” is now used to describe the process of using any metal
detector (e.g. electromagnetic induction sensors) without additional data processing that would discrim-
inate between ordnance and non-ordnanceitems. In this case each signal must be excavated. The”Mag
and Flag” method is thus severely hampered by an excessive false alarm rate.

Current detection technologies for UX O detection include magnetometry, ground penetrating radar
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Figure 1.1: Typical UXO encountered in field surveys. UXO are generally projectilesthat, depending on the fuse
configuration, are designed either to detonate on impact or after some specified delay time. Despite thewide range
of UXO sizes, UXO are generally axi-symmetric, rod-like in shape, and made of steel. The stabilizing fins found

on some UXO are sometimes made of aluminum.



(GPR), time and frequency domain electromagnetic induction, and infrared sensors. The effectiveness
of each technique depends on the types of UXO, the depth at which the UXOisburied, and the examina-
tion areain which the UXO is buried. These techniques are tested as part of the Unexploded Ordnance
Technology Demonstration Program. ThisU.S. government funded program was established to set base-
lines of UXO detection technology by holding demonstrations by various geophysical and engineering
contractorsat the U.S. Army Jefferson Proving Ground in Madison, Indiana. These’ competitions' con-
sist of first detecting, then identifying, well characterized buried UXO within a set time frame. Prior to
competition contractors are given alist of, as well as access to, all buried materials (both ordnance and
non-ordnance). This situation has led to ' finger-printing’ agorithms that match measured responses to
alibrary of response type curves (references).

For thisthesis the method of time domain electromagnetic induction will be examined as atool for
detection and discrimination. Time domain electromagnetic (TDEM) induction surveys have been suc-
cessful in detecting subsurfaceferrous and non-ferrous metallic objects, and these surveys areamainstay
amongst technologies currently utilizedin UXO clearance projects. Inthe TDEM method atimevarying
magnetic field is used to illuminate a conducting target. This primary field induces surface currents on
the target, which then generate a secondary magnetic field that can be sensed above ground. The surface
currents diffuse inwards, and the observed secondary field consequently decays. The rate of decay, and
the spatial behaviour of the secondary field, isdetermined by the target’s conductivity, magnetic perme-
ability, shape, and size.

Althoughthefull TDEM decay curve can, in principle, be measured, the primary TDEM instrument
for UXO detection has been the EM61 from Geonics Ltd., which measures only the vertical component
of field at asingle, latetime. Recognizing that moreinformation about a buried target would be obtained
by measuring the full time domain behaviour of the three components of the secondary field, Geonics
developed a prototype instrument EM61-3D (Figure 1.2). EM61-3D uses a square transmitter coil to
produce aprimary field. At the center of the transmitter coil are three orthogonal receiver loops capable
of measuring three components of the secondary field. The unitismounted on atrailer, and pulled across
the survey area by the operator. The three components of secondary field are measured between 0.037
milliseconds and 37 milliseconds after the termination of the primary field. The goal of this thesisis
to investigate the possibility of using these data to discriminate between UXO and other buried objects.
Alsoof interest to Geonics, istheimportance, and need, of the horizontal component measurementsof the
field. Building an instrument capable of simultaneous acquisition of horizontal and vertical component
isdifficult, and is preferably avoided.

The goal of this research wasto devel op a method of interpreting TDEM datathat has the capability
of discriminating between UXO and non-ordnance abjects.

In Chapter 2 an approximateforward model isdevel oped for describing the decay of aburied metallic
object. This parameterization, which is based on the analytic solution of a sphere and the magnetostatic
solution of a spheroid has a strong physical basis and is simple to compute. The time domain response
of any metallic object isrepresented asapair of perpendicular dipoleslocated at the center of the object.
The strength of the dipol es decay with time, and the parameters that govern the time decay behaviour are
related to the conductivity, permeability, shape, and size of the buried object.

In Chapter 3 anon-linear parameter estimation procedureis devel oped to recover the 13 parameters
of the model. Rough estimates of the model parameters can be obtained by applying some simple data
preprocessing strategies. Theseinitial estimates are then iteratively refined by solving anon-linear least
sguares problems. Newton’s method is used to minimize the sum of the squared differences of the pre-
dicted and observed data. The simplicity of the approximate forward model alows the use of an exact
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Controller

Figure 1.2: EM61-3D Time Domain Electromagnetic Sensor. A 1m x 1m square transmitter coil produces a
primary field. Three orthogonal receiver coils located at the center of the square transmitter measure three com-
ponents of the secondary field.



Hessian matrix. The recovered model parameters will be a function of the noise in the data, so error
estimates of the recovered parameters are also calcul ated.

Chapter 4 examines how magnetic permeability and object shape affect the TDEM response. These
relationships are formed by observing forward modelled responses of spheresof different magnetic per-
meability and size, and by observing the measured time decay curves of aluminum and steel rectangul ar
prisms of various aspect ratio. Each of the synthetic modelled and laboratory measured curves are then
inverted for their decay parameters. Since these parameters encapsul ate information about the physical
attributes of the target, we can attempt to use them to determineif the target is ferrous and if the geom-
etry isrod-like (most likely a UXO) or plate-like (most likely a non-ordnance item). An agorithm that
might discriminate between UXO and non-UX O targets by considering values of the decay parameters
is proposed.

In Chapter 5 the discrimination algorithm is applied to an EM61-3D field data set. This data set was
acquired over a 105-mm shell buried at the York University Geophysical Test Site. In order to invert
this data in a responsible manner, the nature of the noisein the field data set is examined to generate a
suitable noise model for the inversion algorithm.

Chapter 6 concludes this thesis with a summary of the work performed and suggestions for further
research.



Chapter 2

Development of an Approximate Forward M odel

In this chapter the response of ametallic object inaTDEM survey is considered. In the TDEM method
a transmitter current loop produces a primary magnetic field that illuminates a conductive target (Fig-
ure 2.1(a)). If thetarget is magnetic, as is the case with stedl, the primary field will magnetize the tar-
get. When the primary field is terminated, the changing magnetic field induces eddy currentsin the tar-
get according to Faraday’s law. The finite conductivity of the target will cause these currents to decay,
which then induces additional eddy currents. The rate of decay, and the spatial behaviour of the sec-
ondary field, is determined by the target’s conductivity, magnetic permeability, shape, and size. These
currents produce a secondary field that is measured by receiver loops at the surface (Figure 2.1(b)). Data
are measured over several time channelsto record the decay characteristics of the buried object. During
a TDEM survey these measurements are repeated at severa different locations on the surface to record
the spatial behaviour of the secondary field.

a) \ b)
\\ // _Transmitter Coil Receiver Coils

y 4 7 >
= /////// g

B

Figure 2.1: The induction of currents in a buried confined conductor. (a) Transmitter on-time. A transmitter,
consisting of a sguare current-carrying coil, produces a primary magnetic field that illuminates the buried target.
(b) Transmitter off-time. Once the transmitter current isterminated, the changing magnetic field induces currents
in the buried conductive object. The induced currents produce a secondary field that is measured by receiver coils
at the surface.

In order to invert measured TDEM data for the physical parameters of the target, it is necessary to
have aforward model to describethe TDEM responsefor aburied metallic object. The TDEM response
can be obtained by solving Maxwell’sequations. Analytic solutions of Maxwell’s equationsfor conduc-
tive and permeabl e confined bodies are limited to a sphere, and an el ectromagnetic numerical modelling
codefor numerical solutionsof Maxwell’s equationswas not availableto me. Inthis chapter, an approx-
imate forward solution is constructed for a buried metallic target. | first present the relevant equations
that govern electromagnetic induction, and solve for the TDEM response of a sphere in a uniform step-
off magnetic field. This solution providesinsight regarding the spatia nature and time decay behaviour
of the secondary field. With additional physical assumptions, it also leads to my approximate forward

6
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model.

2.1 TheTime Domain Electromagnetic Response of a Compact Metallic Object

211 Maxwel’ sEquations
Thephysicsof thetimedomain el ectromagnetic method iscompletely described by Maxwell’ sequations,

OB
VxE=-"- (2.1)
oD
VxH=T+ (2.2)
V-D=p (2.3)
V-B=0 (2.4)

Theelectromagnetic field isdescribed by four field vectors: E, B, D, and H. Thevector J istheelectric
current density and p isthe free electric charge density. E isthe electric field and B isthe magnetic flux
density. A stationary electric charge placed in an electric field will feel aforce parallel to E and propor-
tional to the strength of E. The direction of magnetic flux density B is defined to be the direction along
which adipolewill alignitself when placedin B. D isthe electric displacement and itstime derivative,
0D/ 8t islabelled the displacement current density. | will call H the magnetic field.

Theatomic circulating currents that are responsible for magnetization and the currents from the mo-
tion of bound charges in dielectrics are accounted for in the vector fields H and D, respectively. Con-
sequently, J only describes the motion of free charge, such as eddy currents. The e ectric displacement
and magnetic field are introduced solely as a matter of convenience when considering polarizable and
magnetizable materials, and Maxwell’s equations are often expressed without H and D (for examples
see Feynman (1964), Weaver (1994), and Lorrain and Corson (1970)).

2.1.2 Congtitutive Relationships

Constitutive relationships linking H and D to B and E are required to solve the electromagnetic field
equations. The electric displacement D is defined as

D=cE+P (2.5)

wheree, = (,uoc2) ~. In the absence of dielectric material, the polarization P = 0. For the following
work, it will be assumed that all materials are non-polarizable, and thus the electric field and the electric
displacement are directly proportional

D=¢E (2.6)
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The magnetic field H is defined to be related to B through the magnetization M

H= >-B-M(H) 27
Ho
Inthisequation M isexplicitly written as afunction of H. The magnetization vector M isdefined asthe
average magnetic moment per unit volumein the material or, equivalently, the magnetic dipole polariza-
tion per unit volume. It isthus convenient to imagine the magnetization of a material as being from an
assembly of magnetic dipoles. If these dipoles are distributed evenly throughout the material, the ma-
terial issaid to be uniformly magnetized. In real magnetic materials, a description of the magnetization
processis, of course, more complicated.
For anon-magnetic material, such as copper, there is no magnetization (M = 0) and thus the mag-
netic flux density and the magnetic field are related simply by

B=yuH (2.8

Thefunctional relationship of the magnetization with the magnetic field, M (H), helps classify thethree
main classes of magnetic materials: diamagnetic, paramagnetic, and ferromagnetic. The constitutive
laws for the different magnetic materials are shown in figure 2.2. In diamagnetic and paramagnetic ma-

a) M b) M C) M

A A 7—
-H -H / -H
X<O X>0

Diamagnetic Paramagnetic Ferromagnetic

Figure 2.2: The relationship between the magnetic field H and the magnetization M define the different types
of magnetic material. Diamagnetic and paramagnetic materials are characterized by alinear relationship between
H and M (Plots (a) and (b)). Plot (c) shows the non-single valued relation between H and M for ferromagnetic
materials.

terials the magnetization M and the magnetic field H arelinearly related
M= yxH (2.9

where y is the magnetic susceptibility (Figure 2.2(a) and (b)). The magnetic susceptibility of a diamag-
netic material is negative, and has an order of magnitude of 10=¢. When a diamagnetic substance is
placed in amagnetic field, the orbital electrons move in such a way to produce a moment that opposes
the applied field (Feynmann, 1964). Thisisessentially Lenz'slaw at the atomic level. All materials are
to some extent diamagnetic.

Paramagnetic materials have positive susceptibilities between 10~2 and 10~5. Aluminum is an ex-
ample of a paramagnetic metal. Paramagnetic substances are characterized by having permanent mag-
netic moments of atomic origin in the material. The potential energy of each magnetic moment in an
applied field H, isgiven by —u,m - H,. When H,, is applied to a paramagnetic material the moments
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align themselves with the applied field such the potential energy is minimized. The moments do not in-
teract with each other, and when the applied field is terminated, the moments become randomly oriented
due to thermal agitation. If the applied field is large enough, the material becomes saturated, and the
linear relationship no longer applies.

Metals derived from iron or steel are ferrous metals. In ferromagnetic materials it is more ener-
getically favourable for the permanent magnetic moments throughout the material to be aligned (Feyn-
mann, 1964). Thisisin contrast to a dipoleinteraction; it is not energetically favourable to have dipoles
moments aligned. Throughout a ferromagnetic material there exist domains in which all moments are
aligned. The orientation of magnetization varies from domain to domain. When an external field is ap-
plied to the material, domain walls move such that regions that are magnetized opposite to the field are
reduced in size.

Unlike paramagnetic and diamagnetic materials, in ferromagnetic materials M may not be asingle
valued function of H. The hysteresisillustrated in Figure 2.2(c) is one of the defining characteristics of
ferromagnetic materials. A consequence of hysteresisisthat atarget will remain magnetized even when
theprimary field isremoved. A simplification in the mathematicsof the problemis obtained by assuming
that the medium is isotropic and hysteresis is unimportant. This simplification is suitable when the H-
field is small enough. Referring to figure 2.3, the region OA isreversible, and the linear relationship is
very suitable. If the H-field is small enough then the magnetization characteristic will remain along the

M
B
‘[ y
Figure 2.3: Hysteresis curve for aferromagnetic material. The region OA isreversible.

OA region of the hysteresis curve. In this portion of the curve the magnetization will go to zero when
the applied field is removed.

For the analysisin thisthesis, alinear relationship between M and H of equation 2.9 is assumed to
also apply to ferromagnetic materials. Substitution of equation 2.9 into equation 2.7 gives

B =po(H+xH)=p,(1+x)H (210)
Thisleadsto the definition of the magnetic permeability

p=(1+X) po = prbo (2.11)

where u, istherelative permeability of the material. The assumptionsleading to the linear relationship
between B and H are considered valid in the analysis of eddy currents in different types of steel (Stoll,
1974). Indeed, later in this chapter we will see that the measured time domain response of a steel cube
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iswell modelled by an equivalent volume sphere that possesses a linear relationship between B and H.
Non-ferrous materials, such as aluminum, lead, brass, tin and copper, have unit relative permeability
(#» = 1). It hasbeen suggested that asuitable value of relative permeability for steel targetsis i, = 150
(Daset a., 1990).

2.1.3 Boundary Conditions

Maxwell’s equations in differential form describe the field at points where the divergence and curl of
the fields exist. These requirements thus exclude surfaces where o and . are discontinuous. Conditions
on the field vectors at the surface are derived by using the integral form of Maxwell’s equations. The
derivation of boundary conditions can be found in numeroustexts (Jackson (1975), Ward and Hohmann
(1991)), and only the final results will be repeated here.

Thenormal component of the electrical field is adiscontinuousfunction at an interface that separates
regions of different conductivity and the normal component of magnetic flux density is a continuous at
an interface that separates regions of different magnetic permeability

f-(Dy -Dg) =22, f-(By—By) =0 (2.12)
€o
where p, is surface charge density. The tangential components of electric and magnetic fields are con-
tinuous functions

le(E]_ —Ez)IO, le(Hl—Hz)IO (213)

214 Quasistatic Assumption

All analysisinthisthesiswill adopt the quasistatic assumption. That is, when using Maxwell’ sequations,
the displacement current term 0D /8t in equation 2.2 will be omitted. To establish the validity of this
assumption we can follow the steps in Weaver (1994). The curl of equation 2.1 can be combined with
equation 2.2 and Ohm’'slaw J = ¢E to give adimensionlessequation in E alone

V' % (V' X E) + mOE/dt' + 1,0°E/dt'" = 0 (2.14)

where primed variables indicate dimensionless variables, and ; = poL?/T and ny = upeL?/T? are
dimensionless coefficients. L is acharacteristic length, and T' is a characteristic time. The ratio of the
coefficientsis i, /n, = oT /e indicates the relative importance of the second and third terms. The third
term is the displacement current term. The first term of the equation is of order unity. By choosing T’
to be the earliest time measurement for EM61 (T’ = 0.01msec), letting e = ¢, = 8.84 x 107!2, and
recognizing that the conductivity of metalsis of the order 106 S/m, the value of theratioisn; /7, = 1.13
x 10'2, That is, the third term is not important relative to the second term. Therefore the quasistatic
assumptionisvalid for this problem.

2.2 Electromagnetic Induction asa Diffusive Process

Figure 2.4 illustrates the physical situation we wish to consider. An arbitrary shaped conductive (and
possibly permeable) body isilluminated by a primary field BP (Figure 2.4(a)). Att = 0, the primary
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Figure 2.4: (a) An arbitrary conductive body immersed in a primary field BP. (b) The step-off primary field.

field isterminated, and currents are induced in the conductive target that give riseto a secondary B-field
which is subsequently measured.

Prior to the termination of the primary field, the distribution of the B-field both exterior and interior
to the metallic body can be determined by solving the appropriate magnetostatic equations. If the body
is non-permeable, a uniform BP-field will remain uniform everywhere. If the body is permeable, the
primary fieldwill magnetizethe body. The B-fieldinsidethebody will increase, and thefield linesappear
to be 'sucked’ into the body (Figure 2.5).

Asan example, let us consider the magnetostatic solution of a sphere. The whole space solution for
the interior B-field of a sphereilluminated by a constant, uniform field B® is

Bi = _H_po (2.15)
24+ p,

where 1, = u/p, isthe relative permesability. For a non-permesble target (¢, = 1) the interior field,
B, will be equal to the applied field. Asthe permeability increases, the interior field also increases, and
asymptotesto B® = 3B, for very permeable materials (1, >> 1). Therefore, the interior B-field of a
permeable sphereis greater than the interior B-field of anon-permeable sphere. Subsequently, once the
primary field is terminated, the currents induced on the surface of the permeable sphere will be greater
than on the surface of a non-permeable sphere. The field (and response) produced by currents on the
permeable sphere will be greater than the field produced by a non-permeable sphere.

The extent to which the body is magnetized (and the interior field isincreased) is dependent on how
magnetically permeablethetarget is, on the shape of thetarget, and on the orientation of thetarget relative
totheprimary field. Thiseffect, known asdemagnetization, isanimportant factor in the response of steel
targets and will be discussed in Chapter Four in some detail.

At some time the primary field is terminated (at ¢ = 0 in Figure 2.4(b)). The changing magnetic
field then induces eddy currents on the surface of the conductor. The distribution of induced currentsand
B-field can then be determined by Maxwell’s equations. By assuming quasistatic fields and homogen-
eous media, Maxwell’s equations can be rewritten to show that the electric field, magnetic flux density,
and the induced currents behave according to the diffusion equation

OE 0B 0j
2 _ Y4 2p _ YD 2, 9
kEV°E = T kV°B T kV<) T (2.16)
where the diffusivity & is
k= 1 (2.17)

ou
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u>p,, B'>B° u=y,, B'=8°

Figure 2.5: The effect of permeability in auniform field B®. The density of linesis proportional to the magnitude
of the field B-field vector, and the lines are tangent to the direction of the field vector at each point. On the left,
the permesability . > p, and thustheinterior B-field of the sphere, B is greater than B°. On theright, the sphere
is non-permeable and thus there is no effect on B®.

The process of electromagnetic induction can be described as a diffusive phenomenon. The time
decay response is generally divided into three separate stages (Kaufman, 1985; McNeill and Bosnar,
1996; Nabighian and Macnae, 1991). Theearly time stage occursimmediately following the termination
of the primary magneticfield. Oncethe primary fieldisterminated, currentsareinduced on the surface of
the target according to Faraday’s Law. The B-field outside the target will experience astep change upon
termination of the primary field. The B-field inside the conductor, however, will be unchanged upon
termination of the primary field. In accordance with Lenz's Law, currents are induced on the surface of
the conductive body to maintain the B-field interior to the sphere prior to the termination of the primary
field. A larger interior B-field will give rise to greater magnitude eddy currents being induced on the
target surface.

Early Time Intermediate Time Late Time

Figure 2.6: The three time decay stages of the TDEM response of a sphere. At the early time stage induced
currents are restricted to the surface. At intermediate times currents diffuse towards the center of the target. At
late times the currents achieve afinal spatia distribution, at which point all currents decay exponentialy.

Once currents are induced on the target surface, the subsegquent behaviour of the currents obeysthe
diffusion egquation. Quantitiesthat obey the diffusion (or heat) equation tend to move, or diffuse, from
areas of high concentration to areas of low concentration. Theinduced surface currentstherefore diffuse
from the surface (a region of high current concentration), towards the center of the conductive body (a
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region of low current concentration). The diffusion of currents towards the center of the sphere char-
acterizes the intermediate time stage. The physical picture used to describe the diffusion of the eddy
currents towards the target center is based on Faraday’s Law. Because the target has finite conductivity,
the surface currents will decay, and the associated changes of B will induce more eddy currents towards
the center of thetarget. This process continues until the spatial distribution of currents reaches a steady
state. At thislate time stage the equilibrium distribution of currents simultaneously decay exponentially.

The diffusivity k& characterizesthe diffusion rate of the fields and currents. Thelarger the diffusivity
constant, the more diffusive the medium and thus the late time stage's steady state distribution will be
reached sooner. Indeed, if the target were infinitely conductive then the material would be completely
non-diffusive. Physically, currents would not decay and induce more currents towards the center of the
target. Inthe case of an infinitely conductive target the currents would remain on the surface and not
penetrate into the interior of the target. Two materials of interest are aluminum and steel. Aluminum
has a smaller conductivity-permeability product (o), and therefore has a larger diffusivity than steel.
The onset of the late time stage would occur sooner in an aluminum target than a stedl target of the same
shape and size.

2.3 Approximating the Response of an Arbitrary Shape Tar get

Kaufman (1994) derived ageneral form for the field caused by currentsinduced in a confined conductor.
Consider an arbitrary shaped conductive body in free space illuminated by a step-off primary magnetic
field (Figure 2.4). By assuming quasistatic fiel ds, the secondary field produced by currentsin the confined
conductor can be written as

By(t,p) = (B 1) Y d g (p) e ™ (2.18)
n=1

where B; (t, p) isthe secondary field in thel direction at atime following the termination of a primary
field. Thefieldisobserved at apoint p. Thevalue BY - listhe projection of the primary field along thel
direction. d_; are coefficients that depend on the target location, size, and shape, and upon the geometry
of the primary field. 7,, is aso dependent on the size and shape of the target, but not the target location
and geometry of the primary field. Each B; component has, in general, its own set of d_; components.
71 isthelargest value of 7, and is referred to as the diffusion time constant of the conductor. The late
time decay of the field will be exponential ase~*/™ . For amagnetic sphere this constant is

opa?

T =

= (2.19)
where a is the radius of the sphere. The value of ; has been calculated for a number of different non-
permeabletargetsin auniformfield (Kaufman, 1994), and isused to identify the quality of conductorsin
mining exploration TDEM surveys (Nabighianand Macnae, 1991) and has been proposed asadiagnostic
in discrimination and identifying UXO (McNeill and Bosnar).

From equation 2.18 we see that the transient behaviour of a confined conductor can be expressed as
an infinite sum of exponential functions. For a finite time window the response can be represented by
only afinite number of terms. Attemptshave been madeto invert decay curvesfor asum of exponentials.
Such attempts have seen little success due to coupling among the coefficients (M cFee and Das, 1995).
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Rather than fitting decay curvesto asum of exponentias, | choseto devel op an approximateforward
model based on the analytic solution of a conductive and magnetically permeable sphere. The sphere
solution was used in two ways. Firstly, | used the basic structure of the sphere solution as a blueprint for
the approximate model. The solution of asphere can bewritten asthe product of two functions. Thefirst
function is dependent on the geometry of the primary field and observation location, and describes the
secondary field asadipolar field. The second function isdependent only onthe physical characteristicsof
thetarget, such as size, conductivity, permeability, and shape. This second function determinesthetime
decay characteristics of the measured response. Theform of the approximate forward model retainsthis
structure. A second way in which the solution for a sphere was utilized, was to provide insight on how
the shape of decay curves vary with conductivity, permeability, and size. With thisinformation, atime
decay law could be constructed such that responses predicted by the forward modelling can (at the least)
reproduce the different features of the response decay of a sphere.

24 TheTime Domain Response of a Permeable, Conductive Sphere in a Uniform Field

Consider asphere with aradius a, conductivity o, and amagnetic permeability w in aninsulating whole
space. When this sphere is illuminated by a uniform (primary) field B that is terminated at ¢t = 0,
currents are induced on the sphere that give rise to a secondary field. The solution of the TDEM re-
sponse is outlined here, with only the major points being mentioned. For all the details of the solution,
see Kaufman's Inductive Mining Prospecting (1985).

Figure 2.7: Set-up for aspherein auniform field B°.

We use the quasistatic form of Maxwell’s equations

VXE-= —%—]:’ (2.20)
V x H = ¢E (2.21)
V-E=0 (2.22)
V-B=0 (2.23)

The divergence of the electric field E is zero since the symmetry of the problem impliesthat the E-field
does not intersect the sphere surface and thus no charges accumulate. By introducing a vector potential
A such that

B=VxA (2.24)
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and by adopting a Gauge condition
V-A=—-oul (2.25)

we obtain a diffusion equationin A

0A
2 —_ _
VA =op T (2.26)
Once the diffusion equation is solved, the electric and magnetic fields can be obtained from
B=VXxA, E:—%—? (2.27)

The first step is to determine a solution to the diffusion equation. The diffusion equation is separable
in spherical co-ordinates. Once a suitable function is obtained for A, the boundary conditions of equa-
tions 2.13 requires that the tangential components of the field are continuous at the sphere surface. Fi-
nally, thefield interior to the sphere at the instant the primary field is terminated is given by the magne-
tostatic response of the sphere

gint _ _Skr_pP (2.29)
24 p,

Enforcing this astheinitial condition allows us to determine the remaining unknown coefficients of A..
Equations 2.27 can be used to determine the expression for the B-field from A.. The expressionsfor
the secondary field BS are (Kaufman, 1985)

3 3
BS = Bf% cos 0LB (1) BS = BF 2% sin0LB (t), BS =o. (2.29)

The time decay behaviour of this secondary field is governed by LB(t)

(o) —dqst

B _ €
LP(0)= 6t ), o oy (T 3 (2.30)

s=1

where T = opa?, and u, = p/ . isthe relative permeability. The values ¢, are roots to the transcend-
ental equation

tang, =

(:u‘r - 1) qs
PR (2.31)

This equation is solved by bracketing the interval where the root occurs, then using a bisection method
to find the location of the zero in the interval. The superscript B in equation 2.30 indicates that this
expression is part of the solution for the B-field response. Thetime derivative of the flux density 6B /9t
isof interest, sinceit isthe quantity sensed by areceiver coil. Clearly, to obtain the time derivative of the
field requires simply taking the derivative of L® in equation 2.29. Thetime decay law for the derivative
of thefieldis

—gst

8B Hr = qs €
L% (1) = —6!r (2.32)
D D R )
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In calculating the 9B / 9t and B-field responses, the infinite sum in equations 2.30 and 2.32, respect-
ively, must be evaluated. Because each term of the seriesincludes asolution to the transcendental equa-
tion 2.31, it is difficult to perform standard convergence tests on either series. Therefore, to check con-
vergence | am left with graphical techniques. The graphical analysisis also used to check how many
termsin the sum must be retained in order to produce accurate results. Figure 2.8 shows how different
termsin the summation contribute to the calculation of 9B /0t or the B-field of a steel sphere.

In panel (a), individual terms of the summation used to calculate the B-field are plotted. Terms cor-
responding to s = 1, 5, 10, 50, 100, 500, 1000, and 2000 are plotted. Only the first few terms in the
summation make a significant contribution to the response at later times. As s increases, the size of the
corresponding terms decrease and only make a significant contribution at earlier times. The contribu-
tion of the s = 500, 1000, and 2000 terms are not large enough to be included in the plot. Figure 2.8(b)
containsthe B-field calculated by truncating the summation at different numbers of terms. The summa-
tion can be terminated earlier when the time window of interest islater intime. Indeed, the differencein
carrying 1000 or 2000 termsin the summation make a very small difference. Earlier timesrequire more
termsin the summation to be calculation.

Itisclear that afinite number of terms of the summation is sufficient for the secondary response (ei-
ther 9B/t or B-field) to be accurately calculated. Becausethetime channelsat which EM61-3D makes
measurements is between 0.01 and 100 milliseconds, my choice of carrying 5000 terms in the summa:
tion when cal culating the response of a sphere, is morethan adequate. This conclusion was reached after
testing on both permeabl e and non-permeabl e spheres of different diameters. The calculated 9B /9t and
B-field responses for a steel and aluminum sphere are plotted in figure 2.9

The relative permeability of p, = 150 was chosen for modelling the steel spherein figure 2.9. Be-
cause stedl is ferromagnetic, alinear relationship B = pH is generally not applicable. To ensure that
the linear assumption, aswell as the choice of ., isappropriate, the measured time decay response of a
cube and the analytic response of a sphere of equivalent volume and arelative permeability of ., = 150
arecompared (Figure2.10). Theforward modelled steel and a uminum sphere solutionsmatch well with
the curves of the measured responses for steel and aluminum cubes of equal volume, implying that the
linear relationship between magnetization and H-field may be adequate in describing the steel targets.
The measured response curves were provided by GeonicsLtd. and measured in alaboratory setting. Full
details of the acquisition of these data are found in Chapter 4.

In the preceding analysis the primary B-field was be assumed to be uniform in the vicinity of the
sphere. Thisassumption will be valid when the sphereis more than aradial length from an EM61 trans-
mitter coil (Barrow, et.al. 1996). A major result for aspherein auniform field isthat the secondary field
will be adipolar field that decays as a function of size, shape, conductivity, and permeability. A non-
uniform field will produce higher order moments that decay quickly with time (Grant and West, 1965).
A second assumption, used above, isthat the metallic sphereis sitting in free space. Thisgreatly simpli-
fiesanalysisand isjustified since the conductivity of metalswill be approximately 6 orders of magnitude
greater than the ground (Das et a., 1990).

25 TheDecay Characteristics of the TDEM Response of a Sphere

Section 2.2 described thethree stages of the time domain responsein terms of theformation and diffusion
of induced eddy currents throughout a conductive target. This section describes in what manner these
processes manifest themselvesin the time domain response of asphere. Each stageis characterized by a
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Figure 2.8: Examining the number of the terms that should be kept in the summation performed in calculating
the B-field and 0B /¢ response of a 20 cm diameter steel sphere. (a) Individual terms of the summation used to
calculate the B-field of a steel sphere are plotted for s = 1, 5, 10, 50, 100, 500, 1000, 2000. Terms corresponding
to s = 500, 1000, and 2000 make a negligible contribution during the time window plotted above. (b) The B-field
calculated by truncating the summation at a different number of terms. For earlier times, more terms of the sum-
mation must be retained. (c) Individual terms of the summation used to calculate 0B/ dt are plotted. Terms with
large s only makeacontributionfor earlier times. (d) The B /dt response cal cul ated by truncating the summation
at adifferent number of terms. For earlier times, more terms of the summation must be retained. When calculating
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the response for earlier times, more terms in the summation must be included.
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Figure 2.9: (a) Thetime decay behaviour of the magnetic flux density B. The B-field responseis normalized by
the strength of the primary field. (b) The time decay behaviour of thetime derivative of themagneticfield 9B/ 0t.

different behaviour of the currents. Figure 2.9 illustrates the time decay curve of both a non-permeable
and permeable sphere. Let us consider the features of the 9B/t and B-field response separately.

25.1 Decay Characteristics of B-field Response

Figure 2.9(a) contains the B-field response of both a steel and aluminum sphere. In the response of the
steel sphere, there are three distinct sections of the B-field response. The relatively flat portion of the
B-field response at the beginning of the response identifies the early time stage. The length of thisfirst
section is proportional to the conductivity, permeability, and radius of the sphere.

Theintermediate time stage for the steel sphereis characterized by astraight linein alog(B) versus
log(t) plot. The response during the intermediate stage exhibits at~# decay behaviour, where 3 is ap-
proximately 0.5. Thisintermediatetime behaviour is not seen in the response of anon-permeablesphere,
so thisdecay behaviour is clearly dueto magnetic effects. Thisbehaviour has been explained by treating
the sphere as a perfect paramagnetic (Zhadnov, 1997; McNeill, 1997). That is, magnetic dipoles become
aligned by the primary field and then relax to random orientations due to thermal agitation.

At late times the B-field decays exponentially. This is not surprising since the TDEM solution is
written as the sum of exponential functions ezp(—t/7). Thelargest value of =, known as the diffusion
time constant of the sphere, isT = oua?, where o is the sphere conductivity, i i s the magnetic per-
meability, and a is the radius. The value of = determines the onset of the exponential, and final, time
stage.

Theresponse of an aluminum sphere does not exhibit the three distinct sections observed for the steel
sphere. The aluminum sphere has only a flat early time section, and an exponential, late time section.
The intermediate time stage, and its /2 decay behaviour, is not evident. The onset of exponential
behaviour occurs earlier due to a smaller diffusion time constant . The early time B-field response of
the aluminum sphere is weaker than the response of the stedl sphere, as expected (see section 2.2).
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Figure 2.10: The responses of ametallic cube compared to a sphere of equal volume. The B/t responses of
the cubeswere normalized by the measured value of the steel cube at ¢ = 0.01msec. The responsesof the spheres
werenormalized by the calculated valuefor asteel sphereatt = 0.01msec. Normalizationwasrequired to counter
any extragain in the signal during measurement.

2.5.2 Decay Characteristicsof 0B /0t Response

Figure 2.9(b) contains the B/t response of both a steel and aluminum sphere. As was seen in the
B-field response of a steel sphere, the 9B /9t response of the steel sphere has three distinct sections. In
contrast to the B-field response, the 9B/t response early time behaviour is not flat. In the early time
stagethereisat—* decay behaviour with 3 approximately 0.5. The intermediatetime stage that follows
decays again ast~—#, but with 3 ~ 1. Thefinal decay stage is again exponential.

The 0B /9t decay of the aluminum sphere only has two distinct sections. At early time the response
decays as t~1/2. Kaufman (1994, pg. 229) shows that for early time the B /¢ response for a non-
permeable sphereis

3BP g2 3BP 42
B = ———2_—_cosf By = ———2 ___sin# B3 =0. 2.33
R Vrtop, R3 o8 9 2\/wtop, R3 SR ¢ (2:33)

At late times the decay is exponential.

2.6 Statement of Forward Model

The basic results of a permeable and conducting sphere provide a blueprint for an approximate forward
model for the response of a metallic target. The analytic expression for both the secondary B-field and
the time derivative 0B /0t of the secondary field of a sphere consists of the product of two functions
(also see McNeill & Bosnar 1996). Recall that the secondary B-field of asphereis

3 3
BS = Bf% cos 0LB (1) BS = BP 2% sin0LB (t), Bj =o. (2.34)
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These equationsreveal that the B-field of aspherein auniform primary field is equivalent to the B-field
of asingle magnetic dipole located at the center of the sphere and oriented parallel to the primary field.
The secondary B-field can be rewritten as

BS = M (r) L(t) (2.35)

where M (r) is the B-field due to a magnetic dipole m = 27B¥ /u,. The decay of the dipole field is
governed by L(t) = a®LB(t). LB(t) isdefined in equation 2.30. Equation 2.35 also showsthat thetime
derivative of the B-field will have the same spatial behaviour (governed by M (r)) as the B-field.

Thefirst term M (r) isafunction of the magnitude and geometry of the primary field, and includes
no information on the material and shape properties of thetarget. This showsthat the spatial response of
the sphere isidentical to a dipole whose strength is proportional to the primary field. The second func-
tion L (¢) contains al the information on the time decay of the sphere and it depends upon the material
properties, shape, and size of the target. My hypothesisis that more general metallic shapes can also be
approximately modelled as the product of M () and L (¢). However, choosing theright functional form
of M(r)and L (¢) will be crucial.

2.6.1 Spatial Response Function M (r) For an Axi-symmetric Body

Most targets encountered in a UXO survey can be adequately described as an axi-symmetric object.
Unfortunately, analytic expressions for the time domain response of a permeable and conducting non-
spherical axi-symmetric body are not available. However, recalling that for the time domain response of
asphere M (r) was identical to the response of a magnetostatic sphere (Equation 2.35, it is reasonable
to consider the magnetostatic response for an axi-symmetric target as a possible candidate for M (r).

Analytic solutionsfor the magnetostatic response of amagnetic prolate spheroid and the el ectromag-
netic response of aperfectly conducting spheroid are available. Aswith the sphere, the spatial response
is equivalent to a magnetic dipole, with moment m*P*, induced at the spheroid center. This dipole mo-
ment is best understood as being the sum of two orthogonal dipole moments. Let usresolve the primary
field into two orthogonal components, where one component is along the major axis of the spheroid.
Thefirst dipole moment is parallel to the main axis of the spheroid and its strength is proportional to the
component primary field along that direction. The second dipole is perpendicular to the major axis, and
its strength is proportional to the component of the primary field along that direction. The total induced
dipole moment is (Das et al., 1990)

mPh — gy, (a” : HP) a4 kr (HT - (a” : HP) a”) (2.36)

where @ is the unit vector parallel to the main axis of the spheroid. kr and k, which premultiply the
dipolesaong the major and transverse axes respectively, are functions of the conductivity, permeability,
shape, and size. The general expressionsfor ky, and k are well known for both the magnetic spheroid
and perfectly conducting spheroid. It has been reported that this two dipole model represents the spatial
response of UXO very well (Khadr et al., 1998).

2.6.2 Time Decay Function L (t)

Recall that the time decay for a sphereis determined by the sum of exponentials. Thisresult generalizes
tothe case of aconductivebody of arbitrary sizeand shapein aninsulating medium (equation 2.29). Thus
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we seek aform for L (¢) that duplicates the time decay features as was observed for the sphere. More
specifically, L (¢) should be chosen such that early, intermediate, and late time stages can be realized.
An appropriate form of the decay law for the B-field response is

=t

E(t+a)Per. (2.37)

The parameter k£ controls the magnitude of the modelled response. The three parameters «, 3, and «,
control the duration and characteristics of the three different stages of the time decay curve. The dura-
tion of the relatively flat early time stage will be proportional to the parameter «. The linear decrease
of response observed during the intermediate time stage is determined by t=#. The exponential decay
characterizing the late time stage is controlled by the parameter +. The relationships between the decay
parameters and the decay characteristicsareillustrated in Figure 2.11.

The 0B/ 9t response of a sphereis plotted in Figure 2.12(b). In section 2.5.2, it was noted that the
decay curve for asteel sphere could be divided into three stages. The decay nature of each stage differs
dightly from the decay calculated for the B-field. The intermediate stage has a greater slope for B /0t
than B-field. The early time decay behaviour of 9B /Jt¢ does not possess the flat section asis seen in
the B-field response. However, during atypica time measurement window only the transition from the
early to the intermediate time decay is seen. The time decay law 2.37 isa again a suitable description of
the field behavior in such a case (Figure 2.12(b)). The termination of the early time stage will again be
controlled by «.. The differencein units between the 9B /9t and B-field responseswill be accounted for
in the units of k.

In the previous section | proposed that the spatial response of an axi-symmetric target be represented
by a pair of dipoleslocated at the center of the target. It has been noted that the shape anomaly of the
measured response changes with time (Grimm et al., 1997). The physical phenomenathat gave rise to
thetemporal changesin shape anomaly was explained in termsof the nature of theinduced eddy currents.
Eddy currents that circul ate end-to-end in the UX O dominate at early time but decay away quickly, and
eddy currentsthat circulate about the long axis extend later into time.

Thisfield behaviour can be duplicated by letting each of the two orthogonal dipoles of the previous
section decay independently of each other. Let us assumethat the currentscirculating end-to-end and the
currentscirculating about thelong axis generate secondary fiel dsthat can be approximated by the fields of
adipole perpendicular to the long axis and adipole parallel to thelong axis, respectively. By assigning a
different decay characteristic (governed by its decay parameters) to each dipole, therelative contribution
by each dipole to the secondary field can vary with time. Indeed, the two sets of decay parameters can
be chosen such that the dipol e perpendicular to the symmetry axis (corresponding to currents circulating
end-to-end) will be dominant at early times and the dipole parallel to the symmetry axis (corresponding
to currents circulating about the long axis) dominant at late time.

2.6.3 TheApproximate Forward Model

Finally, we can write an approximate expression for the secondary field response of an axi-symmetric
target. The approximate forward model represents a buried metallic object as two orthogonal dipoles
located at the center of the object (Figure 2.13).  Each dipole decays according to the decay law of
equation 2.37. Let us consider a target whose center is located at R. The response measured at a re-
ceiver/transmitter location r and at atime ¢ after the termination of the primary field, is then the sum of
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Figure 2.11: Decay behavior changes dueto variationsin parameters k, «, 8, and . (a) k shifts the curve up and
down. (b) Thelength of theinitial, flat stage of the response increases with increasing .. () The steepness of the
intermediate stage of the response increases with increasing 5. (d) The onset of the exponential, final time stage

is delayed with increasing .
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Figure2.12: (a) Thetime decay behaviour of the magnetic flux density B. The B-field responseis normalized by
the strength of the primary field. (b) The time decay behaviour of thetime derivative of themagneticfield 9B/ 0t.
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Figure 2.13: Representation of the fields generated by induced fields in ametallic target as a pair of orthogonal
dipoles. Both dipoles are located at the center of the target, with Dipole 1 being parallel to the axis of symmetry
of thetarget and Dipole 2 being perpendicular to the axis of symmetry and in a plane defined by the primary field
and Dipole 1. The moment of each dipole is proportional to the projection of the primary field onto a unit vector
in the dipole direction.

the responses of the two orthogonal dipoles
£(r,) = By (r) Ly () + B2 (v) L> (1), (2.38)

The response ¢ (r, t) can represent either the B-field or the time derivative 9B /8t. L isthe decay law
of the ** dipole moment

Li(t) = ki (t 4+ )% e, (2.39)
and B; is the B-field due to the 7** dipole moment m;
o (ri — R) m; )
B;="2(3[m; (r;j— R - 2.40
47 ( [ - (v ) |r; — R|5 |r; — R|3 ( )
Theinduced dipole moment m; isdefined to be the projection of the primary field onto the axis of sym-
metry

mg = (X] . Bp)}fl (241)
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Figure 2.14: Co-ordinate System for aburied target

where %, isaunit vector parallel to the axis of symmetry, and BP isthe primary field generated from a
squareloop source. The equations used to model BP are outlinedin Appendix C. The unit vector parallel
to the axis of symmetry of the target, x4, is simply the direction cosines of the axis of symmetry

%3 = cos(a)sin(c) x + sin(a) sin(c) ¥ + cos(c) z (2.42)

where the orientation angles a and ¢ are defined in figure 2.14. The second dipole moment is chosen to
be parallel with the inducing field and orthogonal to the main axis of the target defined by %, . The unit
vector defining the direction of the second dipole, x», is paraléel to the projection of the primary field
onto a plane whose normal is %, . Two orthogonal unit vectors %, and %y, that liein this plane are

Xa = — cos(a) cos(c) X — sin(a) cos(c) ¥ + sin(c) z (2.43)
and
Xp = sin(a) X — cos(a) §. (2.44)

The projection of the primary field onto this plane, and therefore the magnitude of the second induced
dipole moment ms, isthen

m; = (%a - BF) %a + (%p - BF) %p. (2.45)

In summary, the approximate response of buried metallic object can be generated from 13 parameters
that describe the object. These model parameters are elements of the model vector

m=[X,Y, Z, a,c, k1, a1, B1, 11, k2, a2, B2, 72]- (2.46)

Thelocation the object is given by the parameters X, Y, and Z. X and Y isthe location on the surface
directly abovethe object, and Z isthe depth of the object below the surface. The orientation of the target
is described by the two angles a and ¢. The remaining parameters describe the decay characteristics of
thetwo dipoles: k1, a1, 81, and+y; describethedipoleparalel to the axis of symmetry (i, ), and ks, as,
B2, and v, describe the dipole perpendicular to the axis of symmetry (imm,). Thus the inversion for the
model m will immediately give estimates of target location and orientation. Information on the shape,
size, and material parameters of the target may later be inferred from the remaining parameters.
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2.6.4 Approximate Forward M odelling Examples

I conclude this chapter with examples of the approximate forward modelling. Let us consider approxi-
mate B /0t response of a steel rod and asteel plate. A rod and plate represent the two end-members of
the set of axi-symmetric targets, with arod being geometrically similar to a UXO and a plate similar to
scrap metal. These data sets are generated by substituting parameters recovered from lab measurements
taken at Geonics Ltd. into equation 2.38. The parameters and size of the rod and plate are listed in ta-
ble 2.1. Further details of the different lab measurements and their subsequent inversion for parameters
are covered in Chapters Three and Four.

Dipole1 Dipole 2
Target Dimension (lnCh) kq aq ﬁl Y1 ko (a7} ﬁ2 Y2
Rod 8x2x2 0.841 | 0.0191 | 1.01 | 22.4 || 0.140 | 0.00702 | 1.32 | 2.92
Plate | 8x8x2 0.951 | 0.0204 | 1.30 | 22.6 || 207 | 0.0356 | 1.11 | 22.2

Table 2.1: Parametersfor the B /9t response of a stedl rod and a stedl plate

Figure 2.15 contains the forward-modelled response of the two targets using parameterslistedin ta-
ble 2.1. Each target is assumed to be located 0.5 m below the surface and at survey location (X,Y) =
(2m, 2m). Each target’saxis of symmetry with the axis of symmetry being oriented withadip ¢ = 45°
and astrike of ¢ = 45°. Thetop row of Figure 2.15(a) plots the plan view of the vertical component of
the 0B /9t response of a steel rod for three different time channels. The second row of Figure 2.15(a)
plots the plan view of the horizontal component. Figure 2.15(b) contains responses for a steel plate. In
both the case of arod and a plate, there is a change in the anomaly shape in each time channel. The re-
sponse of arod changes from being due to aboth dipoles at early times, to essentially the dipole parallel
tothelength of therod at late times. The late time response of the plateis predominantly from the dipole
perpendicular to the target and in the plane of the plate.
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Figure 2.15: Synthetic B/t data for a steel rod and a steel plate using the approximate forward model. (a)
Thevertical and horizontal components of the secondary field for a steel rod are plotted respectively in the top two
rows. The change in the observed anomaly is due to the relative contribution of the two dipoles changing with
time. (b) The secondary field for a plate are plotted in the bottom two rows. Once again there is a change in the
plotted anomaly pattern between early and late times.




Chapter 3

Non-linear Parameter Estimation Procedure

An important step in achieving the goal of UXO discrimination is to extract physical parameters of a
buried metal object from time domain electromagnetic data. A TDEM survey involvesgenerating apulse
primary magnetic field to induce currents within the target, and then measuring the secondary magnetic
field that these currents produce. The measurement is made over anumber of time channels, and at sev-
eral locations on the surface above the target of interest.

Figures 3.1 and 3.2 contain portionsof the EM61-3D 0B /0t dataset acquired duringaTDEM survey
over a 105 mm UXO buried approximately 0.5 m below the surface. These data were collected over a
4mx 4m sguare survey area, along 9 lines (with 1m line spacing) and with a station spacing of 50 cm
along each line. The decaying secondary field was measured over 30 logarithmically spaced time gates.

()

4

t = 0.8025msec

t = 27.92 msec

Figure 3.1: The 0B/t measurement taken over a 105 mm shell. At earlier times the signal has the appearance
of adipolefield. With later timesthe signal from the UXO is dominated by the noise.

This data set include over 13 000 data. Figure 3.1 show the 3 components of the 9B /9t response at
t = 0.8025 msec andt = 27.92 msec. Figure 3.2 include both the B /9t and B-field decay curves
of the target measured at station (X,Y) = (1m, 1m).

The inversion of these observed data requires a forward modelling code to accurately predict the
response of el ectromagnetic anomaliessensed by the EM61-3D detector. Theideal forward model would
generate time domain electromagnetic responses for arbitrary shaped metallic objects by numerically
modelling Maxwell’s equations. Because such a code was unavailable during the time of thisthesis, an
approximate forward modelling that represents the response of a compact metallic object astwo dipoles

27
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Figure 3.2: Decay of theresponseat (X,Y) = (1m, 1m) (a) The early time channelsfor the B/t responseis
very noisy, and need not be fit too closely. (b) The process of integration smoothes the response for B.

located at the center of the target was proposed. In Chapter 2 either the 9B /9t or B-field response,
represented by £, of aburied metallic object was approximated by

€(r,t) = By (r) L1 (t) + Bz (r) L2 (1) (3.1)

where L; isthe decay law of the it" dipole moment:

=t

Li(t) = ki (t+ o) P e, i=1,2. (3.2)

B;, the B-field due to the 3** dipole moment my;, is

_Fo (gt (e gy iR mi
Brww@[l<lRﬂm_RF m—mJ (33)

Theinduced dipole moment m; is
m; = (%; - BF) %; (34)

For thisthesis, | first assume that the response measured in a survey isdueto asingle body, and sec-
ond, that the response of this single body can be accurately modelled with equation 2.38. With these hy-
pothesesin place, an inversion procedure can be devel oped that utilizes the approximate forward model.

The forward model can be expressed as

d; = F;[m], j=1,2,3,..N (3.5)

This equation expresses the mapping of the model vector m to a datum d; by afunctional F;. The for-
ward mapping F; is defined by equation 2.38. The model vector m contains the 13 model parameters

m=[X,Y, Z, a,c, k1, a1, B1, 11, k2, a2, B2, 72]- (3.6)

The goal of thisinversion isto retrieve the 13 model parameters making up the model vector m from a
vector of observed data d°®s.
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If there are L time channels and K |ocations where the EM61-3D datais collected, then there will
N = 3K L total data points contained in the data vector d. It is clear from equations 3.1 to 3.4 that the
N datawill be non-linear in each of the M model parameters. Because datawill be collected on several
lines, with a number of stations per line, there will generally be far more data than model parameters
(N >> M). Thereforetheinversion for the model parameters of m involves solving an overdetermined
system of non-linear equations.

For overdetermined inverse problems the goal is to find the model that produces the data that best
fits the observed data. This type of problem is a departure from many of the standard geophysical in-
verse problems, where the subsurface is divided into many cells and the goal is to determine a physical
parameter, such as conductivity in each cell. The parameterization of the subsurface generally leadsto
underdetermined problems, which are ill-posed, and possess a very large inherent non-uniqueness. In
such problems a standard method of dealing with ill-posedness and non-uniquenessis to define a model
objective function which forcesthe inversion to construct model s with characteristics consi stent with the
inverter’'s notion of an appropriate model. Adopting the forward modelling of equation 2.38 essentially
restricts the search of an appropriate model to very specific model type. The extreme non-uniqueness
that characterizes most inverse problems, is not the major issue in solving the overdetermined inverse
problem with which we are faced. The primary focus of the inversion, therefore, shifts from dealing
with non-uniqueness to fitting the data.

The basic model parameter estimation procedureis to first define an objective function which gives
a measure of the agreement between the observed data and the data predicted by a set of model para-
meter estimates. Such an objective function is designed to decrease with improved agreement between
observed and predicted data. Therefore, parametersare perturbed until aminimum in the objective func-
tion is achieved. Obtaining the best fit parameters can thus be expressed as a problem of multivariate
optimization. The non-linearity of the forward modelling requires that the inversion procedureis an it-
erative process.

Thischapter outlinestheimplementation of anon-linear |east squaresalgorithm to obtain an estimate
of m. With the use of synthetic data sets, this procedure is then evaluated to determine which of the 13
model parametersare most (and least) robust to variationsin data collection configurations and to noise.

3.1 Defining The Objective Function

The problem of determining the model parameters of a UXO from a data set can be solved as a non-
linear least squares problem. In the method of least squares we try to find the model parameters that
minimize the sum of the squared differences of the predicted and observed data. The non-linear least
squares prablemis

minimize ¢ — %HWd (Ppoa] - @) | 37)

where F[m)] isthe forward modelling that produces the predicted data, dops iSthe observed data, and ¢
istheleast squares objectivefunction that measures how closely our predicted data matchesthe observed
data. W isthe dataweighting matrix. For ease of notation the least squares problem isrewritten as

minimize ¢ (m) = %R(m)TR(m) = 23 i (m) 39)
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where R isthe residual function
R =Wy (F[m] — dobs)

and r; (m) is the i** component of the function R.

The data weighting matrix W, adjusts the relative contribution of each r; to the objective function.
Therefore W; enables us to control how closely each datum is fit by the predicted data. There are two
motivating factors to including a data weighting matrix. Firstly, the dataweighting matrix allows meto
deal the with large dynamic range exhibited in TDEM data. The measurements of the fieldsina TDEM
survey will take place from approximately 10~° to 0.1 seconds. Over such alarge time range, the meas-
ured secondary field and induced voltage can vary by over 5 orders of magnitude for the EM-61. If we
were to sum together squares of such disparate orders of magnitude, the sum would be dominated by the
early time channel measurements, with negligible contribution from the late time measurements. Asa
result, data points corresponding to the very small components of the residual vector will essentially be
ignored when finding search directions with which to reduce the objective function.

Secondly, some observations may be less'reliable’ than others. In TDEM measurements, the level
of noise may begin to dominate the level of signal from the target at later times. Figure 3.1 contains
measurements of thefield at different time channelsfor data taken over a buried 105 mm shell. Thelate
time channel is polluted with background noise. Figure 3.2 contains the time decay at a station in the
survey. The early time behaviour of 9B/t is very noisy. In this case we would not want to have the
fitting algorithm work excessively hard to try and fit each of these noisy data points very closely.

If theforward modellingislinear or if thereisalarge number of datawith normally distributed errors,
then the optimal choice for W, would be such that Wf W, istheinverse of the covariance matrix of the
errors (Bard, 1974). | choose W to be

(Wd)ii = : (3.9

g; + €

where o; isthe standard error of the 7** data point and ¢ is asmall positive constant. | set o; to be some
percentage of the 7t* datum

o; = %error x d;.

The off-diagonal elements of W, are zero. The denominator o; + ¢ is the error assigned to the it" data
point. The addition of a positive ¢ ensures that small data points would have a reasonable error assigned
to it, and thus we can avoid biasing the inversion to the small data points.

It is also possibleto increase or decrease how closely an individual datum isfit. Thisis done using
the data weighting matrix to increase or decrease the relative importance of the datum of interest. That
is, toincrease how closely wefit the it* observed datum d$Ps we need only increase the value of (Wy);;.
A decrease in how closely we fit the 5t* observed datum d¢P* is achieved by decreasing (W,),;.

Figure 3.3 contains the synthetic decay curve for a 75 mm anti-tank mortar located 0.58 m beneath
the surface. Each datum is assigned 10% error and ane = 5 x 101, Error bars at early times are small
enough to not extend past the plotting symbols. At late times the addition of ¢ increases the size of the
error bars.
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Figure 3.3: The synthetic 9B /9t response curvesfor a75 mm anti tank mortar buried 58 cm beneath the surface.
The circled data points indicate that the absolute value of the data point has been plotted.

3.2 Variablesof thelnversion Algorithm

The model vector m containsthe 13 model parametersrequired for the approximate forward modelling:
m=[X,Y, Z, a,c, k1, a1, B1, 11, k2, a2, B2, 72]- (3.10)

where parameters (X, Y, Z) represent the location of the target, (a, ¢) represent the orientation, and
the remaining parameters (k1, a1, 51, 71, k2, a2, B2, 72) arepositivevaluesthat determinetherelative
strength and time decay behaviour of the two induced dipoles. The following two sections describe two
simple adjustments to the model vector that improve the chances for a successful inversion.

3.21 Positivity Constraint

In theforward model described by equation 2.38 thetime decay parameters «;, 3;, and+; areall positive.
Recal| that the «; parametersappear in equation 2.38 aspart of thetimedecay law L; = k; (t + ai)_ﬁ exp(—t/7;).
If o; is perturbed during an iteration such that it is negative, L; would be a complex quantity for early
timest.
To force positivity on any of the parameters, the parameter fitting problem could be written as one
of constrained optimization. That is,

minimize ¢, subjectto m; >0 (3.11)

wherem; isany of the parameters upon which positivity isto beforced. A very simple alternate method
isto enforce the positivity of this parameter is to define a new parameter m; = /m;. For example, if
wewould liketo ensure that «; ispositive, L; could be rewritten as

L;=k; (t + diZ) A ea:p(—t/’yi)
Therecovered «; isthen the squared value of &;. Gill, Murray, and Wright (Gill et al., 1981) refer to the
optimization method that uses this simple transformation as a square-variable unconstrained problem

minimize ¢ (1),
where ¢ (rn) isjust ¢ with m; = 72;2. The squared-variable transformation must be implemented with

care because non-linear transformations of the parameters may lead to an increasein the non-linearity of
the objective function.
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Location and Orientation Dipole 1 Dipole 2
X|Y|Z|a |c ki lan | B m ky | as | B2 | 72
1 |1 |1]45°|45° 1 /05|11 |10 1 |05|1 |10

Figure 3.4: Values used for scaling the model vector m*¥P. These values were chosen after fitting decay curves
for several different metallic objects.

3.2.2 Scalingthe Model Parameters

At each iteration of the algorithm, the value of || (my — my1) || is monitored such that we can keep
track of stalling or convergence as discussed in section 3.8. The model parameters of this praoblem can
vary by acoupleof ordersof magnitude. Without scaling the componentsof the model vector differences,
the algorithm may fail to see relatively large changes in small model parameters due to the presence of
large model parameters. This situation would lead to a premature termination of the algorithm.

To address this situation the model parameters are scaled using a diagonal matrix W,,. Let usfirst
define avector m*YP whose components mfyp are positive scalar val ues representing typical magnitudes
of the model parameters. When the values of the diagonal are chosen to be the inverse of m*¥P, i.e.

1
i T typ)
miyp

(W) (3.12)

each component of the model parameter will make an equal contribution to the relative difference in

models. A new model vector m = W,, m isdefined. Thetablesin Figure 3.4 list the typical magnitudes

chosen for m*¥P. The Hessian, and gradient for the transformed objective function are then
H=W,*HW,'!, ad V¢=W;'V¢ (3.13)

Inmy tests| have not noticed any affect on the convergence ratesby including W,,,. Thisisnot surprising
because Newton type steps are not changed by alinear scaling of the parameters (Dennis and Schnabel,
1983).

3.3 Newton’s Method of Optimization

We wish to minimize the weighted least squares objective function
_ 1 obs 2
¢ = 5l1Wa (Flm] - a°>) | (3.14)
For ease of notation the objective function is written as
— T _ 1 2
¢(m) = SR(m)" R(m) =3 > ri(m) (3.15)

where R isthe residual function

R =Wy (F[m] — dobs)
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and r; (m) isthe #** component of the function R.
The objective function ¢ can be expanded in a Taylor series to obtain a quadratic model of ¢

¢ (my + 6m) ~ ¢ (my) + V¢ (my)’ 6m + %5mTV2¢ (my) 6m. (3.16)

A necessary condition for aminimum is to have the gradient of ¢ vanish. Applying this requirement to
the quadratic model leads to

V3¢ (m.)ém = —V¢(m,), (3.17)

where m, minimizes the local quadratic model and ém is the Newton direction towards the minimum
of ¢. The algorithm that solves this equation as part of minimizing ¢ is termed Newton's Method of
unconstrained minimization. The derivatives of ¢ are

Vé(m)=IJ(m) ' R(m) ad V2¢(m)=J(m)’I(m)+S(m), (3.18)
where S (m) is

N

S(m) =) r;(m)V’r;(m)

=1
and the Jacobian matrix J isdefined as
or;

= ?
0m;

J;j (m)

wherei = 1,..,Nandj = 1,..,M. M isthe number of model parameters. V24 (m) is caled the
Hessian matrix, which wewriteas H. The matrix S contains second order derivatives, and thus second
order information of the objective function in the vicinity of m. The Newton step 61 for the non-linear
least squares problem is then given by

H (my) ém = —J (my)” R (my) (3.19)

Newton’smethod is locally convergent. That is, if V¢ (m..) = 0 for some m.,, then there exists an
open set S such that for every starting point m, in S the Newton iterates will remainin S and converge
to m.. Within S, Newton’s method produces a quadratically convergent sequence of model iterates my

[micir — m| < Bllmy - m.|® (3.20)

where 8 > 0 (Moré and Sorensen, 1984). Therefore, not only is Newton’s method locally convergent,
but it is aso very efficient within the neighbourhood 5.

The problem with implementing Newton's method as a global method is that the region .S may be
small. Although wetry to make reasonableinitial estimates of the model parameters (Section 3.5), there
is no guarantee that an initial guess m, would fall within the domain of attraction S. However, New-
ton’smethod’s excellent local behaviour suggeststhat it would be agood basisfor agloba method. The
parameter estimation procedure will force convergence by modifying Newton’s method such that m,
isiteratively brought into S by a series of modified Newton’s steps. Once the current iterate is brought
inside .S, we then switch back to Newton's method to take advantage of its superior local convergence
behaviour.
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3.4 An Algorithm For the Computation of Parameter Estimates

The goal is to minimize the sum of the squares of the residuals, represented by the objective function.
The approach taken hereisto make an initial guess of the model parameters, then to repeatedly improve
this guess until the data predicted by our guess matches as closely as possibleto the actual observed data.
The basic stepsof the unconstrai ned minimization algorithm used to minimize the objective function are

1. Choosea starting model m,

2. Compute a search direction ém. The search direction indicates the direction in which to
perturb the current guess. The search direction is chosen to be the Newton Step that mini-
mizesthe local quadratic model about the current iterate my.

3. Compute a step length A. The step length indicates how much the current guess should
be perturbed in order to decrease the objective function. Because the local quadratic model
about the current iterate is only approximate, the minimum of this model will not necessarily
reducetheactual objectivefunction. A positivescalar A ischosensuchthat ¢ (my + Adém) <
¢ (my). Aisfound by aline search.

4. Update estimate of model. Set my ;3 = my + Adm.

5. Test for convergence. If the updated guess my , ; is adequate, then the algorithm is termi-
nated. Otherwise, return to step 2.

The steps are discussed in more detail in the following sections.

3.5 Prdiminary estimatesof the model parameters
Thefirst step of thisinversion procedureisto make a starting guess for the 13 model parameters:
m = [Xv Y7 Z7 a, ¢, klv ay, ﬁlv 717k27 a2, ﬁZv 72] . (321)

The successof aninversion procedure, aswell asthe rate of convergencetowardsasolution is dependent
on the quality of the initial guess (Bard, 1974). The following sections will discuss a number of simple
data preprocessing strategies that enables us to make areasonableinitial guess of the above parameters.

3.5.1 Analysisof Plotted Data

Figure 3.1 contains plan view plots of different components of a 9B /8t measurement over a 105 mm
artillery shell. The shape of the measured signal, when not swamped by the presence of noise, appears
as aseries of distinct peaks. By plotting these peaks and noting the position, width, and shape of these
peaks, simple approximate rel ationships can be observed between thelocation of the target on the survey
grid (X,Y), thethedistance of thetarget from thetransmitter (Z), andthestrike of thetarget (a). Because
these techniques rely on plotting the datain plan view, the precision of these techniqueswill be directly
impacted by the density of station distribution during data acquisition.
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Estimates of Target Orientation (a, c)

The parameter a of equation 2.38 gives the strike of the target. This strike is defined as the angle the
axis of symmetry of the target makes with the x-axis of our survey. The strike of atarget can be seen by
considering the horizontal component of the response. The horizontal component is defined as

OBHor 0B, \> [0B,\’

e 022
Figure 3.5 contain plots of the horizontal component of synthetic data for a steel rod, steel plate, and
aluminum rod. The plan view response over a2 m x 2 m areais plotted at three time channels after
the primary field has been terminated. Overlaying the plan view plotsis an arrow indicating the strike
of each target. The changes in the contour pattern with each time channel are due to relative strengths
of the two dipoles changing with time. In each plot the response contains a line of symmetry which
coincides with the target strike. The early time responses of the aluminum rod and steel plate do not
have a very distinguishabl e line of symmetry. Indeed, finding a distinct line of symmetry can be very
difficult, making this method susceptible to multiple solutions.

The parameter ¢ indicatesthe dip of the target. | have not found amethod to estimate this parameter
in any simple way directly from the plotted data.

Estimating the Horizontal L ocation (X,Y)

Thelocation (X, Y) is the place on the survey grid directly above the buried target. Because thisisthe
point on the survey that is closest in proximity to the target, it is reasonable to expect that a plan view
map of the anomaly would mark (X, Y’) as amaximum in the plotted signal.

Themethod of finding thelocationisvery straightforwardin the case of asphere. The secondary field
of asphereinauniformfieldisequivalent to thefield of asingle dipoleinduced at the sphere center. The
plan-view response of the vertical (Z) component response possessesasingle, distinct peak. An accurate
estimate of the (X, Y") location of a sphereissimply the location of this §B /9t signal peak.

With the 2-dipole model, the situation becomes more complicated. For non-spherical targetsthe ver-
tical component of the responselosesits circular symmetry and, in some cases, therewill exist 2 distinct
peaks. The added complexity is due to the response being dependent on the relative strength of dipoles
k1 and k, aswell asthe orientation of thetarget. In addition, because therelative strengths of the dipoles
change with time, at some time channels there may be only 1 peak while at other times there may be 2
peaks.

To estimate the location of atarget, first take a profile along the strike. Figure 3.6 shows the profile
of athin steel rod and athin steel plate for different dip ¢, buried at X = 2m and at adepth of 1 m. The
responseis normalized by the maximum response along the line. Becausetherod and plate are thin, only
one of the two dipoles makes an appreciable contribution to the response. The plan view responses, for
these cases, do not change appreciably with time. We see that as the value of ¢ approaches 90 degrees
for a plate and O degrees for arod, the profile has a second peak. An estimate of location can then be
obtained by either taking the location of asingle peak (when there is a single distinct maximum), or by
taking the midpoint of two peaks. For targets that have two dipoles making an appreciabl e contribution,
cases occur where there may be 1 peak on the profile at one time and two peaks at another time. Thisis
becausethe relative strengths of the dipol es change with time. Figure 3.7 shows estimates of the [ocation
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Figure 3.5: The determination of strike (a) from plan view plots of the horizontal component of the B-field data.
The black arrows indicate the actual strike.

at several times. The accuracy of observing the peak(s) of the vertical component of the field changes
with time. On average, however, the location is relatively close to the real location of 2 m.

In summary, the method | choose to determine the location of aburied target isto first find the strike
(a) of the target. Secondly, | plot the profile along the strike of the vertical component of the response
at different time channels. At each time channel | either find the midpoint of two distinct peaks of the
signal, or | find the maximum of a single peak. Averaging the location estimates of the different time
channelsresult in agood estimate of the location. The accuracy of thistechniqueis hindered when there
isvery sparse data coverage, and also when it is difficult to determine the line of symmetry along which
to take a profile for analysis.

Estimating Depth from Receiver (2)

A standard method for finding the depth of a buried target is to take the width of the signal at half the
maximumvalue (Daset.al., 1990 and Nabighian and Macnae, 1991). The*“ Full Width at Half Maximum”
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Figure 3.6: The vertical component of secondary field for athin rod and thin plate with various ¢. These
profiles were are from the time channel at ¢t = 1.998 msec.
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Figure 3.7: Estimating the depth and location of athick steel rodwith ¢ = 70 at varioustimes. Therea “Location
on Profile” isactually 2 m, and thereal depthis1 m.

(FWHM) is defined in Figure 3.8, and provides an estimate of the distance from the receiver loop (2).

Figure 3.9 showsthe error of thisestimate for different distances of asteel cube from the transmitter
loop and aong the symmetry axis of the loop. The widths at half-maximum for this plot was taken on
synthetic data using a primary field generated by a 1 m square transmitter loop and a dipole transmitter
with the same moment as the square loop. For objects without the symmetry of a sphere or cube, we
lose the single distinct peak. When obtaining an estimate of depth | consider a profile of the vertical
component of either the B-field or 9B /0t datataken along the strike of thetarget. In the case of asingle
distinct peak, the width at half-maximumisused. In the case of two distinct peaks, the distance between
the two peaks is used as an estimate. This process is tested on synthetic data of a steel rod at a dip of
¢ = 70 degrees (Figure 3.5.1). Once again the accuracy of this estimate changes with each different
time dlice. Aswas suggested in obtaining the location of the target, we can then take an average of the
depth estimates over the different time channels. Resultsfrom performing this estimate on synthetic data
produced for a steel rod and steel plate at depths of 1 and 2 m, and located at X = 2.0m are found
in tables 3.5.1 and 3.5.1. These results suggest that this method of depth estimate provides us with a



38 CHAPTER 3. NON-LINEAR PARAMETER ESTIMATION PROCEDURE

B

t )z
©c o o
N ® ©

Normalized (‘?3
o O O o
w > 0 o

o
[N)

0.1r

05 1 15 2 2.5 3 35
X (meters)

Figure 3.8: Definition of the* Full Width at Half Maximum” (FWHM). Thewidth of aprofileprovides an estimate
of thedepth. The FWHM valueinthisexampleis0.82 m. Extracare must be taken when there are multiple peaks.

good guess of depth for different dips of either a steel plate of rod target. The accuracy of this method
deteriorates when the density of the data decreases. This method requires an estimate of the strike (a),
which introduces the possibility of inaccuracy if the strike is hard to determine.

Estimates of Time Decay Parameters(k, a, 5, and ¥)

One method for obtaining an initial estimate of the time decay parameters k;, o, 8;, and~; (i = 1,2)
would be to consider values of the decay parameters of typical UXO and scrap found in the area. For
example, the Jefferson Proving Ground is the site of an ongoing extensive UX O cleanup project. At this
location, there arerecords of the UXO tested at thissite. Appendix A and B contain the decay parameters
of UXO and lab prisms obtained from |ab measurementsat Geonics. Moredetails of these measurements
are found in Chapter 4.

A second method would be to solve asimpler problem that would provide estimates of the problem
parameters. Let usconsider datataken only directly above the target and let us assume that the response
is due to a sphere (Figure 3.11). The primary field will induce a dipole parallel that is paralle to the
primary field. The response of the dipole is then described by

E(rt) =M@ k(t+a)Pet/, (3.23)

where M isthe magnetic flux dueto theinduced dipole moment mi®9, and » isthe distance fromtheloop
center to the dipole measured along the axis of the loop. For the geometry of figure 3.11, equations 2.40
and 2.41 give asimple expression for M:

_Ho2pgp
M(r) = i T3B . (3.24)
where BY isthe primary field. When the transmitter is approximated by a vertical dipole with unit mo-
ment (e.9. I'm x 1m sguaretransmitter coil with 1 Amp current). The primary field at the target would
be only in the vertical direction with a magnitude given by

Mo 2,
BY = 2~ ;. 3.25
47rr3z ( )
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Figure 3.9: Errorsin the depth estimate of aburied cube when using the FWHM. The FWHM estimatesthe depth
of the cube to be deeper than the real depth when the cube is buried within approximately 105 cm from a square
transmitter loop. At depthsgreater than 105 cm the FWHM estimates places the cube closer to the surface than its
real depth.

where z isthe vertical unit vector. Substitution into equation 3.24 gives

4 x107,
M= — % (3.26)
Inthe geometry of figure 3.11, therewill only beavertical (z) component of secondary field at the surface.
Therefore equation 3.23 can be rewritten as

res 8
£, (m) =k(t+a)Pet/ (3.27)

where r has been replaced with r; to indicate an estimate of the depth (e.g. by using the width of signal

at half the maximum value (see section 3.5.1)). We can fit a single curve with & (¢ + &)‘ﬁ e~/ for
estimates of the decay parameters. Figure 3.12 contains the results for trying this technique on a steel
8 x 1 x 1 rod oriented at various dip c. | chooseto plot k/2 rather than k because we need to estimate the
values of k for two dipoles. When the target is parallel to the surface (¢ = 90), only dipole 1 is excited
and the estimated parameters correspond to those of dipole 1. When the target is perpendicular to the
surface (¢ = 0), only dipole 2 is excited and the estimated parameters correspond to those of dipole 2.
The behaviour of k£/2 does not show this characteristic because of the inaccuracy of the estimated depth.
These plotsindicate that if the vertical component of the response measured directly over the target can

be described by & (t+ &)‘é e~t/7, then an appropriate starting guess for the decay parameterswould be
ki =k/2, o = &, B;=B, ad v, =0.75x7 (3.28)

wherez = 1, 2.

3.5.2 Fitting A Best Fit Single Dipole at Each Time Channel

A second method of abtaining estimates of depth and orientation isto fit a best single dipoleto datafrom
asingle time channel. The dipole is defined to be oriented along the axis of the UXO, and the dipole
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Steel Rod (8 x 1 x 1 inches)

Depth=1.0m Depth=1.5m

Estimated Estimated

c Estimated Location Estimated Location
(degrees) || Depth (m) | On Profile (m) || Depth (m) | On Profile (m)

0 1.1916 2.3030 1.3294 2.1400
15 1.1242 2.2147 1.5688 2.2787
30 1.0742 2.1330 1.5214 2.1920
45 1.0485 2.0720 1.4685 2.0783
60 1.0476 2.0107 1.4631 1.9920
75 1.1079 1.9700 1.5536 1.957
90 1.0345 2.0000 1.3788 2.0000

Steel Plate (8 x 8 x 1 inches)

Depth=1.0m Depth=1.5m

Estimated Estimated

c Estimated Location Estimated Location
(degrees) || Depth (m) | On Profile (m) || Depth (m) | On Profile (m)

0 0.9478 1.9800 1.3302 1.9800
15 1.0951 2.1860 1.5451 2.2680
30 0.9519 2.1460 1.3430 2.2180
45 0.9125 2.1060 1.2879 2.1560
60 0.9015 2.0580 1.2727 2.0920
75 0.9075 2.0140 1.2812 2.0280
90 0.9146 1.9800 1.2912 1.9800

Figure 3.10: Depth and location estimates for a steel rod and plate oriented at various dip. In both cases the
“Estimated Location On Profile” isat 2 m.

strength is proportional to the projection of the primary field along the that direction. The datain each
time diceisinverted for alocation (X,Y), adepth (2), orientation (a and ¢), and dipole strength (k).
These parameters make up a model vector

my;, = [X7Y7 Zvavcvk]v

and the model vector mg;, producing the best fit is obtained by minimizing the |east-squares objective
function.

Thistechniqueistested using thetest synthetic data set. At each time channel there are 15 locations,
and 3 components of the secondary field are used, which makes 45 total data with which to recover the
5 parameter model vector. The recovered model parameters obtained for each of the time channels are
listedintable 3.1. Therea model islisted at the bottom of thetable. Thereisan excellent match between
the recovered location and depth for each time channel and the real location and depth. The recovered
orientation, defined by @ and b, are plotted in Figure 3.13. The orientation is well recovered for all but
the first couple (tc=1,2) and last couple (tc=16,17) of time channels.
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Square Transmitter Loop

Figure 3.11: Approximating the response of an arbitrary compact object by that of the sphere. Directly above a
sphere, the response looks like a single decay dipole located at the sphere center and located at a distance » from
the square transmitter loop.
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Figure 3.12: Results from fitting the Z-component of the response measured directly over steel rod (8 x 1 x 1).

3.6 Computing a Search Direction

Newton's step is derived by firstly making a quadratic approximation for the objective function to be
minimized, and secondly requiring that the gradient of the objective functionis zero. Thisisonly anec-
essary and not a sufficient condition for finding the minimum of afunction (Dennisand Schnabel, 1983).
Consequently, the Newton step will take usto the critical point, and not specifically to the minimum, of
the local quadratic model.

The nature of the critical point can be determined from the eigenvalues of the Hessian matrix. If
all eigenvalues are negative then the Hessian is negative definite and the Newton step will take current
iterate to a maximum of the quadratic model. If some eigenvalues are negative and some positive, then
the Newton step will lead to a saddle point. A Newton step will only lead to a minimum of the local
quadraticmodel if theHessianis positive definite (all eigenvaluespositive). Inthisfina case, theNewton
step isadescent direction.

Therefore, at each iteration a non-positive definite Hessian matrix should be perturbed in some way
to makeit positive definite before solving equation 3.17. This changein the Hessian effectively changes
the local quadratic model of equation 3.16 in such a way that the new model has a unique minimum.
Thelocation of this minimum definesthe modified Newton step. This step can then be paired with aline
search technique to produce a convergent sequence of iterates.

Theorem (4.8) in (Moré and Sorensen, 1984) gives the strongest convergence result for line search
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| Time(ms) | X | Y | Z | a I |
0.01 1.03092 | 1.00499 | 1.01695 | 99.9 | 80.1
0.01778 1.00006 | 1.00028 | 1.00388 | 235 | 37.3
0.05623 0.99290 | 1.00230 | 1.00375 | 31.2 | 147.0
0.100 0.99101 | 1.00218 | 1.00352 | 29.5 | 33.4
0.1778 0.99055 | 1.00146 | 1.00324 | 28.2 | 33.7
0.3162 0.99072 | 1.00072 | 1.00306 | 27.3 | 34.0
0.5623 0.99139 | 0.99981 | 1.00300 | 26.6 | 34.1
1.0000 0.99287 | 0.99815 | 1.00300 | 25.9 | 34.4
1.778 0.99337 | 0.99914 | 1.00256 | 25.8 | 34.5
3.162 0.99452 | 0.99627 | 1.00337 | 25.2 | 34.8
5.623 0.99533 | 0.99607 | 1.00292 | 25.1 | 34.9
17.78 0.99420 | 0.99814 | 1.00190 | 25.3 | 35.1
31.62 0.99624 | 0.99640 | 1.00132 | 155.2 | 35.6
56.23 0.99055 | 1.00146 | 1.00324 | 28.2 | 33.7

| RealModel | .00 [100 [100 |25 [35 |

Table 3.1: Results from fitting a single dipole to some of the time channels of the synthetic data set. All lengths
arelisted in meters, and all anglesare in degrees.

methods. Thistheorem basically statesthat if a search direction §m is defined as
dm = —Bk‘1V¢ (my), (3.29)
where { By } is sequence of positive definite matrices with bounded condition numbers, then

V¢ (my)T sm

1

where k isapositive constant. In the limit as k& approachesinfinity, the sequence { V¢ (my)} converges
to zero. If a positive definite matrix By with a bounded condition number is chosen at each iteration,
then the iterations will converge to a critical point of the objective function ¢.

Themethod in which the Hessianis changed has no effect on the final recovered parameters, but only
on the iterative route to the final parameters. Of course, an irresponsible choice of a new Hessian may
lead to very slow convergence. For example, if H is defined to be the identity matrix I, then the step
defined by equation 3.17 becomesthe direction of steepest descent, which has anotoriously slow rate of
convergence for many problems.

The method | adopted for perturbing H uses information about the local quadratic model from the
spectral decomposition of the Hessian (Bard, 1974; Gill et al., 1981). The eigenval ue decomposition of
His

H = UAUT = Udiag([\;]))UT (3.31)



3.6. Computing a Search Direction 43

tc=4
tc=3
vX
10"
_—a=25
N | tc=1
tc=2
tc=5-15
- — - - o
tc=16 0. €= 35

Figure 3.13: Orientation estimate of a UXO by finding a best fit dipole for each time channel. ‘tc’ indicates
the which time channel was inverted to obtain the orientation. For all but the early and late time channels, the
orientation of the UXO iswell estimated by the best fit single dipole.

where the columns of U are the eigenvectors of H, and ); is the it* eigenvalue of H. The presence of
asmall eigenvalue \; corresponds to aridge or atrough. The ridge or trough is parallel to the eigen-
vector corresponding to the small eigenvalue (Figure 3.14). Thisridge (or trough) is concave down if
the eigenvalue is negative, and the corresponding step will be towards a maximum (or saddle point) of
the ridge (or trough). If the eigenvalue is positive, the step is towards a minimum (or saddle point) of
theridge/trough. The small eigenvalues correspond to long steps aong the ridge themselves. Therefore
ridges provide an efficient path along which to minimizethefunction. By taking the absolute value of the
small negative eigenvalue, the corresponding direction points down the ridge to minimize the function.
Therefore anew Hessian is defined as

H = Udiag(|\;])UT. (3.32)
If this choice of H has a large condition number then a small positive number 1, defined as

Amaz — (Amin X mazcond)

k= mazcond — 1 ’ (3.33)
isadded alongthediagonal. Thischoiceof x will produce aHessianwith acondition number of maxzcond.
To demonstrate how this change in the Hessian affects the Newton step, let us consider a simple
two-parameter problem. Let us assume that the current iterate of some inversion procedure is my =
(zr, yx) = (1, 3), and let us also assume that the local quadratic mode! about this point is given by the
function f(z,y) = 1022 — y2. A surface plot of this function is contained in figure 3.15(a). A saddle
point of this function exists at (0,0). The Hessian matrix at the current iterate my isthen H = (% %,),

and the gradient is V f(z, yx) = [20, —6]T. The eigenvectors of the Hessian matrix are v, = [1, 0]
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Figure 3.14: Small eigenvalues indicate either a ridge or atrough in the quadratic model of ¢. A small positive
eigenvalue correspondsto a direction down aridge. A small negative eigenvalue correspondsto a direction up a
ridge. The direction can be reversed to point down the ridge by taking the absolute value of the eigenvalue asin
equation 3.32 (After Bard, 1974).

and v, = [0, 1]T. Thecorresponding eigenvaluesare \; = 20 and A, = —2, and thereforethe matrix in
indefinite. The small negative eigenvalue A, corresponds to along step along the trough that increases
f(z,y). Thelarge positive eigenvalue A, corresponds to a shorter step perpendicular to the trough that
decreases f(z,y). The Newton direction is then

fm=-H'Vf=[-1,-37T (3.34)

Thisdirection, asindicated in figure 3.15(b), takes the current iterate to the saddle point of f(z,y). If a
new Hessian is defined following equation 3.32, then H = (%° 9), and the new direction isthen

fm=-H'Vf=[-1, 3] (3.35)

The new iterate isthen my, = (0, 6). This modification of the Newton step has led to adirection that
decreasesthe local quadratic model (Figure 3.15b).

3.7 Computing a Step Length

The goal of each iteration in the model algorithm isto reduce the least squares data objective function ¢.
The Newton step defined by equation 3.19 providesadescent direction in which to perturbthe current es-
timate. Thelocal quadratic model of equation 3.16isonly an approximation, and therefore, afull Newton
step to the minimum of the quadratic model will not necessarily reduce ¢. Because the Newton direction
isadescent direction, we can look along the direction my + adm such that ¢ (my + adm) < ¢ (my).
The positive scalar « is the step-length.

Once a descent direction §m is calculated, | first check if the full Newton step (« = 1) decreases
the datamisfit. Making the full Newton step thefirst option in the step length procedure ensuresthat full
stepsaretaken when the current iterateis near to the solution (my, € 5). Thisway we can take advantage
of the excellent local convergence behaviour of Newton's method near the solution. If areduction of ¢
isnot realized with afull Newton step, then the step length « isreduced until ¢ (my + adm) < ¢ (my)
isachieved. Let usdefine

p(@) = ¢ (mx + ap).
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Figure 3.15: Adjusting the Newton Step using Directional Discrimination. (a) A surface plot of the quadratic
function f(z,y) = 10z? — y?. Thereis asaddle point at the origin. A contour plot is projected below. (b) The
Newton step takes a current estimate my = (1, 3) to the saddle point. The Directional Discrimination step takes
the current estimate to my = (0, 6). The Directional Discrimination step adjusts the Newton step such that the
new step isin adirection that reduces the objective function.

Tofind «, amixed polynomial/cubic step length algorithmisimplemented (Dennis and Schnabel, 1983).
After checkingif thefull Newton step reducesthe objective function, there arethree pieces of information
that we have of p (a): p(0) = ¢ (mx), p' (0) = V¢ (my), and p (1) = ¢ (myx + p). Therefore p (a)
can be fit by a polynomial

Pquad () = ac® +ba+c

wherea = (p (1) — p(0) — p'(0)), b = p'(0), and ¢ = p (0). The minimum of this quadratic function
is occurs at
o —r'(1)
T 2(p(1) = 2 (0) - ' (0)
If cmin isvery small, thenitis possiblethat the quadratic function does not model p (o) very accurately.
Therefore alower limit [ isset for «. That is, if am:, < I, then we instead choose @ = [ and check if
p (1) < p(0). Dennisand Schnabel suggests setting ! = 0.10.

If this choice of « fails to reduce the objective function, then we again fit p () with a polynomial.
However, there is now three pieces of information about p. In additionto p (0) and p’ (0), we know the
last two values of p (a). Let us designate the last two values of oy, asa_; and a_,. We canfit p («)
with a cubic function

Peupic = ac® +ba’ +ca+d (3.36)
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where
1 1 1 —a_ _
a= [ A- B] b= ra-1p
a_1 —Q0_y | 1 a”, a_1 — Q&_9 a” 4 a”,
c = p'(0) d = p(0)
and
A = p(a_1) = p(0) — p'(0) a1, B = p(a_3) — p(0) — p'(0) .

The minimum of the cubic is then

b4 /B —
Amin = + 3 Sac (337)
a

3.8 Stopping Criteria

We must determine when to terminate our algorithm. Recall that a necessary condition for m to be a
minimum of the data objective function ¢ isthat the gradient of the objective function, V ¢, equals zero.
Clearly, infinite precision math this requirement is unsuitable. Thetwo convergence criteriaused in this
inversion process were suggested in Dennis and Schnabel (1983).

Thefirst convergence criteria adjusts the necessary condition that the gradient of the objective func-
tionis zero. The size of arelative gradient measure must be less than some tolerance level

V¢ (myq1); max{|(mgi1);],typ m;}

max max{|¢ (mr11);|,typ ¢}

< €gradient 1=1,..,n, (338)

where my 4 is the new model, typ m; isthe 5t* component of a vector of typical magnitudes for the
model parameters, and typ ¢ is atypica magnitude of ¢. If each component of the sum of squaresis
scaled properly, the value of ¢ at solution will be approximately equal to the number of data. Therefore
typ ¢ isset to the number of data. Dennisand Schnabel (1983) suggest choosing €g,qdien: = (eps)1/3).
eps isthe floating point relative accuracy, and characterizes the machine precision. eps is the smallest
number such that the machine recognizes that (1 + eps) > 1. All tests reported in this thesis were
performed on a Sun SparcStation5 with an eps = 2.22 x 1076, and therefore (eps)(*/?) = 6.06 x
107¢. Thisvalue of €gq4ient iSSMaAller than necessary, and resultsin extra, unnecessary iterations of the
agorithm. Therefore | choose €ypqgient = 1 X 107°.

The second convergence criteria checks whether the algorithm has either stalled or converged by
monitoring the relative change in successive models. When the size of the relative change in model m;
is less than some predefined tolerance the algorithm is terminated. This criteriais given by

(mepn); — (o))
2 2 < €mode 3.39
max{| (g1, typ i = ol (339

| follow the suggestion from Dennis and Schnabel (1983) of selecting €04 = 1072 where p isthe
number of significant digits desired at solution.
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3.9 Error Boundsof the Parameter Estimates

Once the model parameters m. which minimizes the objective function ¢ (m) have been obtained, we
must examine the reliability and precision of the estimated parameters. Measurements are random and
data are noisy. Thusit is not sufficient to obtain a set of model parameter estimates m and claim that
these parameters are the best estimates of the unknown parameters m,.. The parameters that may best
describe one measurement, may indeed be different than the parameters obtained from a second meas-
urement on the same sample UXO. In Chapter 4 a UXO identification algorithm is defined which rely
on the values of the recovered parameters. Thereforeit is essential to understand how the parametersin
our model respond to errors in the data set in order to establish how much confidence can be placed on
the recovered model.
The gradient of the objectiveis zero at aminimum

Ve <m*,d‘jbs> —0.

The objective function ¢ (m) is written as ¢ (m*, dObS) to explicitly state the dependence of the ob-
jective function on the observed data. If the observed data were slightly perturbed, the location of the
minimum would also be dlightly perturbed. The gradient at this shifted minimum would then be zero:

Vo <m* + 6m,,d°P + 5dgb5) = 0. (3.40)

The gradient can then be expanded as a Taylor Series
Vo <m* + 6m,, d°Ps 5dgb5) — Vo <m*, dng) + V2 <m*, dng) Sm. +

0 obs obs
[adobsw (m*,d* )]M + HO.T., (341)

where H.0.T. represents the higher order terms. When the objective function ¢ is the sum of squares,
the gradient of ¢ is

Ve =T <F[m] - d°bs> . (3.42)

Therefore the derivative of V¢ with respect to d°Ps is simply the Jacobian matrix J, 7. By subtracting
equation 3.40 and retaining only first order terms we get

ém, ~ H,71J.T §d°Ps (3.43)

where H., isthe Hessian matrix evaluated at the minimum of ¢ (H. = V2¢ (m..)).
The model covariance matrix V,,, is defined as the expectation value of 61, § m,T

Vi = E (§m, 6m,T).
Substitution of equation 3.43 gives

Vi = F <H*—1 J.T §dobs 5d°bSTJ*H*—1>
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TheHessian and Jacobian in the above expression are evaluated at m = msx, and are therefore constants.
Asaresult they can be taken outside of the expectation value expression:

Ve =H.'3.Tv; 3. H, (3.44)
where V; isthe covariance matrix of the data
Vi=E (5d°bs 5d°bST) (3.45)

In the case when the observations all have normally distributed, uncorrelated errors the data covariance
matrix reducesto adiagona matrix

(Vi) = o?
Therefore, an estimate of the standard deviation of the 7t* model parameter m; isthen

of" = (Vim)ii = o (H. 37T H 7Y

1

i (3.46)
Model variance estimates applied to non-linear problems are not as reliable as when implemented in
linear least squares problems, and should only be used as avery rough estimate (Bard, 1974; Dennisand
Schnabel, 1983).

3.10 Application to a Synthetic Data Set

The parameter estimation is now tested on a synthetically generated field data set. For thisdataset | will
forward model the model parameters of a 75 mm anti-tank mortar buried at a depth of 67 cm (Z = 1m),
andlocated at (X, Y)=(2,2)monthe survey grid. Themortar isoriented suchthat a = 25°,and ¢ = 35 °.

Thissurvey consists of a2m x 2m grid, containing 5 lines of data with 5 stations per line. At each
station 3 components of the B/t response is generated for 17 logarithmically space time channels.
The time channels start from 0.01 msec and end with 100 msec.

The data set has 10% random Gaussian noise added to it. The residual in the objective function is
multiplied by a dataweighting matrix Wy = 1/(o + €), wheree = 1 x 10717, Results of the predicted
and observed data are found on the following pages (Figures 3.16 to 3.19).
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Figure 3.16: X component of synthetically generated B/t datafor a 75 mm mortar. The predicted and ob-
served data are a very good match, with no correlated to noise.
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x107"°

Figure 3.17: Y component of synthetically generated 8B /0t data for a 75 mm mortar. The predicted and ob-
served data are a very good match, with no correlated noise.
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Figure3.18: Z component of synthetically generated 9B /9t datafor a75 mm mortar. The predicted and observed
data are avery good match, with no correlated noise.
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Figure 3.19: Thesethree plots demonstrate that the predicted data matches well with the observed data.

Thefinal x? at solution is equal to 913.2 which is slightly less than the number of data (N =1275).
The recovered parameters are indeed good.

3.11 SomeTestsof the Parameter Estimation Procedure

In this section several practical aspects of theleast squares procedure are considered. Thesetestshelp to
determinethe exact form of the objective function, and to determine constantsrequired by the algorithm.
In particular, these tests should provide us with afedl asto when the parameter estimation might fail to
converge. Thesetestswill, in general, use the parameters for the 9B /8t response of a 75 mm anti-tank
mortar.

Test 1: Determining a Maximum Step Length

The directional discrimination step guarantees a descent direction by forcing the Hessian to be positive-
definite. This step may be too large and move the current iterate outside an area where the quadratic



3.11. Some Tests of the Parameter Estimation Procedure 53

est. standard
™M, || Mippye Myec deviation
X || 2.00000 | 1.99974 0.00016
Y || 2.00000 | 1.99998 0.00006
Z || 1.00000 | 1.00148 0.00226
a | 25 24.82 0.236
c || 35 34.79 0.162

k1 || 12.01800 | 11.75858 0.10108
oy || 0.00760 | 0.00748 0.00052
B, || 0.89310 | 0.89157 0.00385
~1 || 17.65300 | 17.81922 0.14379

ks || 3.29960 | 3.26263 0.03450
ag || 0.00766 | 0.00712 0.00037
B || 1.25230 | 1.24198 0.00541
~o || 11.53850 | 10.61993 0.24369

Table 3.2: Recovered parameters for the synthetic data set inversion. The true model m,... and the recovered
model m,... are very close. The estimated standard deviation is very small.

model isapplicable. To avoid stepsthat aretoo large, a maximum step length maz step isdefined. Den-
nis and Schnabel (1983) suggest restricting the step length to be less than 1000 x ||myyp||, Where myyp,
is a vector of typical model parameters. | have found that the steps allowed by this size of mazstep
are too large for this problem. Figure 3.20 contain result from inverting the 75 mm synthetic data set
with mazstep = 1000 x ||myyp||. Panels (@), (b), and (c) contain plots of the progress of the model
parameters (scaled by the value of the real model parameter) as a function of iteration. The recovered
parameters fail to converge to the correct model parameters. The recovery of a, is particularly poor
in this example. Panel (d) plots the values of the objective function with each iteration. The inversion
was unable to reduce the objective function to the level that would be achieved if the real model para-
meters were recovered. Figure 3.21 contains results from inverting the 75 mm synthetic data set with
mazstep = 10 X ||myyp||. The parameters recovered from thisinversion are correct. For theinversion
algorithm, the maximum step parameter is set to a conservative

mazstep = 10 X ||myyp||. (3.47)
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Figure 3.20: Convergence resultswhen mazstep = 1000 x ||m¢yp||. Therecovered parametersfail to converge
to the correct model parameters. Therecovery of « isparticularly poor in thisexample. Panel (d) plotsthevalues
of the objective function with each iteration. Theinversion was unableto reduce the objectivefunction to the level
that would be achieved if the real model parameterswere recovered.
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Figure 3.21: Convergence resultswhen mazstep = 10 x ||meyp||. The correct model parameters are recovered
by theinversion. Panel (d) plotsthe values of the objective function with each iteration. Theinversion achieved a
data misfit that is less than the objective function to the level that would be achieved if the real model parameters

were recovered. Thisindicatesthat some of the noiseis being fit.
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Test 2: Sensitivity of Parametersto e

In Section 3.1 ¢ was introduced into the data weighting matrix in order to remove any bias to fitting the
small magnitude data points. Increasing the size of the error bars reduces how closely we must fit the
smaller magnitude data points, which will clearly impact the accuracy of the recovered parameters. To
examine how the choice of ¢ affects the recovered parameters, | perform several inversions on synthetic-
aly generated datafor a 75 mm anti-tank mortar. The data are contaminated with 10% Gaussian noise.
Thevalues of € for these testsrangesfrom 0to 1 x 10~*®. Recall that the minimum value of 4B/t for
this synthetic data set was set to 1 x 10717 Theresults from these tests are reported in figure 3.22. The

Location and Orientation dipole 1 parameters dipole 2 parameters
6
25 20
. 2 = ?A kl . A kz
5 54 % 8% *
=15 5 1 E 2
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Figure 3.22: The recovered parameters for different choices of €. Recall that for this data set that the minimum
amplitude datum was set to 1 x 10~17V/m?. Increasesin e are reduces the accuracy with which we can recover
the model parameters. They parameter isthe most sensitive to changesine.

percent error in each recovered parameter, defined as

real recovered
| A —m7

J J L 100 %,

|m£eal|

% error =

is plotted as a function of €. With increasing ¢ there are accompanying increases in the percent error of
the recovered model parameters. For parameters other than 4; and 4+ there isno more than 4% error in
parameter recovery (even for the unreasonably largee = 1 x 1071%). They parameters are most sensit-
iveto the e setting. Thisisnot surprising becausey isameasure of the onset of the | ate-time exponential
behaviour of the dipole decay. The late-time data points are the smaller data points, and changesin e
change how the inversion fits these small data pointsto the greatest extent. The predicted standard devi-
ation of the model parameters obtai ned from the model covariance matrix also increaseswith increasing
€.

Test 3: Positivity Constraint

In Section 3.2.1 | discussed how amodel parameter can be forced to be positive by defining anew para-
meter that isthe positive squareroot of theoriginal parameter. Any non-linear transformation on amodel
parameter would be expected to produce amore non-linear objectivefunction. Testsmust be doneon spe-
cific problems to guarantee that the transformation does not cause problems with the chosen algorithm.
In Figure 3.23, inversion results are presented using different transformations on the model parameters.
The plotsinclude convergence results when only the o parameters are squared, to when all the time de-
cay parameters are squared. In Figure 3.23(a), each of the different transformations result in recovering
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all the correct parameters. However, when the starting guessfor the algorithmislocated further fromthe
location of the correct model, some of the different transformations result in the algorithm converging
to the incorrect model (Figure 3.23(b)). In the the final version of the algorithm, the transformation is

a) , Objective Function b) © Objective Function
10 ; i i 10 ; " " )
*—k  L(t) =k (t+a % exp(-tyy) *—* L(t) = (t+u ; exp(-th)
0—8 L) = k2 (t+a ) exp( thy) O—a L) = k (t+a ) exp( t/y;
10°F A L(t) = K (t+a ) exp( th i & AN L) = k (t+o® ) exp( th
G—oO Lit)= K2 (t+u ) exp(-thy°) 10° Py GC—O L{t)= K2 (t+a ) exp(-ty)

om.,.)

real ) ) ‘ ‘
10, 2 7 P Py 0 12 0 5 10 15 20 25 30
Iterations Iterations

Figure 3.23: Convergence behaviour when using various variable transformations. (a) When using the standard
starting guess, each of the different transformations on the model parameters converge to the correct parameters.
(b) When the starting guessistaken further away from the solution (using equation 3.48, transformationsto amore
non-linear objective function lead to a cases where the inversion doesn’'t converge to the right answer.

applied only to the a; parameters.

Test 4: Sensitivity of the Starting Guessm,,

The successof aninversion procedure, aswell asthe rate of convergencetowardsasolution is dependent
onthequality of theinitial guess(Bard, 1974). Thereforeitisappropriateto test how sensitivethe success
of the inversion procedure isto the initial guess. There is no systematic way to perform atest varying
different parameters and different combinations of parameters due to the 13 degrees of freedom in the
model. A test suggestedin Denniset al. (1981) istotry initial guessesthat arefurther out ontheray from
the solution m,, to the standard starting point m,. Figures 3.25and 3.24 contain results from a dightly
modified version of this test. Because preliminary estimates of the location and depth are quite good,
and because the orientation parameters are angles, only the time decay starting parameterswill bevaried
in thesetests. That is, the starting guessis varied according to

o; ;=1,...,5,
mtest — {m ¢ (348)

° (mo; — m,;)k —m,; ¢=6,..,13

where mtest is the new starting guess, m,, is the standard starting guess developed in the previous sec-
tion, m, isthereal model, and « controls the distance along the ray from m,, to m,.

Figure 3.24 shows convergence results when k. = 2. Panels (a), (b), and (c) contain plots of the
progress of the model parameters (scaled by the value of the real model parameter) as a function of it-
eration. The recovered parameters converge to the correct model parameterswithin 17 iterations. Panel
(d) plots the values of the objective function with each iteration. The inversion achieved a final below
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the value of the objective function cal culated with the true model. Therefore the parameterization isfit-
ting some of the 10% Gaussian noise that was added to the model. Of course, the extent from which one
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Figure 3.24: Convergenceresultswhen x = 2. Panels (a), (b), and (c) contain plots of the progress of the model
parameters (scaled by the value of the real model parameter) as afunction of iteration. The recovered parameters
converge to the correct model parameterswithin 17 iterations. Panel (d) plots the values of the objective function
with each iteration. The inversion achieved a final data misfit |ess than would be achieved when calculated with
the true model.

can deviate from the standard guess, while still successfully recovering parameters, islimited, and it is
possible to make the algorithm fail. Figure 3.25 shows convergence resultswhen « = 5. The recovered
parametersfail to converge to the correct model parameters. The recovery of as is particularly poor in
this example. Panel (d) indicates that the inversion was unable to reduce the objective function to the
level that would be achieved if the real model parameters were recovered.
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Figure 3.25: Convergence resultswhen « = 5. The recovered parameters fail to converge to the correct model
parameters. The recovery of « is particularly poor. Panel (d) indicates that the inversion was unable to reduce
the abjective function to the level that would be achieved if the real model parameters were recovered.
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Test 5: How well can we predict theerror?

To test how well we can predict the model parameter error for asolution m, the synthetic data set gen-
erated using parameters for a 75 mm anti-tank mortar is inverted. The difference in the recovered and
real parameters are then compared to the error predicted by the model covariance of equation 3.46. In-
versions are performed with 5%, 10%, 15%, and 20% noise added to the data. The resultsare found in
table 3.3 and figure 3.26.

5 % noise 10 % noise 15 % noise 20 % noise
m; | eror | o eror  |o eror  |o eror | o
X || 0.00002 | 0.00010 || 0.00005 | 0.00018 || 0.00007 | 0.00027 || 0.00009 | 0.00038
Y || 0.00001 | 0.00004 || 0.00002 | 0.00007 || 0.00003 | 0.00009 || 0.00005 | 0.00012
Z

a

C

0.00023 | 0.00151 || 0.00010 | 0.00285 || 0.00008 | 0.00417 || 0.00014 | 0.00551
0.00406 | 0.00291 || 0.00682 | 0.00505 || 0.00950 | 0.00699 || 0.01282 | 0.00887
0.00019 | 0.00198 || 0.00052 | 0.00355 || 0.00088 | 0.00506 | 0.00120 | 0.00654

k1 || 0.05772 | 0.06557 || 0.22391 | 0.11822 || 0.50605 | 0.16705 || 0.91800 | 0.21205
o7 || 0.00003 | 0.00035 || 0.00006 | 0.00067 || 0.00021 | 0.00101 || 0.00062 | 0.00137
A1 || 0.00174 | 0.00272 || 0.00390 | 0.00503 || 0.00574 | 0.00735 || 0.00682 | 0.00975
~1 || 0.04067 | 0.06751 || 0.04177 | 0.10890 || 0.07263 | 0.14853 || 0.15344 | 0.18869
ks || 0.01604 | 0.02342 || 0.06644 | 0.04006 || 0.15046 | 0.05505 | 0.27435 | 0.06854
o || 0.00013 | 0.00025 || 0.00029 | 0.00048 || 0.00044 | 0.00071 || 0.00055 | 0.00094
B2 || 0.00383 | 0.00378 || 0.00799 | 0.00676 || 0.01260 | 0.00966 || 0.01784 | 0.01258
~v2 || 0.01987 | 0.13031 || 0.03611 | 0.19509 || 0.07983 | 0.25418 || 0.17695 | 0.31472

Table 3.3: Errorsin the recovery of parametersfor aburied 75 mm anti-tank mortar. ' error’ is the absolute value
of the difference between the real and recovered parameter. o isthe standard deviation of the recovered parameter
predicted from the model covariance matrix (equation 3.46).

3.12 Selection of Datain a Field Survey

The EM61-3D instrument can collect alarge amount of data. An EM61-3D dataset collected over aUXO
buried at the York University Geophysical Test Site contained over 13 000 different datum. It would be
beneficial to identify which data are essential for parameter recovery, and which data provide redundant
information. Thiswould result in an immediate reduction in the time required for the parameter estim-
ation algorithm to converge, and also save time when collecting data from the field.

3.12.1 TimeChannds

The TDEM response is measured over a number of time channels. In the EM61-3D, the time decay
response at each stationis measured over 30 logarithmically spaced time channels. For an exampleof the
measured values see figure 3.2. Thirty time channels may produce redundant information, and the data
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Figure 3.26: Theerror in recovered parameters for a buried 75mm anti-tank mortar. ’error’ is the absolute value
of the difference between the real and recovered parameter. o isthe standard deviation of the recovered parameter
predicted from the model covariance matrix (equation 3.46). The predicted error ¢ is areasonabl e estimate for the
actual differencein real and recovered parameter.

may be well represented by only a portion of the time channels. If the inversion could recover correct
parameters using only half of these time channels, the number of data would be halved and the speed
in which the computer code requires to complete an iteration would be increased. This section tests if
parameters can accurately be recovered by using only some of the time channels.

Figure 3.27 includes results from repeating inversions of synthetic 75 mm mortar 0B /9t data us-
ing fewer time channels. In figure 3.27(a) results from using of the 17 time channels are used. In fig-
ure 3.27(b) data from only the odd humbered time channels (time channels 1, 3, ..., 17) are used. In
figure 3.27(c) every third time channel (time channels 1, 4, 7, 10, 13, and 16) are used. For these three
instances the inversion converged with the recovered model parameters being quite good (Table 3.4). In
figure 3.27(d) (time channels 1, 5, 9, 13, 17) are used. In thisfinal case the inversion did not converge
and was therefore terminated at 100 iterations (of which thefirst 47 are plotted here).

The results of fitting the 3 components of 9B /9t at station (X,Y)=(0,0) are shown in figure 3.28.
As was expected, the data were best fit when all of the time channels are included, and the data was fit
the poorest for the case of the fewest time channels being utilized. In particular, the early time channels
could only be fit when the al the time channels were being used. In the case when only time channels
1,5, 9, 13, and 17 were used, both the the early and late times were not fit by the predicted data.

From these results, 30 time channel sis more than enough for accurate recovery of model parameters.

3.12.2 Spatial Coverage

Thespatial density of collected dataduringaTDEM survey islimited only by how accurately each station
can be surveyed and the patience of the data collector. The synthetic field example of a 75 mm mortar
that is used throughout this thesis represents a reasonable survey design. An increase in both the field
collection procedure and inversion computation time would be achieved if an idea of some lower limit
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Every 3rd Every 3rd
True All Time | Odd Time | Time Channd | Time Channel

™m; Model Channels | Channels | (1,4, ..., 16) 1,5, ...,17)
X 1.00000 | 1.00005 | 0.99979 1.00054 0.99934

Y 1.00000 | 1.00002 | 1.00014 0.99977 0.99976

4 1.00000 | 1.00010 | 0.99602 0.99951 0.99641

a 25° 25.39° 24.97° 25.45° 24.95°

c 35° 34.97° 35.00° 35.06° 35.41°
ki || 12.01800 | 11.79409 | 11.56766 11.77030 11.00768
oy || 0.00760 | 0.00766 | 0.00792 0.00680 0.00986
By || 0.89310 | 0.88920 | 0.89354 0.88834 0.93181
1 || 17.65300 | 17.69477 | 17.93139 17.62755 21.74450
ks || 3.29960 | 3.23316 | 3.20491 3.20602 2.67732
as || 0.00766 | 0.00736 | 0.00763 0.00720 0.01347
By || 1.25230 | 1.24431 | 1.24714 1.24941 1.39148
v2 || 11.53850 | 11.57461 | 11.47068 11.41476 -1122.20051

Table 3.4: Recovered parameters when using different time channels. When enough of the time channels are
omitted, the parameter estimation starts to fail.

of required stations could be established.

Figure 3.29 illustrates some of the different survey designs. In each of the panels,’ x* marksthe lo-
cation of astation. In each case, an accurate recovery of the model parameterswas achieved when using
all three componentsof data. However, thiswas not the case when only the Z-component of 6B /dt was
considered. When only the Z-component isincluded as data, the spatial coverage of the survey becomes
anissue. Asan example, let us consider datataken along Line X=0m. If Z-component time decay meas-
urementsare taken at 15 evenly space stations (every 14.3 cm) along thisline and inverted, theinversion
converges to the incorrect result. These results are plotted in figure 3.30. Panels (@) and (b) include the
observed and predicted data from both early and late times, indicating a good datafit in both cases. Pan-
els(c), (d), and (e) include the model parameters as a function of iteration. It is clear that the inversion
has been unsuccessful in recovering the correct model parameters even though the data have been well
fit. Panel (f) showsthat thefinal datamisfit islower than when the datamisfit is cal culated using the real
model.

Correct convergence using only Z-component data occurswhen stationssurround the (X ,Y") location
of thetarget at the surface. Correct convergence for theinversion occurred for survey layout (a), (¢), (€),
and (f) of figure 3.29. In each of these layouts stations are distributed across the surface, as opposed to
being restricted to one line. Convergence did not occur for layout (b) most likely because there wasn’t
enough stations.
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Figure 3.27: Using only aportion of thetime channels. (a) All time channelsareused. (b) Only odd time channels
are used. (c) Timechannels 1, 4, 7, 10, 13, and 16 are used. (d) Time channels 1, 5, 9, 13, and 17 are used.

3.13 Summary

In this chapter anon-linear parameter was devel oped to recover the 13 parameters of the model. Rough
estimates of the model parameters were obtained by introducing a number of simple data prepocessing
strategies. These estimates were then refined by using a Newton’s Method to minimize the least squares
objective function. This process was shown to work well in the presence of random noise, and for a
variety of data gathering configurations. In particular, the type and amount of data collected by EM61-
3D (30timechannels, 3components, 50 cm line spacing and 25 cm station spacing) ismorethan adequate
to recover model parameters in synthetic datainversions.
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Figure 3.28: Observed and predicted datafor inversionsusing only asubset of the availabletime channels. Panels
(@), (b), and (c) contain the fitted responses of the x, y, and z components, respectively, of the 0B/t response.
The quality of fit decreases when fewer time channels are being used.
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Figure 3.29: Different survey configurations used to test how many stations are required for accurate model pa-
rameter recovery. The’ x’ symbol marksthelocation of astation. Inversion attemptsusing only the Z-component
of dataresulted in correct convergence for survey configurations (a), (c), (), and (f).
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Figure 3.30: Results from inverting only the Z-component of the 0B /9t data of Line X=0m. Panels (a) and (b)
include the observed and predicted data from both early and late times, indicating a good data fit in both cases.
Panels (c), (d), and (e) include the model parameters as a function of iteration. It is clear that the inversion has
been unableto successfully recover the correct model parameters even though the data has been well fit. Panel (f)
shows hat the final datamisfit islower than when the data misfit is calculated using the real model.



Chapter 4

Relating Physical Parametersof a Metallic Target to Model Parameters

UXO aretypically rod-like rather than plate-like. This chapter examines how the time domain electro-
magnetic signal for atarget varieswithitsshape. Inthe absence of analytic solutionsfor Maxwell’sequa-
tions and the lack of suitable numerical electromagnetic forward modelling, | use lab measurements of
the time decay curves of different metallic targets. Time domain curvesfor various sized steel and alu-
minum rectangular prisms compiled at Geonics Ltd. were supplied for analysis. From this anaysis |
hope to use the different characteristics of the time domain curves to relate to them to the material and
shape of the target. Ultimately, the goal of thisanalysisisto produce rel ationships between model para-
meters of the approximate forward modelling representation and actual, real parameters of the measured
target.

4.1 TheEffect of Shapeon the TDEM Response

411 Lab Setup

The experimental setup used by GeonicsLtd. to obtain the decay responsefor different sized prismsand
for UXOisillustrated infigure 4.1. A square transmitter loop with sides of 40 m was used to provide a
relatively uniform field at the center of theloop. A 1 m diameter receiver coil was placed coaxia to the
transmitter loop. Eachtarget was placed at the center of thereceiver loop. Geonicsstandard PROTEM 47
time domain equipment was used for producing the transmitting field and for recording the time domain
measurement.

Of the targets measured using the experimental setup of Figure 4.1, included a series of metallic rec-
tangular prismsof different dimensions. Each prism had at |east one dimension of 8inchesand thetargets
ranged from athinrod (8 x 1/4 x 1/4 inch) to acube (8 x 8 x 8 inch) toathin plate (8 x 8 x 1/4 inch).
The suite of measurements included targets with no axis of symmetry (3 different dimensions). Meas-
urements were made of steel and aluminum prisms. The majority of UXO are made of steel due to its
strength. Steel is permeable (1 = 150u,) as well as conductive (¢ = 0.67 x 107Sm). Aluminum is

1 m '/— Transmitter Loop

Receiver
V Receiver Coil —¥

40m TEMA47 Transm|tter

Figure 4.1: Geonics Laboratory Setup

67
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non-permeable (1 = u,) and slightly more conductive than steel (o = 3.54 x 107Sm).

In addition to the sets of steel and aluminum prisms, a set of 24 sample UXO were measured. These
targetsincluded various ordnanceitems used by NATO since World War I1. The ordnancerangein length
from 18 to 85 cm, and in diameter from 6.05 to 15.92 cm. A diagram of all the ordnance, along with a
table listing the dimensions of each ordnance, are included in appendix A.

For the analysis of thisthesiswe consider only the measurements of axi-symmetric targets. The axi-
symmetric targetswere placed at the center of thereceiver loop in two orientations. Thetarget was meas-
uredwith theaxisof symmetry perpendicular and parallel to the primary field (Figure4.2). Measurements

Orientation

Orientation
A AN N

p
B
Plate ¢ Bpi Rod

p
Plate B i Bp Rod
Orientation i — Orientation
2 2
Figure 4.2: Different target orientations for Geonics laboratory measurements. In orientation 1, the axis of sym-

metry is parallel to the primary field BP. In orientation 2, the axis of symmetry is perpendicular to the primary
fild BP.

of thetime decay response of thesetargetswererecorded asplotsof log(0B/0t) vs. log(t). Sincevalues
werenot recorded by adatalogger, plotswere digitized. Plots of the steel target responseswere digitized
by hand by J.D. McNeill at Geonics Ltd., and the aluminum targets were digitized by scanning the plots
into Matlab. The digitization process in both cases will have some error associated with it.

4.1.2 Computing B-field responsesfrom B /dt Data

The 0B/t datawere also integrated to obtain the B-field response of the target using

B(t) = /tto (_%—f) dt + B(t,) (4.1)

where 9B /0t is the values measured by the lab equipment, and ¢, is the time of the last measurement.
The integral from ¢ to ¢, is computed using a trapezoid rule. A spline interpolation was applied to the
data to increase the number of points used when applying the trapezoid integration.

The second term of equation 4.1 is also calculated by integration

B(t.) = [ (-22)at + Bt (42)
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Thevalue of B(#,¢.) is not known. However, for large enough ¢;,:e, B(%14te ) 1S €ssentially zero. When
computing thisintegral | assume that #;,;. = 100¢,, and approximate the integral as

B(t,) ~ /1t 010% (—%—f) dt 4.3)

Thisintegration in carried out by first fitting the 9B /9t datawith
L(t)=k(t+a) P e/ (4.4)

Thelatetime (¢ > t,) isthen extrapolated using 4.4

4.1.3 TDEM Responseof a Plate

Let us consider the response of a metal plate. Figure 4.4 contains the TDEM response of a stedl plate
and an aluminum plate. The two main physical processes that produce the decay responses plotted in
figure 4.4 are eddy current induction and magnetic induction. Aluminum is a conductive, non-ferrous
metal, and therefore the response of an aluminum target will only exhibit the characteristics of eddy cur-
rent induction. Steel isaconductive, ferrous metal, and therefore steel targets will experience both eddy
current induction and magnetic induction.

Eddy Current Response

The induction of eddy currents in the presence of a changing magnetic field is predicted by Faraday’s
Law. When the primary field is on, magnetic flux passes through the plate. Referring to figure 4.3, the

Plate Orientation 1 Plate Orientation 2
p
B B
Primary Field On Primary Field Off - Primary Field On Primary Field Off -
Eddy Currents Eddy Currents
Induced Induced

Figure 4.3: Eddy currentinduction inanon-permeableplate. Whenthe direction of the primary field BP isnormal
to the plane of the plate there is a maximum coupling between the field and the plate. The field and plate are
minimally coupled when the primary field is parallel to the plane of the plate.

plateis said to be maximally coupled to the primary field when in orientation 1. That is, the maximum
amount of flux passesthrough the platein this orientation. Conversely, the plateis minimally coupled to
the primary field when in orientation 2. When the primary field isterminated, eddy currents areinduced
in the plate which give rise to a secondary B-field. From Faraday’s law, the magnitude to which the
eddy currents are induced is proportional to the change in flux. Therefore in orientation 1, where there
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isagreater amount of flux passing through the plate than in orientation 2, there would be a greater eddy
current response response.

Themeasured B-field responseof an 8 x 8 x 1 inch aluminum platereflect the orientation dependence
of the eddy current response (Figure 4.4(c)). When the primary field is perpendicular to the plane of
the plate, the response is far greater than when the primary field is parallel to the plane of the plate. In
both orientations 1 and 2, the B-field response of the aluminum plateisflat at earlier times, and decays
exponentially at later times. Themeasured 6B/ dt responseof an 8 x 8 x 1 inch auminum plateis plotted

a) Aluminum Plate (8 x 8 x 1 inches) b) Steel Plate (8 x 8 x 1 inches)
2 2
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Bl + 2 b + 2
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Figure4.4: Time Decay curvesfor 8x8x1 inch steel and aluminum plates. Panels(a) and (b) contain the measured
0B/ dt response. Panels (c) and (d) contain the B-field response integrated from the measured 9B /9t response.

in figure 4.4(a). When the primary field is perpendicular to the plane of the plate, the time derivative
0B/ 0t is greater than when the primary field is parallel to the plane of the plate. In both orientations 1
and 2, the 9B/ 9t response can be separated into 2 stages. At early times B /0t decays as a power law
t~1/2, At late times the decay is exponential.
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M agnetic I nduction Response

The response of magnetic metals, such as steel, exhibits a different decay behavior than the response of
non-magnetic metals. When the primary field is on, the magnetic target will become magnetized. The
magnetization M isillustrated as as series of dipole momentsin figure 4.5. The extent to which atarget

Plate Orientation 1 Plate Orientation 2
p p
B B
o =
Primary Field On Primary Field Off - Primary Field On Primary Field Off -
O Plate Magnetized Eddy Currents O Plate Magnetized Eddy Currents
g g"er gPrmany Induced O ghener ,, gPrimey Induced

Figure 4.5: Eddy current induction inamagnetically permeable plate. When the direction of the primary field BP
isnormal to the plane of the plate the demagnetization factor islarge, and thusthe magnetization is small. The de-
magnetization factor is small when the plane of the plateisparallel to the primary field, and thus the magnetization
islarge.

will become magnetized is dependent on the shape of the target, and the orientation of the target relative
to the primary field.

Exact expressions can be written for the magnetization of auniformly magnetized ellipsoid in auni-
form applied field BF . Theinternal B and H fields are

H™ = HY — D;M; (4.5)
B™ = Bf + po(1 — D) M; (4.6)

where the subscript < denotes the component along the itk principle axis (z = z,y, and z) and D; isthe

demagnetization factor along the i** direction (page 33, Brown, 1962). If we assume the constitutive

relations Bt = u, u, H™*, we can solve the above equations for the magnetization M
_BP (m-1)

2

- Bo 1+ Di(pr —1)

4.7

It isclear from equations 4.7 and 4.8 that larger demagnetizing factors will result in a smaller magneti-
zation. Substition of 3 into equation 4.6 resultsin an expression for the internal field Bint

Bint — gP (#) 48
) 7 1+ D; (,ur _ 1) ( )

The shape dependence of magnetization is contained within the demagnetization factors D;. The
demagnetization factors are geometrical factors determined by the axisratios of the ellipsoid. Thethree
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demagnetization factors, corresponding to the three principal axes of the ellipsoid, are positive and con-
strained by

D,+D,+D,=1 (4.9)

If the plate is approximated by an oblate spheroid then, due to the symmetry of the spheroid, there are
only two relevant demagnetization factors: D|; which is the demagnetization factor parallel to the axis
of symmetry, and D | which isthe demagnetization factor a ong the transverse axes. Thetwo factorsare
related by D) + 2 D, = 1. The demagnetization factor for a spheroid in the direction along the axis of
symmetry (perpendicular to the plane of the plate) is

D= 1—1—7»2 1- \/17"__T2 sin! (V1 - 7»2)] (4.10)

wherer istheratio of the length along the axis of symmetry (thickness of oblate spheroid) and the width
along the transverse axis (diameter of oblate spheroid) (page 89, Bertotti, 1998).

As an example, let’'s consider an oblate spheroid with a length to width ratio of » = 0.125 (e.g. a
spheroid plate that is 1 inch thick and 8 inches across). The demagnetization factor along the axis of
symmetry would be D; = 0.831, and the demagnetization factor along the transverse axis would be
much smaller; D, = 0.0846. Substitution of these values into equation 4.7, reveal that if the plane
of the plate is paralld to the primary field (orientation 2), then the induced dipole would be 9.17 times
stronger than if the plane of the plateis perpendicular to the primary field (orientation 1). The presence
of magnetization increases the B-field inside the target.

Recall that when the primary field is terminated, currents are induced on the surface of the target
that, by Lenz's Law, try to reproduce the interior field during the transmitter on time. When the interior
B-field islarger, then theinduced currentswill be larger and the secondary field measured at the surface
will belarger. Substitution of the demagnetization factors for the exampleinto equation 4.8 reveal s that
the interior B-field is approximately 9.17 times stronger when the plane of the plate is parallel to the
primary field, than when the plateis perpendicular to the primary field. Therefore | expect the response
when the plane of the plateis parallel to thefield to be larger than when the plateis perpendicular to the
primary field.

The measured B-field response of an 8 x 8 x 1 inch steel plate reflects the orientation dependence
of the magnetic induction response (Figure 4.4(d)). When the primary field is perpendicular to the plane
of the plate the B-field response isless than when the primary field is paralldl to the plane of the plate.

The measured 0B /9t response of an 8 x 8 x 1 inch steel plateis plotted in figure 4.4(b). When the
primary field is perpendicular to the plane of the plate the time derivative B /9t is less than when the
primary field is parallel to the plane of the plate for all but the first few time channels.

414 TDEM Responseof a Rod

The measured B-field and 0B/ 9t response curves of arod are plotted in figure 4.6. The arguments of
the previous section can be used to predict the response of arod. When the aluminum rod is parallel to
the primary field (orientation 1), the rod is minimally coupled with the primary field and the responseis
less than when the rod is perpendicular to the primary field (Figures 4.6(a) and (c)).
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A steel rod response will also exhibit magnetic effects. A rod can be approximated by a prolate el-
lipsoid. The demagnetization factor of aprolate ellipsoidis

D||:T21_1[\/7’27’—_1111(7'{—\/7'2—1)—1], (4.11)

where the aspect ratio » > 1 (page 89, Bertotti, 1998). When a magnetic permeable rod is paralel to
the primary field (orientation 1), magnetic effects that increase the secondary response will be at a max-
imum. When the rod is perpendicular to the primary field (orientation 2), the response will be weaker.
For example, let us consider a rod with an aspect ratio » = 8. The demagnetization factor along the
symmetry axis of the rod would be D; = 0.0284. The demagnetization factor along an axis transverse
to the symmetry axisisthen D, = 0.4858. Substitution of D, and D, into equations 4.7 and 4.8 reved
that the induced dipole moment, aswell astheinterior B-field, in orientation 1 is approximately 14 times
stronger than when in orientation 2.

Figures 4.6(b) and (d) show measured 9B /9t and B-field responses, respectively, of an 8 x 1x inch
steel rod. For both the 8B /9t and B-field the response is much greater when the primary field is parallel
to the long axis of the rod.

4.2 Analysisof Laboratory Measurements of Metallic Prisms

The decay curve of each axi-symmetric target measured using the experimental setup of Figure 4.1.
These targets include both aluminum and steel targets that range from an 8 x 8 x 0.25 inch plate, to
a8 x 8 x 8inchcube, toa8 x 0.25 x 0.25 inch rod. By measuring the decay curve of each rectangular
prism in the two orientations illustrated in figure 4.2, the time decay constants of the approximate for-
ward model can be determined. The approximate forward modelling describes the response of atarget
asapair of dipolesthat decay independently of each other, with each dipole having its own set of decay
parameters. Denote the dipole along the symmetry axis of the target as dipole 1. Thisdipoleis parallel
to the major axis for a rod, and perpendicular to the plane of a plate. The transverse dipole is then be
labelled dipole 2.

The two measurement orientations isolate the decay behaviour of each of the two dipoles. Thisis
because the strength of each dipole is proportional to the projection of the primary field onto the dipole
direction. Let us consider a plate. When the primary field is perpendicular to the plane of the plate the
projection of the primary field onto dipole 2 is zero, thus the approximate forward model assumes the
response can be modelled as a single dipole also perpendicular to the plate. The decay parameters of
dipolel (k1, a1, 81, and ;) can be estimated by fitting this curveto the decay law (equation 2.37). When
the primary field is paralldl to the plane of the plate, the response is due to dipole 2 and parameters &,
a2, B2, and y4 can be recovered.

Inthe absence of arigorousforward modelling codethat solves Maxwell’sequationsfor the response
of ageneral metallic object, this set of measurements provided the only means of relating the shape of
atarget to the parameters of the forward model characterising the response. These relationships were
established, firstly, by using ascaled down version of the non-linear least squarestechniques outlined in
chapter 3 to obtain the decay parameters &, o, 3, and 4 for both dipoles of each of the different targets.
A complete list of the recovered parameters for each of the prisms are listed in appendix B. Secondly,
| observed how recovered values of model parameters or combinations of parameters changed with the
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Figure 4.6: Time Decay curvesfor 8x1x1 inch steel and aluminum rods. Panels (a) and (b) contain the measured
0B/ dt response. Panels (c) and (d) contain the B-field response integrated from the measured B /9t response.
Each set of dataisfit with the approximate forward model.

dimensions and magnetic properties of the measured prism. The patterns in the behaviour of the para-
meters, then led to the shape and permeability discrimination diagnostics that are proposed in the fol-
lowing sections.

4.3 Relating 5 to Magnetic Permeability

UXO are generally made of steel, which is aferrous material. Therefore, the magnetic permeability is
most likely anidentifying characteristic of UXO. To draw link between magnetic permeability and model
parameters, | first performed forward modellingsfor a series of spheresvarying in size and permeability.
The analytic solution for the time domain response of a sphere in a uniform primary field was outlined
in Chapter 2. The suite of data from these modellings were then fit with the time decay law to obtain
best fit values of the decay parameters. Relationships between the time parameters and the magnetic
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Figure4.7: Thebehaviour of parameter 3 for various size sphereswith varying permeability 1. Panel (a) contains
results of fitting the B-field with the parameterization. Panel (b) contains results of fitting the 0B /8¢ with the
parameterization. Each set of datais fit with the approximate forward model.

permeabilities were then considered.

Figures4.7(a) and (b) suggest that the value of 3 abtained for a sphere may be diagnostic in determ-
ining whether the sphere is permeable or non-permeable. Both plots suggest setting a threshold val ue of
3, such that targets with recovered 3 values greater than the threshold are most likely permeable. This
diagnostic is examined for both B-field and 0B /9t data

4.3.1 Variationsof g with Magnetic Permeability when Using B-field Data

By applying the parameterization to the B-field of a steel sphere (uz = 150u,), we see that, for spheres
with radius between 5 to 15 cm, 3 falls between 0.4 and 0.5. We also see that a non-permeable sphere
(# = po) hasa g value of approximately 0.1. Therefore, when applying the parameterization to the
B-field response of a sphere, athreshold value of 0.3 is suitable. A recovered 3 greater than 0.3 would
likely be permeable, while arecovered 3 less than 0.3 would likely be non-permeable.

The use of  as a diagnostic to determine permeability can be extended to non-spherical targets by
looking at the recovered beta values for the aluminum and steel prisms. The model uses two values of
3, onefor each of the excited dipoles, to describe aburied target. | suggest taking the average of the two
recovered 3 values. | will label thisaverage as 3. The 9 axi-symmetric aluminum targets had average 3
value of 0.17 with astandard deviation of 0.03. The 11 stedl targetshad an average of 0.5 with astandard
deviation of 0.2. These averagesfall on either side of the 0.3 threshold obtained by fitting sphere B-field
responses.

4.3.2 Variationsof g with Magnetic Permeability when Using 0B /9t Data

By applying the parameterization to B/ Jt response of a steel sphere (v = 150p,,), we see that spheres
withradii between 5to 15 cmthat 3 fallsbetween 1.11 and 1.35. We al so seethat a non-permeablesphere
(1 = po) hasap value of approximately 0.5. Thisvalueof 8 correspondsto the early timet~1/2 behavior
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that Kaufman (1994) predicted for a non-permeabl e sphere (see equation 2.33). Therefore, when apply-
ing the parameterization to the time derivative of thefield, avalue of § greater than about 0.5 indicated
that the target was most likely permeable.

44 TheRatiok/k,

Aswesaw in section 4.1.3, that for both the B /9t and B-field responseis greater for asteel plate when
the primary field is parallél to the plane of the plate. A stronger induced dipole is reflected in alarger
k value. Thus, for a steel plate the k-ratio k1 /k; < 1. For asteel bar the response is greater when the
primary field is parallel to the bar (and thus along the axis of symmetry). Thusfor asteel rod the k-ratio
k1/ky > 1. Figure 4.8 shows how the recovered k-ratio variesfor targets ranging from a steel plateto a
steel rod.
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Figure 4.8: Relating the aspect ratio of a stedl target with theratio k; /k,. Plot (a) contains the recovered k pa-
rameter when fitting the parameterization to the B-field response obtained by integrating the 9B/t response of
asteel target. Plot (b) illustrates the relationship between the k4 / k- ratio and the shape of a steel target. Plot (c)
contains the recovered k& parameter from fitting the parameterization to the measured 0B /9t response. Plot (d)
illustrates the relationship between the k4 / k- ratio and the shape of a steel target.
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We also saw in section 4.1.3 that for both the B-field and B /9t response of an aluminum plate is
larger when dipole 1 is excited than when only dipole 2 is excited. Thus for an aluminum plate the k-
ratio k1 / ko > 1. The opposite orientation effect was observed for an aluminumrod, and thusk; / k2 < 1
(Figure 4.9).
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Figure 4.9: Relating the aspect ratio of an duminum target with theratio & /k». Plot (a) containsthe recovered &
parameter when fitting the parameterization to the B-field response obtai ned by integrating the 0B / 9¢ response of
an aluminum target. Plot (b) illustrates the rel ationship between the k1 / k- ratio and the shape of an aluminum tar-
get. Plot (c) containstherecovered k parameter from fitting the parameterization to the measured 0B / 8¢ response.
Plot (d) illustrates the relationship between the k1 / k- ratio and the shape of aauminum target.

45 TheRatio 3,/0,

In addition to the relative strength of the dipoles being shape dependent, the slope of the time decay
response (either 0B/ dt or B-field) during the intermediate time stage will be greatly dependent upon
the target shape. Thiseffect was seen in steel targets only. In Chapter 2, | showed that the steepness of
the response during the intermediate time stage is reflected in the parameter 5 (Figure 2.11). A dipole
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that decays at a greater rate will have alarger 3.

In section 4.1.3 it was seen that the rate of decay of both the B-field and 9B /9t responseis greater
when the plane of astedl plate is perpendicular to the primary field (dipole 1), than when the plane of a
steel plateis parallel to the primary field (dipole 2). Thus, for asteel plate the 8-ratio 3, /82 > 1. Inthe
caseof arod, both the B-field and 9B / 9t response decay faster (and thus 3 islarger) when the main axis
of therod is perpendicular to the primary field (dipole 2). Inthe case of asteel rod the 8-ratio 5, /8, < 1
(Figure 4.10).
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Figure 4.10: Relating the aspect ratio of a steel target with the ratio 3;/3>. Plot (a) contains the recovered 3
parameter when fitting the parameterization to the B-field response obtained by integrating the 9B /dt response
of asteel target. Plot (b) illustrates the relationship between the 8; /3. ratio and the shape of a steel target. Plot
(c) containstherecovered 3 parameter from fitting the parameterization to the measured 6B /9t response. Plot (d)
illustrates the relationship between the 3; /8- ratio and the shape of a steel target.

For aluminum targets the response shape ook essentially the same for each of the targets. That is,
the B-field responseis essentially flat at early time and exponential at later times. The 0B/t response
exhibits a power law decay of ¢t~1/2 and is exponential at |ater times. The decay curves for aluminum
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targets are essentially the same regardless of target shape. Therefore thereis no relationship between the
(-ratio and the aspect ratio (Figure 4.11).
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Figure 4.11: Relating the aspect ratio of aaluminumtarget with theratio 8, /3-. Plot (8) containsthe recovered 3
parameter when fitting the parameterization to the B-field response obtai ned by integrating the 0B / 9¢ response of
an aluminumtarget. Plot (b) illustrates the relationship between the 3, /8- ratio and the shape of an aluminum tar-
get. Plot (c) containstherecovered 5 parameter from fitting the parameterization to the measured 0B / 8¢ response.
Plot (d) illustrates the relationship between the 3, /3 ratio and the shape of a aluminum target.

4.6 Analysisof Measured UXO

The previous sections suggest valuesthat may be diagnosticin determining the magnetic permeability of
thetarget, aswell asthebasic shape of thetarget. However, thesetestswere performed on solid aluminum
and steel rectangular prisms that may, or may not be, representative of real field UXO. Aswe saw in
figure 1.1, UXO can be found that are longer or wider than 8 inches. Also UXO are generally made of
steel, but may have some components (such as stabilizer fins) that consist of non-permeable material. In
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Figure 4.12: The TDEM response of an 81 mm mortar. Plot (a) contains the measured 0B /9t response, and plot
(b) contains the integrated B-field response.

addition, UXO are clearly not solid objects and can possess complicated inner structure. It is not clear
how these factors affect the measured TDEM response, and not obvious if we can apply the diagnostics
of the previous sections.

In the following analysis, the decay curves of each of the 24 UXO measured at Geonicswill bein-
verted for the decay parameters. The decay curves of two of the UXO, an 81 mm mortar and a 155mm
shell, are shown in figures 4.12 and 4.13.

Aswith the prism data, the B-field response was obtained by integration. The basic characteristics
of a permeable rod that we observed in the previous section are evident in these UXO. That is, dipole 1
is generally stronger and decays more slowly than dipole 2.

Thefirst diagnostic considered wasto use 3 parametersto predict whether the target was permeable
or non-permeable. Figure 4.14 contains the resultsfrom taking the average of 3, and 3,. We seethat for
each UXO the recovered 3 value when applying the parameterization to the B/t response exceeds
the threshold value of 0.8 that was suggested earlier. When using the B-field response, we observe that
the appropriate threshold value is exceeded for 22 of the 24 UXO.

We can then look at calculated k and 3 ratios for each of the UXO (Figures 4.15 and 4.16). Severa
inconsi stencies are evident when comparing these results with those obtai ned from metallic prism meas-
urements. Let us consider figure 4.15. There are two features that were not found in the measurements
of solid metallic prisms. Firstly, we seethat for UXO number 20 (diameter = 10.8 cm, length = 65 cm)
and UXO 21 (diameter = 12.8 cm, length = 85 cm) that both k and 3 ratios arelessthan 1. Secondly, the
k and 3 ratios UX O 12 are oppositeto what is expected for a permeablerod-like target. The 3 valuesfor
UXO 12 exceeds the 3 threshold when performing the analysis on either 9B/t or B-field. It isimpos-
sibleto know what isthe source of theseinconsistencieswithout knowing more about the structure of the
UXO, and without having a forward modelling code with which to generate the decay curves. For the
remaining 21 UXO results are as expected for a permeable rod-like target. Figure 4.16 contains results
from applying the parameterization to the B-field. More inconsistencies occur when dealing with the
B-field.
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a) Dummy 155 mm Shell b) Dummy 155 mm Shell

N -

N -
+ O
+ O

10 10 10° 10" 10 107 107" 10° 10" 10
Time (msec) Time (msec)

Figure 4.13: The TDEM response of a 155 mm mortar. Plot (a) contains the measured 0B /9t response, and plot
(b) contains the integrated B-field response.

4.7 Proposed Algorithm For Deter mining Dimensionality of Target

Several diagnostics were introduced in this chapter that give hints to magnetic permeability of atarget
and the rough shape of atarget. These can be combined as an algorithm for determining the dimen-
sionality. Firstly a decision should be made as to which data, B-field or B/ dt, should be inverted for
parameters. Throughout this chapter the decay law has been applied to both the B-field and 0B/ 9t re-
sponse of the data. For the metallic prism analysis both forms of the data produced essentially the same
diagnostics. That is, if 3 is greater than some threshold value then the target is likely permeable, and the
k and 3 ratiosfollow the same patternsfor shape. Although thisisthe case, it isprobably morerobust to
invert for the derivative of thefield. Indeed, when examining the use of the diagnosticsto sample UXO,
fitting the 9B / 9t data produced more desirable results. There are errorsintroduced when integrating the
finite number of 9B /9t data, including having to extrapolate afunction in order to approximate late time
behavior.
I conclude this chapter with a possible algorithm to determine the dimensionality of atarget.

The Algorithm For B-field Data

1. Recover model parameters by using anon-linear parameterization on the B-field data

2. Takeaverage of 8, and 3, to obtain 3. If 3 isgreater than 0.30 then the target is most likely per-
meable.

3. Computetheratios 3, /82 and kq/ k. There are two options:

e 3> 03 If ky/ks > 1and B;/B; < 1 then apermeable rod-like target was measured. |If
k1/ky < 1and 3,/82 > 1 then apermeable plate-like target was measured.

e B < 0.3:If ky/ky > 1 then non-permeable plate-like target was measured. If &y /ky < 1
then the target isrod-like. 8/, doesnot give supporting, or extra, information.

The same algorithm for the 9B /9t field uses different threshold values for 3:
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Figure 4.14: 3 averages for UXO. When fitting the 9B /8t response of a UXO with the parameterization, the

average of the recovered 5's ((81 + 52)/2 = ) isgreater than 0.8. When fitting the B-field response of a UXO
with the parameterization, the average of the recovered 5'sis greater than 0.3 (with the exception of UXO sample
21).

The Algorithm For 6B /0t Data

1. Recover model parameters by using anon-linear parameterization on the B /9t data

2. Takeaverage of 8, and 3, to obtain 3. If 3 isgreater than 0.80 then the target is most likely per-
meable.

3. Computetheratios 3, /82 and k,/ k. There are two options:

o 3> 08 If ky/ky > 1and B;/B> < 1 then apermeable rod-like target was measured. |If
k1/ky < 1and 3,/82 > 1 then apermeable plate-like target was measured.

e B < 0.8:If ky/ky > 1 then non-permeable plate-like target was measured. If &y /ky < 1
then the target isrod-like. 8 /3, doesnot give supporting, or extra, information.
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Figure 4.15: k;/k, and 3 /8- ratios when fitting to derivative of field 9B /dt. The 8; /3. ratio is plotted with
bars, and the line is the plotted &, / k- ratio for each of the UXO. Recall that for a permeable rod-like prisms that
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Figure 4.16: Recovered k and 3 ratios when applying parameterization to the B-field response. The 3, /3; ratio
isplotted with bars, and thelineisthe plotted &, / k- ratio for each of the UXO. Recall that for a permeable rod-like
prismsthat k1 /ks > 1and 51 /82 < 1.



Chapter 5

Field Application

The previous chapters of this thesis outlined the development of a data interpretation strategy for the
location and identification of UXO. An approximate forward modelling was devel oped that predicted a
metallic object’ ssecondary field response, dueto astep off primary field, asapair of decaying orthogonal
magnetic dipoles. A model vector m was defined whose 13 elementsincluded the target’s location, ori-
entation, and characteristic decay parameters. After making theassumption that the approximateforward
modelling could adequately replicate the response of ametallic target, | developed anon-linear paramet-
ric inversion to determine the model m that minimizes the difference between the observed data set and
adata set predicted by the approximate forward modelling. Finally, relationships between the relative
values of the decay parameters and real physical parameters of atarget were made based on lab TDEM
measurements of a series of different sized metallic prisms. Ratios of the § and k& parameters are pos-
sible indicators of the aspect ratio and magnetic permeability of the object. UXO are generally rod-like
and magnetically permeable, so these relationships then can then form the basis of aUXO identification
algorithm.

To this point in the thesis, this algorithm has been tested on synthetic data sets only. In this chapter,
the inversion methodology and UXO identification diagnostics are applied to EM61-3D secondary field
measurements taken over a buried 105 mm shell. From this application, the algorithm’s performance
will be tested in the presence of real world natural and cultural noise sources, as well asin the presence
of errors resulting from adopting an inaccurate forward modelling.

5.1 Description Field Data Set

5.1.1 Target Information

Geonics Ltd. conducted a TDEM survey over a 105 mm dummy artillery shell buried at the York Uni-
versity Environmental Test Site. A 105 mm shell is approximately 40 em long with a diameter of 10.5
cm, and therefore has an aspect ratio of 4 to 1. A photograph taken by Geonics Ltd. of the shell can be
found in Figure 5.1(a). Although the dimensions of the buried shell were not measured prior to burial,
| assumed that the buried shell was similar in shape and size to the photographed shell, because both
artillery shellswere supplied by the Canadian military. Thetarget isboth rod-like and magnetically per-
meable, and therefore possesses the featuresthat | use to characterize UXO.

The buried shell is part of the York University Environmental Test Site, and therefore the shell loc-
ation, depth, and dip arerelatively well characterized (Szeto, 1996). The shell was buried at a depth of
50 ¢m below the surface of the earth, and with a dip of 45 degrees (¢ = 45 °) (Figure 5.2). The strike
(a) was not recorded upon burial of the shell.

84
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Figure 5.1: (a) Photograph of a105 mm artillery shell (courtesy of GeonicsLtd.). The shell measures 10.5em in
diameter and 40 ¢m long, and weighs 15kg. (b) Laboratory measurements of the secondary B-field of a 105 mm
artillery shell. (c) Laboratory measurements of the secondary 0B /9t of a 105 mm artillery shell. The responses
in (b) and (c) are fit with the decay law L(t) = k(a + t)~# ezp—t/y. (d) The decay parameters from the fitted
curves for the B-field and 9B /9t data
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Figure 5.2: (a) The 105 mm shell buried as part of the York University Test Site was buried at a depth of 50
cm. The transmitter loop is mounted on a trailer, and therefore sits parallel to the ground at a height of 43 cm.
(b) Line and station layout of the the field data survey grid. The component data were collected on 9 lines, with
aline spacing of 50 ¢m. A total of 17 stations were spotted on the line, with a station separation of 25 ¢m. The
coordinate system was set up such that the Z direction points into the ground.

5.1.2 Instrumentation

The survey was carried out using the Geonics EM61-3D (Figure 1.2). The EM61-3D is a prototype
system that records the 3 components of secondary field due to a pulse excitation. The primary field
isproduced by a1 m square transmitter loop carrying a 50% duty cycle bipolar current. The transmitter
loop generates a dipole moment of 64 Am?.

Three orthogonal circular receiver loopslocated at the center of the transmitter |oop measure the sec-
ondary field. Receiver coilswith diameters of 60, 58, and 63 ¢m measurethe z, y, and z components of
thefield. Thefields sensed by the receiver coils are processed and stored in a PROTEM47 time domain
receiver. The PROTEMA47 receiver was configured to take measurements in 30 geometrically spaced
timegates. Theinput isintegrated over the length of the time channel. The cal culated mean value within
theintegration window isthen recorded as the measurement at the center of the timewindow. The meas-
urement is repeated a number of times and stacked to increase the signal to noise ratio.

The system is mounted onto atrailer that is pulled aong by the instrument operator. The transmitter
loop is mounted parallel to the ground and at a height of 43 cm above the ground, and the PROTEM47
receiver islocated in abackpack carried by the operator.

5.1.3 Survey Geometry

EM61-3D measurements were taken over a 4mx4m square survey area centered on the ordnance loc-
ation. The survey areawas covered with total of 9 lines of data, with 50 cm spacing between the lines
(Figure5.2). Along each linetherewas atotal of 17 stations, with a station separation of 25 ¢m. At each
station three components of 9B/t data were measured over 30 time channels.

Figure 5.3 contain the vertical component, B, /dt, of the time derivative of the secondary B-field
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211/
measured during the odd timechannels. Figure5.4 contain the horizontal component, (@33)2 + (%‘?’) ] ,

of the time derivative of the secondary B-field measured during the odd time channels. The’o’ markers
on the plot indicate locations of stations.

5.2 Characterization of EM61-3D Errorsfor Inversion

In Chapter 3, the approximate forward model was expressed as
d; = F;[ml], j=123,..N (5.1

This equation expresses the mapping of the model vector m to adatum d; by afunction F;. Theforward
mapping F; is defined by equation 2.38. Thisforward mapping is inexact because all data are noisy and
the forward modelling is approximate. A more accurate representation of the situation encountered in
field datais achieved by rewriting equation 5.1 as

d; = Fj[m] + €5, j=1,2,3,..N, (5.2

wheree; istheerror on the jt* datum. Becausethe goal of theinversionisto find amodel that minimizes
the misfit between the observed data and the data predicted by the forward modelling, the algorithm will
try to fit the errors ¢; and therefore affect the recovered parameters.

Thesource of the errorse; can generally be categorized asbeing either natural, cultural, or modelling
errors. A discussion of the sources of error in electromagnetic measurements can be found in numerous
papers (for example see (Nabighian and Macnae, 1991)). Sources of noise in TDEM measurementsin-
clude lightning discharges (sferics), power-line noise, amplitude-modulated (AM) long wave and very
low frequency (VLF) transmitters. Modelling errorsinclude any discrepancy between the approximate
forward mapping F[m| and an exact forward model. Although this discrepancy may have a large ef-
fect on the values of recovered model parameters, these differencesare not discussed here because their
investigation requires access to an exact forward modelling code.

In Chapter 3, the noise was dealt with in the objective function. The objective function was defined
to be

b = ||Wa (Ffm] - a*) | (5.3)

where W isdefined such that Wf W, istheinverse of the covariance matrix of thedata. If theerrorsare
independent, then W isadiagonal matrix with elements equal to the inverse of the standard deviation
of the error, and the objective function can be written

Tl — dobs 2
¢Z£(FJ[ ]2%) 54

€

i=1

where N isthe number of data. When the errors are Gaussian with zero mean, then the sum in equa-
tion 5.4 becomes the x> measure. x? is astatistical variable with an expected value of approximately
N. Aswasreported in Chapter 3, thisweighting of the objective function isoptimal in the sensethat the
recovered model will bethe onewhosevarianceissmallest (Bard, 1974). In problemswheretheforward
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Figure 5.3: Vertica component of 0B/t EM61-3D data taken over a 105 mm artillery shell at the York Uni-
versity Geophysical Test Site.
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Figure 5.4: Horizontal component of 9B /9t EM61-3D data taken over a 105 mm artillery shell at the York Uni-
versity Geophysical Test Site.
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modelling isinaccurate, the presence of modelling error necessitate that the objective function befit with
x> N.

Although the above outlined method of dealing with data errorsisreasonable (and in linear cases op-
timal in the sense of finding aleast variance estimate), an estimate of the standard deviation of theerror is
required prior totheinversion. Effersg, et al. (1999) examined the effect of AM and VLF transmitterson
TDEM measurements. They observed for their particular TDEM instrument that the standard deviation
of the B /8t signal exhibitsat~! proportionality when AM transmitter noise islog-gated and stacked.
Munkholm and Auken (1996) showed that log-gated and stacked white noise maps onto the TDEM re-
sponse as errors with a standard deviation exhibiting at~1/2 decay.

A decision must be made asto what error level should be assigned to the datain thisinversion. The
investigations into the nature of TDEM noise cited above suggests that for each time channel an error
with constant standard deviation be assigned to all the data measured in that time channel. | will adopt
thisform of noise model for inversions of the field data. In thissection | consider two methods of spec-
ifying thetime variation of the noise. Inthefirst method, inversionsusing datafrom singletime channels
are performed using a two-dipole model. Each inversion determines the minimum misfit for each time
channel and that is used to estimate the noise for that time channel. In the second method, | assume that
the measurementstaken far from the target are of noise only and that these measurements can be used to
characterizethe noise. Based on these measurementsanoise model isgenerated by fitting atime function
€ (t) = At~B to the measured noise.

5.21 Method 1: Estimation of Noise By Fitting Subsets of the Complete Data Set

In order to determine the standard deviation of the error for each time channel, the set of data during each
time dicewill beinverted separately to find the best fitting two dipole model. Becausethisisa subset of
the data, thefit to each datapoint will be better than when fitting the datafrom anumber of time channels.
Indeed, the misfit obtained by inverting the single time channel represents a minimum misfit of that time
channel’s data that could be hoped for when inverting all data from multiple time channels.

The goal isto minimize an objective function

N

§(t:) = | Flm, 1] — a (1) = 3 (Flm, 0 - d5*(2:))” (55)

i=1

Heret, representsthe time channel fromwhich the datato beinverted aretaken. Thereare N datainthis
inversion, where N = 3 x (number of locations). The vector m is the vector of model parameters
representing two dipoles:

m=[X,Y,Z a,c, kq, ko] (5.6)

where (X, Y) represents the location on the survey, Z is the depth, a and ¢ specify the orientation, and
k1 and k- arethe strengths of thetwo dipoles. Asinthe casewith the approximateforward model, dipole
1ispardlel to the main axis of the target and has a strength that is proportional to the projection of the
primary field in this direction. Dipole 2 is specified to be perpendicular to dipole 1.

Themodel vector m isobtained by using the non-linear parameter estimation procedure of Chapter 3.
An estimate of the standard deviation of the error for time channel ¢; can then be obtained by considering
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the x2 measure at the solution:

N Tm. ] — d°b%(¢: 2
X2:Z(FJ[ 1] d; (tz)) ~ N (5.7)

& (t:)

i=1

wheree; (¢;) isthe standard deviation of the j* data point. The expected value for x? isapproximately
equal to the number of data N (when N > 5). Since | assume that the error has a constant standard
deviation in each time channel, the equation 5.7 can be rewritten

S (B, 1] - dee(a))”
e(t;) ~ (5.8)

N

Thisinversionisrepeated on the data from each time channel, and the estimated error in each time chan-
nel defines the time decay of the error, €(t).

Test on a Synthetic Data Set

Thismethod wasfirst tested on asynthetic dataset. Synthetic datafroma2mx 2m survey areacontaining
5linesand 5 stations per lines were generated. All three componentswere used in theinversion, making
atotal of 75 data per time channel. A uniform error was set to be 1% of the maximum 9B, /9t meas-
urement in each time channelsfor the first test, and then set to 5% for a second test. Each time channel
was then fit with the best two dipole model, characterized by the 7 parameters X, Y, Z, a, ¢, k1, and
ko. Figure 5.5 shows how well the data fitting worked for the time slicet = 1.788msec. Error with a
standard deviation of 5% of the maximum value of the Z-component was added to the data. In the left
column of Figure 5.5 are the synthetic observed data, in the middle column are the predicted data, and
in the furthest right column is the difference between the observed and predicted data. The random error
assigned throughout the data is reflected in the random looking character of the difference plot.

Figure 5.6 containsresults of fitting each of the time channelsin order to estimate the standard devi-
ation of the error for that time channel. The solid plotted lines indicate the true standard deviation of the
error for the time channel, and the dashed linesrepresent the error estimated by fitting each time channel
and using equation 5.8. In both the 5% and 1% cases, the technique was able to estimate the error.

Application to the Field Data Set

The proposed error estimation technique can be applied tothefield dataset. For each of the 30 time chan-
nels, 3 componentsof 9B /9t dataat 153 stationsfor atotal of 459 data, areinverted for the 7 parameter
model vector of equation 5.6 representing the two dipole model. The major difference between thisfield
data set and the synthetic data set to keep in mind is that an inaccurate forward model is being used in
this study.

Figure 5.7 contains the observed and predicted data, and their difference for theinversion of thefirst
time channel data (t=0.036msec). The residual map (the difference between the predicted and observed
data) indicatesthat the Z-component of the dataisfitting the signal, but not the random noise. However,
intheresidual mapsfor the X andY componentsthereiscorrelated signal. Thisinversion was repeated
for each of the remaining time channels, and the predicted error from each time channel is plotted in
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Figure 5.5: Observed and predicted datawhen inverting 9B /9t datafrom time channel t=1.788 msec. Theran-
dom appearance in the plot of the difference in the predicted and observed data reflect the random error assigned
to the data of this time channel.

Figure 5.8. Also included, for reference, in this plot are decay curves from measurements taken directly
above the UXO ((X,Y") = (200, 200) ¢cm) and also along theline X = 0 ¢m located at the edge of the
survey grid. Thedataalongthe X = 0 em lineare very noisy, fluctuating from negative ("0’ markers) to
positive ('+ markers). The noise model (Iabelled 'Method 1 Noise Model' ontheplot, is of the same
order of magnitude asthe dataaong the X = 0 ¢m line at early and late times. If this noise model were
adopted for this data set, most of the measurementsalong X = 0 ¢m seem to be essentialy noise. Inthe
inversion analysis, these data should either be regjected, because any useful signal is being swamped by
noise, or the measurements should be weighted in the data objective function such that they have close
to zero influence on the inversion. Both options will be tried later in this chapter.

5.2.2 Method 2: Estimation of Noise By Using M easurements at a Distance as Noise Measure-
ments

A second method of determining a suitable noise model isto assume that, when the transmitter/receiver
is far away from the target, the only signal measured by the instrument is noise. Figure 5.8 contains
measurements of the Z-component of the 9B /9t field at different locations on the survey grid. In that
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Figure 5.6: Noise model recovered in two synthetic test cases. In the first case, the standard deviation of the
assigned noise was set to be a 5% of the maximum value of the Z-component of the data of that time channel. In
the second case the standard deviation of the assigned noise was set to 1% of the maximum. Solid lines represent
the noise assigned in each time channel, and dashed lines represent the estimated noise by inverting each time
channel for apair of dipoles. The technique was successful in recovering the noise.

plot, measurements at a few of the stations along the X = 0 ¢m line are plotted (thin plotting lines),
as well as decay curves from station (X,Y’) = (200, 200) em (thick plotting lines). The decay curves
measured along the line X = 0 ¢m fluctuate wildly, oscillating between positive values (represented
by '+ markers) and negative values (represented by ‘o’ markers). It is reasonable to assume that these
measurements can be used to characterize noise because the data has the erratic behaviour of noisy data,
and because the vertical component of secondary field produced by a buried target does not have zero
cross-overs. Thehbipolar nature of the datamust therefore be created by some superimposed noisesignal.
| adopt aform of anoise model proposed by Munkholm and Auken (1996, equation (2))

-B

T At™7. (5.9
Munkholm and Auken found that for log-gated, gated stacked data that white noise is seen asat=1/2
signal, and Effersget. al. (1999) found that AM transmitter noise mapsto at~—! signal. In order to find
the appropriate constants A and B for thefield datasurvey, | first took measurementsfrom stationsat the
extremities of the survey area and fit a best straight line (in aplot of log(|0Bz/0t|) vs. log(t)) for the
decay measurement at each station. Stationson lines X = 0e¢m and X = 400 em, were used for this
purpose. Thevalue of B isset to be the average slope of the fitted straight lines, and A is set such that
all the noise falls beneath the line. The noise model resulting from this processis

€(t) = (252.5) t7024. (5.10)

All datathat fall below thisline are considered to be essentially noise, with all meaningful signal from
thetarget being swamped. Figure 5.9(a) plotsthe dataused for determining the noise model, and thefina
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Figure 5.7: Inversion of ¢ = 0.036msec time channel B /8¢ data acquired over a 105 mm UXO buried at the
York University Environmental Test Site.

noise model given isequation 5.10. From thisfigureit isclear that assigning noise to the data according
to eguation 5.10 results in a higher percent error being assigned to earlier time channels and late time
channels, with a lower percent error being assigned to intermediate time channels. For some stations
the response at late and early times is swamped by noise, but at intermediate time there is till some
data above the noise line. The decay curve measured at (X,Y) = (350,150) ¢cm is aclear example
(Figure 5.10(a)). As expected, the percent error assigned to data further from the target will be higher
since the signal to noise ratio will clearly be smaller. Figure 5.10 gives an example of how data away
from the target falls below the noise level.

5.3 Preiminary Data Analysis

In this section the methods of determining a reasonable starting guess for the inversion algorithm, as
outlined in Chapter 3, are applied to thefield data set.
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Figure 5.8: Noise model recovered for the field data by fitting a pair of dipoles to each time channdl. The re-
covered noise model is plotted, along with the Z-component 0B /¢ response measured directly above the UXO
((X,Y) = (200, 200) ¢m), and several (noisy) decay curves measured along the X = 0 ¢m line.

5.3.1 Estimatesof Location and Orientation Obtained by Plotting the Data

The following estimates of strike, depth, and location are obtained using techniques outlined in sec-
tion 3.5.1.

Strikea

The line of symmetry when plotting the horizontal component of the response generally indicates the
strike of the target. Figures 5.11(a) and (b) indicate that it is not easy to discern a single, distinct line
of symmetry for the data. The line of symmetry could be chosen as being either parallel to the lines
or perpendicular to the lines. For the following inversions, the initial guess for the strike will be set to
a = 45 degrees.

Depth Z

In section 3.5, it was shown that the depth of the UXO could be estimated by taking the width of the
z-component of the response at half the maximum of the signal. The width of the signal wasto be taken
along the strike of the target. However, the strike of the target is not easily determined from the plotted
data. Infigure 5.12(a) the z-component of the B-field is plotted for the tenth time channel. Two candi-
dates for the strike of the UXO are indicated by white arrows. The profile of the signal along the line
X = 200 em isplotted in figure 5.12(b) and the profile of the signal along the stationsY = 200 em is
plottedinfigure5.12(c). Applying the half-width estimation techniqueto the profilesin (b) and (c) result
in depth from surface estimates of 76.4 ¢m and 152.5 em.
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Figure 5.9: Characterizing the noise of the EM61-3D datawith e (t) = At5. (a) Noise model obtained using
method 2. The noise model, e(t) = 252.2¢~%°% was obtained by fitting the decay curveson lines X = 0 and
X = 400 ¢m, whichareplottedas’ o’ and’+' symbols representing negative and positive values. The decay curve
measured at (X,Y) = (350, 150) emn is swamped by noise at early and late times, but appearsto have signal at
intermediate times. (b) The signals measured on lines X = 0 and X = 400 ¢m are plotted here to demonstrate
that the mean of the noise is approximately zero, and that the standard deviation of the noise is bounded by the
noise model.

Location (X,Y)

The location of atarget is estimated to be directly below the peak in the vertical (z) component of the
response. Referringtofigure5.13, the maximum of theresponseismeasuredat (X, Y') = (200, 200) emn.
Thelocation of the maximum remainsis static throughout the 30 time channels.

5.3.2 Fitting A Single Dipole at Each Time Channel

A second method of obtaining estimates of depth and orientation was to compute parameters for a best
fitting singledipoleto datafrom asingletimechannel (Section 3.5.2). Thedipoleisdefined to be oriented
along the axis of the UXO, and the dipole strength is proportional to the projection of the primary field
along that direction. The datain each time slice wasinverted for alocation (X ,Y"), adepth (7), orienta-
tion (a and ¢), and dipole strength (k). Thesurficial coverage of datafor thisinversion was asubset of the
complete survey grid. 5 lines (X = 100, 150, 200, 250, and 300 e¢m) with 25 ¢m station spacing along
each line were inverted for each time slice. Thisinversion was performed on both B-field and 0B /0t
data. Inversionsusing all three components of dataand also with just the Z component of the data were
carried out. The recovered model parameters obtained for some of the time channels by inverting all
three componentsof B /0t dataarelisted intable 5.1. Listed on therow labelled’ Starting Model’ are
averages from the time channels, excluding the results from time channel 25, whose inversion produced
an unsatisfactory fit. The results obtained for each time channel when using either the Z-component for
theinversion, or using the B-field datawere quite similar. Moreover, these cal culated parametersfor the
starting model are quite close to the values of location, depth, and dip reported in the York University
Test Site specifications (listed on the bottom line of the table).
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Figure 5.10: Removal of datathat fall beneath the noise level. In the top set of panels (a), are the Z-component
of the 9B /0t data, for three time channels. The bottom set of panels (b), have those data which fall beneath the
noise level set by the e(t) = At~5 removed.

5.3.3 Estimation of Time Decay Parameters

Two methods that can be used to establish an initial guess of the time parameters were outlined at the
end of Section 3.5. Thefirst option isto obtain an inventory of the possible targets in the area, and use
the time parameters associated with typical targets in the area. The second method involved fitting the
time decay of the Z-component of the measured response directly above the target. This second method
isablind test, and more in the spirit of the thesis, so | will adopt that technique here.

Figure 5.14 contains plots of the B-field and 6B/t response directly above the UXO. Infitting the
curve, the data was scaled to ensure that the k& parameter will be similar to the & valuesrecovered in the
synthetic data tests of chapter 3. The Z-component of the B-field decay curve measured directly above
the target is best fit with

Bz (t) ~ 0.97 (t + 0.64) 70089 o~t/5:12 (5.12)

The initial guess for the time decay parameters based on this result isthen: o = 0.64, 8 = 0.089, and
v =0.75 x 5.12 = 3.84.
The 9B/ 0t responseisfit with

B
%—tz ~ T1.9 (t 4 0.43) 7020 ¢7t/5.03 (5.12)

Thisresultsininitial guessesof « = 0.43, 5 = 0.29,andy = 0.75 x 5.03 = 3.75.

5.3.4 Summary of Preliminary Data Analysis

| choose to use estimates of location and orientation by fitting a single dipole (Section 5.3.2). Time pa-
rameter estimates were determined in Section 5.3.3. The initial estimate of the model vector for both
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Figure 5.11: The strike of the buried UX O are difficult to establish from plots of the horizontal component of the
field. A line of symmetry for the abovetwo plots can either be drawn parallel to the datalines, or perpendicular to
the datalines.
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B-field and B /0t datais listed in Table 5.2. The predicted data are linear in parameters k; and k,.
| choose to scale the field data such that recovered values of k; and k5 are of about the same order of
magnitude as those used in the synthetic data sets. | accomplish this by making the maximum value of
the Z-component of thefield datato be about the same order of magnitude as the maximum value of the
Z-component in synthetic data sets.

5.4 Inversion of the Field Data Set

Up to this point in the chapter, a noise model has been devel oped which enables usto responsibly assign
errorstothe dataand reject those datathat areassumed to benoise. | have also obtained aninitial estimate
m, of the model vector. With these prerequisite procedures completed, | can now use the least squares
algorithm laid out in Chapter 3 to recover the 13 model parameters.

54.1 Selection of Data

The following inversions will use the 0B /9t measurements, rather than the B-field response as data.
This decision is, in part, motivated by the noise study presented earlier in this chapter. It was shown
that the noise will swamp out the response from atarget at early and late times for much of the 9B /9t
data set. The B-field responseis obtained by integrating the measured 0B /9t data curve at each station
location (Section 4.1.2). If the 9B /9t responseis not known for late times, then this integration will be
inaccurate. Thisinaccuracy motivates the use of 9B/ 0t.

The complete data set consists of 9 lineswith 17 stations per line spanning a4m:x4m survey area. |
will not use all these stations. For thefollowinginversion| will useall the stationsfrom withina2mx2m
square centered in the 4mx4m survey area. Thisareaisshown in Figure 5.15. In this figure the circles
represent locationswhere measurementsweretaken, and filled circles represent stationsfrom which data
for thisinversionisused. Lines X = 100 ¢m, 150 ¢m, 200 em, 250 em, and 300 em are used, with sta-
tionslocated at 25 em intervals, for atotal of 45 stations. All 30 time channels will be used. Therefore
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Figure 5.12: Determining the depth of the buried UXO. Panel (a) containsa plot of the vertical component of the
B-field measured during the tenth time channel. The two white lines indicates where profiles of the signal have
been taken for depth estimation. Panel (b) containsaprofiletaken alongtheLine X = 200 ¢m. Thedepth estimate
(from the ground surface to the center of the target) using thisprofileis 76.4 cm. Panel (c) contains aprofile taken
perpendicular to the lines on stationsY = 200 ¢m. The depth estimate using this profileis 152.5 ¢m.
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a) Time Channel 1 1ot b) Time Channel 25

2
Y (m)

Figure5.13: Estimating the location of the buried UXO. B-field measured during (a) time channel 1 and (b) time
channel 25. The maximum measured B-field responseislocated at (X, Y) = (200, 200)cm.

aninversion will have atotal of 4050 total dataif all 3 components of secondary field are used, and 1350
total dataif only the vertical component is used.

The noise model of method 2 in section 5.2.2 is used. By throwing out data that falls beneath the
estimated noise level, the total number of datawhen using al 3 componentswill be reduced from 4050
to 2753 datapoints. When inverting the Z-component of the dataonly, thetotal number of dataisreduced
from 1350 to 1166 data points.

54.2 Inversion of Z- component of 9B/0t Data

Figures5.16 and 5.17 present the observed and predicted data from the inversion of the vertical compo-
nent of secondary 6B /9t field. The Z-component of observed datais appearsoblong in plan view, with
greater extent in the X direction, for each of the 30 time channels. Aswasobserved in the noise analysis
of this chapter, the early and |ate time channels start to be dominated by noise. In Figure 5.16, the pre-
dicted data reproduce the oblong character of the observed data throughout all the time channels. That
is, the predicted data also appears as a single distinct peak elongated in the X direction. The predicted
anomaly isdightly wider inthe Y direction and narrower in the X direction than the observed anomaly.
The difference between dP"*? and d°** for 4 of the time channels are plotted in the third column of Fig-
ure 5.16. An areawhere the observed data are misfit substantialy ison the X = 1 m line, reflecting the
fact that the predicted anomaly is narrower in the X direction. Outside of thisarea, the largest misfits do
not appear correlated.

Figure 5.17 compares the data misfit line-by-line. The left column of Figure 5.17 include the data
from some of the early time channels: ¢ = 0.036 ms(0),0.092 ms(A),0.234 ms(0O),and 0.525 ms(x).
The right column of Figure 5.17 include the datafrom¢ = 1.003 ms (o), 2.53 ms (A), 6.54 ms (O),
and 17.2 ms (). The error bars represent the standard deviation of the error assigned to each data point.
The predicted does not fit to within the errors specified by the error bars. The observed data on theline
(X = 2m) directly above the apparent location of the UXO are most closely fit. Datalinesfurther away
from the target are not being as closely fit.

The x? measure of the misfit at the solution is x? = 4.46 x N. Theresult that 2 > N value
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Time Depth
Channel X Y (Z - loop height) | a c
1 1.80 | 2.26 0.86 0.375 37.544
5 183 | 212 0.73 1.4324 38.723
9 187 | 215 0.65 0.178 34.2
13 1.88 | 2.18 0.59 0.0011 30.82
17 190 | 2.18 0.55 1.20 26.0
21 190 | 2.18 0.54 1.62 26.9
25 2.08 | 2.22 0.76 88.8 91.7
Starting Model 186 | 2.18 0.65 0.80 325
Values in Test Site not
Specifications 2.00 | 2.00 0.5 reported | 45

Table 5.1: Results from fitting a single dipole to some of the time channels of the field data set. All lengths are
listed in meters, and al angles are in degrees. 5 lines (X = 100, 150, 200, 250, and 300 ¢m) with 25 ¢m station
spacing along each line were inverted for each time slice. The above tabulated results are for all 3 components of
0B/ ot data. Almost identical resultswere obtained for each time channel when using either the Z-component for
the inversion, or using the B-field data.

givesanumerical verification that not all the data were being fit to within the assessed error. Thisis not
an entirely unexpected result, because the forward modelling is approximate, and its error has not been
accounted for in the objective function.

The recovered parameters and their estimated percent error are listed in table 5.3. Recall that the
UXO was reported to be located, according to our co-ordinate system, at (X,Y) = (200, 200) cm and
at adepth of 50 em (Z = 92 em). The recovered parameters estimate the location of the UXO to be
located at (X,Y) = (214.3 £ 0.4, 219.5 + 0.2) em. Therecovered depth is 127.5 + 0.6 cm from the
surface (164 em from the transmitter loop).

Thedip of the UXO isreported to be 45 degreesin the test site specifications, but therecovered dipis
97.8+40.4°, whichis 7 degreesfrom horizontal and 38 degreesfrom the specified dip. Again, depending
on the precision with which the test site workers were able to bury the UXO, the dip may indeed be an
accurate recovery of the true dip.

5.4.3 Inversion of All Three (X,Y, Z) Components of Data

Figures 5.18(a), (b), and (c), and Figure 5.19 present the observed and predicted data from the inversion
of al three components of secondary 0B /0t field. The data predicted from the recovered model has
been able to reproduce the shape of the observed EM anomaly.
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Figure 5.14: Fitting the Z-component of the B-field and dB/d¢ response measured directly above the
target to find initial estimates of time decay parameters. Both set of data are plotted with a fitted
F(t) = k(t + )P exp —t/y.

[ (m,); | Bfidd [ 9B/0¢ |

X 1.86 1.86
Y 2.18 218
Z 0.65 0.65
a 0.80 0.80
c 3258 | 325
ki, ks || 1 10
a1, Oy 0.64 0.43
51, B || 0.089 | 0.29
Y1, Y2 3.84 3.75

Table 5.2: A summary of the estimated decay parameters.
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Figure 5.15: Surficial coverage of data used in the inversions of this chapter.

All Components Z-Component
standard standard
i || Myec deviation || myec deviation

1.84627 | 0.00723 | 2.14301 | 0.00362
219203 | 0.00218 || 2.19510 | 0.00227
1.64292 | 0.00378 | 1.69517 | 0.00556
3.0418 0.1994 3.2229 0.2773
63.1 0.941 97.77 0.4263

k1 || 0.00896 | 0.00008 | 0.03031 | 0.00019
oy || 048350 | 0.04510 || 0.48116 | 0.07969
B1 || 0.34064 | 0.01412 || 0.41499 | 0.00908
1 || 1.26933 | 0.00988 | 4.35356 | 0.02261

ks || 25.46438 | 0.52055 || 26.58743 | 0.44063
o || 014252 | 0.07716 || 0.17552 | 0.01625
B» || 0.22130 | 0.01859 | 0.22621 | 0.00433
vo || 465282 | 0.02247 | 4.65889 | 0.00974

o |® |l 3

Table5.3: Recovered model parameters when inverting 0B/t field data.
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Figure 5.16: Observed and predicted data when inverting the Z-component of the B /0t field.
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Figure 5.17: Observed and predicted datawhen inverting the Z-component of the 9B /¢ field. Theleft column
includes the data from some of the early time channels: ¢ = 0.036 ms (o), 0.092ms (A), 0.234 ms (O), and
0.525 ms (). Theright column of Figure5.17 includethedatafrom¢ = 1.003 ms(o), 2.53 ms(A), 6.54 ms(0O),
and 17.2ms (x). The error bars represent the standard deviation of the error assigned to each data point. The
predicted does not fit to within the errors specified by the error bars.
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The recovered parameters and their estimated percent error are listed in table 5.3. Recall that the
UXO was reported to be located, according to our co-ordinate system, at (X,Y) = (200, 200) cm and
at adepth of 50 em (Z = 92 em). The recovered parameters estimate the location of the UXO to be
located at (X,Y) = (184.6 + 0.7cm, 219.2 £+ 0.2c¢m). Therecovered depthis 122 + 0.4 ¢cm fromthe
surface (164 em from the transmitter |oop).

Thedip of the UXO isreported to be 45 degrees in the test site specifications, but the recovered dip
is64 + 4°. Again, depending on the precision with which the test site workers were able to bury the
UXO, the dip may indeed be an accurate recovery of the true dip.

5.5 Resultsand Discussion

Two different subsets of the York University Test Site field data were inverted in this chapter. In both
cases, dataacquired at stationswithina2 m x 2m square centered on the apparent location of the UXO
were inverted. In the first case the vertical (Z) component of the data were inverted, and in the second
case all three (X, Y, and Z) components of data were inverted. The recovered parameters from the two
inversions are listed alongside the expected values of the parametersin Table 5.4 for comparison. The

All Components Expected
m; (X,Y,2) Z-Component || Value
X 1.84627 2.14301 2
Y 2.19203 2.19510 2
7 (=Depth
+ Loop Height) || 1.64292 1.69517 0.92
a 3.04° 3.22° na
¢ 63.1° 97.8° 45°
kq 0.00896 0.03031 36.1
a 0.48350 0.48116 0.01
51 0.34064 0.41499 0.76
T 1.26933 4.35356 28.7
ko 25.46438 26.58743 14.7
o) 0.14252 0.17552 0.025
B2 0.22130 0.22621 1.33
Yo 4.65282 4.65889 50.7

Table 5.4: Comparing expected parameters to recovered model parameters when inverting 9B /9t field data.

recovered parametersfor both inversionsare quite similar, with the exception of the X and ¢ parameters.
If welook carefully at the vertical component plot in plan view (see, for example, Figure 5.16), the con-
tours appear to center about a point that is is slightly to the right and down from (X,Y) = (2,2)m.
Recalling that the X -axisruns vertically along the page and Y -axis runs horizontally in order to main-
tain right handed coordinate system with Z pointing into the page, | would expect that the recovered X
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All Components Z-Component
| Diagnostic Result | Conclusion Result | Conclusion
B 0.22 + 0.02 non-permeable 0.226 + 0.004 non-permeable
B1/Bs 1.54 £+ 0.03 n.a. 1.836 + 0.002 n.a.
k1/ko (3540 + 2) x 1077 rod-like 0.0011 + 4 x 10719 rod-like

Table5.5: Resultsfrom applying the UX O discrimination diagnostics. Thevalueof k; isvery small and therefore
thevalueof 3, isunreliable becauseit can take on almost any value without affecting the data. Thereforeonly - is
used inthediagnostic. 35 indicatesthat thetarget isnon-permeable. The k-ratioindicatesthat thetarget isrod-like.
The diagnostics indicate a non-permeable rod.

isdlightly lessthan 2, and Y would be slightly greater than 2. Thisresult isfound in the inversion of all
the components.

The recovered depth of the target is approximately 75 cm deeper than the reported target depth of
50 em. The recovered depth from the surface is 121.3 em and 126.5 em for the 3-component and Z-
component inversions, respectively. These values are actually close to the depth estimated by using the
FWHM on the profile parallel to the X -axis (Figure 5.12).

The recovered time decay parameters are compared to the time decay parameters obtained by fitting
curvesin thelab. The two sets of parameters (Iab and field) are very different. The recovered value of
k1 is 3 orders of magnitude less than k&, from the field data set. The lab data set resulted in k-, being
larger than k;. Since k4 isso much smaller than k-, thefirst dipole has almost no effect on the response.
Also, since a1, 31, and 47 are all parts of functions that multiply &, they can take on essentially any
value without any effect on the predicted data. Thisfact meansthat 3; cannot be used as an indicator of
whether the object is susceptible, not can it be used in any ratio needed by the discrimination algorithm.

Fromtheinversionsrequiring al the componentsand only the Z-component, the 3, valuesare0.22 +
0.02 and 0.226 + 0.004, respectively. These recovered values are quite small, and not within the range
of 3 parameters expected for metallic targets. The minimum value of 3 isthat of a hon-permeabletarget
which is approximately 0.1 for B-field measurements and approximately 0.5 for 9B /9t measurements.
The k-ratio test applied to these recovered parametersindicate that the target is rod-like.

The diagnostics as applied to the recovered parameters indicate a non-permeable and rod-like tar-
get (Table 5.5). Thisresult isin contradiction to the results established for a 105 mm shell measured
in the Geonics lab. The detection diagnostics applied to those measurements indicated a magnetically
permeable target. | will consider two possible explanations for this contradiction.

Thefirst possibility isthat the buried target isindeed non-permeable and the discrimination diagnos-
tics correctly recognized the target’ sfeatures. This conclusion isreasonable because, although the target
is known to be a 105 mm shell, there is no information about the metallic content of the target. In ad-
dition, the length of the buried 105 mm shell is 60 cm (Szeto, 1996), while the reported length of the
shell measured in the Geonics lab was 40 cm. Clearly, the buried shell is a different type of 105 mm
shell than the shell measured at Geonics. It is possible that the particular type of 105 mm shell buried at
the York University Test Siteis non-permeable. If thiswere the case, the algorithm would be considered
successful in establishing the rod-like character of the target.
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A second possibility isthat the buried 105 mm shell isindeed permeabl e and the recovered diagnos-
ticsare incorrect. In this case a possible reason for the failure of the diagnostics could be because the
measurement apparatusin thelab is much different than that used in thefield. Consequently the data sets
and, subsequently, the representative decay parameters are different. Figure 5.1(b) and (c) contained the
response of a 105 mm artillery shell measured by Geonics Ltd., using the same lab setup described in
Chapter 4. Thetimedecay parameters of the 105 mm shell were extracted from these measurementsand
listed in Figure 5.1(d). A fundamental assumption made in this thesisis that the parameters recovered
in the lab would be the same as the parameters recovered in the field. This assumption alowsthe UXO
identification diagnostics of Chapter 4 that weredevel oped from the laboratory measurementsof metallic
prisms, to be applied to field data measurements.

Inthefollowing two sections| assumethat, under the same measurement conditions, the buried target
that gave riseto the field data set would produce the same response as the 105 mm shell measured in the
Geonicslaboratory. Thevalidity of thisassumption can be examined with the York University dataset. If
the model parametersfrom the lab and the field were similar, it would be possible to take the parameters
measured at thelab and forward model them to reproduce the measurementsmadeinthefield. Therefore,
the following short study will examine whether the observed field data can indeed be modelled. If |
assume that the location and depth could be adequately estimated by their listed valuesin the Test Site
specifications, then the only real unknown element of themodel vector isthedipc. Thereforel will try to
reproduce the anomaly pattern of the field data by varying the dip ¢. This comparison will be carried out
on the 9B/ 9t and B-field decay curves measured directly above the UXO ((X,Y) = (200, 200) em),
and a so on the three component, 30 time channel, full 9B /dt data set.

If areasonablefit of the field data set could be achieved for somevalueec, thenitispossiblethat rela-
tionships between model parameters and physical parameters of the target from Chapter 4 are applicable
to parametersrecovered from field data. If it is not possible to attain areasonablefit of the field data set,
then | conclude that significant differenceswill exist between the response of an abject in the lab and the
responsein thefield. Should this be the case, | would surmise that the two data sets (lab and EM61-3D)
areinconsistent, and that the interpretation of parameters devel oped from lab datawould be inapplicable
to the the field results.

Comparison of Lab and Field Time Decay Curves Measured at a Single Station

Figure 5.20 contains the observed vertical component of the B-field and 9B / 9t response measured dir-
ectly above the UXO. Also included are forward modelled curvesusing model parametersobtained from
fitting laboratory measurements. The model parameters are forward modelled for several different dip
angles c. All curves are normalized such that the datum of the first time channel for all responses have
the same value. There are severa differences between the field measurements and the forward modelled
curves.

Let usfirst comparethe 8B /9t measurement to the forward modelled curves (Figure 5.20(b)). There
are two major differences between the curves. Firstly, the basic character of the curvesisdifferent. The
dominant feature of the forward modelled curves is the power law decay ¢=#, with a flattening of the
response at early time, and an exponential decrease at the end. The measured 0B/t response is essen-
tially exponential, and does hot have section that appearsto obey apower law. Secondly, dueto the early
onset of exponential decay in the field measured response, the forward modelled responses extend later
into time. The differencesin the B-field field measured response and forward modelled curves are less
dramatic than the differencesin the 9B /9t response. However, the same differences exist. That is, the
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Figure5.20: Comparison of forward modelling parametersobtained from lab measurementsof a105 mmUXO, to
measurements made at afield site directly over a105 mm. The model parameters obtained from lab measurements
. In both the 9B /8¢ and B-field responses, the forward modelled responses do not look like the EM61-3D field
data

forward modelled curves extend later into time and exhibit a power law decay of t—#, and the measured
curves ook like asingle exponential.

In both the 9B /8t and B-field responses, the forward modelling was unable to use the lab measured
105 mm shell curvesto reproduce the EM61-3D field data at a single point.

Comparison of Spatial Behaviour

Figures 5.3 and 5.4 plot, in plan view, the measured vertical and horizontal component of the 0B /9t
response for the odd time channels. The vertical component of the field appears elongated in plan view,
and the horizontal component of the field has two lines of symmetry and two maximain plan view over,
essentialy, all timechannels. It should be possibleto reproduce this measured response by forward mod-
elling the decay parameters obtained from the laboratory measurement of a 105 mm UXO, provided that
the buried target and the laboratory shell are similar and provided the forward model is accurate.

Figure 5.21 contains plots where | try to duplicate the spatia features of the field data set when for-
ward modelling the model parametersfrom thelab data. Inthisstudy | assumed that the UX O was buried
50 ¢m deep (aswas listed in the York University Field Site target specifications). The only model para-
meter to be varied was the dip ¢. | was unable to duplicate the features of the full time domain response
measured in thefield. Indeed, in only one instancewas | able to match the features of the field response.
When | forward model the decay parameters with the UXO having adip of ¢ = 90 °, then the early time
measurement of the vertical component of the field is elongated, and the horizontal component has the
right symmetry and two peaks. Thistime slice is indicated by the black arrowsin Figure 5.21.

Thistest demonstratesthat it isimpossible to reproduce the field measurements from the parameters
obtained from measurements of a 105 mm shell measured in the Geonicslab. Thisanalysisalso reveals
the nature of the dipole that reproduces the measured electromagnetic anomaly of figures 5.3 and 5.4.
In figure 5.21 the early time behaviour of a UXO with adip of ¢ = 90° is shown to have the same
anomaly pattern asthe field measurements. At this early time slice the majority of the signal is produced
by the dipole perpendicular to the long axis of the target (dipole 2). Therefore, the entire 30 channels of
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observed data could be reproduced with only dipole 2. The equivalent anomaly can be modelled by the
two-dipole model when k4 is much smaller than k., which wasindeed aresult from the inversions.

The tests from this section and the previous section were performed assuming that, under the same
measurement conditions, the buried target that gave rise to the field data set would produce the same
response as the 105 mm shell measured in the Geonics laboratory. It is clear from these tests that if
this assumption is accurate, there is some doubt in the validity of transferring parameter interpretation
results developed from the lab data analysisto field data. If the decay parameters obtained in thelab are
inconsistent with those obtained in the field, then all the diagnostics devel oped to this point would be
inapplicableto field data. Of course, these conclusions were drawn only after assuming that the buried
target possessed the same response characteristics as the 105 mm shell in the lab. Further investigation
has to be made into determining why the discrepancies exist, such that lab and field measurements can
be confidently related.
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Figure 5.22: Comparison of 9B /0t response of a 105 mm shell. This plot includes the forward modelled re-
sponse using parameters obtained from the Geonics Lab data (A), the response measured above the UXO using
the EM61-3D (o), and the response measured using a modified EM 61 with a5 m sguare transmitter loop (*) (ob-
tained from Naeva Geophysics).

Comparison of the York University EM61-3D Field Data Set to Another Field Data Set

These recovered parameters suggest, as was concluded in the short forward modelling study of the pre-
vious sections, that the York field data are inconsistent with the UXO discrimination algorithm. The
differencesin lab and field setup produce data that are too dissimilar to justify applying the interpreta-
tion technique, developed from lab data, to the field data. Figure 5.22 plotsthe Z-component of B /dt
data taken with the target co-axial to thereceiver and transmitter loops, and again makes the comparison
between the Geonics laboratory data and York field datafor a 105 mm shell.

Comparison of the experimental setup used to acquire the lab data (Figure 4.1) and the EM61-3D
arrangement (Figure 1.2) reveal that |ab data sets were acquired under different conditions. Two obvious
differences between the lab and field setup are that the transmitter loop sizes are very different (a40 m
sguare loop vs. a 1 m square loop), and secondly that the 1ab measurements are taken in air while the
field measurements obviously has the target buried.

It is possible that the difference between the York field test site data and the lab datais, in part, due
to the major difference in transmitter loop. A large transmitter loop will produce a more uniform field
than asmall transmitter loop. Let us consider a dipole source transmitter. The response of aspherein a
dipolefield iswritten asan infinite series of multipoles (Grant and West, 1965; Nabighian, 1970). When
the dipole source is far from the sphere, only the term corresponding to a uniform field is significant,
and the secondary field of the sphereisthen a dipolar field with a strength proportional to the primary
field. When the sphere is closer to the dipole transmitter, the higher order multipoles are needed for
accurate representation of the response, adding to the response at early times. The 1m x 1m EM61-3D
loop can be approximated by a dipolefor caseswhere UXO are more than 1 to 2 meters from the EM61
transmitter coil (Barrow et al., 1996), however, the range of UXO size for which thisrule is applicable



5.6. Summary 115

was not clearly indicated in the cited paper. For distanceslessthan 1 or 2 meterstheresponse can till, in
principle, be represented by a series of multipoles, and a small transmitter loop will induce more higher
order multipoles in the target than induced by alarge transmitter loop (Nabighian and Macnae, 1991).

The effectsof source/receiver/target geometries could not adequately be studiedin thisthesiswithout
an electromagnetic forward modelling codeflexible enough to reliably model arange of source/receiver/target
geometries. However, there does exist ameasurement of a105 mm shell using atimedomain systemwith
adifferent loop size that provides an interesting comparison. Included in figure 5.22 is a measurement
taken by Naeva Geophysics using a modified EM61 of a 105 mm shell. Plotted using'*’ markersisthe
0B /0t decay curve measured as part of the Jefferson Proving Ground Phase IV competition. Thisisa
field measurement directly above a 105mm shell buried at a depth of 0.59m and hasa 45 © declination.
The shell hasalength of 64.8¢m, which is approximately 25¢m longer than the 105mm shell measured
in the lab. The measurement uses the sasme PROTEMA47 receiver that is part of the EM61-3D, but uses
a b m sguare transmitter loop. The Naeva Geophysics measurement is plotted alongside the forward
modelled curve of a 105mm shell using parameters from the lab data and the York Field Data.

The measurement setup for the two field measurements are ailmost identical. The target is buried at
reportedly the same dip, and within 10 ¢m of the same depth. The mgjor differenceisthat the transmitter
loop sizefor the Naeva Geophysicsconfigured systemis5 timeswider. 1n comparing the responsesof the
measured and forward modelled responses plotted in Figure 5.22 it is clear that the response measured
by Naeva Geophysics has a different character than the response measured by the EM61-3D. The major
differenceisin the slope of the 9B / 9t response. The EM61-3D measurements has an exponential decay,
whilethe Naeva Geophysicsmeasurements approximately follow at~! decay at earlier times. TheNaeva
Geophysics measurement is somewhat similar to the forward modelled response using parameters from
lab measurements of a 105mm shell. In both these measurements alarge transmitter loop, producing a
more uniform field was used in the measurement.

5.6 Summary

The previous chapters of this thesis outlined the development of a data interpretation strategy for the
location and identification of UXO. In this chapter, the inversion methodology and UXO identification
diagnostics were applied to EM61-3D secondary field measurements taken over aburied 105 mm shell.

Before applying the algorithm, two methodswere suggested for characterizing the noisein the meas-
ured data. In the first method, inversions using data from single time channels were performed using a
two-dipolemodel. The misfit for each time channel was used to estimate of the noisein that channel. In
the second method, | assumed that field measurementstaken far enough away fromthetarget did not carry
any useful signal from the target, but rather provided a measurement of the noise. These noise measure-
ments could then befit with apower law function A 2. Thetwo methods provide similar and reasonable
estimates of the noise. Inversions using each of the noise models generated very similar results.

With an acceptable noise model in place, the inversion procedure was then carried out. Two subsets
of the complete York University Test Site field data set were inverted. In both cases only stations within
a2 m square region centered on the target were considered. Inthefirst case only the vertical (Z) compo-
nent of the 9B /9t response was inverted. In the second case all three (X ,Y,Z) components of 9B/ dt,
collected within the same square region, were inverted.

The two inversions produced similar results. In both cases the x? misfit was approximately 4V,
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where N isthe number of data. | consider this misfit to be reasonable, considering the approximate for-
ward modelling used to invert the data. Therecovered parametersprovideagood estimate of thelocation
on the survey grid of the buried ordnance, but the recovered depth and dip of the UXO do not match the
depth and dip listed in the field site specifications. The algorithm, when applied to either the B /9t or
B-field data sets, placed the object at least 70 cm deeper than the reported depth. The recovered depth,
however, is consistent with the estimation of depth using the Full Width Half Maximum. The recovered
time decay parameters demonstrated that the data could be fit using a single dipole perpendicular to the
long axis of the UXO. The diagnostic tests, developed in Chapter 4, indicated that the buried target was
non-permeable and rod-like.

The chapter concludes with a comparison of the field data and the lab measurements of a 105 mm
shell. The major assumption in the final sections was that the buried 105 mm shell and the shell meas-
ured in the Geonics laboratory, are similar in the sense that the two shells would produce the same re-
sponse under the same measurement conditions. Given this assumption, the tests showed that the field
data measured by the EM61-3D isinconsistent with the lab data used to devel op the discrimination dia-
gnostics. Fundamental to the accuracy of the forward modelling is the ability to model the response of a
buried target asapair of dipolesat the midpoint of the body. The results of these testsbring into question
the validity of the dipole representation. This representation is exact for TDEM response of a spherein
auniform, step off primary field and also for the magnetostatic solution of a spheroid in auniform field.
Indeed, if you are far enough away from any localized current distribution, the observed field will be
that of a dipole (Jackson, 1975). There are a couple of key factors that weaken the assumption that the
response can be represented as a single, point dipole for this field data set. Firstly, the primary field is
produced by a 1m square transmitter loop, which is likely too small to produce a uniform field. Sec-
ondly, we are observing a buried target with length equal to one-half the distance from the target center
to the receiver. We may be located too close to the target to observe a dipole field. Given the different
assumptionsthat may have been violated, or any other unaccounted errors, tests should be completed to
determine under which source/receiver/target geometriesthe technique will be ineffective or successful.

The possibility remains that the object buried at the York test site is not strongly magnetic and, in
fact, is properly represented as a conducting, non-permeablerod. | suggest that the buried object be dug
up and subjected toin-house analysis, or that the experiment of burying aUXO with measured | aboratory
responses be repeated.



Chapter 6

Summary, Conclusions, and Future Work

The goal of this thesis was to develop a method of discriminating between UXO and non-UXO items
from time-domain electromagnetic data collected with the Geonics Ltd. prototype instrument EM61-
3D.

In Chapter 2 an approximate forward model was devel oped for describing the time domain electro-
magnetic response of a buried metallic object. The model was based on the analytic solution of asphere
and the magnetostatic solution of aspheroid. It hasastrong physical basisand issimpleto compute. The
time domain response of ametallic object isrepresented as apair of perpendicular, decaying dipolesloc-
ated at the center of the object. I1n Chapter 3 anon-linear parameter estimation procedure was devel oped
to recover the 13 parameters of the model. Rough estimates of the model parameters can be obtained
by applying some simple data preprocessing strategies. These initial estimates are then iteratively re-
fined by solving a non-linear least squares problems. These techniques were shown to work very well
on synthetically generating data sets containing random, Gaussian noise.

Chapter 4 outlined a proposed UXO discrimination method. In the absence of analytic solutions of
Maxwell’s equations and the lack of suitable numerical electromagnetic forward modelling, | use lab
measurements of the time decay curves of different metallic targets. The algorithmisbased on two facts:
(1) UXO aretypically made of steel and (2) UXO aretypically rod-like rather than plate-like. The dis-
crimination method first requires that conductive targets be distinguished from steel targetsthat are con-
ductive and permeable. The 8 parameter was found to be an indicator as to whether the target is indeed
permeable. The second stage then focuses upon determining if the steel target is rod-like or plate-like.
Theratios of k; /k, and 8, /3, are diagnostic indicators as to whether the geometry is plate-like (unin-
teresting) or rod-like (a high candidate for being aUXO).

In Chapter 5 the parameter estimation procedure and discrimination algorithm is tested on a EM61-
3D field dataset. The data set was acquired over a105-mm shell buried at the York University Geophys-
ical Test Site. Techniques were developed in this chapter to estimate the noise level in the instrument
during the survey. The standard deviation of the noise was found to follow at~! decay. The parameter
estimation algorithm was applied to a data set including all three (X, Y, and Z) components of B /0t
data, and to a data set containing only the vertical (Z) component of the data set. Both inversions re-
turned approximately the same decay parameters, and the discrimination algorithm identified the buried
target as a non-permeable rod-like target when applied to either data set. The chapter concludes with
comparisons between a TDEM measurement of a 105 mm UXO in alaboratory setting and afield set-
ting. Thetwo electromagnetic anomaliesare quite different, and therefore we must question how similar
the 105 mm UXO buried at the York University Test Siteisto the 105 mm UXO measured in thelab, and
how does the differences the source/receiver/target geometries of the lab and field measurements affect
the time domain response.
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Future Work

Much work needsto be done before the discriminati on al gorithm can be used asa practical tool. Most im-
portantly, the accuracy of the approximate forward modelling needsto be established. Aswasmentioned
earlier, tests need to be completed to determine the conditions under which the approximate forward
modelling isinadequate. Accessto an accurate numerical solver that is flexibleto source/receiver/target
geometrieswill aid tremendously in thisregard.

Non-UXO buried metal objects will often be buried in close proximity to each other. A study of
the TDEM response to multiple targets should be performed. It has been suggested that the use of a
magnetometer in concert witha TDEM sensor would provide the necessary information to identify ' clut-
ter’ (Barrow etal., 1996). Magnetometer surveysareperformed on UX O remediation projects, and there-
forea’joint’ inversion of magnetics and electromagnetic data sets would be useful.



Appendix A

Time Decay Parametersof Various Unexploded Ordnance

In this appendix the time decay parameters k, «, 3, and 4 are listed for the measurements of a 24 UXO
provided by Geonics. Details of the measurement procedure are provided in Chapter 4. The 0B /0t
measurements were supplied, and the B-field response was obtained by integrating B /0t (see Chapter
4).

The decay parameters are obtained by fitting the curve with least squares. A weighted least squares
obj ective function:

¢ = |[Wa(f(k, o, B,7;t) — d°)||? (A.2)

is minimized where (Wy);; = 1/d2**. Thisweighting is chosen to put equal importance on each data
point in the fitting. The minimization is performed using Newton’s method.
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APPENDIX A. TIME DECAY PARAMETERS OF VARIOUS UXO

UXO 1 81 mm Mortar " 81 mm Mortar
10
5 o O 1 o O 1
10 + o+ 2 + o+ 2
10" 103
S10° @
107 10°
107
10 =) = 0 1 107 = 0 2
10 10 0 10 10 10 10
Time (msec) Time (msec)
oB/ot | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 18 cm k 8.4264 1.034 k 0.015929 | 0.0014048
Diameter | 6.05cm a 2.1278e-13 | 0.0046863 [ 0.14318 0.020048
Weight 1.0kg B 0.76425 1.3482 B 0.38228 0.57791
¥ 4.4249 7.7877 ¥ 4.0073 5.0536
Uxo2 o 107
1 4 A A1
10° 2 0o o2
10° 107
dB/gy? B
10° 10°
10
lO;D 10% 10 -2 -1 o 1 2
Time (msec) 10 10 Time (msec) 10 10
OB/6t | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 22.cm k 15.3405 3.7056 k 0.03313 0.0048181
Diameter 7.64 a 0.00145 0.00045603 [ 0.099158 | 0.025894
Weight 2.9kg B 0.71778 1.1869 B 0.28132 0.53593
¥ 534 4.9646 ¥ 45931 3.9331
UXxo3 10" 107
1 A A1
10° 0o o2
10° 107
9 dB/gy? B
10° 10°
10
10;0 10" -2 = 0) 1 2
Time gnsec) 10 10 Time1(omsec) 10 10
OB/6t | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 23cm k 12.018 3.2996 k 0.035966 | 0.005295
Diameter 7.64 a 0.0076046 | 0.0076551 [ 0.13089 0.037148
Weight 6.0 kg B 0.89309 1.2523 B 0.345 0.52799
¥ 17.6534 11.5385 ¥ 14.6366 8.2811
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uUxo4 1° 107
A A1
10° o oo2
10° 107
B/ B
10° 107
10°
0 10 = 0 T >
Time (msec) 10 10 Time (Omsec) 10 10
OB/6t | Orient. 1 | Orient. 2 B-field | Orient. 1 | Orient. 2
Length 28cm k 16.6154 3.1425 k 0.047564 | 0.0047484
Diameter | 8.28cm a 0.0011347 | 0.013708 o 0.11429 0.039837
Weight 24cm B 0.72135 1.3689 B 0.25381 0.59659
¥ 9.1392 14.0355 ¥ 7.4403 9.2161
UXO5 107
A A1
o o 2
107
B
107
107 -2 -1 0 1 2
Time (msec) 10 10 Time (Omsec) 10 10
OB/Ot | Orient. 1 | Orient. 2 B-field | Orient. 1 | Orient. 2
Length 27cm k 17.283 4.7022 k 0.050894 | 0.0069736
Diameter | 7.96cm a 3.9309e-13 | 0.011705 o 0.19161 0.05303
Weight 3.5kg B 0.66067 1.307 B 0.24897 0.60847
¥ 7.0206 9.0696 ¥ 57971 6.8361
UXO 6 o 10
4 A A7
103 a o 2
10° 107
B/ B
10° 10°
10”
10;0 107 = o T 2
Time (msec) 1o 10 TimeI?msec) 10 10
OB/6t | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 23cm k 13.4403 6.8116 k 0.049723 | 0.0083152
Diameter 7.64 a 0.0015016 | 0.00044706 o 0.5342 0.017431
Weight 3.0kg B 0.69969 1.024 B 0.44479 0.40575
¥ 9.2511 2.7785 ¥ 8.9712 2.2748
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UXO7
10°
10°
dB/glyt
10°
10
10°
10
Time (msec) Time (msec)
OB/6t | Orient. 1 | Orient. 2 B-field | Orient. 1 | Orient. 2
Length 26 cm k 16.6858 5.1418 k 0.058517 | 0.014881
Diameter | 8.91cm a 0.025417 | 0.019898 o 0.28298 0.019159
Weight 10.0 B 0.96855 1.3743 B 0.43358 0.35908
0% 27.6964 3.5e10 0% 23.2341 362.1868
uUxos 10" 10°
A A1
10° 0o o2
10°
dB/glyt
10°
10
0 s = 0 T J
Time {msec) 10 10 Time1(omsec) 10 10
OB/6t | Orient. 1 | Orient. 2 B-field | Orient. 1 | Orient. 2
Length 31lcm k 18.7578 5.4074 k 0.10558 0.0088183
Diameter | 7.64cm a 0.021688 | 0.013519 o 0.80482 0.023736
Weight 5.5kg B 0.79351 1.2478 B 0.48076 0.44738
0% 22.2871 8.175 0% 21.5926 5.5922
UX O 9 81 mm Mortar o 81 mm Mortar
10
5 o O 1 o O 1
10 + o+ 2 + o+ 2
10" 104
gm° @
107 107
107
10-3 -2 -1 0 1 2 10-4 -2 .- 0 1 2
10 10 10 10 10 10 10 0 10 10
Time (msec) Time (msec)
6B/ot | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 32cm k 18.5381 8.3385 k 0.11009 0.019688
Diameter | 9.23cm a 2.8288e-09 | 0.015513 o 0.29625 0.045709
Weight 10kg B 0.65171 1.2549 B 0.18691 0.42852
0% 27.1429 67.7316 0% 0.18691 31.7268
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UX O 10 81 mm Mortar " 81 mm Mortar
10
, o o1 o o1
10 + o+ 2 + o+ 2
10" 103
S10° @
107 10°
107
10 = 0 1 2 107 = 0 2
10 10 10 10 10 10 10
Time (msec) Time (msec)
OB/6t | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 43 cm k 19.6953 5.2157 k 0.030839 | 0.0054725
Diameter | 8.28cm a 0.0038303 | 0.0041505 a 0.1016 0.032929
Weight 3.7kg B8 0.80704 1.1684 B8 0.39821 0.56827
¥ 3.5975 2.6491 ¥ 3.224 2.1543
UX O 11 81 mm Mortar " 81 mm Mortar
10
, o o1 o o1
10 + o+ 2 + o+ 2
10" 103
S10° @
107 10°
107
10°L = Q T , 10t = 0 T 2
10 10 10 10 10 10 10 10 10 10
Time (msec) Time (msec)
OB/ot | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 43 cm k 19.7178 4.9078 k 0.04106 0.0060188
Diameter | 8.28cm a 2.8314e-05 | 0.015947 a 0.14366 0.081855
Weight 3.5kg B8 0.67757 1.3145 B8 0.30994 0.73637
¥ 4.5845 4.5656 ¥ 4.1266 3.8707
UX O 12 81 mm Mortar o 81 mm Mortar
10
, o o1 o o1
10 + o+ 2 + o+ 2
10" 103
S10° ©
107 1079
107
107 = = 0 1 2 107 ~ = 0 1 2
10 10 10 10 10 10 10 0 10 10
Time (msec) Time (msec)
OB/6t | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 55cm k 11.9927 19.9205 k 0.012766 | 0.019463
Diameter | 7.96cm a 0.0098352 | 3.7507e-10 a 0.060985 | 0.0076824
Weight 2.7kg B8 1.0184 0.89886 B8 0.51984 0.31428
vy 2.1476 1.2744 vy 1.8748 1.0604
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UX O 13 81 mm Mortar " 81 mm Mortar
10
, o o1 o o1
10 + o+ 2 + o+ 2
10" 103
S10° ©
107 10
107
10 - 5 ; , 005 = 5 : .
10 10 10 10 10 10 10 10 10 10
Time (msec) Time (msec)
6B/6t | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 57 cm k 23.2215 10.0824 k 0.037261 | 0.0092283
Diameter | 7.96cm a 5.5645e-10 | 0.006744 a 0.10843 0.036822
Weight 3.2kg B8 0.5927 1.1617 B8 0.24658 0.59621
vy 2.4582 2.0031 vy 2.1857 1.7036
UX O 14 81 mm Mortar " 81 mm Mortar
10
, o o1 o o1
10 + o+ 2 + o+ 2
10" 103
S10° ©
107 10°
107
10 - 5 ; , 005 = 5 : .
10 10 10 10 10 10 10 10 10 10
Time (msec) Time (msec)
oB/ot | Orient. 1 Orient. 2 B-field [ Orient. 1 | Orient. 2
Length 42 k 26.7977 17.6867 k 0.17694 0.034207
Diameter | 13.37 o 1.3556e-08 | 0.020031 o 0.52649 0.09479
Weight 12.5 B8 0.65935 1.2578 B8 0.20864 0.56972
vy 27.1799 19.9042 vy 20.6112 14.9911
UXO0 15

10°
Time (msec)

i
5]

L \ ] \
=
S)
o>
o>
[N
B

o

Time (msec)

.
ON

[
S)

OB/6t | Orient. 1 | Orient. 2 B-field [ Orient. 1 | Orient. 2

Length 40 cm k 36.147 14.7409 k 0.16956 0.031181

Diameter 10.5 a 0.010285 | 0.025026 a 0.21329 0.070159
Weight 13.5kg B8 0.75595 1.339 B8 0.24762 0.51925
¥ 28.7217 50.7483 ¥ 23.9861 30.7427
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UXO 16 10 10°
1 A A1
10° 2 0o o2
10'f
10°
dBlge! B1p?
10°
10°
10
10° , 107
10 ) 10 107 10 10° 10" 10°
Time (msec) Time (msec)
oB/ot Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 438 k 36.7492 12.1948 k 0.10094 0.014044
Diameter | 10.19 o 0.00061726 | 0.0080828 o 0.22683 0.036692
Weight 7.0 B 0.61302 1.2124 B 0.27539 0.57446
0% 6.1913 3.7363 0% 5.648 3.0353
UXxo 17 o 10°
A A1
10° 4 ) o o2
10°
dBlge! »
10°
10
10;0 -2 o 1 2
Time psed) 10 10 Time1(omsec) 10 10
OB/6t | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 40 k 48.5862 20.5593 k 0.273525 | 0.034819
Diameter | 10.82 o 0.0011019 | 0.0068033 o 0.47898 0.037236
Weight 12.0 B 0.65187 1.1529 B 0.33424 0.46327
0% 12.5205 9.9621 0% 11.6425 7.8332
UXO 18
A A1
o o 2
Time psed) 10° 10 Time1(omsec) 10 10
6B/ot | Orient. 1 Orient. 2 B-field [ Orient. 1 | Orient. 2
Length 438 k 36.2589 17.6064 k 0.19212 0.031204
Diameter | 10.82 o 5.7907e-11 | 0.010139 o 0.3148 0.039386
Weight 10.5 B 0.603 1.0819 B 0.1801 0.40618
0% 17.1082 8.7223 0% 14.0868 6.9324
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UXO 19
A A1
10°4 o0z
10°
4 de/gyt
= 100
107
10;20 -2 o 1 2
Time psed) 10 10 Time1(omsec) 10 10
OB/6t | Orient. 1 | Orient. 2 B-field | Orient. 1 | Orient. 2
Length 58 k 32.4363 11.2434 k 0.096635 | 0.014977
Diameter | 10.19 o 0.026386 | 0.0040584 a 0.34723 0.014463
Weight 10 B 0.98995 1.3666 B 0.34723 0.57344
0% 14.3295 6.9708 0% 13.4109 5.1296
UXO 20
10°
10°
dBlge!
10°
10
10°
10
Time (msec) Time (msec)
6B/ot | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 65 cm k 7.5588 16.9015 k 0.030871 | 0.034962
Diameter | 10.82cm o 1.3271e-09 | 0.025302 o 0.12357 0.19526
Weight 10.0kg B 0.71667 1.1765 B 0.20726 0.65286
0% 18.2876 12.5304 0% 13.9887 0.11.1432
Uxo 21 1o 10°
A A1
o o 2

dB/gy!

1 2

10 ) 10 10° 10 10
Time (msec) Time (msec)
oB/ot Orient. 1 Orient. 2 B-field [ Orient. 1 | Orient. 2
Length 85 k 5.0162 7.4084 k 0.02588 0.026974
Diameter | 12.1 o 0.00042785 | 0.023385 o 0.20311 0.036862
Weight 135 B 0.74852 1.2394 B 0.22922 0.28924
0% 33.8514 2.3ell 0% 25.0263 388.9814
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UXO 22
A A1
10°4 00z
10°
i de/gyt
= 100
107
10’120 = 5 T 2
Time psed) 10 10 Time1(omsec) 10 10
6B/Ot | Orient. 1 Orient. 2 B-field | Orient. 1 | Orient. 2
Length 61 k 58.6994 58.786 k 0.49567 0.15017
Diameter | 15.92 o 7.6954e-09 | 0.020634 a 1.1046 0.14091
Weight 37 B 0.59132 1.1286 B 0.24753 0.48539
0% 30.0566 20.1234 0% 26.2415 22.6729
UXO 23 o 10°
A A1
10° 0o o2
10°
dBlge!
10°
10
10°
10
Time (msec) Time (msec)
OB/6t | Orient. 1 | Orient. 2 B-field | Orient. 1 | Orient. 2
Length 58 cm k 19.4658 10.2121 k 0.052432 | 0.012149
Diameter | 10.19cm o 0.032818 | 0.013102 a 0.37856 0.042451
Weight 10.0kg B 1.0805 1.4264 B 0.73813 0.71011
0% 11.4199 6.7625 0% 11.577 5.135
UXOo 24 1o 10°

dB/gy!

Time (msec)

10°
Time (msec)

10"

10

OB/6t | Orient. 1 | Orient. 2 B-field | Orient. 1 | Orient. 2
Length 7 k 19.4658 10.2121 k 0.052432 | 0.012149
Diameter | 11.46 o 0.032818 | 0.013102 o 0.37856 0.042451
Weight 16 B8 1.0805 1.4264 B8 0.73813 0.71011
¥ 11.4199 6.7625 ¥ 11.577 5.135




Appendix B

Time Decay Parametersof Metallic Prisms

In this appendix the time decay parameters k, «, 3, and -« are listed for the measurements of steel and
aluminum axi-symmetric targets provided by Geonics. These targets range froman 8 x 8 x 0.25 inch
plateto a8 x 0.25 x 0.25 inch rod. Details of the measurement procedure are provided in Chapter 4.
The 0B/ 8t measurements were supplied, and the B-field response was obtained by integrating B / 0t
(see Chapter 4).

The decay parameters are obtained by fitting the curve with least squares. A weighted least squares
objective function:

¢ = |[Wa(f(k, o, B,7;t) — d°)||? (B.1)

is minimized where (Wy); = 1/d¢b*. Thisweighting is chosen to put equal importance on each data
point in the fitting. The minimization is performed using Newton’s method.
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Appendix C
Calculating the Primary Field BY of a Square Loop Transmitter

The B-field of square loop carrying a steady state current I can be determined by integrating the Biot-
Savart law. The Biot-Savart law issimply

!
B:lﬂ/dl“ (C.1)

47 3

Tofind thefield of aloop | will determine an expression for the field from afinite sesgment of wire. The
field from a square loop follows easily from thisresult. Let us consider awire whose endpoints are loc-
atedat r, andry, (Figure C.1).

d=dT,

Figure C.1: A current carrying wire of finite length.

Let I, be the unit vector pointing from r, to ry. We can first solve for the numerator of equation C.1,
and secondly the denominator, and then we can substitute the appropriate expressionsin equation C.1.
FromfigureC.1,x' = r, — 1., and dl = di1,,. By Sinelaw, we can solve for [ and its derivative di

Il =r,(sinacotp —cosa), dl = —rg sina csc? ¢pdg (C.2
The numerator isthen

dlxr' = —rysinacse? ¢ <iab X ra> do (C.3)
The denominator is then

It'| = rq — 11,

=T, — 7o (sinacot ¢ — cosa) Iy (CH
= A — rysinacot ¢iab

where A = r, + r, cos aly
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Substitution into Biot-Savart to gives us the field from a straight line

B _ pol /¢>b:ﬁ —7, sina csc? ¢ <iab X ra> do
ab — in f

(C.5)

. |A — 7, sinacot¢iab|3

To solve this integral make a change of variable by letting z = r, sin e cot ¢, and therefore de =
—7g sin a csc? ¢dop:

I [ <iab X ra> dz
B, = M / ~ 7 (C.6)
47‘- XTq |A. — ﬁIab|3

Thisintegral can be rewritten as

ol (: o de
B, = I, Xr,
* T < br ¥ ) / [c + 2bz + az2]3/2

Ta

Hol (2 ar + b (C.7)
= — <Iab X ra> 3/2
an (ac — b?) (c + 2bz + az?)
wherea = 1,b = —A I, andc = A - A. Subdtitution to return to our origina variables give
| i t¢ i =B, r'=ry
OI Iab X Tqy Tq SIN & CO - <ra cLlgp — Tq COS a)
®= Z— ( - ) 7 ; (C.8)

" [T‘Z‘ ~ (ra - Tap) ] ’ o, 1=

With some manipulation we get

g, tel (xra) 5  (ra m 9
= 4r [2 : 2]\ p r '
r —(ra-Iab)] a b

a

where | used the fact that

Iab *Tg Iab *Tp
cosa = — , cosff = —
Ta b

(C.10)

Equation C.9 therefore expressesthe field of astraight wire of finitelength in terms of the current in the
wire I, and the endpoints of the line segment, given by r, and r, (note that I, = (rp — ry)/|rs — r4l).
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