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IV. Lateral Excitation of Thickness ms 

Lateral excitation is the secondcanonical formofexcitation 

of thicknessmodes. Ithas been the subject of recent interest 

(207-215), although use was made of it by Atanasoff & hart. (44), 

referenoed in Cady's book (160). Also, excitation by an electric field 

lateral to the wave propagation direction is often used with vibrators 

intheformofbars. Wehave chosen the name given in the chapter 

title, (abbreviat&asLEIM) tocharacterizethis typeof 

excitation. Asmuchconfusion arises frcxnothernaxtxzs that abound 

in the literature, it seems tous leastarrrbiguousin this form. 

In this chapter we will parallel the treatment given the TEDI 

casein thelastchapter, considering first a traction-free plate 

analytically, then obtaining a network that realizes the electrical 

port ilrmlittance. After this,the sever&port admittancematrix forthe 

mrmalcoordinate systmis deri~d,analyticdlly,andredlizedas a 

netiork, which is shcwntobe a true analog of the acousticproblem. 

Our efforts are aidedby similarities that this problemshares 

with the first (!JZUlM) canonical form, so that certain of the properties 

, will be recognized by inspection, suchas thesynmetryof the a&nittance 

matrix, and the possibility of obtaining additional matrix coefficients 

by permuting the mode index nua-ber. These features will therefore be 

discussed briefly only. 

Concerning theanalyticalportion, there seemsnottobeany 

published material relating directly to the derivation as we shall give 

it. Schwe~ (215) consideres twormdes drivenby LEDl,butlimits the " 
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discussion to ceramics, (class 6mm),while theotherpublications 

treatofonlyonemde,orofanmkerofmdeseachofwhichis 

uncoupledto theothers atthebmndaries, inthemannerofLawson's 

TE;IM paper (61). Whatwe shall give for the traction-free plate is 

patterned after Tiersten's treatmnt (216a,b). 

A. Single-Plate Crystal Resonator, Traction-Free. 

1. Theplateundercmsideration is pressed to be laterally 

unboundedandof thickness 2h; theupperandlower surfaces atx3 = +h 

and-h, respectively, are furtherpresumdtohave nomechanicalsurface- 

tractions applied. A unifoxn electric field is applied in a direction 

perpendicular to the thickness coordinate. Without loss in generality, 

we take the field direction as the negative x1 axis. This specification 

of a lateral field IDJ requires the lateral mordinates to be distin- 

guished, and the matter tensors specifyiw the @x?nanenolqical elastic, 

piezoelectric and dielectric properties have to be referred frm the 

X,Y,Z system to the new xi system, now established. In the TEXM case, 

only such ccmponents as were referredti~~were required. 

The me&mnism for establishing the impressed electric field is not 

0finteresttous;we sqqoseittobe setupby anelectrodeamange- 

merit sufficiently far removed fran the section of plate we focus our 

attentionuponthatany effects other than those arisirq fran an 

assumed uniform lateral field, are negligible. The time factor, 

exp <jG t) , is suppressed. Figure16 shms a sectionof theplate. 

At the plate boundaries, the conditions to be satisfied are 

T3; = 0, &tF3 = c,t,) 

and 

D3 = 0, a.,tr3= CL, 

(3.1) 

(4.1) 
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FIG. 16. UNBOUNDED, TRACTION - FREE, PIEZOELECTRIC 
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The mechanical condition (3.1) is the same as in the TE;TM case, and 

wealsohave,asaconseguence, 

0 

Tii = 0 ) (3.3) 

The condition (4.1) replaces (3.2). D3must still be a constant 

throughout the plate, and, because of (4.1), that constant must be 

zero, however, it cannot be sham frcm (2.20) because we shall find that 

the applied electric field mAi.fies this expression. The assurqticn, in 

Chapter II, of nc lateral field variations was valid both in tiapter III 

and herebecause E(applied)is uniform. This implies a laterally varying 

pctential,however,whichwetakeas 

y = ( e3k, /&) he + Q3Y3 + a, xr + b, 1 (4.2) 

using (2.17) as a guide; (4.2) satisfies the axpletely general (2.16). 

If we take the applied field tc point in the negative 3 direction, 

as the appliedTEIM fieldpointedin the negative x3 direction, it 

follows that a 1 is positive in value. Frcm (2.41, the positive-directed 

electric field in the xi direction is calledElI and (4.2) gives its 

valueas 

E, = -A, =--E@~+%G& (4.3) 

This added term must be included when (2.5) is written out. We will 

takeElas agivenvaluewhich is fixed for the problem. It is seen 

that El by itself satisfies the electrical boundary condition that the 

tarqential antponent of the field shall be continuous across the 

boundaries, so the fieldin the x1 direction, external to the crystal, 
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is likewiseequaltoE1. 

When (2.5) is written out, we get, instead of (2.131, 

and, similarly, (2.6) MIW gives 

(4.4) 

(4.5) 
J 

instead of (2.14). In the vtities e,sj and c31 we have the first 

appearance of vnents of the material tensors referring to a lateral 

axis. 

From (4.2) we have 

Lp = >3 ( 
$ 

e3k3 1 ) c33 ht,3 + a3 ) 

and when this is inserted into (4.5), 

but, as (4.1) makes D3 equal to zero, 

(4.6) 

Dj be- 

$ 
%I E, ) (4.7) 

arising from the factthatno 

current can- flaw in the x3direction, we am able to evaluate a3: 

$ 
aa = + ( c31 / &$ E, ' (4.8) 

Substitution of (4.6) and (4.8) into (4.4) gives 

(4.9) 

(2.19) 
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are the same piezoelectrically stiffened elastic stiffness% 

encountered in Chapter II. 

The quantities g,,. are given by 
J 

e - l3j = e13j - d/Gz) e,zj l (4.10) 

WewillneedD1 inorder todetermine the currentandadmittance 

of this configuration. We use (2.6) to obtain 

(4.11) 

where (2.4) has also been used. When (4.6) and (4.8) are put into 

(4.11), we arrive at 

(4.121 

In this expression -elk3 t3pd.S the fOlltiIq 

e 
-I193 = e lk3 (4.13) 

and ftt is 
$ $9 $ 

_Ell = CII - Cl3 E31 & . / (4.14) 

Because of the symmetry of Ck.. 
/ lJ 

to an interchange of the last ix0 

indices, andbecause E;k are likewise symrretric, (4.13) is the same 

as (4.10), and (4.14) can be written 

(4.15) 

2. Wemwtran.sformtonomal coordinates touncouplethe 

motions. In the transfoxmedsystemwehave 

(4.16) 
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and 
0 

32, = Q3 , M ; ;  + E_II E, l (4.17) 

Equation (4.16) is obtained as in (2.35)-(2.38), and (4.17) curies fran 

(4.12) and (2,40), where 

e 0 

e,g = et,; - 

and 511 is given by (4.15). 

J (4.18) 

The wave equation (2.39) must, of course, additionally be 

satisfied by any solution ul that satisfies (4.16) and (3.3). Regard- 

ing the symxtryofthe traction-free plate,* take the sm solution 

as for the TETM case: 

Uf 
0’) 

= -&J+L;tX~~) 
(3.4) 

which satisfied (2.39), and use it with (4.16) and (3.3): 

henoe 

(4.16) 

(4.19) 

Therefore, 

-7-s; = &=I K((‘X3 
m XC’) b ) (4.20) 

whi& is the sanxz foxn as (3.8) for the TE'IM case, while 
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Uf = & E, &X@)%J 

2) k Cc’) - y&7 ~7 ’ 

whihistobe ccmparedwith the corresponding 

Now we can evaluate D1 by puttiq (4.21) 

(4.21) 

(3.9) for TE%% 

into (4.17), yielding 

(4.22) 

sothatD1isafunctionofx3 , insteadofbeirq aconstant, as is 

D3 l 
To~&tainthex~- directed current, we must integrate. We take 

aportianofares.Mrmaltoxl,ofwidth2~, 

AL = hh) (2-w) ) (4.23) 

andfindthe currentwhichitinteroepts frcm 

I, = 'c3 (20) J+hD, dY"3 -3 ) 
-h 

(4.24) 

wherethenegative signarises inthesammnneras intheTEIMcase. 

With D1 from (4.22) inserted into (4.24), and the integration carried 

out, one finds, forIL , 

Definirq kti) - J 
the mm oo@ir~~ factor for mDde (i), bu 

0 0 
= e 13; e IL3 

511 &I ’ (hoh) (4.26) 



allaws (4.25) to be expressed as 
. 

(4.27) 

We nm have an expression for the xl-directed current arising as a 

result of theplate vibrations respond to the time-harmonic impressed 

electric field El. Inordertoarrive atanequivalentnetsmrk represen- 

tation,we arrangeourdefinitionof admittance to take into account an 

elemntalportionoftheplate. Thiswas done in theTEXMcase,where 

aportimofareaof size Awas selectedandthe current intercepted 

byitwas found. FortheTE!LMunbomdedplateas awhole, the total 

currentwoulditselfbe unbounded, so the calculation is afomofnonnal- 

ization, andthetioleproblemthenappears as a smofelemantalplate 

portions allamnectedelectrically inparallel. FortheLEDl case 

weagainmake anomalization, but this time it is rmre appropriate 

to omsidertheelemzntal sections asbeirkg electricallyinseries. 

Wedetermine theadmittanceonthis basis.Todo thiswe first consider 

that the imposed field E, arises fran a potential difference in the 

lateral direction egual to (-El (21)), where 2xis an arbitrary length 

in the xldirection. See Fig. 16. Thenthe inputa&nittance~Yi, (lEDI) 

wouldbe,inthesme manner as (3.131, 

u;, ( LETM) = - IL lIza E,) * (4.28) 

'lhecapacitancebe&zen&oplates of areaA L, separatedby distance 2,&,, 
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in a medium of pmittivity <ll, is 

(4.29) 

so (4.28) can be put into the fom 

Itwillbe seenthatthe entire plate appears as ah assanblyofelemental 

areasinseries suchaswehave considered. In 

the tranverselength (2&) &es mtappear,but 

tranversecapacitance~. 

B. Network SynthesisofY;,(IElN). 

the final result, (4.301, 

appears insteadinthe 

1. The task of perfoxmirq a one-port synthesis of (4.30) is greatly 

simplified by the work of Chapter III for the TE'IM case, and by the 

simpler nature of (4.301, ccqared with (3.15). We see, first of all, 

that Yin(LEXM) consists‘of four admittances in parallel, one of which 

is simply realizedby acapacitorof values. What then mnainsis 

nothingrime thahYTL from (3.161, with a suitable substitution of 

Co for Co and ki' for k(i'. But we kmw that Y - - Tiin (3.16) is realized 

by the parallel cxeMnati.m of three networks of the form of Fig. 9, 

so we are led inrmediately to the circuit of Fig. 17. 

It is tobeern@asizedthatthe x "' appearing in (3.15) and (4.30) 

are identical; both m fran solving the same wave equation, (2.391, 

where the cti) are the same for both, axning fmn (2.19) in each case. 

That is to say, thesame stiffenecelasticconstants determihe thewave 
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pmpagationvelocities on thetransmissionlines inboth the TEXM and 

U..cases,andthesevelocities are the same as for thecaseof an 

unboundedmdiun. Thedifferences that exist- frcmthepresence 

or absence of the negative capacitance, and, of course, the fact that 

Co refers to a capacitor whose plates are noxnal to x3while the plates 

0fCo arenomalto thexlaxis. - The piezoelectric transformer tu 

ratios aredifferent in the two cases and this is an important fact, 

becauseheze lies thekeyto themisunderstandirqabout "stiffened 

&ie.sL'and "unstiffenedmdes" whichprevailsinthe literature. It 

shouldalsobenotedthatthepiezo-transfomars havebeenlocated 

atthelxmndaq, aswith theTMMcase. Itcannotbeshwnfmna 

one-port synthesis that this is indeedtiere theybelorq,butthis 

willbe shcwnsubsequently, aswas doneinChapter III. 

In Fig. 17, as in our previous work, we have used 

) (2.45) 

whereupcm the piezoelectric transfomr turns ratios, ni becmne 

(4.32) 

withthetransfomerdotsasshcm. Notice that the areafactorin 

(4.31) refers to the plane nomal. to x3 , while the factor in (4.32) 

hasanoxmlinthedirectionofx1. Thisisbecausey (i) 
0 

refers 
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to thetransmis sion lineswhich extendalong x3, whereas the transformer 

turns ratios dependqmnthe cross sectional areawhichintercepts 

thecurrentflow ineithertheTETMorIJ!lMcase. FbrtheTEIMcase, 

the area factor in (3.17) is just A, whose normal is along x3 , the 

directionofthec urrent, while for LEXM, the current is along x1 so 

(4.32) contains the quantity AL , defined in (4.23), with nomal along 

2. Wenmmakesane mnarkswith refexence to the literature; 

inparticular,~ review smepastwork in the lightofourgeneral 

results, so far, for the IMMplate. 

Thepresence or absence of the negative capacitor is the first 

indication of the type of excitatim; theLElMelectrical input circuit 

consistsofonly a single shunt capacitor. This separationof the 

input circuit fmn the portion representing the vibration was mentioned 

in connection with ScMssler's paper (143). 

In Schweppe's paper (215) he derives the equivalent of (4.30) 

for twomdes in a ceramic plate. He shms that by mans of a variation 

in the angle which the applied field makes in the lateral plane, which 

isthesame as xWatirqthecrystal.lographicXYZaxes aboutourx3, 

with respecttoourxl axis, themplitudes of the twomdeswhich 

he treats canbe alteredwith respect toeachother. Suchadevice 

couldbe usedto reduoe thenmberof resonatorsina filter: the idea 

has beenapplied to the shear andquasi-shearmdesina mtatedY- 

cut guartz plate (214a,b). 

The case of one n&e being excited by a lateral field was first 

treated by Nason (130) in 1939, where the notion of a bar was analyzed. 
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Heobtainedthe resonance frequencies f~mtheharmxically-related 

roots of 

&a-a xh = co) (4.33) 

andthenon-h~~cally-relatedantiresanantfrequencies fromthe 

roots of 

(4.34) 

Onecan see that the 'ETMantiresonances coincidewith them 

resonances. For the situation where only one mode of either is driven, 

the construction for finding the roots is given nicely by Schbsler 

(143); Tiersten (64) first gave the TETM construction, and the other 

follows fxxn it. 

l?ran the differences between the roots of (3.19), (3.20) and (4.33), 

(4.34) the electmchanical aupling factors may be determined (141). 

Thedifferenceswhich arise franthetypes of~tation,TWJMand 

LE!IM, can also be used to explain the finding of Bechmann (208,210) 

thataproductionversbnof ahighprecisionquartz TEEMvibrator, 

when converted to IEtM operation, had its fundamental resonance frequency 

shifted up+7ardslightly. Viewedas aaonsequenceofthe change in 

wnditions frun (3.20) to (4.33), it is seen to be an effect due 

the coupling coefficient, whichmaybe foundfrrxnhis data. 

Just as with the TE'IM case, the solution (4.30) is exact, and 

the realizaticn of Fig. 17 also exactly realizes (4.30) so the nebxxk 

is valid fortransientstudies, andcan additionally be used- 

to DC, At DC the network wenerates to a simple parallel oxbinaticn . 

ofCoandthree capacitorsofvalue~(& 
(i) )2 . Noticethatwe - 
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cannot say anything like (3.22) now, since the input capacitance 

of sub a circuit is always positive for real values 
,(i) . If, hmever, 

wewish tomakea axnparisonbetween the two cases TIZM andI.Ei'M 

intheE limit, supposing 

input capacitances ineach 

thatco= Co thenwewouldhaveidentical -' 

caseproviding 

or in the case'of only one mde of each type, 

which leads immediately to 

or, alternatively 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

in identical relationship, (4.36)-(4.38), is found by Bechmann (1371, 

betieenone-dimensicmalcmplingfacto~, fmnanentirelydifferent 

point of view. 

Caning back td (4.341, the quantity (1-k' )/k2can be replaced 

simplybytheLEIMaxpling factork z2 fmn (4.371, so that (4.34) 

and (3.20) differ rxm only by the sign of Yh. 

In the single-e case, wenotedi.nChapterI,i.nconnection 
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with Mason's exact 1939 LED1 network (130), that it was equivalent 

to Buttemorth's circuit (129). It is instructive tothinkof these 

lx0 alternatesinmnnectionwith the nom&.-coordinate transformation 

we introduced in Chapter II. We saw that this transfoxmation in 

thephysicalproblemallmedus toputthenetwork results into 

tramrtission-line form, that is, thetransmis sion lines represent 

thethref2nomalnMies of the system. 

Guillemin (217) discusses normal-coordinate transformations 

appliedto circuits andshcws that such a transfomatianleads to 

network realizations as Faster forms. Butterworth's 1915 circuit, 

which incidentally, predates Foster's work (217) is just one Foster 

fom,wherein thenormal coordinates areplacedinevidence,andthe 

mthodfordoirq this, startiq frcxnthe transmission line, is the 

partial-fractions expansion, as was used by Marutake (144,145). 

3. Havirqworkedboth traction-freepmblems,we arenowina 

positim to mnsider the "stiffened" and "unstiffened" question. 

Adistinctionhas grmnup in the IiteraturebetweentheTElN 

case (alsothecmxesponding case forabarorrod), andtheIE'IM 

case (similarly for bar or rod), where a node of the former is called 

a "stiffened mde," while amdeof the latter is referredto as an 

"unstiffened mode." Thatthereis adistinction tobemadeis 

Certainly true; thetexmimlogy,hmever, is unfortunate,andthis 

is notmerelyacavil. 

The origin for the tern doubtlessly lies in the fact that for 

mstof thepopularlyusedsubstances andcuts, it arises that the 

TLTM situation produces a driven a-ode whose phase velocity depends 

uponstiffenedelasticconstants~ 3jk3 , (see (2.19)), while the 



106 

IETMsituationproduces adrivenrrrodewhosephase velocity depends 

onlyupontheunstiffenedvalues &ii, . 

Ourgeneral resultspermitthe follcMngobsematicns. TheTE;*IM 

andU!XMcases are distinguishedby the presence orabsenceofa 

negative capacitor,by the difference inorientaticnof Co andsand 

by the quantities whichenterthepiezo-transformer turns ratios. The 

transmission lines are identical for both cases. This mans that, in 

general, both TMM and Ll3JBl will drive a "stiffened mode." 

As~e~hallsh~~ aTkX%drivenmde must be a "stiffenedxwde" 

anda "stiff~dmode"mustbeTE?M-drivable,~ereas aU!XWdriven 

mock may be a "stiffened IT&Z" or not, and a "stiffened r&e" may or 

notbe drivabl.ebyIEIM; likewise, an "unstiffened mode" may or may 

not be rAEam-drivable. 

Thisisseen 

driven ornot, is 

connectedto that 

as follws. The criterionofwhetheramdecanbe 

whethertheazrespondirqpiezo transfomxx, 

rrcdal transmission line,has a finiteorzemturns 

ratio. This is deteminedby thepropertransformedpiemelectric 

constant; from (3.171, this constant is e;s; for TEL?4 and, fran 

(4.321, e93; for LEIM. 

The effective stiffness deteminin g thevelocity andwavenumber 

([Jr for transmission line (i) is c . x (i) We may relate this to Zjjp3 . 

as f01lcws: slzirting fmn (2.191, which is 

(2.19) 

multiply through by 
P 

j and apply (2.34) and (2.29) to get 
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(:) 
Nm multiply through by Pk and apply (2.26) and (2.29) which 

By the use of (3.71, this can be written in other equivalent forms, 

such as 

(4.41) 

fram (4.40), that the eigcalue c 
&'c', 

It is enough for us to see, 

depends upon ersi for its piezcelectric stiffening, and this is the 

quantity that determines the turns ratios for the 'IEBl case. This 

proves thataTZR+drivenmodemustbe a "stiffenedmode" and 

conversely. 

In the case of LEZDl, it is obvious that e,; maybe finitewhile 

e& is zero because they are independent of each other. This would 
li) 

make the second term on the right hand side of (4.40) zero and c 

wxldbe determined@ the LE 3ij3 only, without any piezoelectric 

stiffening; hence, in this instance, theLFXM-driven- is an 
0 I 0 

"unstiffened mode." but if e,,; is finite, then c must have a 

piezoelectric stiffening term; so, by (4.18), if furthernxxe & 
c 

and/or 6~ are/is also finite, then this "stiffened mode" is 

LEZWdrivable, incontradictionto theusualnotions prevailing in 

the literature. The general circumstances under which a mode is 

excitable or not are given in Fig. 18. 

4. Let us go on now to the simplification of Fig. 17. The 

same mts we gave in Section III B hold good here. Briefly, 

the symmetrical excitation of the transmission lines guarantees 

that the centers thereof arenodes ofdisplacemen t, which is 
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tisay,ofmecharCcal current. The same thing is, of course, to 

be seen from (3.4) as well. Therefore the transmission lines 

may be opened at this point. Thetwolines,eachncwoflength 

h, belonging to mode (i), are then inparallelandmaybe replaced 

by onelineof twice the characteristic admittance. 

There thus results three lines on a bisected basis. In the 

resulting figure, Fig. 19,0nehas a circuitverymuchlike that 

of Fig. 11, save for the absenoa of the negative capacitor, the 

replacemen t of Co by s and the substitution of (4.32) for (3.17) 

in the turns ratios. 

ThE!~tablishmentoftheseven-portelect~chanicdl~ttance 

matrixwillconcern us next. 

c. The LEYLM Plate Elect~chanical Mnittance Matrix. 

We ShallMwcontinue in the fashionof Chapter III to establish 

the seven-port ixmnittance matrix appropriate to theLEYINproblem. 

It will turn out that LE?M and ‘IED are very nearly dualsof 

one another, and that, just as the negative capacitor found 

tobepresentin the TElMcasemadeitadvantageous toworkwith 

the impedancematrix then,itwillprove toour advantage to use 

the adnittance foxmulationm. 

It will be recalled that evaluation of the impedance matrix 

elements involvedplacingopencircuits atallports,andthis 

hadthe result, in the'iEI.Msituation, thatwhenport (7') was 

opened, the negative capacitance, addedto thepositive,produced 

a short across the piezo-transformers which decoupled the transmission 

lines. This rendered the impedances easy to determine,whereas 

the admittance matrix elements, which involve short circuits at 
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all ports, would have had the effect of placing the negative Co across 

the transformers, and the transmission lines would have remained 

coupkd. 

Inthepresentinstance, wherethenegative capacitance is absent, 

a short at port (79 reflects directly upon the transformers to produce 

thedesireddecoupling. Hence, we use the admittance formulation to 

egress the I&X?4 results. 

This tirrewewill startwith theplateequations, afterwhich the 

nelxxk realization will be obtained. 

1. We again choose, forourdlefinitions ofportvr>ltages and 

currents, equations (3.35)-(3.4(l). By definition, the ackittance 

element Y" isobtainedfrun 
TF 

(4.42) 

with all voltages equal to zero but VF . This means physically 

that the plate will be ccanpletely tracti&ree when yy7 isdetermined 

andhaveonlyone component of transformedstress applied, and that 

toonlyone sidewhen theotheratittance elements are determined. 

Thus theconditicns requiredtoobtainyi7 wehave already 

met when the traction-free plate was analyzed in Section IVA, and 
0 

y77 
is recognizedas being equal toYin (lX@l), tiichis given in 

(4.30). It remains for us tiobtainthe axnponents of self and mutual 

me&anical admittance, andmutualelectxme chanicaladmittance. 

The same argument that led to chasing (3.45) is applicable here, 

except, as we wish to force with a single non-zero voltage, rather 

thanwith a current,= take instead 

(4.43) 
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When the self andmutual 

theelectricalpotimust 

to zero in (4.161, whi& 

0 

mechanicaladmittancesaretobe determined, 

be shorted. This leads to settirq E 1 equal 

then reads 

With the aSS& form of '3"i in (4.431, the transformed displacxzments 

become 

u; = i 6; b-a X? h 2 X3) 

(i) ( i) 1 

1 x (4.45) 

the constant of integration, amounting to a rigid body translation, 

is discarded because it does not satisfy (2.39). 

F'rcmourchoices of voltage andcurrentvariables andourdefinition 

(4.421, we can use (4.43) and (4.45) to obtain the self and mutual 

llrixhanical terms. 

Straightforward calculation for i = 1 gives: 

1p = -jo 4, &oTl 8, /(b(“?) , 

so that 

YIP = 
Yo tr) 

j -h-n., ) 

(4.46) 

(4.47) 

(4.48) 

with theusual definitions. The same vts we used in the TEXM 

casencwcanbeusedtoarrive at 
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(4.49) 

and 

(4.50) 

0) 

Y0 
0 YC. 

33 = VGd = j-he3 ’ 
(4.51) 

which asnpletes thedetenninationof themaindiagonaltems. 

2. Fmn (4.44) we see that only m&mni.cal off-diagonal matrix 

elerrents determinedby thesamarrodeindexnumber (i) arenon-zero, 

did fans that, according to (3.35), (3.36) and (3.38), (3*39), 

thosewhcseportnumber:, differby three. 

For example, with (4.46) for Vy, only Iiis finite (apart fran 

Il"r obviously; but this leads to the main diagonal texm ypl ). Ebr 

I"4 we obtain, 

(4.52) 

leading to 

0 
341 = 

2' , 

- -jAA '91 (4.53) 

AgainweusetheTETM arguments,aboutpemutiqmdalindexnumbers, 

etc., todeduce 
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and 

(4.54) 

(4.55) 

(4.56) 

Similarly we find that aqmnents with the following indices 

are zero: 12,13,15,16,23,24,26,34,35,45,46 and 56, plus, of course, 

those on the other side of the diagonal, with the digits in reversed 

order. This follows from (4.44), as we rmarked in the discussion 

between (4.51) and(4.52). 

One set of elements raains tobe determined, the electmnechnical 

Inutual terms. These are found by application of Vy andmeasurirq 

the 1; 
0 

([=lto 6). Naw~ take allT3i tobe zero at the surfaces 

of the plate, a condition which we encountered in Section A, above. 

In fact, we can bormw those results, because we kr.m that an applied 

field El produces the displacements up given by (4.21). We said, 

in the discussion after (4.27), that El muldbelcokeduponas arisirq 

fm a potential difference (-E, (2X)). If this is our Vy , appropriate 

toaportimoftheplateoflength2R alongxl,then,bytheuse 

of (4.21), (4.23) and (4.32), along with (3.38), (3.391, we can detetine 
0 

y?r7 l 

After a simple calculation, and applyirq our usual m&h&s of 



115 

syrranew, etc., we obtain 

0 

YI? = $1 = 

0 0 

Y23 = 372. = 

and 

01 
Xl Yo = Y; = 

j /cdt (81/z) > (4.57) 

' (4.58) 

3t3 Yes 
(31 

j / cn ; t  U&/2) l (4.59) 

This ample&s the deteminationof theadmittancematrix,whiChis 

written out fully on the next page, the elment.y~7 being given 

by (4.30). 
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D. The Electromechanical Network Admittance Matrix. 

Havingobtainedthe admittancematrix from themathematicalstatment 

of the physical problem, we wish here to synthesize a transmission-line 

network that realizes this sanra matrix exactly, and, further, one 

thatcanbe shm tobe a true analog of the vibrating plate, inthe 

xmmalcoordimtesystem. The results of thenextchapterwillthen 

provide thenecessary additional circuitry to axnplete thedevelopnent 

of true analogs for a single plate, and, at the same time, lead naturally, 

inChapter VI, togeneralizations of our resultswherein any number 

of layers may be ac -ted by our representations. 

1. We may shorten the procedure of finding an appropriate network 

by considering our past results, particularly Fig. 13 and Fig. 17. 

Takentogether, they strongly suggestthata circuitidenticalto 

that of Fig. 13, but lacking the negative capacitor, will meet the 

necessary conditions. And so, we consider, provisionally, the network 

of Fig. 20, which has those characteristics we have repeatedly stressed: 

three modal. transmission lines and boundary-forcing, piezoelectric 

transformers. 

0nemightgo tomore elaborate lengths to showwhy theadmittance 

matrix leads to this figure, but itwill save space to turn the process 

around, and simply analyze the conjectured configuration shown. 

To this end, we replace each transmission line by its equivalent 

1-d circuit: shown in Fig. 21, this has been taken in the pi form, 

which is proper to anadmittance determination. The canplete seven- 

port, l-d, network is given in Fig. 22. The port voltage and 

current conventions are identical with those of Fig. 15. Element 
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\ v”7 / 
V 

(7O) 

FIG. 20. SEVEN - PORT, NORMAL- MODE, LETM EQUIVALENT 
CIRCUIT, WITHOUT MECHANICAL BOUNDARY NETWORK 
AND LOADS. 
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FIG.22. LUMPED CIRCUIT FOR EVALUATING LETM 
ELECTROMECHANICAL ADMITTANCE MATRIX. 
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values for the members of the pi circuits am? to be taken fmn Fig. 

21,with thenecessaq sub-or superscripts, relatiq to the&e 

n&r, added. 

What remains of our task is simplified, as it was in Section 

C, by the decoupling effect of the short circuit applied to port 

(7O). Usiw elementary circuit analysis, and the inherent symnetries 

present,weinaywrite dmntheelements almstbyinspection. They 

0 0 

VII = !jrq = 

Y,II) 

(4.60) 

r-i ,d\ .9 
0 0 t= 1 PI 

933 = %6 = yl + Y* = 
YO 

(4.62) 

To fi.ndthetemy&, fmn the circuit given, it is easiyt 

to resort to a bisection, as was done to obtain Fig. 19. The situation 

is thesame,becauseports (17 to (6O) arenmshorted,asinthe 

foxmer case. As no current flms through the three series arms, 

demtedasY2) in the figure,becauseof symnetry, theyarebisected 

with an open circuit , and the result is three pairs ofadnittances 

in parallel, that are seen on the primary sides of the transfom-ers 

asatotaladmittanceofvalue 
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When the ackittance of Co is added to this, and we use, frcm Fig. - 

21, 

(il 
Y, = 

we get 

0 

y77 
=. j 0 Lo 

(4.64) 

(ed2) . 
(4.65) 

By using thedefinitions of%, ";,y"( ) i and8 i , this may be put 

into the form (4.301, the required result. 

The finitemechanicalmutual terms a.re simply thenegativeof 

the series arm of the proper pi, so that we have 

$5 = ?A 

Y0 = VL\ 3L 

while it is seen, by inspection, that the terms subscripted 12,13,15, 

= - u,“’ = 

i3) = -v, = 

YF' 
-j&Q2 

1 

(4.66) 

(4.67) 

-.jb-k e3 (4.68) 

16,23,24,26,34,35,45,46, and 56, are zero, as are the cr>rrespondirq 

terms below the diagonal. 
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The remaining category is that of the electrmechanicalmutual 

txans; these are found by forcing with Vy . SynuRetry was used to 

get Y-& r and it is useful here also. We use the sme bisection 

as previously, but reason that the full voltage appears across each 

transformer, SO that secondary voltages Of niV(; serve as the SOulXes 

(i) in each of six simple loops, each oonsistiq only of Y1, pmducirq 

currents Of "iYii) I circulating, in every case, in the direction 

axmtertotheparticularportcurrent1* ;thusthe admittance 
5 

Inparticular 

Y0 27 

= 

= 

= 

= 

= 
. 

= 

(1) 
fll YO 

j ,c&t(f3l/2) ’ 

(4.69) 

(4.70) 

(4.71) 

0) 
‘L13 Y. 

(4.72) 

which, with the qmretry yz5 = y* 

P 
cmmpletes theevaluatim. 

We see the results arein accordancewithwhatweobtained frcxn the 

equations of the plate, so the network of Fig. 20 represents the 

physics of the problem, insofar as my be seen frcxn the seven ports (no). 

2. That the network of Fig. 20 actually doesmore than represent *. 

the physical situation at the seven ports may be shown by follcwing the 
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aryuwnt as we gave it in 

(4.16) instead of (2.381, 

at the surface instead of 

Section III E. The stresses aregiven 

with - c&, sufferiw a discontinuity 

%3i O a 3 , but the conclusion x-mains 

by 

unaltered: the placing of the piezo-transformers at the bcundaries 

has this *finite significance, as explained. The discussion regardixx~ 

the identification of the transmission line variables with the plate 

md-mnical voltages and currents is likewise unchanged, and therefore, 

quite sirrply, we have established that Fig. 20 is a true analog of 

the physical problem 

boundaries. 

A consideration 

0ftheLEIPGdriven crystalplate,up to the 

of the situation at the boundaries is the subject 

for discussion in the next chapter. mere we will obtain additional 

circuitry to place at the nomal omrdinate ports ( To) to ccmplete 

the physical and network pictures. 


