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Abstract

We investigate the use of edge element basis vectors in an integral equation solution for

three-dimensional geophysical electromagnetic modelling. Expansion of the total electric

field within the region of anomalous conductivity in terms of these basis vectors gives

a bilinear variation of each component of the field within a cell in the two directions

perpendicular to the component (and so a divergence free but not curl free field within a

cell), and continuity of the tangential electric field between two cells. In addition, we use

a form of the electric field integral equation that explicitly involves the charge densities

on cell faces associated with any discontinuity of the normal component of the current

density. The two types of integrals in the integral equation – the volume integration of the

scattering current within each cell, and the surface integration of the charge density on the

faces of each cell – are computed using Gaussian quadrature. The system of equations to be

solved is constructed using the Galerkin approach. In this preliminary study, we consider

the simple case of a homogeneous halfspace as the background model. Comparisons with

results from the literature and other codes have been promising. We include here two

examples: one for a grounded electric line source at low frequency (3 Hz) on the surface

of a halfspace (σ = 0.02 S/m) in which a more conductive vertical prism (σ = 0.2 S/m) is

buried, and one for a magnetic dipole source-receiver combination over a conductive cube

(σ = 100 S/m) in a resistive (σ = 10−4 S/m) background.

Keywords: Electromagnetics, three-dimensional, forward modelling, integral equation,

edge elements, high contrast.

1. Introduction

Traditional integral equation formulations for electromagnetic modelling in geophysics

(e.g., Hohmann, 1975), which use pulse basis functions to represent the electric field, fail for
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large conductivity contrasts. Newman & Hohmann (1988) provide a means of remedying

this problem by grouping together pulse basis functions to explicitly form current loops.

We have implemented, as we shall describe, the more sophisticated edge element basis func-

tions in the anticipation that the inaccuracies of the traditional approach can be avoided.

Edge element basis functions have desirable properties: they are divergence free but not

curl free, and give a solution for which the tangential electric field is, by construction,

continuous across cell faces. They have been successfully used in finite element solutions

to electromagnetic forward modelling (e.g., Jin, 1993). The use of similarly sophisticated,

although different, basis functions (linear variation of each electric field component in all

three dimensions, and imposition of continuity of tangential field components and normal

current density) has been presented by Slob & van den Berg (1999).

We start by deriving the form of the integral equation upon which our numerical

solution is based, a form that explicitly involves the charge densities on cell faces across

which there is a difference in conductivity, and thus directly reduces at zero frequency

to the integral equation solution for the direct-current (DC) resistivity forward-modelling

problem.

2. The integral equation

Consider Maxwell’s two curl equations in the frequency domain (assuming a time

dependence of e−iωt, and the quasi-static approximation):

∇×E = iωµH, (1)

∇×H = σE + JI , (2)

and the statement of conservation of charge:

∇ ·
�
σE

�
= −∇ · JI , (3)

where E(r, ω) andH(r, ω) are the total electric and magnetic fields, µ = µ0 is the magnetic

permeability of free space, σ = σ(r) is the electrical conductivity of our model Earth, and

JI is the impressed electric current density. Taking the curl of eq. (1), using eq. (2) to

eliminate H, and exploiting the vector identity ∇×∇×E = −∇2E+∇
�
∇ ·E

�
, gives

−∇2E + ∇
�
∇ ·E

�
− iωµσE = iωµJI . (4)
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Consider now a background conductivity σb(r), and the electric and magnetic fields

Eb and Hb that exist in this background model for the impressed current density JI . The

two Maxwell’s curl equations for this scenario are

∇×Eb = iωµHb, (5)

∇×Hb = σbEb + JI , (6)

and the statement of conservation of charge is

∇ ·
�
σbEb

�
= −∇ · JI . (7)

Performing the same manipulations as for the total fields gives

−∇2Eb + ∇
�
∇ ·Eb

�
− iωµσbEb = iωµJI . (8)

Now consider the total electric field in the model with σ = σ(r) to be the sum

of the background electric field and a “secondary” part: E = Eb + Es. Also consider

σ(r) = σb(r) + ∆σ(r). Substituting these two expressions into eq. (4) gives

−∇2
�
Eb + Es

�
+ ∇

�
∇ · (Eb +Es)

�
− iωµ

�
σb +∆σ

��
Eb +Es

�
= iωµJI . (9)

Expanding the terms in parentheses, and using eq. (8) to cancel many of the resulting

terms, gives

−∇2Es + ∇
�
∇ ·Es

�
− iωµσbEs = iωµ∆σE. (10)

Likewise substituting E = Eb + Es and σ = σb + ∆σ into eq. (3), and using eq. (7) to

eliminate JI , gives

∇ ·Es = −
1

σb
∇σb ·Es −

1

σb
∇ ·

�
∆σE

�
. (11)

We now assume that our background model is a homogeneous halfspace, meaning that

∇σb is non-zero only on the Earth-air interface (at z = 0). Rewriting eq. (11) using more

symbolic terms that avoid derivatives of conductivity discontinuities (both at the Earth-air

interface and between cells once we discretize the anomalous region) gives

∇ ·Es = ∇ ·Es
��
z=0

+ ∇ ·Es
��
Va

, (12)

where the first term on the right-hand side represents the contribution from the Earth-air

interface, and the second term represents the contribution from the region of anomalous
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conductivity (which occupies the volume Va). The differential equation for the secondary

electric field (eq. 10) therefore becomes (cf. Hohmann, 1987)

∇2Es − ∇
�
∇ ·Es|z=0

�
+ iωµσbEs = −iωµ∆σE + ∇

�
∇ ·Es|Va

�
. (13)

Rewriting this equation using notation that simplifies the right-hand side:

∇2Es − ∇
�
∇ ·Es|z=0

�
+ iωµσbEs = Q, (14)

where Q = −iωµ∆σE + ∇(∇ · Es|Va). Consider now a vector Green’s function gk such

that

∇2gk(r; r′) − ∇
�
∇ · gk(r; r′)|z=0

�
+ iωµσbg

k(r; r′) = −δ(r− r′) ûk, (15)

where ûk is the unit vector in the kth direction. All components of gk → 0 as |r| →

∞. What conditions gk satisfies on the Earth-air interface will be discussed in Section 7.

Taking the scalar product of gk(r; r′) and eq. (14), the scalar product of Es and eq. (15),

subtracting the second resulting equation from the first, and integrating over all space,

gives Z
V

n
gk ·

�
∇2′Es − ∇

′
�
∇′ ·Es|0

�
+ iωµσbEs

�
−

Es ·
�
∇2′gk − ∇′

�
∇′ · gk|0

�
+ iωµσbg

k
�o

dv′

=

Z
V

n
gk ·Q + Es · δ(r− r′)ûk

o
dv′. (16)

Simplifying both the right- and left-hand sides givesZ
V

�
gk · ∇2′Es − Es · ∇

2′gk
	

dv′ −

Z
V

�
gk · ∇′

�
∇′ ·Es|0

�
− Es · ∇

′
�
∇′ · gk|0

�	
dv′

=

Z
V

gk ·Q dv′ + Esk, (17)

where Esk is the kth component of the secondary electric field. Rewriting the first integral

on the left-hand side of the above equation in terms of the components of Es and gk givesZ
V

�
gk · ∇2′Es − Es · ∇

2′gk
	

dv′ =

Z
V

�
gkx∇

2′Esx − Esx∇
2′gkx

	
dv′ +

Z
V

�
gky∇

2′Esy −Esy∇
2′gky

	
dv′ +

Z
V

�
gkz∇

2′Esz −Esz∇
2′gkz

	
dv′, (18)

=

Z
∂V

�
gkx∇

′Esx −Esx∇
′gkx
	
· n̂ ds′ +

Z
∂V

�
gky∇

′Esy − Esy∇
′gky
	
· n̂ ds′ +

Z
∂V

�
gkz∇

′Esz − Esz∇
′gkz
	
· n̂ ds′, (19)

4



An integral equation solution for 3D EM modelling Draft, 9 February 2001.

using the second scalar Green’s theorem (Tai, 1993). But these three surface integrals

vanish because all components of Es and gk are zero on the boundary ∂V (at infinity).

Integrating by parts the second integral of the left-hand side of eq. (17) gives

Z
V

�
gk · ∇′

�
∇′ ·Es|0

�
− Es · ∇

′
�
∇′ · gk|0

�	
dv′

=

Z
V

�
∇′ · gk∇′ ·Es|0 − ∇

′ ·Es∇
′ · gk|0

	
dv′, (20)

=

Z ∞
−∞

Z ∞
−∞

�
∇′ · gk|z=0∇

′ ·Es|z=0 − ∇
′ ·Es|z=0∇

′ · gk|z=0

	
dx′ dy′, (21)

which is equal to zero. Hence, from eq. (17), and reinstating Q,

Esk = iωµ

Z
V

gk ·E∆σ dv′ −

Z
V

gk · ∇′
�
∇′ ·Es|Va

�
dv′. (22)

Integrating the second term on the right-hand side by parts, and using the fact that gk is

zero on the boundary, gives

Esk = iωµ

Z
V

gk ·E∆σ dv′ +

Z
V

∇′ · gk ∇′ ·Es|Va dv′. (23)

Considering the three components of the secondary electric field, and adding the

background electric field to both sides, gives the vector integral equation:

E = Eb + iωµ

Z
V

G(1) ·E∆σ dv′ +

Z
V

G(2)∇′ ·Es|Va dv′, (24)

where

G(1) =

0
@ gxx gxy gxz

gyx gyy gyz
gzx gzy gzz

1
A and G(2) =

0
@∇

′ · gx

∇′ · gy

∇′ · gz

1
A . (25)

This integral equation as written reduces at zero frequency to the integral equation for

the DC resistivity problem, and we ensure this correspondence remains intact between our

numerical implementation of eq. (24) and numerical implementations for the DC problem

(e.g., Snyder, 1976).

The integral equation for the magnetic field is obtained from eq. (24) by H = ∇ ×

E/iωµ :

H = Hb +

Z
V

G(3) ·E∆σ dv′, (26)
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where each column of G(3) is given by 1/(iωµ)∇× of each column of G(1). The second

integral in eq. (24) does not contribute to the magnetic field.

3. Numerical solution – Galerkin approach

The numerical solution of the integral equation is obtained using the method of

weighted residuals. The only contributions to both integrals in eq. (24) are from the

anomalous region. Since our background model is a homogeneous halfspace, ∇ ·Eb is zero

within this region, and we can therefore replace ∇ · Es in eq. (24) by ∇ · E, giving, after

re-ordering the terms and explicitly limiting the integrations to the anomalous region Va,

E − iωµ

Z
Va

G(1) ·E∆σ dv′ −

Z
Va

G(2)∇′ ·E dv′ = Eb, (27)

which is a linear operator acting on the total electric field:

L
�
E
�
= Eb. (28)

The total electric field is expressed as a linear combination of basis vectors:

E(r) ≈
NX
j=1

cj vj(r). (29)

Substituting this representation into eq. (28) gives

NX
j=1

cj L
�
vj
�
= Eb + R, (30)

where the residual R represents the error introduced by the approximation in eq. (29).

Taking the inner product of eq. (30) with each of a set of weight functions, wi(r), i =

1, . . . , M , and requiring that the residual R be orthogonal to these weight functions, that

is, 〈wi,R〉 = 0 for all i, results in the matrix equation

Ax = b, (31)

where Aij = 〈wi,L[vj ]〉, xi = ci, and bi = 〈wi,Eb〉. The inner product is defined as

〈w,v〉 =
R
V
w ·v dv′. We adopt the Galerkin approach in which the basis vectors are used

as the weight functions.
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4. Edge element basis vectors

It is assumed that the region of anomalous conductivity can be represented by a grid

of cuboidal cells within each of which the conductivity is uniform. Within a cell, we

approximate the total electric field by a linear combination of twelve basis vectors, four

directed in the x-direction, four directed in the y-direction, and four in the z-direction.

The four basis vectors directed in the x-direction vary bilinearly with y & z, the four in

the y-direction vary with x & z, and those in the z-direction vary with x & y. The total

electric field within each cell is therefore divergence free by construction. It can also have

a non-zero curl.

Explicitly, the x-component of the electric field in an example cell (see Figure 1a) is

given by (e.g., Jin, 1993):

Ex(r) ûx = c1 v1(r) + c2 v2(r) + c3 v3(r) + c4 v4(r), (32)

= c1
�
(y − yc + ly)(z − zc + lz)/4lylz

	
ûx +

c2
�
(yc + ly − y)(z − zc + lz)/4lylz

	
ûx +

c3
�
(y − yc + ly)(zc + lz − z)/4lylz

	
ûx +

c4
�
(yc + ly − y)(zc + lz − z)/4lylz

	
ûx, (33)

where yc and zc are the y- and z-coordinates of the centre of the cell, and 2 ly and 2 lz

are the extents of the cell in the y- and z-directions. With the above definitions of these

four basis vectors, v1 = 1 & v2 = v3 = v4 = 0 on the edge of the cell with y = yc + ly &

z = zc + lz, v2 = 1 & v1 = v3 = v4 = 0 on the edge with y = yc − ly & z = zc + lz, and

likewise for the other two edges. The x-component of the electric field is thus effectively

equal to c1, c2, c3 & c4 respectively on the x-directed edges of the cell (see Figure 1a).

In an analogous manner to eq. (33), the y-component of the electric field within this

example cell is given by

Ey(r) ûy = c5
�
(x− xc + lx)(z − zc + lz)/4lxlz

	
ûy +

c6
�
(xc + lx − x)(z − zc + lz)/4lxlz

	
ûy +

c7
�
(x− xc + lx)(zc + lz − z)/4lxlz

	
ûy +

c8
�
(xc + lx − x)(zc + lz − z)/4lxlz

	
ûy, (34)
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and the z-component of the electric field by

Ez(r) ûz = c9
�
(x− xc + lx)(y − yc + ly)/4lxly

	
ûz +

c10
�
(xc + lx − x)(y − yc + ly)/4lxly

	
ûz +

c11
�
(x− xc + lx)(yc + ly − y)/4lxly

	
ûz +

c12
�
(xc + lx − x)(yc + ly − y)/4lxly

	
ûz, (35)

where xc is the x-coordinate of the centre of the cell and 2 lx is the extent of the cell in

the x-direction.

When two cells share a face, the basis function in the one cell that is equal to 1 on

one of the shared edges and the basis function in the other cell that is equal to 1 on

the same edge are treated as a single basis vector, meaning their coefficients are then

equal. Consider, for example, the two cells in Figure 1(b) which share the face for which

y = y
(1)
c + l

(1)
y = y

(2)
c − l

(2)
y , where the superscripts indicate the number of the cell.

Suppose the basis vectors for j = 1, . . . , 12 apply to cell 1 and those for j = 13, . . . , 24

apply to cell 2. This means that both v1 and v14 are equal to 1 on the edge for which

y = y
(1)
c + l

(1)
y = y

(2)
c − l

(2)
y & z = z

(1)
c + l

(1)
z = z

(2)
c + l

(2)
z , and both v3 and v16 are equal

to 1 on the edge for which y = y
(1)
c + l

(1)
y = y

(2)
c − l

(2)
y & z = z

(1)
c − l

(1)
z = z

(2)
c − l

(2)
z . These

four basis vectors are therefore considered as just two distinct basis vectors: (v1 + v14) &

(v3 + v16) with coefficients c̃1 = c1 = c14 & c̃3 = c3 = c16. This tying together of basis

vectors associated with shared cell edges is implemented by summing the corresponding

columns and rows of the system of equations in eq. (31). The consequence is that the

tangential component of the total electric field is continuous, by construction, across any

interface between cells.

5. The Green’s functions – part I

Our background model is a homogeneous halfspace. However, to simplify the com-

putations required when constructing eq. (31), it is assumed that the anomalous region is

sufficiently far from the Earth-air interface that, when both r & r′ are within the anoma-

lous region, the contributions to the Green’s functions G(1) & G(2) from the Earth-air

interface can be ignored. Hence, G(1) is a diagonal tensor whose elements are all equal to

the wholespace Green’s function:

gxx = gyy = gzz = gw(r; r′) =
1

4π

eikb|r−r
′|

|r− r′|
, (36)
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where k2b = iωµσb, and

G(2) =

0
@ ∂gw/∂x′

∂gw/∂y′

∂gw/∂z′

1
A = ∇′gw. (37)

6. Evaluation of the integrals

The volume integrals associated with the inner products 〈wi,L[vj ]〉 and 〈wi,Eb〉 in

eq. (31) are computed using Gaussian quadrature. The two types of integrals associated

with L[vj ] are computed as follows. The first integral, that is,

L(1)
�
vj
�
= iωµ

Z
Va

G(1)(r; r′) · vj(r
′)∆σ(r′) dv′, (38)

is evaluated using Gaussian quadrature when r is outside the cell over which the integra-

tion is taking place, and using the trapezoidal rule (with typically 10× 10× 10 evaluation

points) when r is within the cell so that r′ does not correspond to a Gaussian quadrature

node for the inner product integrations. The elements of G(1) are singular at r′ = r

because of their 1/|r−r′| dependence. However, the singularity does not contribute to the

integral. To see this, split the integral in eq. (38) into one part for a sphere of radius ε

centred on r′ = r, and one part over the rest of the cell in which vj is non-zero. For

small ε, the basis vector can be considered as being constant within the sphere, and the

exponential term in the components of G(1) can be considered to be constant and equal

to its value for |r− r′| = 0, which is 1. The integration over the sphere becomes:

iωµ

Z
Vε

G(1)(r; r′) · vj(r
′)∆σ(r′) dv′ ≈ iωµ∆σJ

1

4π
I · vj(r)

Z ε
ζ=0

1

ζ
4π ζ2 dζ, (39)

where ∆σJ is the anomalous conductivity in the cell, I is the identity tensor, and ζ =

|r− r′| . This integral vanishes as ε→ 0 .

The second integral in L
�
vj
�
is

L(2)
�
vj
�
=

Z
VJ

G(2)(r; r′)∇ · vj(r
′) dv′. (40)

where VJ is the volume of the cell in which vj is non-zero. ∇ · E is non-zero only on

the interfaces between cells, where it is equal to the surface charge density (scaled by the

permittivity of free space ε0). Hence (e.g., Li & Oldenburg, 1991),

∇ · vj =
� σJ

σn
− 1

�
vj · n̂ (41)
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where σJ is the conductivity in the cell, σn is the conductivity of the neighbouring cell

(or of the background if there is no neighbour), and n̂ is the normal to the face of the cell.

The integral in eq. (40) therefore becomes

L(2)
�
vj
�
=

Z
∂VJ

G(2)(r; r′)
� σj

σn
− 1

�
vj(r

′) · n̂ ds′. (42)

The above integrand is singular at r′ = r. This singularity gives rise to a contribution of

2π τ(r)/ε0, where τ is the surface charge density (Snyder, 1976). Thus,

L(2)
�
vj
�
=

Z
∂VJ ,r′ �=r

G(2)(r; r′)
� σj

σn
− 1

�
vj(r

′) · n̂ ds′ − 2π τ(r)/ε0. (43)

However, because the second term above exists only on the faces of the cell, it does not

contribute to the volume integration over the cell in the calculation of the inner product

〈wi,L[vj ]〉, and so can be ignored. The surface integral in eq. (43) is evaluated using

Gaussian quadrature.

7. The Green’s functions – part II

Once the electric field within the anomalous region is known, the field anywhere can

be computed using the simple re-arrangement of eq. (27):

E = Eb + iωµ

Z
Va

G(1) ·E∆σ dv′ +

Z
Va

G(2)∇′ ·E dv′. (44)

The form of gk , and hence that of G(1) and G(2), for the homogeneous halfspace is now

required. The most straightforward way to see what gx , gy & gz should be is to recognize

that they are equivalent to the Schelkunoff A-potentials described in Ward & Hohmann

(1987) for x-, y- & z-directed electric current density dipole sources. As such, gx has

only x- and z-components, gy only y- and z-components, and gz only a z-component.

Following eqs. (1.198) – (1.201) of Ward & Hohmann, the components of gx satisfy

1

σb

�
∂gxx
∂x

+
∂gxz
∂z

�����
z=0+

= 0, (45)

gxz |z=0+ = gxz |z=0− , (46)

gxx |z=0+ = gxx |z=0− , (47)

∂gxx
∂z

����
z=0+

=
∂gxx
∂z

����
z=0−

, (48)
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on the surface of the halfspace (z = 0, z positive down). The components of gy satisfy the

same set of conditions with x replaced by y. Following eqs. (1.182) & (1.183) of Ward &

Hohmann, the component of gz satisfies

1

σb

∂gzz
∂z

����
z=0+

= 0, (49)

gzz |z=0+ = gzz |z=0− . (50)

Alternatively, to determine what conditions must be satisfied by gk on the Earth-air

interface, consider in component form the second and third terms on the right-hand side

of eq. (44), that is, the secondary electric field (cf. eq. 23):

Esk = iωµ

Z
Va

gk ·E∆σ dv′ +

Z
Va

∇′ · gk∇′ ·Es dv′. (51)

We can rewrite the second integral using eq. (11):

Esk = iωµ

Z
Va

gk ·E∆σ dv′ −

Z
Va

∇′ · gk
1

σb
∇′ ·

�
∆σE

�
dv′. (52)

Integrating the second integral by parts gives

Esk = iωµ

Z
Va

gk ·E∆σ dv′ +
1

σb

Z
Va

∇′
�
∇′ · gk

�
·E∆σ dv′, (53)

=

Z
Va

n
iωµgk +

1

σb
∇′
�
∇′ · gk

�o
·E∆σ dv′, (54)

where the expression in the braces is the more familiar form of the electric field Green’s

tensor for a uniform background. Across the Earth-air interface, the tangential components

of the secondary E- and H-fields are continuous. In order for our computed values of Esx

to be continuous, each component of
�
iωµgx + ∇′

�
∇′ · gx

�
/σb

	
must be continuous,

and for Esy to be continuous, each component of
�
iωµgy + ∇′

�
∇′ · gy

�
/σb

	
must be

continuous. Similarly, for Hsx & Hsy to be continuous, each component of
�
−∂zg

y+∂yg
z
	

and
�
∂zg

x−∂xg
z
	

must be continuous. Finally, Esz is zero on the Earth-air interface. To

satisfy this, each component of
�
iωµgz +∇′

�
∇′ · gz

�
/σb

	
must be zero at z = 0. These

conditions reduce to the same as those listed in eqs. (45) – (50).

With the above interface conditions, and the defining differential equation (eq. 15) and

primary solution (eq. 36), the components of gk are determined using standard techniques
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(see, for example, Ward & Hohmann, 1987):

gxx(r; r
′) = gw(r; r′) +

1

2π

Z ∞
λ=0

u− λ

2u(u + λ)
e−u(z+z

′)λ J0(λρ) dλ, z ≥ 0, (55)

=
1

2π

Z ∞
λ=0

1

(u + λ)
e−uz

′

eλzλ J0(λρ) dλ, z < 0, (56)

gxz (r; r
′) = −

1

2π

(x− x′)

ρ

Z ∞
λ=0

1

λ(u + λ)
e−u(z+z

′)λ2 J1(λρ) dλ, z ≥ 0, (57)

= −
1

2π

(x− x′)

ρ

Z ∞
λ=0

1

λ(u + λ)
e−uz

′

eλzλ2 J1(λρ) dλ, z < 0, (58)

gzz(r; r
′) = gw(r; r′) −

1

2π

Z ∞
λ=0

1

2u
e−u(z+z

′) λ J0(λρ) dλ, z ≥ 0, (59)

= 0 z < 0, (60)

where u =
p

λ2 − k2b , ρ =
p
(x− x′)2 + (y − y′)2, and J0 & J1 are the Bessel functions

of the first kind of orders 0 and 1. The above Hankel transforms are computed using the

digital filtering routine of Anderson (1982).

Given the halfspace Green’s functions, and the total electric field within the anomalous

region, the electric field is calculated wherever required in the halfspace using eq. (44), and

the magnetic field is calculated using eq. (26). The integrals are computed using Gaussian

quadrature and the forms given in eqs. (38) & (42).

8. Examples

Here we present two examples: one a comparison with results from a DC resistivity

modelling program since the form of our integral equation solution was strongly influenced

by those for the DC problem, and one for an airborne electromagnetic transmitter-receiver

geometry over a conductivity contrast of 100 : 10−4.

The model for the first example comprises a vertical prism of 0.2 S/m in a halfspace

of 0.02 S/m, as shown in Figure 2. The centre of the prism is 1000 m from the furthest

end of the 100m long grounded electric line source. The top surface of the prism is 100m

below the surface of the halfspace, and its extents in the x-, y- and z-directions are 120,

200 and 400 m, respectively. The total electric field along a profile over the centre of the

prism was computed, and the values are shown by the crosses in the top panel of Figure 3.

A frequency of 3 Hz was used. The prism was divided into 5×5×5 cells. The volume

12
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integrations were carried out using 2×2×2 nodes, and the surface integrals using 5×5

nodes. The electric field without the prism present, that is, the background field, is also

shown in Figure 3. The real part of the secondary field is displayed in the bottom panel

in Figure 3. The electric field for this model was also computed using the DC resistivity

modelling program “DCIP3D” (Li, Oldenburg & Shekhtman, 1999), and is indicated by

the squares in Figure 3. The real part of the electric field within the prism as computed

using the integral equation solution is shown in Figure 4. The left panel in this figure

shows the horizontal component of the total field over the uppermost layer of quadrature

nodes, and the panel on the right shows the component in the x-z-plane for the cells down

through the centre of the prism.

The second example is for a conductive cube in a resistive halfspace, as shown in

Figure 5. The conductivity of the cube was 100 S/m, and that of the halfspace was

10−4 S/m. The vertical component of the magnetic field was computed 5 m from a unit

vertical magnetic dipole source for a range of locations of the source-receiver pair over the

cube (see Figure 5). The frequency was 900 Hz. The computed values of the secondary

magnetic field are shown by the circles in Figure 6. The cube was divided into 5×5×5 cells,

the volume integrations were carried out using 3×3×3 nodes, and the surface integrals

using 15×15 nodes. The computed total electric field at the upper-most plane of volume

integration nodes for the source at x = 2.5 m, y = 0 m is shown in Figure 7. The field for

a sphere of the same conductivity and volume as the cube but in free space (Ellis, 1995)

is indicated by the lines in Figure 6. It is clear from this figure that the integral equation

solution presented here is successful even for such a large conductivity contrast as the one

in this example.

9. Computational efficiency

The current implementation of our integral equation solution is slow. This is because

of the large number of times the Green’s functions and basis vectors are evaluated in the

Gaussian quadrature integrations. The situation is exacerbated by the second level of

integrations for the inner products required in the Galerkin approach. As an illustration,

the second example in the preceding section (for the discretization of 5×5×5 cells) took

3.5 hours on a 733MHz Pentium III computer using 2 × 2 × 2 nodes for the volume

integrations and 5×5 nodes for the surface integrals, and took 41/4 days using 3×3×3 nodes

13
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for the volume integrations and 15×15 nodes for the surface integrals. (The results for these

two cases were similar, but with noticeable improvement on the flanks of the responses

shown in Figure 6 for the greater number of quadrature nodes.) For both these times,

over 99% was taken up with the integrations needed to construct the matrix equation.

The introduction of efficient ways to compute the essentially convolution-type integrals is

therefore needed to make the technique viable for general usage. However, even the current

formulation is valuable in that it can supply an independent check on results obtained from

other numerical solutions of the geophysical electromagnetic forward-modelling problem.

10. Conclusions

We have implemented edge element basis functions in the numerical solution of the

electric field integral equation. We have also ensured that the form of the integral equation

upon which our solution is based, especially once the discretization of the model has been

introduced, reduces at zero frequency to that for the DC resistivity problem. We feel that

the resulting treatment of charges, and hence current density, on the interfaces between cells

of different conductivities, and between cells and the background, plays just as important

a role as the use of the divergence free but not curl free edge element basis vectors. Tests

to date have agreed well with published results and those from other algorithms, including

those for models with large conductivity contrasts.
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(a)

(b)

Figure 1. (a) An example cell. c1 . . . c4 are the coefficients of the four basis
vectors that approximate the x-component of the total electric field within this
cell. (b) The example cell and its neighbour in the positive y direction. c13 . . . c16
are the coefficients of the corresponding basis vectors in this neighbouring cell.
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Figure 2. The geometry of the first example presented in this paper. The
halfspace background has a conductivity of 0.02 S/m. The prism has a conduc-
tivity of 0.2 S/m, and has extents of 120 and 200 m in the x- and y-directions,
respectively, and is centred below the x-axis.
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Figure 3. Top panel: the x-component of the background (lines) and total
(crosses) electric fields on the surface of the halfspace over the top of the prism
(which is centred at x = 1000 m). Bottom panel: the real part of the secondary
field as computed by the integral equation code presented in this paper (crosses),
and the secondary field computed using the DC resistivity forward modelling code
DCIP3D (squares).
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Figure 4. The real part of the computed total electric field within the prism.
The prism was divided into 5×5×5 cells with 2×2×2 quadrature nodes within
each cell. The left panel shows the field over the top-most plane of quadrature
nodes, and the right panel shows the field in the cells down through the centre of
the prism. The longest arrow corresponds to a field strength of 8.4× 10−7 V/m.
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Figure 5. The geometry of the second example. A magnetic dipole source-
receiver pair is considered. The cube has a conductivity of 100 S/m, and the
halfspace a conductivity of 10−4 S/m. The origin is on the Earth-air interface
directly above the centre of the cube. All dimensions are in metres.
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Figure 6. The vertical component of the secondary magnetic field for the
second example. The circles show the values computed using our integral equation
solution. The lines are for an equivalent sphere in free space. The abscissa is the
location of the centre of the source-receiver pair.
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Figure 7. The computed total electric field over the top plane of quadrature
nodes for the source at x = 2.5m, y = 0m. The cube was divided into 5×5×5 cells,
with 3×3×3 quadrature nodes within each cell. The longest arrow corresponds
to a field strength of 4× 10−9 V/m.
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