30

IV. Lateral Excitation of Thickness Modes

Lateral excitation is the second canonical form of excitation
of thickness modes. It has been the subject of recent interest
(207-215), although use was made of it by Atanasoff & Hart. (44),
referenced in Cady's bock (160). Also, excitation by an electric field
lateral to the wave propagation direction is often used with vibrators
in the form of bars. We have chosen the name given in the chapter
title, (abbreviated as LETM) to characterize this type of
excitation. As much confusion arises from other names that abound
in the literature, it seems to us least ambiguous in this form.

In this chapter we will parallel the treatment given the TETM
case in the last chapter, considering first a traction-free plate
analytically, then obtaining a network that realizes the electrical
port immittance. After this, the seven-port admittance matrix for the
normal coordinate system is derived, analytically, and realized as a
network, which is shown to be a true analog of the acoustic problem.

Our efforts are aicied by similarities that this problem shares
with the first (TEIM) canonical form, so that certain of the properties
will be recognized by inspection, such as the symmetry of the admittance
matrix, and the possibility of obtaining additional matrix coefficients
by permuting the mode index number. These features will therefore be
discussed briefly only.

Concerning the analytical portion, there seems not to be any
published material relating directly to the derivation as we shall give

it. Schweppe (215) consideres two modes driven by LETM, but limits the
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discussion to ceramics, (class 6mm), while the other publications
treat of only one mode, or of a nurnber of modes each of which is
uncoupled to the others at the boundaries, in the manner of Lawson's
TETM paper (61). What we shall give for the traction~free plate is
pattermed after Tiersten's treatment (216a,b).

A. Single-Plate Crystal Resonator, Traction-Free.

1. The plate under consideration is presumed to be laterally
unbounded and of thickness 2h; the upper and lower surfaces at x; = +h
and -h, respectively, are further presumed to have no mechanical surface-
tractions applied. A uniform electric field is applied in a direction
perpendicular to the thickness coordinate. Without loss in generality,
we take the field direction as the negative X axis. This specification
of a lateral field now requires the lateral coordinates to be distin-
guished, and the matter tensors specifying the phenamenological elastic,
piezoelectric and dielectric properties have to be referred fram the
X,Y,Z system to the new X, system, now established. In the TEIM case,
only such camponents as were referred to X3 were required.

The mechanism for establishing the impressed electric field is not
of interest to us; we suppose it to be set up by an electrode arrange-
ment sufficiently far removed fram the section of plate we focus our
attention upon that any effects other than those arising fram an
assuved uniform lateral field, are negligible. The time factor,
exp (jot), is suppressed. Figure 16 shows a section of the plate.

At the plate boundaries, the conditions to be satisfied are

Ty =0 oF Ty = th, (3.1)

J J
and

Dy =9, at X3 = th, (4.1)
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93

The mechanical condition (3.1) is the same as in the TETM case, and

we also have, as a consequence,

.T3°L', = O) ax‘x;‘:ih-

(3.3)
The condition (4.1) replaces (3.2). D3 must still be a constant
throuwghout the plate, and, because of (4.1), that constant must be

zero, however, it cannot be shown from (2.20) because we shall find that
the applied electric field modifies this expression. The assumption, in
Chapter II, of no lateral field variations was valid both in Chapter III
and here because E (applied)is uniform. This implies a laterally varying

potential, however, which we take as

¢ = (e3h3/é:’,)uh +A3¥%y + Q% + by (4.2)
using (2.17) as a guide; (4.2) satisfies the campletely general (2.16}.
If we take the applied field to point in the negative X direction,
as the applied TETM field pointed in the negative xj direction, it
follows that a | is positive in value. From (2.4), the positive-directed
electric field in the x; direction is called E  , and (4.2) gives its

value as

E, = =& = —E (applad). (4.3)
This added term must be included when (2.5) is written out. We will
take E jas a given value which is fixed for the problem. It is seen
that k, by itself satisfies the electrical boundary condition that the
tangential component of the field shall be continuous across the

boundaries, so the field in the x; direction, external to the crystal,



is likewise equal to E; .

When (2.5) is written out, we get, instead of (2.13),

; ¢ E
T3J. = £’3J‘k3 uk,% + CJ3J' 33 el?>J (I (4.4)
and, similarly, (2.6) now gives
)4
Dy = €4, ey — €32 (&s + & E, 3 (4.5)

g
instead of (2.14). In the quantities €3 and €; we have the first
appearance of camponents of the material tensors referring to a lateral
axis.

Fram (4.2) we have

g
LP)B = ( e3k3 /633) uk,3+ a‘3 ) (4-6)
and when this is inserted into (4.5), D3 becanes
4 s
DS = - €3 a; <+ €z EI ) 4.7

but, as (4.1) makes Dj equal to zero, arising from the fact that no

current can now flow in the X jdirection, we are able to evaluate aj :

{8
a, = + (& /€s)E, . (4.8)

Substitution of (4.6) and (4.8) into (4.4) gives

. =

% % Coajhs Uy — € 13 E,, (4.9)
where

- 5 g

Lany = Lok T S35 Eaa /ey (2.19)
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are the same piezoelectrically stiffened elastic stiffnesses

encomtered in Chapter II.

The quantities _@BJ. are given by

F
= iy T Sy = (&x /€33) ST (4.10)
We will need D 1 in order to determine the current and admittance

of this configuration. We use (2.6) to obtain

g #
Dy = €ika Ugyy — En (/,3 + €y E,) (4.11)

where (2.4) has also been used. When (4.6) and (4.8) are put into

(4.11), we arrive at

:D, = th?, uk,s + _E_HEI ’ (4.12)

In this expression £ 3 equals the following

I s
glhg = € ks - ( €3 /533) @3,’93 ) (4.13)
and €1 is
& f g F4
[ = C - €n € /533 . (4.14)

Because of the symmetry of ehij to an interchange of the last two
I'4
indices, and because &; are likewise symmetric, (4.13) is the same

as (4.10), and (4.14) can be written

g g .2 &
€ <H - ( 6'3)/ €z . (4.15)

i

2. We now transform to nommal coordinates to uncouple the

motions. In the transfommed system we have

o «© °

T, = < W - &5 Ey

> (4.16)



and
[+

-]
€U, + EuE). (4.17)

)

:Dl =
Equation (4.16) is obtained as in (2.35)-(2.38), and (4.17) cames fram
(4.12) and (2.40), where

0 ° H 6

4
e = @4 - (e /€x) S,

=13 (4.18)
and &n is given by (4.15).

The wave eguation (2.39) must, of course, additicnally be
satisfied by any solution u; that satisfies (4.16) and (3.3). Regard-
ing the symmetry of the traction-free plate, we take the same solution

as for the TETM case:

0 . ()
W = U‘: Awm . Py s (3.4)
which satisfied (2.39), and use it with (4.16) and (3.3):
6 (L')u ° a ° e
. = £ ! - :
Tat "3 = e = (4.16)
() ) @) °o
= 4 M U;mx‘h—@,ggE,
= O o ¥3 = =+ k4 )
hence
o
UL = + S E '
) () ()
C o ces h (4.19)
Therefore,
[ -] o "
Ty = — & E‘ {i - }t_ X3 })
88 X h (4.20)

which is the same fom as (3.8) for the TEIM case, while
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° R (l:)
° Cii B, A %y

( «) )
A5 eea ' h (4.21)

which is to be caompared with the ocorresponding (3.9) for TEIM.

Now we can evaluate D, by putting (4.21) into (4.17), yielding

1

D;'—'—

e .. e. ©
{éu + B =13 Lk 1«5} ,

o oD K
(4.22)

so that D, is a function of X3, instead of being a constant, as is
D . To obtain the X - directed current, we nust integrate. We take

aportionofareammaltoxl, of width 2w~,

A, = 2k (2w) , (4.23)
and find the current which it intercepts from
+h
I, = -4 (2w) f D, dy,
- (4.24)
where the negative sign arises in the same manner as in the TEIM case.

With D, from (4.22) inserted into (4.24), and the integration carried

out, one finds, for IL '

a o

, . 23 2800 &1y,
I = —q @ (aw) E, {ZL‘ = +L=n 2G5 Y amx A} )
(4.25)
Defining l_{_( 1)) the LETM ooupling factor for mode (i), by
W, 2 90. - o'
(&) = B=uk (nodem)  (4.26)

en oY
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allows (4.25) to be expressed as

3 ) 2 fam. )ﬂu')"'l
= —jw w)(2W)E, € + ) —= = 1.
I, 4« w)(2h) E, €1 { 1 & (/k ) Kmh }

(4.27)

We now have an expression for the xl—directed current arising as a
result of the plate vibrations responding to the time-hamonic impressed
electric field E1 . In order to arrive at an equivalent network represen-
tation, we arrange our definition of admittance to take into account an
elemental portion of the plate. This was done ih the TEMM case, where
a portion of area of size A was selected and the current intercepted
by it was found. For the TETM unbounded plate as a whole, the total
current would itself be wunbounded, so the calculation is a form of normal-
ization, and the whole problem then appears as a sum of elemental plate
portions all connected electrically in parallel. For the LEIM case
we again make a nommalization, but this time it is more appropriate
to consider the elemental sections as being electrically in series.

We determine the admittance on this basis. To do this we first consider
that the imposed field E, arises fram a potential difference in the

lateral direction equal to (-E, (24)), where 2/ is an arbitrary length
in the x 1 direction. See Fig. 16. Then the input admittance Y, (LETM)

would be, in the same manner as (3.13),

Y. (Letm) = =TI, [(24E,) - (4.28)

The capacitance between two plates of area AL, separated by distance 2.,
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in a medium of pemmittivity € ;. is
Cc = &u AL /Qa)
(4.29)
so (4.28) can be put into the fom

Y.

.

2 ) % )
(LETM) = +ﬂ'co§o {’_L +Z (4 ) ._t_i‘%)ﬁ_h_.}
¢ - »'h

=1
(4.30)
It will be seen that the entire plate appears as an assembly of elemental
areas in series such as we have considered. In the final result, (4.30),
the tranverse length (2£) does not appear, but appears instead in the
tranverse capacitance Co.

B. Network Synthesis of Y.. (LETM).

1. The task of performing a one-port synthesis of (4.30) is greatly
simplified by the work of Chapter III for the TEIM case, and by the
simpler nature of (4.30), campared with (3.15). We see, first of all,
that Y, (LETM) consists ‘of four admittances in parallel, one of which
is simply realized by a capacitor of value Co. What then remains is

nothing more than Yy, from (3.16) , with a suitable substitution of

- (i)
9_9_ for Co and 1_5

Lin (3.16) is realized

by the parallel combination of three networks of the fomm of Fig. 9,

(i)
for k . But we know that YT

so we are led immediately to the circuit of Fig. 17.

It is to be emphasized that the x' appearing in (3.15) and (4.30)
are identical; both come fram solving the same wave equation, (2.39),
where the c(i) are the same for both, coming from (2.19) in each case.

That is to say, the same stiffened elastic constants determine the wave
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propagation velocities on the transmission lines in both the TETM and
LETM cases, and these welocities are the same as for the case of an
unbounded medium. The differences that exist come from the presence
or absence of the negative capacitance, and, of course, the fact that
Co refers to a capacitor whose plates are normal to X, while the plates
of Co are nomal to the x 1 axis. The piezoelectric transformer turns
ratios are different in the two cases and this is an important fact,
because here lies the key to the misunderstanding about "stiffened
modes” and “unstiffened modes" which prevails in the literature. It
should also be noted that the piezo-transformers have been located

at the boundary, as with the TEIM case. It cannot be shown from a
one-port synthesis that this is indeed where they belong, but this
will be shown subsequently, as was done in Chapter III.

In Fig. 17, as in our previous work, we have used

) )
= A %
£ L/Chp e, (4.31)

X ©
% = w/o ) (2.45)

whereupon the piezoelectric transformmer turns ratiocs, n y became

m. - + AL € i3
g 2h ) (4.32)
with the transformmer dots as shown. Notice that the area factor in
(4.31) refers to the plane normal to X4 , while the factor in (4.32)

()
has a noxmmal in the direction of X . This is because YO refers
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to the transmission lines which extend along x 3 » whereas the transformexr

twrns ratios depend upon the cross secticnal area which intercepts

the current flow in either the TEMM or LETM case. For the TEIM case,

the area factor in (3.17) is just A, whose nommal is along x5 , the

direction of the current, while for LEIM, the current is along X, so

(4.32) contains the quantity A; , defined in (4.23), with nomal along

X
2. We now make same remarks with reference to the literature;

in particular, we review same past work in the light of our general

results, so far, for the LETM plate.

The presence or absence of the negative capacitor is the first
indication of the type of excitation; the LETM electrical input circuit
consists of only a single shunt capacitor. This separation of the
input circuit from the portion representing the vibration was mentioned
in connection with Schtssler's paper (143).

In Schweppe's paper (215) he derives the eguivalent of (4.30)
for two modes in a ceramic plate. He shows that by means of a variation
in the angle which the applied field makes in the lateral plane, which
is the same as rotating the crystallographic XY¥Z axes about our X3 ,

with respect to our x. axis, the amplitudes of the two modes which

1
he treats can be altered with respect to each other. Such a device
could be used to reduce the number of resonators in a filter; the idea
has been applied to the shear and quasi-shear modes in a rotated Y-
cut quartz plate (214a,b).

The case of one mode being excited by a lateral field was first

treated by Mason (130) in 1939, where the motion of a bar was analyzed.
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He obtained the resonance frequencies from the harmonically-related
roots of

Lan % h = o0, (4.33)

and the non-harmmonically-related antiresonant frequencies from the
roots of |

Aam xh = = nh (1-4") /6" 4.34)
One can see that the TETM antirescnances coincide with the LEIM
resonances. For the situation where only one mode of either is driven,
the construction for finding the roots is given nicely by Schiissler
(143) ; Tiersten (64) first gave the TETM construction, and the other
follows fram it.

Fram the differences between the roots of (3.19), (3.20) and (4.33),
(4.34) the electromechanical ocoupling factors may be detemined (141).
The differences which arise fram the types of excitation, TETM and
LETM, can also be used to explain the finding of Bechmann (208,210)
that a production versicn of a high precision quartz TEIM vibrator,
when converted to LETM operation, had its fundamental resonance frequency
shifted upward slightly. Viewed as a consequence of the change in
oonditions fram (3.20) to (4.33), it is seen to be an effect due
the coupling coefficient, which may be found from his data.

Just as with the TETM case, the solution (4.30) is exact, and
the realization of Fig. 17 also exactly realizes (4.30} so the network
is valid for transient studies, and can additionally be used down
to DC. At DC the network degenerates to a simple parallel cambination
(i) )2

of Co and three capacitors of value Co(k . Notice that we
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cannot say anything like (3.22) now, since the input capacitance
(i)

of such a _circw'.t is always positive for real values k' '. If, however,

we wish to make a camparison between the two cases TEIM and LETM
in the DC limit, supposing that Co = Co, then we would have identical

input capacitances in each case providing

1 3 ¢ 2
= 4+ 27 )
1 —f (L"™? = - (4.35)
P=
or in the case oé only one mode of each type,
2
1 = 4 —+ ./_,g_.
4 - 4 ’ (4.36)
which leads immediately to
2 2
4
/E‘_ = )
1- 4 (4.37)
or, alternatively
2
A £
1+ A= (4.38)

An_identical relationship, (4.36)-(4.38), is found by Bechmann (137),
between one-dimensicnal coupling factors, from an entirely different
point of view.

Caming back to (4.34), the quantity (12 ) K% can be replaced
simply by the LETM coupling factor _15_'2 from (4.37), so that (4.34)
and (3.20) differ now only by the sign of ¥ h.

In the single-mode case, we noted in Chapter I, in connection
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with Mason's exact 1939 LETM network (130), that it was equivalent
to Butterworth's circuit (129). It is instructive to think of these
two alternates in connection with the normmal-coordinate transformation
we introduced in Chapter II. We saw that this transformation in
the physical problem allowed us to put the network results into
transmission-line form, that is, the transmission lines represent
the three nommal modes of the system.

Guillemin (217) discusses normal-coordinate transformations

applied to circuits and shows that such a transfomation leads to

network realizations as Foster forms. Butterworth's 1915 circuit,
which incidentally, predates Foster's work (217) is just one Foster
fom, wherein the normal coordinates are placed in evidence, and the
method for doing this, starting from the transmission line, is the
partial-fractions expansion, as was used by Marutake (144,145).

3. Having worked both traction-free problems, we are now in a
position to consider the “"stiffened" and "unstiffened" question.

A distinction has grown up in the literature between the TEIM
case (also the corresponding case for a bar or rod), and the LETM
case (similarly for bar or rod), where a mode of the former is called
a "stiffened mode," while a mode of the latter is referred to as an
“instiffened mode.“ That there is a distinction to be made is
certainly true; the teminology, however, is unfortunate, and this
is not merely a cavil.

The origin for the temms doubtlessly lies in the fact that for
most of the popularly used substances and cuts, it arises that the
TETM situation produces a driven mode whose phase velocity depends

upon stiffened elastic constants -53‘“&3 , (see (2.19)), while the



106

IET™ situation produces a driven mode whose phase velocity depends
3

3jk3
Our general results permit the following observations. The TEIM

only upon the unstiffened values <«

and LETM cases are distinguished by the presence or absence of a
negative capacitor, by the difference in orientation of Co and Co and
by the quantities which enter the piezo-transformer turns ratios. The
transmission lines are identical for both cases. This means that, in
general, both TEIM and LEIM will drive a "stiffened mode."

As we shall show a TEIM-driven mode must be a "stiffened mode"
and a “"stiffened mode" must be TETM-drivable, whereas a LETM-driven
mode may be a "stiffened mode" or not, and a "stiffened mode" may or
not be drivable by LETM; likewise, an “"unstiffened mode" may or may
not be LETM-drivable.

This is seen as follows. The criterion of whether a mode can be
driven or not, is whether the corresponding piezo transformer,
connected to that modal transmission line, has a finite or zero turns
ratio. This is determined by the proper transformed piezoelectric
constant; from (3.17), this constant is €,,; for TETM and, from

°

(4.32), £

o= 130

for LETM.

The effective stiffness detemining the welocity and wavenumber

){w, for transmission line (i) is c(l). We may relate this to ,ESJ.,%

as follows: starting from (2.19), which is
CLaka =  Aaky + C33 Sy [En (2.19)

)]
multiply through by /QJ.‘ and apply (2.34) and (2.29) to get

() 0

u')é\ (i) e P



)
Now multiply through by (5& and apply (2.26) and (2.29) which
gives , (" ‘
3] v F () . o s
< = /SJ /C3J“3 /SR TS Sy, / € - (4.40)
By the use of (3.7), this can be written in other equivalent fomms,
such as
, )y g « (K
«) 2
e = (4 Lamf (1- (&7
(5’ J k / ) (4.41)

s

h @
It is enough for us to see, fram (4.40), that the eigivalue c

-]
depends upon €,; for its piezoelectric stiffening, and this is the
quantity that determines the turns ratios for the TETM case. This
proves that a TEM-driven mode must be a "stiffened mode" and

conversely.

[
In the case of LETM, it is obvious that &, may be finite while

e;BL is zero because they are independent of each other. This would

()
make the second term on the right hand side of (4.40) zero and c¢

would be determined by the /f.:‘-j3 only, without any piezoelectric
stiffening; hence, in this instance, the LEIM-driven mode is an
"unstiffened mode." But if e;; is finite, then cm must have a
piezoelectric stiffening temm; so, by (4.18), if furthermore e?;,;
and/or G; are/is also finite, then this "stiffened mode" is
LETM-drivable, in contradiction to the usual notions prevailing in
the literature. The general circumstances under which a mode is
excitable or not are given in Fig. 18.

4, Let us go on now to the simplification of Fig. 17. The
same arguments we gave in Section III B hold good here. Briefly,

the symmetrical excitation of the transmission lines guarantees

that the centers thereof are nodes of displacement, which is
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to say, of mechanical current. The same thing is, of course, to
be seen from (3.4) as well. Therefore the transmission lines

may be opened at this point. The two lines, each now of length
h, belonging to mode (i), are then in parallel and may be replaced
by one line of twice the characteristic admittance.

There thus results three lines on a bisected basis. In the
resulting figure, Fig. 19, cne has a circuit very much like that
of Fig. 11, save for the absence of the negative capacitor, the
replacement of Co by Co and the substitution of (4.32) for (3.17)
in the turns ratios.

The establishment of the seven-port electromechanical admittance
matrix will concern us next.

C. The LETM Plate Electromechanical Admittance Matrix.

We shall now continue in the fashion of Chapter III to establish
the seven-port immittance matrix appropriate to the LETM problem.
It will turn out that LETM and TETM are very nearly duals of
one another, and that, just as the negative capacitor found
to be present in the TEIM case made it advantageous to work with
the impedance matrix then, it will prove to our advantage to use
the admittance formulation now.

It will be recalled that evaluation of the impedance matrix
elements involved placing cpen circuits at all ports, and this
had the result, in the TEIM situation, that when port (70) was
opened, the negative capacitance, added to the positive, produced
a short across the piezo-transformers which decoupled the transmission
lines. This rendered the impedances easy to determine, whereas

the admittance matrix elements, which involwve short circuits at
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all ports, would have had the effect of placing the negative Co across
the transfommers, and the transmission lines would have remained
coupled.

In the present instance, where the negative capacitance is absent,
a short at port (79 reflects directly upon the transformers to produce
the desired decoupling. Hence, we use the admittance formulation to
express the LEIM results.

This time we will start with the plate equations, after which the
network realization will be obtained.

1. We again choose, for our definitions of port wltages and
currents, equations (3.35)-(3.40). By definition, the admittance

element y;r); is obtained from

o o ®
Irg = T» [ Ve (4.42)

with all voltages equal to zero but V? . This means physically
that the plate will be campletely tractionw€ree when yJ., is determined
and have only one component of transformed stress applied, and that
to only one side when the other admittance elements are determined.

Thus the conditions required to cbtain y°77 we have already
met when the traction-free plate was analyzed in Section IVA, and
y(;,? is recognized as being equal to Yin (LETM) , which is given in
(4.30). It remains for us to cbtain the camponents of self and mutual
mechanical admittance, and mutual electromechanical admittance.

The same argument that led to chosing (3.45) is applicable here,
except, as we wish to force with a single non-zero voltage, rather

than with a current, we take instead

. ti)
T._;- = G“: A X (hif.‘.;)- (4.43)

L
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wWhen the self and mutual mechanical admittances are to be determined,

the electrical port must be shorted. This leads to setting E 1 equal
to zero in (4.16), which then reads
_Tc ) o
. = A * .
3 uL,Z (4.44)

With the assumed form of TB(»)i in (4.43), the transformed displacements

became

)
° T Qi eoase (hivy)

() £)
2yt (4.45)

i\

the constant of integration, amounting to a rigid body translation,

is discarded because it does not satisfy (2.39).

From our choices of voltage and current va;:iables and our definition

(4.42), we can use (4.43) and (4.45) to obtain the self and mutual
mechanical termms.

Straightforward calculation for i = 1 gives

vl = -A G'i AA./YL— 9,) (4,46)
o n o
T, :—dw@lmel/(ﬁ)‘);
(4.47)
so that
» Y Q)]
S = 4 tan 6, (4.48)

with the usual definitions. The same arguments we used in the TETM

case now can be used to arrive at
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o R Y(e}
- — o

Y = =
" Jas 9 tan O )
(4.49)
@)
o - j;g - ° 5
J= 4 tan B2
(4.50)
and @)
o -3 - Ya
333 = ‘jt.c - j 'LLM 93 ¢
(4.51)

which completes the determination of the main diagonal temms.

2. From (4.44) we see that only mechanical off-diagonal matrix

elements determined by the same mode index number (i) are non-zero,
which means that, according to (3.35), (3.36) and (3.38), (3.39),

those whose port number: differ by three.

o

For example, with (4.46) for V(i, only I, is finite (apart fram

I;J , obviously; but this leads to the main diagonal temm ylo1 ). For

IZ we obtain,

[

, [ON'))
I, = +4@ G, /(¢ %), (4.52)

leading to
Q]

Jy = — B ’
g At Ui (4.53)

Again we use the TETM arguments, about permuting modal index numbers,

etc., to deduce
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®
0 e Yn
HIH ‘j‘-“ (4.54)

i
hd

= A 6
Ym
Ys = sz T : ?e ) (4.55)
'—JAAM 2
and
e
° e YD
Y5 = Je3 = — ‘ (4.56)

Similarly we find that components with the following indices
are zero: 12,13,15,16,23,24,26,34,35,45,46 and 56, plus, of course,
those on the other side of the diagonal, with the digits in reversed
order. This follows from (4.44), as we remarked in the discussion
between (4.51) and(4.52).

One set of elements remains to be determined, the electramechanical

[0}
mitual terms. These are found by application of Vo and measuring

O

§
of the plate, a condition which we encountered in Section A, above.

O
the I, (f=1to 6). Nowwe take all T;; to be zero at the surfaces

In fact, we can borrow those results, because we krnow that an applied

field E, produces the displacements u; given by (4.21). We said,

i
in the discussion after (4.27), that E, oould be looked upon as arising
from a potential difference (-E, (2£)). If this is our V5, appropriate
to a portion of the plate of length 24 along Xy then, by the use

of (4.21), (4.23) and (4.32), along with (3.38), (3.39), we can determine

[e)
Yo
After a simple calculation, and applying our usual methods of
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symmetry, etc., we obtain

o
n, Yo

o = Ju = Jar =y = j st (6,/2) (457

@

[ =) [ < 4P A n
327 = ‘J?L = 357 = 37s = d',cﬁ:(ez /Z) 7 (4.58)
and
(3)
o ¢ ° _ o _ N3 Yo ]
gor= g = Jer 7w 4 <t (83/2) (4.59)

This cawpletes the determination of the admittance matrix, which is

written out fully on the next page, the element. y,‘,o7 being given

by (4.30).

115



116

.

(2/50)409 [ (2/28)409 [ (2/'9)400 [ (2/59) 4001 (2/%9)100 { (2/'g) 400!

o> lu
n

»h> 0, ¢ 0,2
° @AY @A
(2/8g)00( Egupy ! 0
0,¢ (0]
@AY ol
(27%)409( o 2gupy [
0,2 (0]
(z) A°Y (2) A
(2/'g)400(
ety 0 0
(m
(2/5g)109 [ Eguis -
O \&u O> 0
() (€)
(2/%9) 402 [ sguis -
0
01 2 0
22 @
(2/'g)400
0 0

0y | 0,€
wAY et
€guis (.
0 5
A
(€)
o 0
lguoy(
Oox 0
(n
€ |
guoy |
0 o1
(€)
0] 0
lguis [ -
O> 0

(n

0,2
@AY

Sguis (.

(2)

¢guoy (

(2)

0 _C
m A

lguisf|-
A

g uoy

1)




117

D, 'The Electromechanical Network Admittance Matrix.

Having obtained the admittance matrix from the mathematical statement
of the physical problem, we wish here to synthesize a transmission-line
network that realizes this same matrix exactly, and, further, one
that can be shown to be a true analog of the vibrating plate, in the
nomal coordinate sysﬁem. The results of the next chapter will then
provide the necessary additional circuitry to camplete the development
of true analogs for a single plate, and, at the same time, lead naturaillly,
in Chapter VI, to generalizations of our results wherein any number
of layers may be acocommodated by our representations.

1. We may shorten the procedure of finding an appropriate network
by considering our past results, particularly Fig. 13 and Fig. 17.
Taken together, they strongly suggest that a circuit identical to
that of Fig. 13, but lacking the negative capacitor, will meet the
necessary conditions. And so, we consider, provisionally, the network
of Fig. 20, which has those characteristics we have repeatedly stressed:
three modal transmission lines and boundary-forcing, piezoelectric
transfomers.,

One might go to more elaborate lengths to show why the admittance
matrix leads to this figure, but it will save space to turn the process
around, and simply analyze the conjectured configuration shown.

To this end, we replace each transmission line by its equivalent
lumped circuit; shown in Fig. 21, this has been taken in the pi fomm,
ﬁim is proper to an admittance determination. The camplete seven-
port, lumped, network is given in Fig. 22. The port voltage and

current conventions are identical with those of Fig. 15. Element
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values for the members of the pi circuits are to be taken fram Fig.
21, with the necessary sub- or superscripts, relating to the mode
nuber, added.

What remains of our task is simplified, as it was in Section
C, by the decoupling effect of the short circuit applied to port
(7%). Using elementary circuit analysis, and the inherent symmetries
present, we may write down the elements almost by inspection. They

are:

m

o ° Q) 0) Y,
Y = Y4y = Y, + Y, = ; ’9 )
g tan B (4.60)
° ° 2) @ o(ﬂ
= = Y, + Y, =
I I ' ’ 4 tan B, > (4.61)
° ° (38 @ Yo(m
Yy = Y = Y+ M2 7 ’
g Tan 63 (4.62)

To find the tem y$7 , from the circuit given, it is easi?st
to resort to a bisection, as was done to obtain Fig. 19. The situation
is the same, because ports (19 to (6°) are now shorted, as in the
former case. As no current flows through the three series amms,
denoted as Yg) in the figure, because of symmetry, they are bisected
with an open circuit, and the result is three pairs of admittances
in parallel, that are seen on the primary sides of the transformers

as a total admittance of value



3 2 )
22 m Y, (4.63)
(=1
When the admittance of Co is added to this, and we use, from Fig.
21,
A o )
W o= 4 VY. tan (6:/2), (4.64)
we get
\ ‘ . 3, (D
gy = 4@ G+ 42 2m Y, taw (6:/2).
i3y (4.65)

By using the definitions of Co, né)Yo(l) and 91 , this may be put
into the fom (4.30), the required result.
The finite mechanical mutual temms are simply the negative of

the series amm of the proper pi, so that we have

"

[~4 o U) Yo
yiq = ‘j‘li = ‘Yz = . )
=g A O (4.66)
@) )
° L Yo
Yas = Y2 = - Y, = e 0 )
-y Pa (4.67)
o ] ) 3
Yae. = Y3 = T Yy = .YD. ’
—g < B3 (4.68)

while it is seen, by inspection, that the temms subscripted 12,13,15,
16,23,24,26,34,35,45,46, and 56, are zero, as are the corresponding

tems below the diagonal.
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The remaining category is that of the electramechanical mutual

o
terms; these are found by forcing with V., . Symmetry was used to

get y, , and it is useful here also. We use the same bisection

as previously, but reason that the full woltage appears across each
transformer, so that secondary woltages of niv‘7’ serve as the sources

in each of six simple loops, each consisting only of Y

currents of niY(ll,)

(i)
l'

circulating, in every case, in the direction

ocounter to the particular port current Iz ; thus the admittance

elements are equal to

() _ ()
- Y o= T *
4 <ot (6:/2)
(4.69)
In particular
v )
31'; = Yy = T?' -
4 AT (8:/2) (4.70)
Yu)
0 . m .
Y1 = Yy = —
4 €T (82 /2) (4.71)
Y(n
) 4 ’}’]3 o
3w =Y = . )
J 7 4 st (6s/2) (4.72)

which, with the symmetry y:g = yO

We see the results are in accordance with what we obtained fram the

e completes the evaluation.

equations of the plate, so the network of Fig. 20 represents the

physics of the problem, insofar as may be seen fram the seven ports ().
2. That the network of Fig. 20 actually does more than represent

the physical situation at the seven ports may be shown by following the

producing
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argunent as we gave it in Section III E. The stresses are given by
(4.16) instead of (2.38), with - Q;E, suffering a discontinuity
at the surface instead of 6303(.', @, , but the conclusion remains
unaltered: the placing of the piezo-transfommers at the boundaries
has this definite significance, as explained. The discussion regarding
the identification of the transmission line variables with the plate
mechanical woltages and currents is likewise unchanged, and therefore,
quite simply, we have established that Fig. 20 is a true analog of
the physical problem of the LEIM-driven crystal plate, up to the
boundaries.

A consideration of the situation at the boundaries is the subject
for discussion in the next chapter. There we will obtain additional
circuitry to place at the normal coordinate ports (77’0) to camplete

the physical and network pictures.



