

MSP430 Based Digital Thermometer

Using the Slope ADC of the Timer Port Module to Measure Resistive Sensors

Application Report

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Contents

1	Introduction 1
	1.1 Description of the MSP430 Ultra Low Power Microcontroller
	1.1 Description of the MSP430 Ultra Low Power Microcontroller
2	Application Information
3	Timer Port Features5
4	Summary 5
5	References 5
Αį	ppendix A Software Listing A-1
	Links of Firms
	List of Figures
1	MSP430x32x Block Diagram
2	Digital Thermometer Circuit
3	Timer Port Module Application Example

MSP430 Based Digital Thermometer

Brian Merritt

ABSTRACT

This application report describes a digital thermometer design that uses the slope ADC capabilities of the Timer Port module on the MSP430x3xx microcontrollers. This report can be used more generally as a reference on how to connect resistive sensors and reference resistors to the Timer Port module.

1 Introduction

This application report describes a digital thermometer design that uses the slope ADC capabilities of the Timer Port module on the MSP430x3xx microcontrollers. This report can be used more generally as a reference on how to connect resistive sensors and reference resistors to the Timer Port module.

All MSP430x3xx devices include the Timer Port module. The module allows several resistive sensors and reference resistors to be connected in an application. Unused module pins can be used as independent outputs.

1.1 Description of the MSP430 Ultra Low Power Microcontroller

The MSP430 is a 16-bit RISC-based microcontroller that uses advanced timing and design features, as well as a highly orthogonal structure, to deliver a processing core that is both powerful and very flexible. These features allow the MSP430 to consume only 400 μA in active mode in a typical 3-V system. The MSP430, typically using only 2 μA in standby mode, can wake up to fully synchronized active mode in a maximum of 6 μs . The MSP430 subfamilies incorporate various mixes of peripheral modules which result in highly integrated systems. Figure 1 shows a block diagram of the MSP430x32x.

Figure 1. MSP430x32x Block Diagram

1.2 Hardware Interfacing

The hardware interface circuit is simply a thermistor (Radio Shack #271–110), a $10\text{-k}\Omega$ reference resistor, and a $0.1\text{-}\mu\text{F}$ capacitor. The components connect directly to the MSP430 as shown in Figure 2. An LCD display must also be connected if a visual readout of the measurements is desired.

The circuit performs a measurement by charging the capacitor to approximately V_{CC} , then discharging it through the reference resistor, while counting the number of internal clock cycles it takes until the CIN input goes low. The capacitor is charged to near V_{CC} again and then discharged through the thermistor, while counting the internal clock cycles required. The unknown resistance value of the thermistor can then be determined by taking a ratio of clock cycles required to discharge the capacitor via the thermistor, versus the number required to discharge via the known reference resistor value then multiplying the result by the value of the reference resistor. Software routines calculate the actual value of the thermistor, equate the value to a corresponding temperature, convert it to degrees Fahrenheit, and display the value on the LCD. Even though the last reading is constantly displayed, the MSP430 spends the majority of its time in low power mode 3 (LPM3). This time could be used to make additional measurements, to communicate with other components, or to perform calculations.

Figure 2. Digital Thermometer Circuit

The three components used to make the temperature measurement can be connected directly to a Texas Instruments MSP430 starter kit (STK) or evaluation kit (EVK). All of the of the other required connections, including those for the LCD, are already in place on the STK and EVK boards. The attached code is sized to fit completely into the 512 bytes of RAM memory that is available on the STK and EVK boards, which are based on the MSP430x325 devices. The code can be loaded into RAM through the serial port of a PC, using the interface included with the boards.

2 Application Information

The formula to measure the discharge time of the capacitor is:

$$t = -R \times C \times ln \frac{Vref}{Vcc}$$

 $t = N \times t_{clock}$ (N is the number of clocks cycles)

$$N \times t_{clock} = -R \times C \times In \frac{Vref}{Vcc}$$

$$N = -R \times C \times f_{clock} \times ln \frac{Vref}{Vcc}$$

The values of C, f_{clock} , and Vref/Vcc are known. The value of the resistive sensor can be determined by the following formula, since the value of the reference resistor is a stable and known value.

$$\frac{N_{sensor}}{Nref} = \frac{-R_{sensor} \times C \times f_{clock} \times ln \frac{Vref}{Vcc}}{}$$

3 Timer Port Features

The Timer Port module can support various configurations of resistive sensors and reference resistors. If several measurements are to be made in the same general range, then several sensors with only one reference resistor could be used. If measurements are made in ranges that are not relatively close, then sensors with individual reference resistors could be used (see Figure 3). Any unused pins can be used as digital outputs. The Timer Port module also has two 8-bit counters that can be cascaded to form one 16-bit counter. These counters may be used for other purposes when not being used by the Timer Port. See the Metering Applications Report (literature number SLAAE10C) and the Architecture Guide and Module Library User's Guide (literature number SLAUE10B) for additional information.

Figure 3. Timer Port Module Application Example

4 Summary

The Timer Port is a very versatile module that is available on MSP430x3xx microcontrollers. It is capable of supporting a wide variety of resistive sensor and reference resistor combinations. Components can be directly connected to the Timer Port to form complete sensor systems with a minimum of hardware interfacing. The combination of the Timer Port module, the 16-bit CPU, and the ultra low power design provide unmatched MIPS per watt performance.

5 References

- 1. *MSP430 Family Architecture Guide and Module Library User's Guide*, SLAUE10B, Texas Instruments Incorporated, 1996
- 2. MSP430 Family Metering Applications Report, SLAAE10C, 1998

Appendix A Software Listing

```
; DIGITAL THERMOMETER PROGRAM.
; THIS PROGRAM DEMONSTRATES THE USE OF THE TIMER PORT MODULE TO MAKE
; MEASUREMENTS OF RESISTIVE SENSOR VALUES. THE PROGRAM WILL RUN IN THE RAM
; MEMORY SPACE OF A MSP430 STK OR EVK DEVELOPMENT BOARD. THE PROGRAM CAN ALSO
; BE LOADED INTO ROM MEMORY ONCE THE "TOOL" BIT BELOW IS SET TO EQUAL 2. IF
; LOADED INTO ROM THE LOOKUP TABLE OF RESISTANCE VALUES CAN BE EXPANDED TO
; INCLUDE A WIDER TEMPERATURE RANGE.
; COMPONENTS OF THIS CODE WERE TAKEN FROM THE MSP430 METERING APPLICATIONS
; REPORT BY LUTZ BIERL, AND FROM EXAMPLE PROGRAMS WRITTEN BY MARK BUCCINI.
; TEMPDEMO VERSION 1.1, 4/1998
; SYSTEM DEFININTIONS FOR 320 STK/EVK
TOOL
           .SET
                      0
                                 ; 0 = STK/EVK RAM
                                 ; 1 = SIMULATOR
                                 ; 2 = ON-CHIP ROM
           .EQU
                      003DEH
                                 ; STACKPOINTER
STACK
RAM ORIG
           .EQU
                      00200H
                                 ; FREE MEMORY START ADRESS
ROM_ORIG
           .EQU
                      0C100H
                                 ; ROM START ON 320
           .IF
                      TOOL = 0
I_VECTORS
           .EQU
                      003FFH
                                ; INTERRUPT VECTORS IN RAM
                      RAM_ORIG+20H ; PROGRAM RAM START ADDRESS
MATN
           .EQU
BTLOAD
           .EQU
                      035H
                                 ; LOAD ACTUAL 0.5 SECOND INTERRUPT
           .ELSEIF
                      TOOL = 1
I_VECTORS
                                 ; INTERRUPT VECTORS IN ROM
           .EQU
                      OFFFFH
           .EQU
                      ROM_ORIG
                                 ; PROGRAM ROM START
MAIN
           .EQU
                                 ; LOAD FAST INTERRUPT, NOT 1 SEC
BTLOAD
                      011H
           .ELSE
I_VECTORS
                     OFFFFH
                                ; INTERRUPT VECTORS IN ROM
           .EQU
MAIN
           .EQU
                     ROM_ORIG
                                 ; PROGRAM ROM START
                                 ; LOAD ACTUAL 0.5 SECOND INTERRUPT
BTTLOAD
           .EQU
                      035H
           .ENDIF
; DEFINITION SECTION FOR TIMER PORT ADC
; TIMER PORT CONTROL REGISTER (04BH)
TPCTL
           .EQU
                      04BH
TPSSEL0
           .EQU
                     040H
                                ; CLK SOURCE 0=CMP, 1=ACLK (BIT 6 OF TPCTL)
ENB
           .EQU
                     020H
                                 ; CONTROLS EN1 OF TPCNT1
                                 ; 1(+ENA=1)=CMP (BIT 5 OF TPCTL)
ENA
           .EQU
                      010H
                                 ; CONTROLS EN1 OF TPCNT1
                                 ; 1(+ENB=1)=CMP (BIT 4 OF TPCTL)
EN1
           .EQU
                      008H
                                 ; ENABLE FOR TPCNT1 READ ONLY (BIT 3
                                 ; FO TPCTL)
RC2FG
           .EOU
                     004H
                                ; RIPPLE CARRY TPCNT2 (BIT 2 OF TPCTL)
EN1FG
           .EQU
                      001H
                                ; EN1 FLAG BIT (BIT 0 OF TPCTL)
TPIE
           .EQU
                     004H
                                ; TIMER PORT INTERRUPT ENABLE (BIT 3 OF IE2)
TPCNT1
                     04CH
           .EQU
                                ; COUNTER LOW BYTE
TPCNT2
                     04DH
                                ; COUNTER HIGH BYTE
           .EQU
TPD
                     04EH
                                 ; TP DATA REGISTER (0-5=TP OUTPUT
           .EQU
                                 ; DATA, 6=CPON, 7=B16=2-8B OR 1-16B CNTR)
```

```
B16
         .EQU
                   H080
                            ; SEPARATE TIMERS (0), OR 1-16 BIT
                             ; TIMER (1)
CPON
         .EQU
                   040H
                            ; COMP OFF (0), COMP ON (1)
TPDMAX
         .EQU
                   002H
                            ; BIT POSITION OUTPUT TPD.MAX
                            ; (2=BIT1=TPD.1)
TPE
         .EOU
                   04FH
                             ; TP DATA ENABLE REGISTER (0-5=TPD
                             ; ENABLES, 6-7=TPCNT2 CLK)
MSTACK
         .EQU
                   03D2H
                            ; RESULT STACK - 1ST WORD
PRESET
         .EQU
                   0E8H
                             ; PRESET TPCNT2 FOR CHARGING OF C, COUNT
                             ; STOPS WHEN TPCNT2 OVERFLOWS, VALUE ALLOWS
                             ; CAP TO CHARGE FOR 6 RC TIME CONSTANTS
; CONTROL REGISTER DEFININTIONS
IE1
         .EQU
                   OН
                            ; INTERRUPT ENABLE REGISTER 1
TE2
         .EQU
                   01H
                            ; INTERRUPT ENABLE REGISTER 2
P01IE
                   08H
                            ; PO.1 INTERRUPT ENABLE IN IE1
         . EOU
         .EOU
                   080H
                            ; BASIC TIMER INTERRUPT ENABLE IN IE2
         .EOU
                   02H
                            ; INTERRUPT FLAG REGISTER 1
IFG1
         .EQU
                   03H
                            ; INTERRUPT FLAG REGISTER 2
IFG2
LCDCTL
         .EQU
                   030H
                            ; LCD CONTROL REGISTER
LCDM1
         .EQU
                   031H
                            ; FIRST LCD DISPLAY MEM LOCATION
BTCTL
         .EQU
                  040H
                            ; BASIC TIMER CONTROL REGISTER
BTCNT1
         .EQU
                  0046H
                            ; BASIC TIMER COUNTER 1
BTCNT2
         .EQU
                  0047H
                            ; BASIC TIMER COUNTER 2
WDTCTL
         .EQU
                  0120H
                            ; WATCHDOG CONTROL REGISTER
WDTHOLD
         .EQU
                  080H
                            ; PATTERN TO HOLD WATCHDOG
WDT_KEY
         .EQU
                   05A00H
                            ; KEY TO ACCESS WATCHDOG
WDT_STOP
         .EQU
                   05A80H
                            ; WATCHDOG HOLD+KEY
GIE
         .SET
                   8H
                            ; GENERAL INTERRUPT ENABLE
CPUOFF
         .SET
                   10H
                            ; BIT TO TURN CPU OFF
OSCOFF
         .SET
                   20H
                            ; BIT TO TURN OSCILLATOR OFF
SCG0
         .SET
                   40H
                            ; SYS CLK GENERATOR CONTROL BIT 0
SCG1
         .SET
                   80H
                            ; SYS CLK GENERATOR CONTROL BIT 1
LPM0
         .SET
                   CPUOFF
                              ; BITS TO SET FOR LOW POWER MODE 0
                   SCG0+CPUOFF ; "
SCG1+CPUOFF ; "
                                    " "
                                          "
                                            "
LPM1
         .SET
                                                       1
                                    "
                                       "
LPM2
         .SET
                                                       2
                                  "
                                    "
                                             "
                                       "
LPM3
         .SET
                   SCG1+SCG0+CPUOFF;
                                                       3
                                    " "
T.PM4
         .SET
                   OSCOFF+CPUOFF ;
; REGISTERS USED TO SUPPORT CALCULATION OF SENSOR RESISTANCE
MLTPLR_HW
         .EQU
                   R 5
TEN_K
        .EQU
                   R6
BITTEST
        .EQU
                   R7
MRESLT_HW
         .EQU
                   R8
MRESLT_LW
         .EQU
                   R9
LPCNTR
        .EQU
                   R10
RESULT
         .EQU
                   R11
RESET PROGRAM
.SECT "MAIN", MAIN
         MOV
                   #STACK,SP
                            ; INITIALIZE STACKPOINTER
SETUP UP PERIPHERALS
SETUP
SETUPINT
        MOV.B
                   #P01IE,&IE1 ; ENABLE P0.1/UART FOR RS232 MONITOR
```

```
MOV.B #BTIE+TPIE,&IE2 ; ENABLE B.TIMER, & TMR. PORT INTRPTS.
          CLR.B & IFG1 ; CLEAR ANY INTERRUPT FLAGS
         CLR.B &IFG2
                          ; CLEAR ANY INTERRUPT FLAGS
         EINT
                           ; ENABLE INTERRUPTS
         MOV #WDT_STOP, &WDTCTL ; STOP WATCHDOG TIMER
SETUPWDT
        MOV.B #0FFH,&LCDCTL ; STK LCD, ALL SEG, 4MUX
SETUPLCD
                          ; LOAD BASIC TIMER WITH INTERRUPT FREQ
        MOV.B #BTLOAD, &BTCTL
SETUPBT
                     ; CLEAR BT COUNTER 1
         CLR.B &BTCNT1
                          ; CLEAR BT COUNTER 2
         CLR.B &BTCNT2
        MOV #15,R6
                          ; 15 LCD MEM LOCATIONS TO CLEAR
CLEARLCD
         MOV.B #0,LCDM1-1(R6) ; WRITE ZEROS IN LCD RAM LOCATIONS
CLEAR1
             R6
         DEC
                           ; ALL LCD MEM CLEAR?
         JNZ
             CLEAR1
                           ; MORE LCD MEM TO CLEAR GO
; BEGIN MAIN PROGRAM
#LPM3,SR
                     ; SET SR BITS FOR LPM3
         BIS
; MEASUREMENT SUBROUTINE WITHOUT INTERRUPT. TP.2-.5 ARE NOT USED
; AND THEREFORE OVERWRITTEN. ONLY TPD.0 & 1 USED.
; INITIALIZATION: STACK INDEX = 0, START WITH TPD.1
; 16-BIT TIMER, MCLK, CIN ENABLES COUNTING
PUSH.B #TPDMAX
MEASURE
                            ; PUSH TO STACK FOR LATER USE
        CLR R8
                             ; INDEX FOR RESULT STACK
MEASLOP MOV.B #(TPSSEL0*3)+ENA,&TPCTL ;TPCNT1 CLK=MCLK, EN1=1
; CAPACITOR C IS CHARGED UP FOR >5 TAU. N-1 OUTPUTS ARE USED
MOV.B #B16+TPDMAX-1,&TPD ;1-16BIT COUNTER, SELECT CHARGE OUTPUTS
         MOV.B #TPDMAX-1,&TPE
                            ; ENABLE CHARGE OUTPUTS
         MOV.B #PRESET,&TPCNT2
                            ;LOAD NEG. CHARGE TIME
             #CPUOFF,SR
                            ;LOW POWER MODE TO SAVE POWER
         MOV.B @SP,&TPE
                            ; ENABLE ONLY ACTUAL SENSOR
         CLR.B &TPCNT2
; SWITCH ALL INTERRUPTS OFF TO ALLOW NON-INTERRUPTED START OF
; TIMER AND CAPACITOR DISCHARGE
; DISABLE INTERRUPTS-ALLOW NEXT 2
         DINT
                            ;CLEAR LOW BYTE OF TIMER
         CLR.B &TPCNT1
         BIC.B @SP,&TPD
                            ;SWITCH ACTUAL SENSOR TO LOW
         MOV.B #(TPSSEL0*3)+ENA+ENB,&TPCTL;TPCNT1 CLK=MCLK, ENABLE CIN INPUT
                      ; ENABLE INTERRUPTS-COMMON START
         EINT
         BIS #CPUOFF,SR
                            ;CPU OFF TO SAVE POWER
; EN=0: END OF CONVERSION: STORE 2X8 BIT RESULT ON MSTACK
; ADDRESS NEXT SENSOR: IF NO OTHER SENSOR END REACHED
MOV.B &TPCNT1, MSTACK(R8)
                             ;STORE RESULT ON STACK
         MOV.B &TPCNT2, MSTACK+1(R8) ;STORE HIGH BYTE IN NEXT STACK BYTE
L$301
         INCD R8
                             ; ADDRESS NEXT WORD
         RRA.B @SP
                             ; NEXT OUTPUT TPD.X
         JNC
             MEASLOP
                             ;IF C=1 - FINISHED
         INCD SP
                            ; HOUSEKEEPING-TPDMAX OFF STACK
```

```
; CALCULATE RESISTANCE OF SENSOR
; UNSIGNED MULTIPLY SUBROUTINE: MSTACK X TEN_K -> MRESLT_HW/MRESLT_LW
; USED REGISTERS MSTACK, TEN_K, MLTPLR_HW, MRESLT_LW, MRESLT_HW, BITTEST
; UNSIGNED MULTIPLY AND ACCUMULATE SUBROUTINE:
; (MSTACK X TEN_K) + MRESLT_HW | MRESLT_LW -> MRESLT_HW | MRESLT_LW
CALC_RES
    MOV #10000, TEN_K
                           ; MOVE 10,000 DECIMAL INTO TEN_K
MPYU CLR MRESLT_LW
                            ; 0 -> LSBS RESULT
       MRESLT_HW
                            ; 0 -> MSBS RESULT
    CLR
MACU CLR MLTPLR_HW
                            ; MSBS MULTIPLIER
    MOV
         #1,BITTEST
                            ; BIT TEST REGISTER
        BITTEST, MSTACK
L$002 BIT
                            ; TEST ACTUAL BIT
    JZ
         L$01
                            ; IF 0: DO NOTHING
         TEN_K,MRESLT_LW
                            ; IF 1: ADD MULTIPLIER TO RESULT
    ADD
    ADDC MLTPLR_HW, MRESLT_HW
L$01
    RLA
         TEN_K
                            ; MULTIPLIER X 2
    RLC MLTPLR_HW
    RLA BITTEST
                            ; NEXT BIT TO TEST
    JNC L$002
                            ; IF BIT IN CARRY: FINISHED
; UNSIGNED DIVISION SUBROUTINE 32-BIT BY 16-BIT
; REGISTERS USED (MSTACK+2), MRESLT_LW, RESULT, LPCNTR, MRESLT_HW
; MRESLT_HW MRESLT_LW / (MSTACK+2) -> RESULT REMAINDER IN MRESLT_HW
DIVIDE CLR RESULT
                           ; CLEAR RESULT
                           ; INITIALIZE LOOP COUNTER
    MOV #17,LPCNTR
   CMP MSTACK+2, MRESLT_HW
    JLO DIV2
    SUB MSTACK+2, MRESLT_HW
DIV2
   RLC RESULT
    JC
        RES_2_F
                           ; ERROR: RESULT > 16 BITS
    DEC LPCNTR
                           ; DECREMENT LOOP COUNTER
        DIV3
                           ; IS 0: TERMINATE W/O ERROR
    J7.
       MRESLT_LW
    RLA
       MRESLT_HW
    RLC
        DIV1
    JNC
    SUB
        MSTACK+2, MRESLT_HW
    SETC
    JMP
         DIV2
                       ; NO ERROR, C = 0
; CONVERT RESISTANCE OF SENSOR TO DEGREES F FOR DISPLAY
RES 2 F
         CLR
             R12
                           ; POINTS TO VALUE IN RESISTANCE TABLE
             #064H,R13
                           ; MOVE MINIMUM TEMP-1 INTO TEMP INDICATOR
         VOM
              FIRST_CMP
                           ; AVOID ADDING 1 ON FIRST COMPARE
         JMP
         INCD RIZ ;INCREMENT RESISTANCE TABLE POINTER
DADD #1,R13 :DEGLAST
CHECK_R
FIRST_CMP
        CMP RESIS_TAB(R12), RESULT ; COMPARE TABLE VALUE TO
                             ; CALCULATED RESISTANCE
         JNC CHECK_R
                           JUMP IF RSENSOR < TABLE VALUE @ POINTER
```

```
; RESISTANCE VALUES 65-99 DEGREES F. VALUES = K OHMS X1000 - TO 3 DECIMAL PLACES
.EVEN ; FOLLOWING SECTION MUST BE EVENLY ALIGNED
RESIS_TAB
          .WORD 12953
                    ;65 F
          .WORD 12666
          .WORD 12378
          .WORD 12090
          .WORD 11858
                        ;70 F
          .WORD 11626
          .WORD 11393
          .WORD 11161
          .WORD 10929
          .WORD 10697
          .WORD 10464
                        ;75 F
          .WORD 10232
          .WORD 10000
          .WORD 9813
          .WORD 9625
          .WORD 9438
                        ;80 F
          .WORD 9250
          .WORD 9063
          .WORD 8875
          .WORD 8688
          .WORD 8500
                        ;85 F
          .WORD 8313
          .WORD 8161
          .WORD 8008
          .WORD 7856
          .WORD 7703
                        ;90 F
          .WORD 7551
          .WORD 7398
          .WORD 7246
          .WORD 7093
          .WORD 6941
                        ;95 F
          .WORD 6817
          .WORD 6694
          .WORD 6570
                         ;99 F
          .WORD 6446
; INTERRUPT VECTORS
.EVEN ; FOLLOWING SECTION MUST BE EVENLY ALIGNED
          .SECT "INT_VECT",I_VECTORS-31
          .WORD RESET
                               ; PORTO, BIT 2 TO BIT 7
          .WORD BTINT
                               ; BASIC TIMER
          .WORD RESET
                               ; NO SOURCE
          .WORD RESET
                              ; NO SOURCE
          .WORD RESET
                              ; NO SOURCE
          .WORD TPINT
                              ; TIMER PORT
          .WORD RESET
                              ; NO SOURCE
          .WORD RESET
                              ; WATCHDOG/TIMER, TIMER MODE
          .WORD RESET
                              ; NO SOURCE
          .WORD RESET
                              ; ADDRESS OF UART HANDLER
                              ; P0.0
          .WORD RESET
          .WORD RESET
                              ; NMI, OSC. FAULT
                          ; POR, EXT. RESET, WATCHDOG
          .WORD RESET
          .END
```