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Abstract

We assume that the Time Domain Electromagnetic (TEM) response of a buried axisymmetric metallic object
can be modelled as the sum of two dipoles centered at the midpoint of the body. The strength of the dipoles
depends upon the relative orientation between the object and the source field, and also upon the shape and
physical properties of the body. Upon termination of the source field, each dipole is assumed to decay as���������
	���
�� ������� . The parameters

�
,
�

, � and � depend upon the conductivity, permeability, size and shape
of the object, and these can be extracted from the measurements by using a nonlinear parametric inversion
algorithm. Investigations carried out using an analytic solution for a sphere and laboratory measurements of
steel and aluminum rectangular prisms, suggest the following two-step methodology: (1) The value of � is
first used as a diagnostic to assess whether the metallic object is non-magnetic or magnetic, (2) the ratios of���������

and � ��� � � are then diagnostic indicators as to whether the geometry is plate-like (uninteresting) or rod-
like (a high candidate for being a UXO). Results from the application of this algorithm to a TEM field data
set acquired at the United States Army Corps of Engineers Environmental Research and Development Centre
UXO Test Site have successfully identified a UXO to be magnetic and rod-like.

Introduction

An explosive ordnance is a munition that is either launched or fired with the intent of detonation at a
specified target. An unexploded ordnance (UXO) is an explosive ordnance that, due to some malfunction, re-
mains undetonated. As a result, the ordnance can be found at the ground surface, partially buried, or buried
at a depth of up to 8 m beneath the surface. The remediation of UXO-contaminated land has been made a
high priority by the United States Department of Defense in order to either maintain safe usage for continu-
ing military operations or to permit land transfer to the private sector. Practical and cost-effective strategies
for remediation require both detection of possible targets and the ability to discriminate between UXO and
contaminating scrap metal.

The detection of buried metallic objects can be accomplished with a variety of geophysical sensing tech-
niques. Time domain electromagnetic induction (TEM) surveys have been successful in detecting both ferrous
and non-ferrous metallic objects near the soil surface, and are a mainstay amongst technologies currently uti-
lized in UXO clearance projects. In the TEM method a time varying magnetic field is used to illuminate a
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conducting target. This primary field induces surface currents on the target which then generate a secondary
magnetic field that can be sensed above ground. With time, the surface currents diffuse inwards, and the ob-
served secondary field consequently decays. The rate of decay, and the spatial behavior of the secondary field,
is determined by the target’s conductivity, magnetic permeability, shape, and size.

Identification of a UXO from electromagnetic sensor data remains a major hurdle in reducing the high
costs of remediation projects. It has been reported that approximately 70% of remediation costs are currently
being used to excavate non-ordnance items (Butler et al., 1998). The development of discrimination algo-
rithms can be roughly categorized as either model-based or data-based. Data-based algorithms are pattern
recognition procedures that compare a library of catalogued responses from various UXO items to measured
responses (for example Damarla and Ressler, 2000). Model-based algorithms use either an exact or approx-
imate forward modeling algorithm to determine a set of model parameters needed to replicate the measured
responses, and subsequently relating the model parameters to physical parameters (Khadr et al., 1998). One
such model-based technique that has been the focus of much recent research is the determination of the time
constants of the TEM response, or equivalently the poles of the frequency domain signal, to identify the buried
target (Snyder et al., 1999; Baum, 1997; Collins et al., 1999). A method that represents a hybrid of the model-
based and data-based algorithm is under development at Blackhawk Geometrics (Grimm, 2000). In that ap-
proach, a spheroid modeller, working jointly with a model-based inversion algorithm, generates a library of
model parameters which can then be operated upon by a neural network classifier for comparison with para-
meters derived from the raw sensor signal.

In this paper we present a model-based TEM data interpretation algorithm which estimates the basic
shape (rod-like or plate-like) and magnetic character (ferrous or non-ferrous) of a buried metallic object. We
first present an approximate forward model that represents the time domain response of a metallic object as
a pair of perpendicular dipoles located at the center of the buried target. This form of model was suggested
to us in a personal communication from J.D. McNeill. The strengths of these dipoles decay with time, and
the parameters that govern the time decay behavior are related to the conductivity, permeability, shape, and
size of the buried target. Our parameterization is simple, and thus convenient to use in data fitting proced-
ures. We next describe an inversion scheme to recover the model parameters from TEM data. Since these
parameters encapsulate information about the physical attributes of the target, we can attempt to use them to
determine if the target is ferrous and if the geometry is rod-like (most likely a UXO) or plate-like (most likely
a non-ordnance item). Empirical relationships are developed that link the model parameters to the physical
parameters of the target and these relationships form the basis of our algorithm. We conclude with the appli-
cation of the algorithm to a synthetic data set contaminated with noise, and field data sets taken over a buried
UXO and buried metallic scrap.

Development of Approximate Forward Modelling

In order to invert measured TEM data for the physical parameters of the target, it is necessary to have a
forward model to describe the TEM response for a buried metallic object. We can restrict our search for re-
sponse solutions to axi-symmetric metallic targets, since this geometric subset adequately describes all UXO
and the majority of buried metallic scrap encountered in a remediation survey. Unfortunately analytic expres-
sions for the time domain response are restricted to a metallic sphere, and even an expression for a permeable
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and conducting non-spherical axi-symmetric body is not available. Numerical solutions of Maxwell’s equa-
tions, under continual development, are promising (e.g. Haber, 2000; Carin, 2000; Hiptmair, 1998), however,
the computational time requirements for obtaining a solution still make them impractical for use as part of a
rigorous inversion procedure. Our approach, therefore, is to use an approximate forward modelling that can
adequately reproduce the measured electromagnetic anomaly in a minimal amount of time. The validity of
this reduced modelling still needs further testing but the empirical tests carried out here suggest that it can be
useful in practice.

The development of the approximate forward modelling is presented in four steps. We begin with the
response of a sphere, so that the magnetic polarization dyadic

���
is introduced. This dyadic is then altered so

that it is applicable to an axi-symmetric body. This generates the ”two-dipole” model mathematically. Next we
introduce a parameterization for the time decays of each of the two dipoles and finally, we combine everything
to generate our approximate forward modelling.

1. Response for a Spherical Body

Consider a permeable and conducting sphere of radius � illuminated by a uniform primary field ��� (fig.
1(a)). At a time

���	�
the primary field is terminated, and eddy currents are induced in the sphere; they

subsequently decay due to the finite conductivity of the sphere. The secondary field ��
 generated by the
decaying currents is dipolar:

� 
 ��� 	���
����������� � � 	�������� � "! ��#%$ (1)

where � � � 	
is the dipole moment induced at the center of the sphere at time

�
,
�

is the distance between the
observation point and the sphere center,

� is the unit vector pointing from the sphere center to the observation
point & , and

��#
is the identity dyadic. The dipole moment is

� � � 	��(' �
�� � �*)�+ ��� 	 (2)

where

)�+ ��� 	��-, � � 
/.102 354 � ��6�7989:;< 3 � � 
/. !>= 	�� 
/. � ' 	 (3)

where ? �A@ 
 � � , and 
/. � 
 � 
�� is the relative permeability (Kaufmann, 1985). In general the magnetic
permeability of highly permeable materials is a function of many parameters, including the strength of the
incident magnetic field, temperature, and magnetic history. However, calculated TEM responses assuming a
constant permeability of 
�. � =�B � for steel and 
�. � = for aluminum compared well with laboratory TEM
measurements of steel and aluminum targets (Pasion, 1999). Therefore we feel that eqs. (1) to (3) are suitable
for the analysis that follows here. The values < 3 are roots to the transcendental equationC5D�E < 3 � � 
/. !F= 	 < 3< �3 � � 
/. !>= 	�G (4)

Equations (1) to (4) reveal that the � -field of a sphere in a uniform primary field is equivalent to the� -field of a single magnetic dipole located at the center of the sphere and oriented parallel to the primary field.
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For convenience we write the relationship between the induced dipole and the primary field as � � ��� � � � ,
where

���
is the magnetic polarizability dyadic. For a sphere,

��� �A' �
�� )�+ � � 	 ��# �A' �
��
�� ) + � � 	 � �� ) + ��� 	 �� � ) + ��� 	

�� G (5)

Baum (1999) details the characteristics of the magnetic polarizability dyadic, and notes that the triple degen-
eracy of the magnetic polarizability dyadic reflects the symmetry of the sphere.

The sphere solution possesses several characteristics that we retain in the formulation of our approxi-
mate solution for an axi-symmetric target. Firstly, the secondary field due to the induced currents generated
in a sphere, illuminated by a uniform, step-off primary field, is dipolar at all points outside the sphere. We
will also represent the secondary field for more general shapes as a dipolar field (eq. (1)). A dipolar field ap-
proximation is reasonable for any observation point far enough away from any localized current distribution
(Jackson, 1975), and it has been reported that for observation points greater than 1 to 2 times the target length,
a dipolar field assumption is adequate (Casey, 1999 or Grimm et al., 1997). Indeed, higher order multipoles
induced in a target will decay at early times (Grimm et al., 1997).

Secondly, the induced dipole moment in the center of a sphere is given by the dyadic product
��� � � � .

This form indicates that the induced dipole is proportional to the projection of the primary field along the
direction of the induced dipole. The components of

���
scale the strengths of the dipoles. The magnetic polar-

izability dyadic, in the case of the sphere, contains the function ) + ��� 	 that contains all the information about
the time decay of the sphere and it depends upon the material properties, shape, and size of the target. Our
hypothesis is that more general metallic shapes can also be approximately modelled with an induced dipole
equal to the dyadic product

��� � � � . However, choosing the right functional form of
���

will be crucial.

2. Approximating
���

for an Axi-Symmetric Body

Analytic expressions for
���

for the time domain response of a permeable and conducting non-spherical
axi-symmetric body are not available. Therefore we base our form of

���
on the magnetostatic polarizability

for a spheroid. Recall that the time domain response of a sphere the structure of
���

is identical to the structure
the polarizability dyadic of a magnetostatic sphere. The analytic solution for the magnetostatic response of a
magnetic prolate spheroid is equivalent to the field of a magnetic dipole induced at the spheroid center (Das
et al., 1990):�

3����	� . ��

� � � � � � �

� ����� � ���� � �
�
	����� � � ����� ������ � �

�
	����� � ������ � �

�
	 ���� � � �� ��� � �� ��� �� � ���

�� � �
�

(6)

where
���

and
���

are the polarizability constants, which are functions of the conductivity, permeability, shape,
and size. Eq. (6) reveals that the total induced dipole can be written as the sum of two orthogonal dipoles� �

and � �
. The first dipole moment � �

is parallel to the major axis (
�� � in fig. 1(b)) of the spheroid, and its

strength is proportional to the product of the primary field along that direction and the polarizability
� �

. The
second dipole moment is perpendicular to the major axis, and its magnitude is proportional to the component
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of the primary field along that direction and the polarizability
���

. A consequence of
���

and
���

being functions
of the spheroid’s shape and size is that the orientation of the effective dipole will not be solely determined by
the direction of the primary field, as is the case for a sphere. In addition, the orientation of �

3����	� . ��

� will be
influenced by the aspect ratio of the spheroid.

The polarization dyadic in eq. (6) suggests a magnetic polarization dyadic for the TEM problem of the
form

��� � �� ) � ��� 	 � �� ) � ��� 	 �� � ) � � � 	
��

(7)

where we have simply replaced
���

and
���

in eq. (6) with the dipole decay functions ) � ��� 	 and ) � ��� 	 . The
resultant induced dipole moment for this definition of the magnetic polarization dyadic is then

� � � 	�� � � ��� 	 � � � ��� 	� ) � ��� 	�� � �� � � �
�
	��� � � � ) � ��� 	�� ���� � � �

�
	 �� � � ���� � � �

�
	 �� � � (8)

Therefore, our approximate forward model represents the TEM response of two orthogonal dipoles. The first
dipole is parallel to the symmetry axis of the target, and the second dipole is perpendicular to the symmetry
axis. These dipoles decay independently according to the decay laws ) � ��� 	 and ) � ��� 	 , respectively.

By choosing the appropriate parameters, this ’two-dipole’ model produces TEM responses that are con-
sistent with those observed field measurements of UXO. It has been noted that the shape anomaly of the meas-
ured response for UXO changes with time (Grimm et al., 1997). The physical phenomena that gave rise to the
temporal changes in shape anomaly was explained in terms of the nature of the induced eddy currents. Eddy
currents that circulate end-to-end in the UXO dominate at early time but decay away quickly, while eddy cur-
rents that circulate about the long axis extend later into time. This observed field behavior can be duplicated by
letting the two orthogonal dipoles � � ��� 	

and � � � � 	
decay independently of each other. The dipole � ����� 	

is
parallel to the long axis and it simulates the magnetic fields that arise from currents circulating about the axis.
The dipole � � � � 	

is perpendicular to the long axis and it simulates the magnetic fields that arise from cur-
rents circulating end-to-end. By assigning a different decay characteristic (governed by its decay parameters)
to each dipole, the relative contribution by each dipole to the secondary field can vary with time.

3. Time Decay Functions ) � ��� 	 and ) � ��� 	
The time decay for a sphere is determined by the sum of exponentials. This result generalizes to the case

of a conductive body of arbitrary size and shape in an insulating medium illuminated by a step-off primary
field (Kaufman, 1994). Thus the form for ) ��� 	 should, at least, be able to duplicate the time decay features
observed for the sphere. Plots of the � -field and

� � � � �
response for both a magnetically permeable (e.g.

steel) and non-permeable (e.g. aluminum) sphere can be found in fig. 2.

An appropriate form of the decay law for the � -field is

) ��� 	�� � ��� � �
	 ��
 � 6�:� G (9)
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The parameter
�

controls the magnitude of the modelled response. The three parameters
�

, � , and � , control
the duration and characteristics of the three different stages of the time decay curve. The duration of the relat-
ively flat early time stage is proportional to the parameter

�
. The linear decrease of response observed during

the intermediate time stage is determined by
� ��
 . The exponential decay characterizing the late time stage

is controlled by the parameter � . Fig. 2(a) demonstrates the ability to reproduce the secondary � -field. This
form of the decay law, with the

�
parameter absent, was suggested to us in a personal communication from

J.D. McNeill.

The time derivative
� � � � �

, which is measured directly with most TEM receivers can also be modelled
with eq. (9). Fig. 2(b) includes plots of the

� � � � �
curves for a steel and an aluminum sphere. The early time

behaviour for the non-permeable sphere follows a
� � � � � decay and so these curves are different from those of� in fig. 2(a). Nevertheless the curves are still represented by early time turn-overs, and linear and exponential

decays that can be accommodated by eq. (9). The suitability is demonstrated by the fit between the laboratory
measured response and a predicted response obtained by evaluating eq. (9).

In the foloowing section we generically denote the TEM response as
� �  �� � 	 where

�
can be the magnetic

field or its time derivative. The time dependent decay of
�

is given by eq. (9).

4. The Approximate Forward Model

With the above work, we can write an approximate expression for the secondary field response of an
axi-symmetric target. First, let us switch from the body-fixed (primed) coordinate system to a space-fixed
coordinate system, which is more amenable to the definitions of target and sensor location of a typical field
survey (fig. 3). A vector � � in the body-fixed system co-ordinate system is related to a vector � in the space-
fixed co-ordinate system via the Euler rotation tensor � ��� �����
	 	 by (Arfken, 1985)

� � � ����G (10)

Due to the axial symmetry of the problem
� �-�

, and the Euler rotation tensor can be written

� � ��
�
��� � �
��� 	 �
��� � ��� E 	 ! ��� E �! ��� E 	 �
��� 	 �
��� E � �
��� 	 ��� E � ��� E 	 �
��� �

��
� (11)

where � is the angle between the symmetry axis of the target (
�� � in fig. 1(b)) and the vertical axis in the space-

fixed coordinate system (
�� in fig. 3), and 	 is the angle between the projection of

�� � onto the horizontal plane
and

�� .

Our approximate forward modelling is written by substituting the definition of the induced dipole of
eq. (8) into the expression for a dipole field (1), and carrying out the dyadic product. Let us consider a target
whose center is located at � in the space-fixed co-ordinate system. The secondary response

� �  �� � 	 measured
at a receiver/transmitter location  and at a time

�
after the termination of the primary field, is then the sum of

the responses of the two orthogonal dipoles:

� �  �� � 	�� � � �  �� � 	 � � � �  �� � 	 (12)
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where

� 
 �  �� � 	 �A
����� � � � � 
 ��� 	 ���  "! � 	 � �  "! � 	�  "! � � � ! � 
 ��� 	�  "! � � ��� (13)

and � ��� � 	 � ) � ��� 	 � ���� � ��� 	����� (14)� � � � 	 � ) � ��� 	��
	����� � � ��� ���� �
	����� � � ��� ���� � (15)

are the dipole parallel and perpendicular to the axis of symmetry. The unit vectors are given by eq. (11).

In summary, the approximate response of buried metallic object given by eq. (12) can be generated from
13 parameters that describe the object. These model parameters are elements of the model vector� � � � ��� ��� � 	 � ��� ��� � � � � � � � � � � ��� � �
� � � � � � � � G (16)�

and � denotes the surface projection of the centroid of the body, and � is the depth of the object below
the surface. The orientation of the target is described by the two angles � and 	 . The remaining parameters
describe the decay characteristics of the two dipoles:

� �
,
� �

, � � , and � � describe the dipole parallel to the
axis of symmetry ( � �

), and
���

,
�
�

, � � , and � � describe the dipole perpendicular to the axis of symmetry
( � �

). Thus the inversion for the model � will immediately give estimates of target location and orientation.
Information on the shape, size, and material parameters of the target may later be inferred from the remaining
parameters.

Non-Linear Parameter Estimation Procedure

In this paper we first assume that the response measured in a survey is due to a single body, and second, that
the response of this single body can be accurately modelled with eq. (12). With these hypotheses, an inversion
procedure can be developed that utilizes the approximate forward model.

The forward model can be expressed as��� ����� � � � � � � = � ' � � � G G G � (17)

This equation expresses the mapping of the model vector � to a datum
���

by a functional
���

. The forward
mapping

���
is defined by eq. (12) and it is a nonlinear functional of the 13 model parameters are given in

eq. (16). In the inverse problem, these parameters are retrieved from a vector of observed data � �"!
# by min-
imizing a least-squares objective function. Before proceeding to the details of the inversion there are two
important practical aspects to be introduced. We need to ensure that selected parameters remain positive and
we also need to scale the parameters to enhance stability in the iterative process.

In the approximate forward model the time decay parameters
� �

,
� 
 , � 
 , and � 
 ( $ � = � ' ) are defined as

positive. In the inverse problem the positivity of these parameters can be maintained by solving the associ-
ated square-variable unconstrained problem (Gill et al., 1981). Following this formulation, each time decay
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parameters � 
 is replaced by the squared variable � 
 such that � 
 � � �
 . A second transformation is a linear
scaling that ensures that each component of � is of order unity. This is done by dividing each parameter � 

by its typical value. In the following presentation of the inversion algorithm, the letter � continues to denote
the parameter vector to be inverted for, but now includes the positivity and scaling transformations.

1. Defining the Objective Function

If there are ) time channels and
�

locations where TEM data are collected, then there will � � � )
data points contained in the data vector � �"!
# . Because data will be collected on several lines, with a number
of stations per line, there will generally be far more data than model parameters ( ����� = � ). Therefore the
inversion for � involves solving an overdetermined system of non-linear equations, with the goal of finding
the model that produces the data that best fits the observed data. This is a non-linear least squares problem
and is solved by minimizing

� � � 	�� =' �	��
 	 � � � � ! � �"!
# � � � (18)

where
� � � � is the forward modelled data, � �"!
# is the observed data, and

�
is the least squares objective func-

tion that measures how closely our predicted data matches the observed data.
��


is the data weighting matrix.
If the data are contaminated with unbiased Gaussian random noise, then

��

is ideally a diagonal matrix whose

elements are the reciprocals of the standard deviation of each datum. The noise arises from many sources, in-
cluding sensor location errors, instrument noise, and inaccuracy of the forward modelling. It is unlikely that
the Gaussian independent assumption is not valid, but it is essential to estimate a quantity that reflects the un-
certainty in each datum. We assume that the errors can be characterized by a percentage of the datum value
plus a threshold, that is

� ��
 	 
 
 � =

 � 
 ��� (19)

where 
 is typically a percentage and
�

is a constant that characterizes ambient noise. The positive
�

ensures
that small data points would have reasonable errors assigned to them, and thus prevents them from having
undue influence on the solution.

2. Minimizing the Objective Function

For ease of notation the least squares problem is rewritten as

minimize
� � � 	�� ='�� � � 	�� � � � 	�� ='

�2


4
�
� 
 � � 	 � (20)

where � is the residual function

�
� � 	�� ��
 	 � � � �%! � �"!
# �

and
� 
 � � 	 is the $ � � component of �

� � 	 . We adopt a modified Newton’s method to minimize the objective
function. The approach taken here is to first make an initial guess of the model parameters � � . Techniques
for making this initial guess are outlined in Pasion (1999). The starting model � � is iteratively improved to
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find the minimum of eq. (20). At each iteration a Newton’s search direction is chosen that minimizes the local
quadratic model about the current iterate � � . The Newton step

� � for the non-linear least squares problem is
then given by

� � � � 	�� � � !�� � � � 	 �
�
� � � 	 (21)

where the Jacobian matrix � and the Hessian matrix
�

are defined as

� 
 � � � 	�� � � 

� � � and

� � � � � 	�� � � � 	������ � 	 �
where

��� � 	 is

��� � 	�� �2


4
�
� 
 � � 		� � � 
 � � 	

A new model � ��

� � � � ����� � is then defined, where the positive scalar
�

is chosen such that
� � � � ����� � 	��� � � � 	 . The sequence of iterations is terminated once the relative gradient measure is less than a tolerance

level , or once there is insignificant change in the models of successive iterations (Dennis and Schnabel, 1983).

3. Error Bounds of the Parameter Estimates

Once the model parameters ��� which minimize the objective function
� � � 	 have been obtained, we

can examine the reliability and precision of the estimated parameters via the model covariance matrix. Let� 
 be the best estimate of the model in the absence of noise, and
� ��� � � 
 ! ��� . The model covariance

matrix ��� is defined as the expectation value of
� ��� � ��� � (Bard, 1994)

������� 	�� ��� � ��� � �� � �	� � � � �!� � � � �"!
# � � �"!
# � �!� � � � � $
The Hessian and Jacobian in the above expression are evaluated at � � ��" , and are therefore constants. As
a result they can be taken outside of the expectation value expression:

��� �#� � � � �!� � � 
 �!� � � �
�

(22)

where � 
 is the covariance matrix of the data. In the case when the observations have uncorrelated errors,
the data covariance matrix reduces to a diagonal matrix, and an estimate of the standard deviation of the $ � �
model parameter � 
 is then@ �
 � � ��� 	 
 
 �F@ � �	� � � � �!� � �!� � � � � $ 
 
 (23)

Model variance estimates applied to non-linear problems are not as reliable as when implemented in linear
least squares problems, and they should only be used as a very rough estimate (Bard, 1974; Dennis and Schn-
abel, 1983). Nevertheless, eq. (23) at least provides a minimum estimate to the uncertainties of the parameters.

Relating Model Parameters to Material and Geometric Properties
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The above inversion generates the parameters that characterize a target’s TEM anomaly. The next step is
to interpret these parameters. Recall that UXO are typically rod-like rather than plate-like, and are magnetic-
ally permeable. In order to extract these potentially UXO identifying features from the recovered model � � ,
we use the inversion procedure to fit a series of decay curves from a range of axi-symmetric targets of different
shape, geometry, and material properties. We then generate empirical relationships between the parameters
and target characteristics. The data curves used for this analysis were either TEM measurements made in the
Geonics Ltd. laboratory, or they were synthetically generated decay curves for a sphere using equation (12).

1. Lab Setup and Measurements

A series of TEM measurements of metallic targets was made by Geonics Ltd. A
� � � � � � � square

transmitter loop was used to provide a relatively uniform field at the center of the loop. A 1 � diameter receiver
coil was placed coaxial and coplanar to the transmitter loop, and each target was located at the center of the
receiver loop. The Geonics PROTEM 47 time domain equipment was used for producing the transmittingfield
and for recording the time domain measurement due to a step-off current. Measurements of the time decay
response of these targets were recorded as plots of

� ��� � � � � � � 	
vs.

� ��� ��� 	
. Since values were not recorded by a

data logger, the plots were subsequently digitized. Plots of the steel target responses were digitized by hand by
J.D. McNeill at Geonics Ltd., and the aluminum target responses were digitizedat UBC after scanning the plots
into a computer. Analyses were performed on both the impulse (

� � � � �
) response measured as an induced

voltage in the receiver, and also on the � -field response. The � -field response was obtained by integrating
the induced voltage.

Two sets of targets were measured. The first set of measurements involved recording the TEM response
for a series of steel and aluminum rectangular prisms of different dimensions. Each prism had at least one
dimension of 8 inches, and the targets ranged from a thin rod ( � � = � � � = � � inch) to a cube ( � � � � � inch)
to a thin plate ( � � � � = � � inch). A second set of measurements was made on 24 sample UXO. These targets
included various ordnance items used by NATO since World War II. The ordnance range in length from 18 to
85 � � , and in diameter from 6.05 to 15.92 � � . A diagram of all the ordnance, along with a table listing the
dimensions of each ordnance, is included in Pasion (1999).

The axi-symmetric targets were placed in two orientations at the center of the receiver loop in two ori-
entations. Each target was measured with the axis of symmetry perpendicular and parallel to the primary field.
Since the strength of each induced dipole is proportional to the projection of the primary field onto the dipole
direction, the two measurement orientations isolate the decay behaviour of each of the two dipoles. For ex-
ample, consider a plate. When the primary field is perpendicular to the plane of the plate, the projection of the
primary field onto dipole 2 is zero, thus the approximate forward model assumes the response can be modelled
as a single dipole perpendicular to the plate. The decay parameters of dipole 1 (

� �
,
� �

, � � , and � � ) can then
be estimated by fitting this curve to the decay law (eq. (9)). When the primary field is parallel to the plane of
the plate, the response is due to dipole 2 and parameters

���
,
�
�

, � � , and � � can be recovered.

Relationships between the target characteristics and the model parameters were established, in the fol-
lowing manner. A scaled-down version of the non-linear least squares techniques outlined in the previous
section was used to obtain the decay parameters

�
,
�

, � , and � for each of the target’s two dipoles. Secondly,
we observed how recovered values of model parameters, or combinations of parameters, changed with the

10



dimensions and magnetic properties of the measured prism. The patterns in the behaviour of the parameters
then led to the shape and permeability discrimination diagnostics that are proposed in the following sections.

2. A Relationship Between � and Magnetic Permeability

UXO are generally made of steel, which is a ferrous material. Therefore, the magnetic permeability is
likely an identifying characteristic of UXO. To generate a link between magnetic permeability and model pa-
rameters, forward modelled responses were calculated for a series of spheres varying in size and permeability.
Both � -field and

� � � � �
data were then inverted to generate decay parameters, and in particular, to produce

estimates of the parameter � . The plots of � as a function of sphere radii and magnetic permeability, are pro-
vided in fig. 4.

Fig. 4 suggests that the value of � obtained for a sphere may be diagnostic in determining whether the
sphere is permeable or non-permeable. Fig. 4(a) exhibits the relationship for the

� � � � �
responses. For a steel

sphere ( 
/. � =�B � ), we see, for spheres with radii between 5 to 15 cm, that � falls between 1.11 and 1.35, while
for a non-permeable sphere ( 
�. � = ), � has a value of approximately 0.5, which corresponds to the early time� � � � � behavior that Kaufman (1994) predicted for a non-permeable sphere. Therefore, when applying our
inversion to the time derivative of the field, a value of � � + � � � greater than about 0.8 indicates that the target
is most likely permeable. This analysis is repeated on the forward modelled � -field responses, and the results
are plotted in fig. 4(b). A threshold value of � + �-� G � could be used such that targets with a � -field response
characterized by a � � � G � indicates a permeable target.

The use of � as a diagnostic to determine permeability can be extended to non-spherical targets by look-
ing at the recovered � values for the aluminum and steel prisms. The inversion produces two values of � ,
one for each of the excited dipoles, to describe a buried target. We suggest taking the average of the two re-
covered � values, which we label as

�� . When analyzing the
� � � � �

responses of the axi-symmetric aluminum
targets,

�� � + � � � �F� G B ' with a standard deviation of 0.07. For the steel targets
�� � + � � � � = G =�= with a standard

deviation of 0.08. These averages fall on either side of the 0.8 threshold obtained by fitting sphere
� � � � �

responses.

When analyzing the � -field responses of the axi-symmetric aluminum targets,
�� + �F� G =�� with a standard

deviation of 0.03. For the steel targets
�� + � � G B with a standard deviation of 0.2. These averages fall on ei-

ther side of the 0.3 threshold obtained by fitting sphere � -field responses, and so again, a consistent criterion
can be used.

3. Relationships Between Model Parameter Ratios and Target Shape

Empirical relationships were also established between the target shape and the ratios
� �������

and � ��� � � .
For space reasons, we present only the analysis of the

� � � � �
response of the targets, and refer the reader

to Pasion (1999) for the analysis of the � -field data. There we show that the same target shape diagnostics,
developed here for

� � � � �
data, also apply to � -field data.
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The Ratio
���������

. The recovered
�

values for targets ranging from a steel plate to a steel rod are shown
in fig. 5(a), and the calculated

�
-ratios are shown in fig. 5(b). For a steel plate, the

�
-ratio

� ������� � = . For
a steel bar the

�
-ratio

��������� � = . The recovered
�

values for aluminum targets are shown in fig. 5(c). The
opposite orientation effect was observed for an aluminum rod, that is

� ��������� = (fig. 5(d)).

The Ratio � ��� � � . In addition to the relative strength of the dipoles being shape dependent, the slope of
the time decay response (either

� � � � �
or � -field) during the intermediate time stage is dependent upon the

target shape. This effect was seen in steel targets only. The steepness of the response during the intermediate
time stage is reflected in the parameter � . The recovered � values for targets ranging from a steel plate to a
steel rod are shown in fig. 6(a), and � values for aluminum targets are shown in fig. 6(c). A dipole that decays
at a greater rate will have a larger � . The rate of decay of the

� � � � �
response is greater when the plane of

a steel plate is perpendicular to the primary field (dipole 1), than when the plane of a steel plate is parallel to
the primary field (dipole 2). Thus, for a steel plate the � -ratio � ��� � � � = . In the case of a rod, the

� � � � �
response decays faster (and thus � is larger) when the main axis of the rod is perpendicular to the primary field
(dipole 2). In the case of a steel rod the � -ratio � ��� � ��� = (fig. 6(b)).

For aluminum targets the response shape looks essentially the same for each of the targets. The
� � � � �

response exhibits a power law decay of
� � � � � and is exponential at later times. The decay curves for aluminum

targets are essentially the same regardless of target shape, and therefore there is no relationship between the
� -ratio and the aspect ratio (fig. 6(d)).

4. The Discrimination Algorithm Using
� � � � �

Data

The results from the previous section suggests the following algorithm for using
� � � � �

data to help
identify possible UXO targets:

1. Perform the non-linear inversion outlined in the previous section to recover model parameters for the
two-dipole model.

2. Compute
�� � �� � � �
� � � 	 . If

�� � � G � � then the target is most likely permeable.

3. Compute ratios � ��� � � and
���������

. There are two options:
�
�� � � G � � Ferrous Target: If

��������� � = and � ��� � � � = then a permeable rod-like target was
measured. If

����������� = and � ��� � � � = then a permeable plate-like target was measured.
�
�� �>� G � � Non-Ferrous Target: If

��������� � = then non-permeable plate-like target was measured.
If
��������� � = then the target is rod-like. � � � � � does not give supporting, or extra, information.

The above algorithm can be extended to the analysis of � -field data simply by changing the � threshold to
0.3.

Synthetic Data Set
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The parameter estimation procedure is now tested on a synthetically generated field data set. The object
of interest is a 75 mm anti-tank mortar. The primary decay curves for the axial and perpendicular orientations
were obtained from measurements made by Geonics using the setup described in the previous section. These
were inverted to recover the decay parameters for each dipole. For this simulation, the target is assumed to be
buried at a depth of 67 cm ( � � =	� ), and located at

� ' � � � ' � � 	 on the survey grid. The mortar is oriented
such that 	 �-��� � and � �-, B � . The data were forward modelled using eq. (12).

The survey consists of a ' � � ' � grid, containing 5 lines of data separated at 50 cm line spacing, with
stations located at 20 cm intervals along each line. At each station the vertical component of the voltage is
generated for 26 logarithmically spaced time channels. The time channels range from 0.01 ��� to 100 ��� .
In order to make this example closer to a real TEM data set, 5

�
random Gaussian noise was added to the

data and, since a real TEM instrument will have a finite measurement sensitivity to the secondary field, a data
threshold of 0.001 is set. There are 1278 total data points exceeding the minimum threshold.

The inversion is carried out with a data weighting matrix in eq. (19) with 
 � � G � B and
��� � G ��� =	��� .

The observed data, and data predicted by the recovered model, are compared in figures 7 and 8. Fig. 8 shows
a plan view comparison for three of the 26 time channels. The difference maps exhibit a random distribution
over the data, indicating the reluctance of the inversion to fit the noisy portion of the data. A comparison
of the true model ����� �
	 , recovered model ��� 	
� and the estimated model standard deviations

@��
are found in

Table 1. The discrimination algorithm, when applied to the recovered decay parameters, yields the following.
The value of

�� � = G � � � � � G � 	 indicates that the target is likely permeable. The ratios
� ������� �(� G � = � � = 	

and � ��� � � � � G � = � � = 	 indicate, for a magnetically permeable target, that the TEM response is likely from
a rod-like target.

Field Data Set

We now apply our algorithm to a TEM field data set acquired at the United States Army Corps of Engi-
neer Environmental Research and Development Center UXO test site in Vicksburg, Mississippi. The Geonics
EM63 instrument used for the survey is a multi-time channel time domain unit consisting of a =	� � =	� square
transmitter coil and a coaxial horizontal circular receiver loop mounted on a two-wheel trailer. Measured volt-
ages are averaged over 26 geometrically spaced time gates, spanning the range 180 
 � � � to 25.14 ��� .

A 105 mm projectile is placed in the ground with its center at 2.0 m East, 1.83 m North and at a depth
of 0.44 m from the surface. The projectile was placed horizontal ( � ����� � ), with its tip pointing to the North
( 	 � � � ). Once the target was placed in the ground, it was not covered in soil. The survey consisted of a' � � ' � grid centered on the target, containing 5 lines running North-South separated at B � � � line spacing,
with stations located at B � � intervals along each line. A measured signal of less than =	��� is assumed to be
indistinguishable from the noise. The resulting data set contains 1882 total data points.

The inversion is carried out with a data weighting matrix in eq. (19) with 
 � � G � B and
��� =	��� . The

first stage of the time decay evident in fig. 2 is not observed in the time window recorded by the EM63. There-
fore, we invert this data by setting

�
to be a small constant that does not affect the predicted data within the
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EM63 time range. So only parameters
�

, � , and � for each dipole are recovered. The observed and predicted
data are compared in figures 9 and 10. Fig. 10 shows a plan view comparison for five of the 26 time chan-
nels. At early times the anomaly has a single peak located approximately above the UXO center. This peak
splits into two distinct peaks at late time. The recovered model predicts data that reflects this behavior. Fig. 9
compares the decay curve measured at four stations on the survey.

The recovered location and orientation parameters are listed in Table 2(a). The recovered easting of
2.04 � differs from the true value of 2.00 � by 4 � � . The recovered northing of 1.77 � differs from the true
value of 1.83 � � by 6 � � , placing the inducing dipole closer to the projectile tail. These errors are of the same
magnitude as can be expected in spotting the station location in the field survey. In addition, the buried 105
mm projectile has a copper rotating band near the tail of the projectile. It has been suggested that the presence
of the rotating band will shift the location of the induced dipole from the target center towards the tail (Miller,
2000). The recovered burial depth of 0.47 � is 3 � � deeper than the expected depths of 0.44 � . The orienta-
tion parameters � and 	 are well recovered. The recovered decay parameters are listed in Table 2(b) and the
diagnostics applied to these parameters are listed in Table 2(c). The value of

�� �-� G � = � � � G � 	 indicates that
the target is likely magnetically permeable. The ratios

� ������� � ' G ,���� � = 	 and � ��� � ���-� G , ��� � = 	 indicate,
for a magnetically permeable target, that the TEM response is likely from a rod-like target.

Discussion and Conclusion

Efficient remediation of areas containing UXO first requires that purely conductive metal targets be dis-
tinguished from steel targets that are conductive and permeable. The second stage then focuses upon determ-
ining if the steel target is rod-like (and likely to be a UXO) or plate-like (and not be of interest). To attack this
problem we propose a modified parametric model from which TEM responses can be estimated. The TEM
response of a buried axisymmetric metallic object is modelled as the sum of two dipoles located at the mid-
point of the body. Non-linear inversion methods are used to extract the parameters from the field data and
these parameters are subsequently used in a discrimination procedure which has two parts. First, the decision
about whether the object is ferrous might be made by examining the size of the recovered � ’s. Second, if the
object is considered to be ferrous, then the ratios of

� �������
and � ��� � � are diagnostic indicators of whether the

geometry is plate-like or rod-like. These diagnostics were developed for both � -field and
� � � � �

TEM data.

This algorithm was applied to a synthetic data set as well as to a field data set collected by the Geonics
EM63 time domain electromagnetic sensor over a 105 mm projectile. In both cases the diagnostics, applied to
the recovered model parameters, correctly predicted that the TEM anomaly was produced by a magnetically
permeable and rod-like metallic target. Althoughfurther testing will be required to fully evaluate our proposed
technique, the results presented here are promising and may have a positive impact on the interpretation of
UXO detection data.
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a) b)

Figure 1: The body-fixed (primed) coordinate system for a sphere and a spheroid.
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Figure 2: (a) The time decay behaviour of the time derivative of the magnetic field
� � � � �

. (b) The time
decay behaviour of the magnetic flux density � . The � -field response is normalized by the strength of the
primary field. The solid lines are responses evaluated from eq. (9). The agreement supports the validity of
this parametric representation of the time domain responses.
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Figure 3: The field (unprimed) co-ordinate system for a buried target. The unit vectors
�� ,
�� , and

�� define the
field co-ordinate system, and

�� � , �� � , and
�� � define the body-fixed co-ordinate system.
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the � -field.
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Figure 5: Relating the aspect ratio of a steel target with the ratio
� �������

. Plot (a) contains the recovered
�

parameter from fitting the measured
� � � � �

response of steel axi-symmetric targets. Plot (b) illustrates the
relationship between the

���������
ratio derived from

� � � � �
data and the shape of a steel target. Plot (c) contains

the recovered
�

parameter from fitting the measured
� � � � �

response of aluminum axi-symmetric targets. Plot
(d) illustrates the relationship between the

� �������
ratio and the shape of an aluminum target.
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Figure 6: Relating the aspect ratio of a steel target with the ratio � ��� � � . Plot (a) contains the recovered �
parameter from fitting the measured

� � � � �
response of steel axi-symmetric targets. Plot (b) illustrates the

relationship between the � ��� � � ratio derived from
� � � � �

data and the shape of a steel target. Plot (c) contains
the recovered � parameter from fitting the measured

� � � � �
response of aluminum axi-symmetric targets. Plot

(d) illustrates the relationship between the � ��� � � ratio and the shape of an aluminum target.
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(a) Location and Orientation

� 
 � � � � . �

� � . � �

@ �
Northing ( � ) 1.90 2.00 2.00060 0.00254
Easting ( � ) 2.15 2.00 2.00105 0.00169
Depth from

loop ( � ) 1.20 1.00 1.00051 0.00764	 (degrees) 45 30 30.07 0.18� (degrees) 45 65 65.04 0.11

(b) Decay Parameters

� 
 � � � � . �

� � . � �

@ �
���

7.07 12.02 12.064 0.18� �
0.01 0.0076 0.00759 0.0030

� � 1.00 0.89 0.890 0.0070
� � 3.16 17.65 17.635 0.16���

7.07 3.30 3.252 0.071�
�
0.01 0.0077 0.0076 0.0027

� � 1.00 1.25 1.252 0.014
� � 3.16 11.54 11.68 0.33

Table 1: Recovered parameters from the inversion of the synthetic data set. � � is the starting model. The true
model � � . �

�
and the recovered model � . � � are close. The difference between the true and recovered model

falls within the estimated standard deviation.
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Line 1.0 m, Stn. 1.8 m
Line 2.0 m, Stn. 2.0 m

Line 1.5 m, Stn. 1.4 m
Line 2.5 m, Stn. 2.4 m

Fit Data

Voltage
(mV)

Figure 7: The observed and predicted decay curves for four stations in the synthetic data set inversion. The
predicted vertical component of the response, represented by the solid lines, are a good match to the artificially
generated noisy data set.
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Observed Data Predicted Data d - dobs pred

t = 0.01 msec

t = 1.74 msec

t = 15.8 msec

N

E

Figure 8: Plan view plots of the observed and predicted data for 3 of the 26 time channels in the synthetic data
set inversion.
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time (msec)

Voltage
(mV)

Line 1.5 m, Stn. 1.2 m

Line 2.0 m, Stn. 1.8 m

Line 3.0 m, Stn. 1.7 m

Line 2.5 m, Stn. 2.8 m

Fit Data

0.18 1.0 10.0

Figure 9: The observed and predicted decay curves for four stations in the 105 mm projectile UXO field data
set inversion. The predicted decay of the vertical component of the measured voltages are represented by the
solid lines, and the symbols represent the Geonics EM63 field measurements.
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Observed Data Predicted Data d - d
obs pred

t = 0.22 msec

t = 1.38 msec

t = 0.59 msec

t = 5.57 msec

t = 10.78 msec

N

E

Figure 10: Plan view plots of the observed and predicted data for 5 of the 26 time channels in the 105 mm
projectile UXO field data set inversion. The predicted data provide a reasonable match to the TEM response
measured by the Geonics EM63.
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(a) Location and Orientation

Expected� � � � 	
� Parameters
@ �

Northing ( � ) 1.9 1.77 1.83 0.008
Easting ( � ) 2.15 2.04 2.00 0.005

Burial
Depth ( � ) 0.6 0.47 0.44 0.01	 (degrees) 45 10.1 � 0 0.9� (degrees) 45 84.7 � 90 0.13

(b) Decay Parameters

� 
 � � � . � �

@ �
���

7.07 76.8 2.5
� � 1.00 0.74 0.04
� � 3.16 31.8 8.3���

7.07 29.2 3.7
� � 1.00 1.08 0.07
� � 3.16 6.1 1.3

(c) Diagnostics

Diagnostic Result Conclusion�� 0.91 permeable���������
2.63 rod-like

� ��� � � 0.69 rod-like

Table 2: Recovered parameters for the field data inversion. Table (a) demonstrates that the inversion was
successful in obtaining the approximate location and orientation of the target. Table (b) lists the recovered
decay parameters of the two dipoles. Table (c) lists the results of applying the identification diagnostics to the
recovered decay parameters. Application of the diagnostics indicates that the buried target is permeable and
rod-like and therefore a candidate for UXO.
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