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Estimating depth of investigation in dc resistivity and IP surveys

Douglas W. Oldenburg∗ and Yaoguo Li∗

ABSTRACT

In this paper, the term “depth of investigation” refers
generically to the depth below which surface data are
insensitive to the value of the physical property of the
earth. Estimates of this depth for dc resistivity and in-
duced polarization (IP) surveys are essential when in-
terpreting models obtained from any inversion because
structure beneath that depth should not be interpreted
geologically. We advocate carrying out a limited explo-
ration of model space to generate a few models that have
minimum structure and that differ substantially from the
final model used for interpretation. Visual assessment of
these models often provides answers about existence of
deeper structures. Differences between the models can
be quantified into a depth of investigation (DOI) index
that can be displayed with the model used for interpreta-
tion. An explicit algorithm for evaluating the DOI is pre-
sented. The DOI curves are somewhat dependent upon
the parameters used to generate the different models, but
the results are robust enough to provide the user with a
first-order estimate of a depth region below which the
earth structure is no longer constrained by the data. This
prevents overinterpretation of the inversion results. The
DOI analysis reaffirms the generally accepted conclu-
sions that different electrode array geometries have dif-
ferent depths of penetration. However, the differences
between the inverted models for different electrode ar-
rays are far less than differences in the pseudosection
images. Field data from the Century deposit are inverted
and presented with their DOI index.

INTRODUCTION

In a dc resistivity or induced polarization (IP) survey we are
generally provided with data d (apparent resistivity or appar-
ent chargeability) and an estimate of their errors. An inverse
problem is then solved to find the model m (conductivity or
chargeability) that generated the data. It is recognized that the
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inverse problem is nonunique, and modern strategies cope with
this by using optimization techniques. Let φm be a functional
of the model and let φd denote the misfit functional. The opti-
mization problem is solved by finding a specific model m∗ that
minimizes φm subject to φd = φ∗

d , where φ∗
d is a target misfit.

The nature of the constructed model is determined by φm, and
much effort is required to tailor this functional so that m∗ is
interpretable, has the right “character,” and is consistent with
a priori knowledge about the earth. The amount of structure
in m∗ is determined by how well the observed data are repro-
duced. Generally, increasing the fit to the data requires more
structure. When the minimization is complete, m∗ is our best
estimate of the true earth model, and it is from that image that
we want to make geophysical and geological inferences. When
viewing this image however, there are numerous questions that
arise: (1) Which features in the recovered model emulate those
in the true earth? (2) What confidence do we have in the exis-
tence of the features? (3) What is the level of detail that can be
responsibly inferred? (4) Are there artifacts at depth, which if
interpreted, would lead to misleading interpretations?

These questions are interrelated, but this paper focuses on
artifacts at depth. Surface potentials measured in dc resistivity
and IP surveys are sensitive to conductivity and chargeability
only in a region in the vicinity of the electrode array. Yet when
the data are inverted, it is necessary to consider a mathematical
model that extends outwards from the survey area and to great
depths. The boundaries are determined by the finite difference
mesh used to carry out forward modeling, and they must be
sufficiently far from the survey area so that imposed approx-
imate boundary conditions do not cause numerical artifacts
in the forward modeling. Because the recovered conductivity
or chargeability extends to these boundaries, it is not known
whether features observed at great depth are demanded by the
data or if they are artifacts associated with the model objective
function that is minimized.

To motivate our analysis, consider an attempt to recover
a 2-D conductivity structure using a dc resistivity survey. In
Figure 1, we show a synthetic model that has a variety of
structure. On the left, one resistive and two conductive prisms
are buried beneath highly conductive surface blocks in a
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homogenous earth. One prism extends to infinite depth. A
vertical contact separates media of highly different conduc-
tivity; on the right, a circular-shaped Gaussian conductor is
buried beneath a layer of random conductivity. A pole-dipole
survey with n = 1 . . . 8 and a = 10 m was simulated. The data,
after being contaminated with 5% Gaussian noise, are shown in
Figure 1b.

The data are inverted using the methodology outlined in
Oldenburg and Li (1994). The model objective function φm is
chosen to be a discretized version of

φm(m) = αs

∫
area

(m − m0)2dx dz

+ αx

∫
area

(
d(m − m0)

dx

)2

dx dz

+ αz

∫
area

(
d(m − m0)

dz

)2

dx dz, (1)

where αs, αx, αz are constants, m0 is a reference model, and
m = log σ . The misfit functional φd is

φd =
N∑

i =1

(
dobs

i − dpred

εi

)2

, (2)

FIG. 1. (a) The synthetic resistivity model. (b) Error-contaminated data from a pole-dipole survey in which the
potential dipole is on the right. The a spacing is 10 m, and n = 1 . . . 8. (c) The recovered resistivity model.

where εi is the estimated standard deviation of the data. The
model was divided into M = 2500 cells and the number of
data N = 316. Minimizing equation (1) subject to φd = N, its
expected value, produces the model in Figure 1c. In carrying
out the inversion, the reference model was specified to be a
half-space of 400 ohm-m and (αs, αx, αz) = (0.001, 1, 1).

The model in Figure 1c bears considerable likeness to the
true model in Figure 1a. The surface inhomogeneities are well
delineated, and the underlying conductive prisms are clearly
visible. The vertical contact is sharply imaged but it extends
only to limited depth. The variable surface layer is well de-
fined, and the conductor rises distinctly above the resistive
background. Overall, manifestations of all of the true struc-
tures are observed, but there are both minor and major dif-
ferences between the images in Figures 1a and 1c. In the re-
covered model, amplitudes of anomalies are reduced and the
boundaries of the recovered prisms are smooth. This is a con-
sequence of using the `2–norm and minimizing (dm/dx)2 and
(dm/dz)2. These discrepancies can be considered minor. Major
differences between Figures 1a and 1c occur at the sides and at
depth where the recovered resistivity returns to the a priori ref-
erence model. Conductive or resistive features in those areas
do not significantly affect the data, and the inversion readily
complies with its mandate to produce a simple model that is
close to the background.

Of all of the discrepancies between Figures 1a and 1c,
the truncation of the second conductor is perhaps the most
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important. If Figure 1c is believed, then the second conductor
is wrongly inferred to have limited depth extent. In reality, the
truncation is the result of a particular choice of φm and the fact
that structure at depth no longer significantly affects the data.
For interpretation of this inversion result, it is therefore neces-
sary to delineate the depth below which the recovered model
is no longer controlled by the data. That is the goal of this
paper.

Before providing details of our approach, it is important ob-
tain some insight about the nonuniqueness that is inherent in
this inverse problem. We generate three additional models that
fit the data to the same global misfit as in Figure (1c). The mod-
els in Figure 2 are respectively generated to be (a) close to a
background, (b) horizontally continuous, and (c) vertically con-
tinuous. These are all poorer representations of the true earth
model than that shown in Figure 1c. The predicted data from
each model is shown in Figure 2. This example illustrates the
importance of choosing the correct objective function when
carrying out the optimization. It also suggests that quantifying
the practical depth of investigation is not an easy problem that
has a single unequivocal answer.

The paper is structured in the following manner. We first re-
view current approaches for estimating depth of investigation
(DOI). The next section shows how DOI information can be
obtained by carrying out additional inversions. Two methods
are presented. The choice of method depends upon the objec-
tive function that was used to generate the model that is to be
interpreted. The depth of investigation for different arrays is
then briefly examined for the test data set. We conclude with a
field example and summary remarks.

APPROACHES TO QUANTIFYING DEPTH OF
INVESTIGATION

For dc and IP surveys, the concept of “depth of investiga-
tion” has generally been associated with a depth to which the
data are particularly sensitive. Barker (1989) provides a con-
cise summary. Most approaches first compute a curve that indi-
cates what proportion of the final measured signal arises from
a thin layer at depth in a homogenous half-space. Either the
depth at which the maximum occurs (e.g., Evjen, 1938; Roy
and Apparao, 1971; Roy, 1972 or the depth of the median value
(Edwards, 1977) can be used. The median is the depth at which
half of the signal contribution comes from above and half from
below. These analyses have given rise to various survey ge-
ometries championed by different groups. Investigation depths
from Edwards (1977) are given as factors relative to the char-
acteristic length of the array (dipole length in pole-dipole and
dipole-dipole arrays, inter-electrode spacing in Wenner array,
the distance between current and potential electrodes in pole-
pole array). These depths, while helpful as guidelines in survey
design, do not quantify the depth to which the features in the
inverted model can be interpreted.

Other attempts to define a depth of investigation make use of
forward modeling techniques and concentrate upon the ques-
tion of whether the data are able to detect a body at depth
(e.g., Van Nostrand, 1953; Apparao et al., 1992). A conductive
or resistive feature is assumed at depth, and predicted data are
compared to those obtained without the feature. If the assumed
feature sufficiently alters the data, the depth of investigation

is at least as deep as the top of the feature. This methodology
is very useful in survey design, but it does not lend itself easily
to quantifying depth of investigation as it relates to the model
recovered from the field survey data.

Our depth of investigation seeks to determine the depth be-
low which the data are no longer sensitive to the physical prop-
erty. Simple rules of thumb are not expected to be applicable
because the depth of investigation is highly dependent upon
the conductivity structure, the acquisition geometry, and data
errors. In an important paper, Parker (1984) showed that the
potentials observed over a 1-D earth can be explained by a
sequence of conductive layers whose accumulated thickness
is infinitesimal. So without further information, the inferred
depth of penetration is theoretically zero. Finite limits on depth
of investigation can only be obtained by limiting the values of
conductivity or the rate at which the conductivity changes with
depth. It is not clear what aspects of Parker’s analysis carry
over to two dimensions, but the results in Figure 2 show that
nonuniqueness in dc resistivity inversions is severe. It is likely,
therefore, that inferences, obtained from a mathematical anal-
ysis that considers all models that reproduce the data, provide
limited insight about the true depth of investigation. Usable
information comes only when additional constraints, such as
those required by the model objective function, are imposed
upon the models.

To make practical progress, we restrict our analysis to models
that are, in some sense, “close” to m∗, our preferred model. Al-
though a Backus-Gilbert analysis (e.g., Oldenburg, 1978) can
provide insight about resolving depths, it only considers models
that are linearly close to m∗. This is too restrictive. In this paper,
we generate models that have the same general characteristics
as m∗, for example smoothness in horizontal and vertical direc-
tions, but yet differ substantially from m∗. The models are of
interest in themselves and, with a minimum of computational
effort, differences between the images can be used to illumi-
nate the depth corridor where data no longer constrain earth
structure.

DEPTH OF INVESTIGATION USING INVERSE MODELING

We assume that the user has defined a model objective func-
tion φm(αs, αx, αz, m0) and has obtained a model m∗ that mini-
mizes φm subject to the data constraints. m∗ represents the best
estimate of the earth, and the next goal is to estimate the depth
below which features seen on the image are no longer con-
trolled by the data. We proceed by finding other models that fit
the data to the same degree as m∗. This exploration of model
space can be accomplished by altering the objective function
and performing a subsequent inversion. Depending upon the
parameters in φm there are two approaches.

Method 1: αs > 0, m0 = constant

Assume that a half-space is chosen as a background refer-
ence model and that αs is sufficiently large so that the first term
in the objective function in equation (1) is of importance in the
minimization. Evidence for this is that the constructed model
returns to the half-space value at depth. This was observed
in the inversion in Figure 1 where the reference model was
400 ohm-m. Figure 3 shows two other inversions in which
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the backgrounds are 4000 ohm-m and 40 ohm-m, respectively.
There are clearly major differences in the images at depth.
Quantifying those differences provides an estimate of DOI.

Consider two inversions carried out with constant reference
models m1r , m2r . Let m1, m2 be the models recovered, and de-
fine

R(x, z) = m1(x, z) − m2(x, z)
m1r − m2r

. (3)

Rwill approach zero at locations where the two inversions pro-
duce the same result regardless of the value of the reference
model. We assign high credibility to those areas. R will ap-
proach unity at locations where the inversions achieve the value
of the reference model. The data do not constrain the model
and, hence, low credibility should be assigned to the model
values in those areas. In Figure 4c, we plot R obtained from
models in Figures 3a and 3c. We refer to this as the DOI in-
dex, and it is a companion plot to be used to aid interpreta-

FIG. 3. Resistivity models generated with half-space reference models of (a) 4000 ohm-m, (b) 400 ohm-m, and
(c) 40 ohm-m. All models fit the data in Figure 1b to the same chi-squared misfit. (αs, αx , αz) = (0.001, 1, 1) for
all inversions.

tion of m∗. Features observed in Figure 1c that correspond to
high DOI values should be omitted from the interpretation.
This is facilitated by a contour plot of the DOI values super-
posed upon m∗ as in Figure 3b. An alternative is to blank out
that portion of the model for which R is greater than some
value. The choice of what is a low or high value of DOI is arbi-
trary but not crucial. Once the DOI index begins its increase,
it does so rather quickly. A reasonably cautious value might be
0.1 or 0.2.

A sharp boundary that characterizes DOI is extreme and not
physical since our ability to see into the earth diminishes grad-
ually with depth. This information can be presented by scaling
the color intensity of the conductivity image m∗ with the DOI
value. Portions with large DOI values become invisible, and
therefore they cannot distract from the visual interpretation.
This is shown in Figure 4a.

Interpreting the conductivity model and the DOI informa-
tion with a cutoff of R = 0.1 (or using Figure 4a) leads to the
following conclusions. All buried bodies are likely of limited
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depth extent except for the larger conductor in the middle. That
is the only body intersected by the R = 0.1 curve; the others
exhibit considerable closure above the contour. In computing
the DOI map in Figure 4, we took differences between models
that were larger and smaller than 400 ohm-m. We refer to this
as a two-sided difference. DOI maps obtained by taking only
one-sided differences, that is, using reference halfspaces of 40
and 400 ohm-m and 400 and 4000 ohm-m were essentially the
same as that shown in Figure 4.

Method 2: αs = 0

Inversions are sometimes completed by setting αs = 0 and
minimizing structure in the horizontal and vertical directions.
The resultant model will be independent of any reference half-
space and so equation (3) cannot be used. In practise, nu-
merical considerations require that αs not be set exactly to

FIG. 4. The DOI index computed from inversions having reference backgrounds of 4000 ohm-m and 40 ohm-m
is provided in (c). This information is superposed on m∗ as contour lines in (b). The contour interval is 0.1. In
(a) the intensity of m∗ is scaled by the DOI value. White regions correspond to areas where the resistivity has
minimal effect on the data.

zero. Nevertheless it can be made small enough to provide the
needed numerical stability without having significant effect on
the recovered model. In Figure 5b, we present an inversion in
which αs = 10−6 and m0 = 2.6 (400 ohm-m). This model is
now regarded as m∗, our best estimate of the earth model.
We note that the resistivity at depth is a smoothly varying
function.

To generate a conductivity model different from m∗, we keep
αs = 10−6 and introduce a reference m0 = α + γ z, where α is
an average value of the near-surface log conductivity and γ is
a constant. At sufficiently large depths, the depth derivative
of the recovered model will asymptote to γ . Let m1 and m2 be
two models constructed using reference models with slopes +γ

and −γ respectively. These are shown in Figures 5a and 5c for
a choice of γ = 0.01. The large conductor appears as a closed
feature in Figure 5a and as a vertical protrusion connected to a
large regional conductor in Figure 5c. The other bodies appear
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to be confined. Differences between the two images can be
evaluated using a cross-correlation. Let

C =

n∑
i

(m1i − m̄1)(m2i − m̄2)(
n∑
i

(m1i − m̄1)2
n∑
i

(m2i − m̄2)2

)1/2
, (4)

where the sum is taken over n cells in a rectangular area cen-
tered around a cell, m̄1 is the average of the model m1 over
those cells, and m̄2 is the average of m2. For computation, we
take a suite of 5 × 3 cells to evaluate each correlation. Corre-
lation values lie between [−1, 1], so a DOI index in the range

FIG. 5. Resistivity models generated using different ramp reference models. All inversions use coefficients (αs, αx ,
αz) = (10−6, 1, 1). The model in (b) is generated with a constant reference of 400 ohm-m, which has minimal
effect due to the small αs. This model is considered to be m∗. The resistivity in (a) is generated using a ramp
reference model of the form m0 = c0 +γ z where γ = 0.013. Thus the reference model is 400 ohm-m at the earth’s
surface and 400 000 ohm-m at the bottom of the mesh at 225 m. The resistivity in (c) is generated with a ramp
reference model of the form m0 = c0 − γ z. The reference model is 400 ohm-m at the top and 0.4 ohm-m at the
bottom of the mesh.

[0, 1] can be defined by

R = C − 1
2

. (5)

The DOI index computed from models in Figures 5a and 5c is
shown in Figure 6c. In Figure 6b, we plot this index directly on
m∗; in Figure 6a, we use the DOI value to scale the color inten-
sity of m∗. The DOI curves are quite compact in depth. This is
due to the large gradients used for the background models.

Figures 4 and 6 provide two estimates of the DOI for this
example. There are differences, but the depth at which R be-
gins to change significantly is reasonably similar. Choosing the
R = 0.2 contour on either plot would provide a sensible de-
marcation between features that are controlled by the data and
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features that are controlled by the model objective function.
Equivalently, Figures 4a and 6a provide the same essential in-
formation about the earth model.

In developing the background models needed to construct
the DOI maps, we have found a number of models that fit the
data to the same degree. All are generated so that they are
smooth in the horizontal and vertical directions, but they are
designed to be different in a large-scale sense. These models
constitute a limited exploration of model space, and interpreta-
tions can be facilitated by viewing Figures 3 and 5 together. The
similarities and differences are striking. All buried conductors
and resistors are observed at approximately the same loca-
tions. Figure 5c shows that the large prism need not be closed.
However, closure of the contours on the remaining bodies indi-
cate they are confined bodies. Comparison of the six models im-
mediately provides a great amount of information about depth
of investigation. Also, by looking at differences between mod-
els one can obtain a visual estimate of a corridor where the data
quickly lose ability to control the model. That is essentially what
we are trying to estimate quantitatively with the DOI maps.

FIG. 6. The DOI index computed from inversions using ramp reference models is plotted in (c). These values are
superposed on m∗ in (b). The contour interval is 0.1. In (a) the intensity of m∗ is scaled by the DOI value.

AN ALGORITHM FOR CONSTRUCTING DOI MAPS

We suppose that the user has designed an objective function
of the form in equation (1) and specified constants αs, αx, αz

and an initial reference model m∗
0 that we shall assume is a

constant c0. The next task is to determine the DOI map. This
requires knowledge of the relative importance of αs compared
to αx, αz in the objective function. In the previous section, we
outlined how to compute the DOI for two end-member cases:
where αs plays an important role in the objective function and
where it does not. For many practical cases, the αs for the pri-
mary inversion may be intermediate between these extremes.
To evaluate this effect, we have carried out the inversions for
our test model at different values of αs and for two constant
reference models m0 = 400 ohm-m and m0 = 40 ohm-m. We
examine the recovered values of the model at three cell lo-
cations. The first cell has coordinates (x, z) = (−127, 200) m.
It lies towards the bottom of the mesh, and we expect that R
is unity there. This is confirmed in Figure 7, where the model
values from the inversions and the corresponding values of R
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evaluated with equation (3) are provided. When αs exceeds
10−2, the recovered conductivity is approximately equal to the
reference half-space and thus R is unity. However, as αs de-
creases, the influence of the first component of the objective
function lessens, and the recovered model becomes less depen-
dent upon the reference. When αs is less than 10−5, the resis-
tivities from both inversions are the same and are independent
of the chosen value of the half-space.

The cell at (x, z) = (−102, 100) m has similar characteristics
although, even for large values of αs, the recovered model does
not quite achieve the reference half-space value. This is an
indication that the conductivity in the cell is affecting the data
and that R is less than unity. An entirely different behavior
is observed for the cell at 37 m depth. This cell is well within
the depth of investigation of the survey. Attempts to make the
value of this cell equal to the background fail, even when αs is
large.

The curves in Figures 7a and 7c provide considerable insight.
The importance of αs in the inversion can be assessed by eval-
uating R at cells in which R should be unity. These are cells
toward the bottom of the mesh. If R for those cells lie in the

FIG. 7. The values of recovered resistivities at location (x, z) = (−127, 200) as a function of αs are shown in
(a). The xs are values obtained using a reference halfspace m1r = 400 ohm-m and the os are obtained using
the halfspace value m2r = 40 ohm-m. The index R, evaluated using equation (3), is shown in (b). Only when αs
exceeds 10−2 does R approach unity. The results for a cell at (x, z) = (−102, 100) are given in (c) and (d). That
cell has minor influence on the data. The results for the cell at (x, z) = (−77, 37) are substantially different. This
corresponds to a depth which is well above the depth of investigation for the survey.

range 0.2 < R < 1.0, then the inverted results are moderately
dependent on αs. We proceed by evaluating R using equation
(3), but scale the results so that R at depth is unity. The validity
of this is shown in Figure 8. The unscaled DOI curves are plot-
ted on the left (Figures 8a–8c). Note that the first DOI contour
(R = 0.1) progressively deepens as αs becomes smaller. Scal-
ing the DOI contours so that R is unity at the bottom of the
mesh yields the results in Figures 8d–8f. The scale factors for
αs = 10−3, 10−4, and 10−5 are, respectively, 1.12, 1.90, and 18.4.
The results for αs = 10−5 are surprisingly good despite the fact
that the unscaled R was 0.05 towards the bottom of the model.

In practical applications, we proceed as follows. The half-
space reference model is perturbed and the inversion carried
out. Equation (3) is used to evaluate R. If, for cells at the
bottom of the mesh, Rb > 0.2, then αs is assessed to be playing
an significant role in the objective function, and a scaled value
of R is used as the final DOI. If Rb < 0.2, then αs is assessed to
be playing an insignificant role in the objective function and
thus character of the final model is determined primarily by the
derivative terms. In this case, method 2 should be used to eval-
uate the DOI index. This requires two additional inversions.
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The explicit algorithm is

1) Choose m0 = β ∗ c0.
2) Invert data to obtain m1.
3) For cells at the bottom of the mesh, if

Rb = |m1 − m∗|
c0(1 − β)

> 0.2 (6)

then: compute DOI index

R = |m1 − m∗|
Rbc0(1 − β)

(7)

else
Ensure that the effect of αs is minimal. Replace αs by
αs ∗ min(1, 10−3/Rb).
Carry out two inversions with references models
m0 = c0 ± γ z. Evaluate R from equation (5).

end.

To employ the above algorithm, we need to determine pa-
rameters of the reference model. Method 1 evaluates the DOI
by computing the difference between inversion results using
two reference models m∗

0 = c0 and β ∗ c0. As with any finite
differencing, if β is too close to unity, then results will not be re-
liable because of machine round-off errors. Questions also arise
concerning whether the perturbed model should be more con-
ductive or more resistive than m∗

0, and also whether one-sided
or two-sided differences are preferable. We have attempted
to address these questions empirically. Keeping αs = 0.001,
inversions were carried out with 0.01 < β < 100. One-sided dif-
ferences from m∗

0 and two-sided differences were computed.
Overall, the final DOI maps were similar. The corridor along
which the DOI index began to increase rapidly was noted to
shift vertically by up to a few tens of meters for extreme models.
However, these variations would not have altered the interpre-
tation about assessing whether the individual structures were
open or closed at depth. The DOI curves also are affected by the
feature being analyzed. For instance, when analyzing a conduc-
tive target, shallower DOI curves are obtained if the perturbed
model is made more resistive. Conversely for a resistive target,
the DOI curves are closer to the surface if the reference model
is made more conductive. Even fairly small changes in the ref-
erence model (0.95 < β < 1.05) produced good DOI maps. Ex-
treme values of β, (β = 0.01 and β = 100) also produced
reasonable estimates. Because of these results, and our desire
to construct a model that is substantially different from m∗, we
generally evaluate the DOI index using a reference model that
differs from m∗

0 by a factor of 5 to 10. If the feature of interest is
a conductor, we make the new reference model more resistive,
and if it is resistive, we make the new reference model more
conductive.

Computing DOI maps using method 2 requires generating
models with gradients that are ±γ . If γ is small, the DOI curves
are spread out in depth. They get closer together as γ increases.
Despite the differences in details, the DOI maps obtained from
different γ s provided consistent information in this example
to assess whether the buried conductors and resistors were
open or closed at the depth of investigation limit. To construct
DOI maps, and also to have additional models to interpret, we
have generally selected γ such that the reference conductivity

changes by a factor of 5 to 10 over a depth range equal to L ,
where L is the length of the array.

We want to emphasize that our procedure provides informa-
tion only about the corridor in which the data become insen-
sitive to the earth model. Small details in any particular DOI
contour should not be interpreted and, for presentation pur-
poses, some additional smoothing might be desirable if contour
lines are presented. We have not done that here.

DEPTH OF INVESTIGATION FOR DIFFERENT
ARRAY CONFIGURATIONS

Considerable research has been devoted to examining the
relative merits of using different electrode arrays in geophysi-
cal surveys. General rules of thumb advocate that dipole-dipole
data have the greatest near-surface resolving power but see
the shallowest. Pole-pole data have the poorest resolution but
see the deepest. Pole-dipole data are intermediate. In princi-
ple, pole-pole data, which are the most primitive data set, con-
tain the most information about the earth model. Data from
any other electrode configuration can be generated by taking
linear combinations of the pole-pole data, although for field
data there are adverse implications regarding signal-to-noise
(Beard and Tripp, 1995). The reverse is not true, however; pole-
pole data cannot be obtained from dipole-dipole data. Inher-
ently then, dipole-dipole data must have less information about
the earth than do pole-pole data. An additional, and critical, as-
pect in comparison of resolving power or depth of investigation
of different arrays, is data error. Resolving power and depth of
investigation of any experiment depends upon the accuracy of
the data. The larger the errors, the more poorly we resolve
features at depth. This aspect cannot be overemphasized.

If the noise is specified, then the depth of investigation of
different arrays can be compared by evaluating the DOI maps.
This is not the main thrust of our paper, but we present one
analysis to illustrate how the comparisons can be carried out.
Simulated data from pole-pole, pole-dipole, and dipole-dipole
surveys over our model are provided in Figure 9. Uncorrelated
Gaussian random noise with a standard deviation equal to 5%
of the datum magnitude and a base level have been added to
the data. The base level is proportional to the signal strength
of each data set such that all four data sets have approximately
the same signal-to-noise ratio. The pseudosections are domi-
nated by linear features that are directly related to electrode
geometry. The pole-pole data appear to be less influenced by
the near-surface conductors and may see the large deep con-
ductor in the middle. The image is smooth compared to that
from the dipole-dipole pseudosection. These visual differences,
however, are mainly caused by the geometry of data collection,
and they do not directly convey the relative information about
the conductivity structure that is encoded in the data. That can
be done only through inversion.

Figures 9e–9h show the recovered models obtained by
inverting the resistivity pseudosections with (αs, αx, αz) =
(0.001, 1, 1) and a half space reference model of 400 ohm-m.
Most noticeable is that the recovered models provide similar
information about the earth resistivity structure. The distor-
tions in the pseudosection caused by electrode geometry are
absent in the inverted models. This is in accordance with an un-
derstanding that the different data sets can all be made up of the
fundamental pole-pole data set and that they therefore have
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FIG. 10. Apparent resistivity data from the Century deposit are shown in (a). The predicted data are in (b). The
model recovered from the inversion is in (c) with DOI curves superposed. The top contour is R = 0.1. The white
line is the depth of the overburden obtained from drill logs. The logs also provided estimates for the top and
bottom of the ore zone (dashed lines) and the faults (solid black lines).

FIG. 11. Apparent phase data from the Century deposit are shown in (a). The predicted data are in (b). The
model recovered from the inversion is in (c) with the DOI curves superposed. The top contour value is R = 0.1.
The white, dashed, and solid lines are the same as those in Figure 10.
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the same information about the earth embedded in them. On
a more detailed level, the near-surface conductivity is equally
well delineated, but the depth extent of features in the dipole-
dipole data is less than for that from the pole-pole data set. The
pole-pole results indicate a loss of lateral resolution in that the
separation of the large and small conductor is blurred. Also
buried bodies are slightly deeper. These differences between
the recovered models result primarily because of the choice of
noise levels for the data and because no data set can be exactly
reproduced by a linear combination of data from another array.

The white line on each figure is the DOI index curve corre-
sponding to the R = 0.2 contour value. To evaluate that line,
we re-inverted the data with a reference of 40 ohm-m. The con-
tour values were scaled so that R= 1 at the bottom. The DOI
contours have similar shape but there is a difference in depth.
The contour is shallowest for the dipole-dipole data, and it is no
longer clear that the resistive prism on the left is closed. The
contour for the pole-dipole, with the potential dipole on the
left, also intersects the resistor. This loss of depth information
in that area is due to recording geometry, as can be seen by
comparing with the results from pole-dipole right.

FIELD EXAMPLE

As a field example, we apply our strategy to a data set from
the Century deposit in Australia. Complex resistivity dipole-
dipole data with a = 100 m and n = 1 . . . 8 were collected.
The dc resistivity data, recovered model, and predicted data
are provided in Figure 10. The inverted model was obtained
by assuming 5% noise on the data and setting (αs, αx , αz) =
(0.001, 1, 1). The reference model is a half-space of 100 ohm-m.
The primary benefit of the dc resistivity interpretation has
been to delineate the thickness of the resistive overburden.
The DOI curves were computed after carrying out another
inversion with a reference of 1000 ohm-m. The DOI curve for
R= 0.2 approaches 100 m or less at the two ends of the survey
and extends to about 300 m in the middle. This is greater than
the depth of the orebody delineated by the dashed line.

The DOI analysis can be applied to IP data. For the primary
inversion, we assume the reference model is zero. The charge-
ability data, recovered model, and predicted data are shown
in Figure 11. The IP inversion has delineated the horizontal
extent of, and depth to, the orebody. It also indicates a major
fault between x = 27 000 m and x = 27 500 m, which dislocates
the ore sequence. To calculate the DOI curves, we perform an-
other inversion with a reference model of 10 mrad. The R = 0.2
contour lies significantly below the portion of the orebody at
the left and closure of that feature is inferred. This is consistent
with drill information. The interpretation is less clear for the
central deeper orebody, but the DOI curves all lie significantly
below the maximum, and this suggests that the body is confined
in depth.

CONCLUSIONS

Once data have been properly prepared, the major manual
effort needed to invert geophysical data centers around the de-
cision of what objective function is to be minimized and how
well to fit the data. The inversion algorithm then provides a
model from which final interpretations can be made. To assess
whether features at depth are demanded by the data or are ar-

tifacts of the inversion process, we need to quantify the depth
of investigation that is inherent to any survey. Our approach is
to alter the model objective function, carry out a subsequent
inversion, and then observe the differences between models.
Locations where large differences occur are clearly areas where
the data do not constrain the model. A DOI index that has the
range [0, 1] quantifies the change. Latitude exists regarding
how the objective function can be altered. We have chosen
only to alter the reference model m0. If the objective function
that produced m∗ was dominated by the “smallest” model term
(controlled by αs), we suggest altering the reference model by a
significant factor (say a factor of 5–10). If the objective function
is controlled by terms that minimize horizontal and vertical
variation, then we suggest two additional inversions in which
the reference model has strong positive and negative gradi-
ents. In practise, we advocate that all three of these inversions
be carried out prior to final interpretation. This requires extra
CPU time, but the procedure is not manually intensive. Plots
of three or four models which, at depth, are significantly dif-
ferent from our “best” result are extremely informative in the
interpretation. Visual examination of these plots can provide
an estimate of a depth corridor below which model features are
no longer controlled by the data. The DOI maps quantify this
depth and ultimately prevent overinterpretation of inversion
results.
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