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III. THICKNESS EXCITATION OF THICKNESS MODES

We begin by presenting the analytic solution of the problem
of thickness modes of an electroded, piezoelectric crystal plate

with traction-free surfaces, driven by an electric field in the

thickness direction (64,65), after which we synthesize exact

network equivalents using transmission lines. Then, with a view to
removing the restriction to traction-free boundaries, the electro-
mechanical impedance matrix is determined in the normal ocoordinate
system. This matrix is then realized rigorously, in transmission-
line circuit form. When taken together with the network develcpments
presented in Chapter V, the TETM problem for a single plate with
arbitrary boundary-port conditions becomes completely represented

by the overall network, which is a true analog of the physical
situation.

A. Single-Plate Crystal Resonator, Traction-Free.

Our plate is presumed to be laterally unbounded, of thickness
2h, the upper and lower surfaces at x 3= +h and -h, respectively,
are further presumed to be maintained at potentials + ¢, anu -, ,
also respectively, the time factor exp ( +jo t) being, as usual,
suppressed. The electrodes for accomplishing this are not of
interest now; let them simply be perfect electrical conductors,
massless, and without elastic stiffness. A sketch of the situation
is given in Fig. 8. The lateral ocoordinates are, likewise, of no
interest now.

At the plate boundaries, the conditions to be satisfieu are
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54



Ty =0 at %y =th, (3.1)
and |

e = £, ot %3 = th., (3.2)
" Because the untransformed stresses T3J. vanish at the surfaces, the

transformed stresses T3J also vanish:

Ty = 0O, at  %3= th. 4) (3.3)
This is a consequence of (2.27) and the fact that {313 is nonsingular; it
has a detemminant equal to unity. |

We now seek a solution to (2.39) which satisfies the boundary
conditions (3.2) and (3.3) when inserted into (2.41) and (2.38). In

keeping with the symmetry of the problem, we select

° , W
w, = U, «n x Xy , (3.4)

which satisfies (2.39), and put it into (2.38), using (3.3):

hence,

]
U o= —— St s

O Loa 5Eh
(3.5)

The quantity a, is determined by substitution of (3.4) and

(3.5) into (2.41) and using (3.2). This also fixes b, appearing
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in (2.41). These manipulations result in

b, = o,
- and
0, = + % /h )
) )
@\ o 3180
1-7 o }
{ £ (47) AP (3.6)
where
«@,2 513 e's;é
(/’L ) = ég ) ’ (mo aum)
» < (3.7)

and k(i) is the piezoelectric coupling coefficient for mode (i) in
the TEIM case. Because of the symmetry of the Coijk , the last two
indices can be interchanged, so the numerator of (3.7) is simply the
square of the appropriate transformed piezoelectric constant.

From the expressions given, one has

e e )
Ty = € 0, {:L - Lol 2 X3 }, (o Acinm)
and

0 ° [3)
u. = — € AN X5 . @ )

t " ¢ N 3 . :)

m()%()h,&ﬂ“{qh {1_2: (-/km)z taM:X(J 1«)}
J=t )(LJ)k (3.9)

Equation (2.20) is

&
D; = — €3 43 5 (2.20)
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" therefore, we get

:DB - — e:: ('po /L’
3 . Gl
- y? _fftié__/“__}

_ (3.10)
Now consider a portion of the plate having lateral area A.
This is the same area introduced in (A2.52) . The current, I, inter-

cepted by this area, is equal to

T,

I

- A :D3 ) (3.11)

L. = —joAD, (3.12)
The minus sign is a consequence of the fact that, at the positive
(upper) electrode, the surface nommal points in the direction of
minus X within the crystal.

Looking into the electrical port, one sees an admittance

Y. ey = I, [ (2¢) (3.13)
with I_ given by (3.12).

Defining the capacitance Co by

Y
Co = Acesy /(2h) (3.14)

and using (3.10), (3.12) and (3.13), we arrive at the input

admittance (65):
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Y. (reTm) = ciol .
o B 3 )

1 - ( #h\2 tam, A I’)

{ 4‘-2_.: Ik ) »h }

(3.15)

B. Network Synthesis of Y, (TETM).

Expression (3.15), for the ‘input admittance seen at the
electrical port of the traction-free crystal plate, is a function
of three tangents having, generally, different periods, since all the
wavenumbers X('?) will usually be distinct. Remembering what was
said earlier concerning the three acoustic eigen-modes satisfying
transmission-line equations, and also the discussions in the
Introduction about piezoelectric coupling of the modes at boundaries,
and viewing (3.15) in this light, we might expect that (3.15) ocould
be realized by a generalization of Fig. 7, involving three trans-
mission lines. Such is indeed the case, and this simple problem
has been selected here with just this end in mind. It will introduce
a three-transmission-line network with the least amount of additional
detail, so that the inc;:eased camplexity will not cbscure the ties
our circuits have with those previously given in the literature.

To begin the synthesis, recall that Fig. 7 represents a. mode
driven by an applied field parallel to the wave propagation
direction, which is also true in our case. Circuits for the field
nomal to the wave propagation, on the other hand, are distinguished
in the literature (131) by the absence of the negative C,. With
this hint, we extract from Yo (TETM) in (3.15) a shunt capacitor
of value C,, and then a series capacitor of value minus C,. This

fragment of the TEIM network has been called the "electrical input
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circuit" by Schiissler (143); we will retain the name.
When the electrical input circuit, described above, has been

extracted from Y;, (TETM), the remainder, YT L’ Says is

YTL - sel, {’ 23\ (/{{Mﬂ)l ton }L('P)k }
h=i %m h
(3.16)

This means that we have the sum of three admittances in parallel, and
each admittance contains one tangent function.

We next notice that, because of the mechanical boundary
conditions, the surface stresses, both Tg3; and T;i , vanish,
while the corresponding displacements are allowed to develop freely.
Equations (2.52) and (2.53) then suggest as a consequence that the
mechanical ports are short circuited.

Let us first consider one of the three admittances comprising

Y for if we can formulate an appropriate network for one of the

TL'
three temms, we have only to add, in parallel, two others which are

()
alike it save for the mode index number. Call this admittance YT L*

With Fig. 7 in mind, we are thus led to Fig. 9, wherein, to be

oonsistent with Chapter II, we have used

10} )

. ALY (2.54)

i

Z

(,_') . (C‘)
= o/v (2.45)
which then requires that the piezoelectric transfommer turns ratios,

n. , becane

M = + A Casl /(zk.,)) (3.17)
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and the transformer dots to be located as given. The fact that the
dots are adjacent at one end, and opposite at the other end is a
manifestation of the polar nature of the piezoelectric effect; the
circuit is mechanically symmetric.

In drawing Fig. 9 with the transformers as shown, we emphasize the
oconcept of boundary excitation. We have given in the figure a repre-
sentation with the transformer primaries in parallel; one can as well
redraw it with a single primary winding, and two secondary windings
with a common flux, so that the secondaries are in parallel.

Figure 9 may be verified by reverting back to the equivalent tee

circuit' for a transmission line, as given, for example, in Fig. 4.
We shall amit doing it here, and go on instead to the camplete network,
since we have accumlated all of the pieces. We require three networks
as in Fig. 9, in parallel, plus the electrical input circuit, attached
to the electrical port. Figure 10 shows the assembled network.

Q

Equation (2.47) tells us that, because the T31 vanish at the
plate surfaces, the partial stresses %;1 and E;i add to zero there.
According to our discussions in Chapter II, A %; ; are the voltage
variables associated with the waves on the transmission lines, while

the A T;L are piezoelectric in nature, since

-0 - 8

ATy = A€y as, (3.18)
which follows from (2.48). We see that Fig. 10 provides just these
interpretations when the A .T-3°i are identified with the secondary

wltages produced by the piezo-transfommers located at the ends of the

transmission lines.



61

0vVAHNS

3344 - NOILOVHL E
MHOM L3N *Sué
0Z3ld A¥VANNOS __m.
lllllll ——a .

—CRYSTAL
2h
70, el

Yi, (TETM)

+Co

0Z31d AYVANNOY

NYOM L3N A
[ ]

3JJV38NS
3344 - NOILOVYL

OF TRACTION- FREE PLATE, TETM.

FIG. 10. EQUIVALENT NETWORK ANALOG REPRESENTATION
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The structure of Fig. 10 also furnishes a simple, visual, inter-
pretation to Tiersten's finding (64) that, even in the traction-free
case, all three modes are coupled, piezoelectrically, at the
boundary. It is clear that, if the electrical port is left open, the
positive and negative capacitors combine to short-circuit the piezo-
transformers, and thel three eigen-modes are then decoupled. In any
other case, where the electrical port is attached to a finite
immittance, the three modes are boundary-coupled.

Other insights may be obtained through a study of the schematic,
but it is not our intent to be exhaustive about this aspect of the
problem; we desire to derive networks which are rigorously analogous
to the problems stated, and make a few observations about them. Once
they are understood, and same facility is obtained in manipulating
them, they épeak for themselves.

We will confine ourselwves, now, to the following remarks in regard
to Fig. 10 and the physical problem it represents.

Equation (3.15) is an exact result, and Fig. 10 realizes it
exactly. The figure, therefore, can be used for time-domain analyses,
even though it was developed from a frequency-domain synthesis. Caonsider
this aspect briefly. One can see that a transient excitation applied
to the electrical port produces two waves in each transmission line,
each wave starting at the surface and propagating imwardly. Each pair
of waves is of equal strength and the stresses have the same polarity,
so, consequently, no net mechanical current will flow across the
center line of the resocnator plate.

When two of the three piezoelectric turns ratios n, are zero,



only a single transmission line remains coupled to the electrical

input circuit, and, in this simpler case, the time-damain response
reduces to that given in the literature (88, 99-101). If twon; are
zero, and only one mode is driven piezoelectrically, (3.15) shows that
the critical frequencies, corresponding to poles and zeros of ¥, (TEIM),

are obtained from the roots of

Tam th = @ (3.19)
which gives the harmonically-related antiresonant frequencies, and

fram the roots of

Tom > h = +>(.h/.zk,1, (3.20)

which gives the non-harmonically-related resonant frequencies. Since
only one mode is now considered, the mode superscript is dropped.
Tiersten (64) has given a discussion of the meaning of (3.20); it was
first derived by Bechmann (134), in 1940, for a single mode.

Reverting back to the case of three modes, the exact result (3.15)
may be used down to DC in which limit the effective capacitance

becomes

W

¢ Co ,

[1- f,Zi' (™" ] (3.21)
whereas, in the absence of piezoelectricity, the limit would be

simply CO. The piezo-coupling factors k(4°) have the effect, therefore,
of increasing the effective pemmittivity. This has been shown, also
by Bechmann (200). Because the crystal plate is passive, moreover,

it is necessary that the limiting capacitance at DC be positive,



which implies the constraint on the ocoupling factors
3 * 2
Z () <=4,
o (3.22)

Additional relations of this sort may be derived fram the
necessity that the stored energy density be positive. This, in turn,
requires that the overall material constant matrix formed from (2.5)
and (2.6) be positive definite (164), and leads to a variety of results.
Same general considerations relating to coupling factors are given in
the paper by Baerwald (201).

The network of Fig. 10 degenerates, at DC,into a simple capacitor
circuit that consists of the TETM electrical input circuit (C,in shunt,
followed by -C, in series) and three capacitors in parallel, one for
each transmission line, each of value C,(k ) )% In the high frequency
limit the input capacitance approaches C,, the piezoelectrically
induced motion becoming "frozen."

We now use the symmetry of Fig. 10 to simplify it. Because of the
transformer dot array, the mechanical woltages produced at the ends
of each transmission line have the same polarity, as noted earlier,

and the mid-point of the lines, corresponding to the plane x ,= 0, of

3
the crystal plate, is a node of mechanical current. We may therefore
bisect the network of three transmission lines at their centers (19).
The bisection produces six lines, each of length h, open circuited at
the ends at which the bisections were made. The six lines consist of
three sets of identical twins, which are all connected in parallel
throuwgh their piezo-transformers. Each set of twin lines can be further
reduced to a single line, having twice the characteristic admittance

of the individual lines. Our manipulations lead us thus to Fig. 11.
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Here, the three modal transmission lines have been connected via a ocommon

core transformmer, so that the secondaries are in parallel.

Althouwgh we have not shown it yet, Fig. 10 is a true analog
representation where the vibrating plate parameters, such as the dis-
placements, u; , may be determined exactly as a function of coordinate
X3 from a consideration of the network. Figure 11, on the other hand,
has lost this intimate physical meaning, because of the circuit manipu-
lations that have been carried out. The important thing to be emphasized
will vary with the situation, usually; at first, the analogous aspects
of the representations provide insight into the physics, while at a
later stage, after insight has been attained, circuit simplifications
can be sought to reduce the network configuration to more tractable
fomms for application.

We leave the one-port, traction-free plate now, and pass on to a
more general treatment of the TETM-driven plate which will lead, in
Chapter V, to a camplete seven-port network for handling arbitrary
boundary conditions.

C. The Electromechanical Network Impedance Matrix.

Our network of Fig. 10 realizes input admittance (3.15) exactly.
It was obtained by a one-port synthesis, and no other constraints were
imposed other than that (3.15) be satisfied. As we indicated toward
the close of the last section, and this is significant, the network of
Fig. 10 actually is valid on a point-to-point basis, and not simply
valid only at the electrical port. Because this is so, it can be
generalized to arbitrary boundary conditions, as we shall shortly show.
The traction-free-boundary plate, chosen to introduce our new results

because of its simplicity, led to the imposition of short circuits
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at the mechanical ports; in more general instances the shorts will be
replaced by mechanical boundary netwoxrks, coupling the three transmission
lines to each other, and to the mechanical impedances, seen at the
boundary, arising from adjacent strata, lumped loads, or other mechanical
influences.

We thus anticipate the more general network of Fig. 1l2. The
construction of the mechanical boundary networks will be given in
Chapter V. In the figure the negative capacitance, associated with
TETM, has been disposed symmetrically in the electrical input circuit,
and placed more explicitly at the crystal interfaces, whereas the shunt
capacitance is clearly associated with the crystal in the bulk. It is
understood that the shunt capacitor plates coincide with the plate
surfaces for a complete analog; they are drawn using the conventional
circuit symbol as a convenience. We mention in passing that one may
lock upon this static capacitance C,, as a vestige of the two electro-
magnetic modes in the quasi-static approximation, so that, additional
to the three acoustic transmission lines, a fourth line exists, repre-
senting these two ooalesoed modes, the velocity on which line is infinite.

Our object here is twofold. We must provide a link between the
traction-free case of Fig. 10 and the anticipated picture of Fig. 12
for general mechanical boundary conditions. At the same time, we must
show these general circuit forms to be true analogs, i.e., we must
investigate the correspondence of the picture with the spatial coordi-
nate, and treat the network as a seven-port, rather than as a one-port,
because the three stress and three displacement (or velocity) components

at each of the two surfaces are generally interrelated.
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To accamplish these ends nmost easily, we take the following course.
We will reverse our procedure of solving the physical problem first and
then realizing its network, as we did in Sections III A and B above;
instead we provisionally adopt the circuit of Fig. 13, examine it from
a network standpoint, and then carry out the corresponding operations
on the equations describing the physics.

In Fig. 13, the short circuits of Fig. 10 have been removed, and
the mechanical boundary networks are also absent. We shall obtain the
- impedance matrix for this seven-port, and, after its validity has been
established by recourse to the equations of the physical problem, use
the matrix in conjunction with the mechanical networks, established in
like manner, to arrive at an overall realization. This approach leads
to a relatively sinmple analytical form for the impedance matrix of the
caplete network, and one which is easy to obtain, whereas inclusion
of the mechanical networks and arbitrary mechanical locads at the outset
greatly complicates the analysis.

Consider the posited Fig. 13. Because it pertains to normal
coordinates, the port-variables are superscripted with the degree
sign, as shown. The ports are nunbered so that the left side (bottom
of the crystal) of the transmission line supporting mode (i) leads to
port (1°), while the right side (top of the crystal) of the same
transmission line leads to port ((i + 3)°); ports (1°) to (69 are
the mechanical ports, while port (7°) is the electrical port. We also
define Vn0 and I (r =1,2,...,7) as the voltages and currents
appropriate to port number (7°, with conventions as shown in Fig. 13.
At present we do not have to match these variables with the stresses

and displacements.
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In order to carry out the analysis of the circuit of Fig. 13, it
is oonvenient to replace the distributed lines by their equivalent
lumped tee form. This fom is shown in Fig. 14 for a single line,
and the substitution of three such tees for the lines in Fig. 13
produces the network of Fig. 15.

We seek to detennme the guantities Z; c in the relations

° -] -]
Ve = E L
where the Greek indices have the range 1 to 7. Our task is reduced

(3.23)

in size by a number of considerations. First, as a consequence of the
fact that the network is composed of linear, passive and bilateral
elements, and because we will choose our loop current definitions to
coincide with our choice of loops for application of Kirchhoff's
wltage law, the parameter matrices will be symmetrical (202) ., We
notice, also, that the impedances break up into four types, viz.,
driving-point impedances, which are electrical or mechanical, and
transfer impedances, which connect either two mechanical ports or a
mechanical port to the electrical port. 2Apart from the mode index
nmber, all the driving-point mechanical impedances will be equal, as
will the mutual mechanical impedances between the two ports of a single
transmission line. Again, mutatis matandis, all of the electrical-
mechanical transfer impedances will be equal. Finally, all of the
mechanical impedances, whether driving point or transfer become almost
trivially simple to evaluate by virtue of the two capacitances, which
together produce a shorting of the piezo-transformers, when port (7°)

is open, thereby decoupling the transmission lines fram each other.
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This last-mentioned consideration has the effect of making vanish
the impedance matrix elements with the following indices: 12,13,15,16,
23,24,26,34,35,45,46 and 56, plus, by symmetry, those with these indices
in reverse order. These correspond to mechanical transfer impedances

between different lines. The mechanical driving-point impedances are

o 0) &)

o o
‘Z” - qu - Z' ""‘ ZZ. = Zo )
j ten 6, (3.24)
o ° @) @) 2:2)
2 = Tss = Z, + Z2 =  Fa B
J a2 (3.25)
and
(3
e ) @)
2-_:3:.24,4, = Z, +22 = Zo )
] Ton 63 (3.26)
where we have put
Q)
6 = 2hx . (3.27)

The mutual mechanical impedances that are not zero, are

Zy = Zy = 2, = Zo , (3.28)
J Aon 8,
° ° @) @)
225- = Z;g = 2'-1 = 4

’ {3.29)
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G)
z _ 7 o z ) Zo
a6 = 62 = 2 = J in O (3.30)

]

With the mechanical ports (19 to (6°) open-circuited, the

impedance seen looking into the electrical port is

2’ -
J @ C,

(3.31)
which is consistent with the mechanical port conditicns, since we
shall find that open circuits at the mechanical ports mean zero
velocities and displacements, so the crystal is clamped and the piezo-
electric effect is prevented fram contributing to the impedance seen
at port (7°).

It remains to cbtain the electro-mechanical transfer impedances.

(o}

5 8 representative. Ports (29 through (7% are open, so

We pick 2z
a short is placed across all piezo-transformers, decoupling the three
transmission lines. A current Ilo injected into port (lo) as shown,
produces a current n; Icl) on the primary side of the piezoelectric
drive transfomer. This current flows through the positive and negative
capacitors and produces a voltage at port (7°) of n

o .
IIl /(cho)'

polarized as shown, hence

o /)l/ o
Z = " . = Z?‘I .
7 jw C, (3.32)

Similarly one cbtains

o N 2, 0
Z = = Z
7 .
z jw Co B (3.33)
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and

273 = : h3 = Z?é .
e Co (3.34)

With the symmetry of the impedance matrix about the main diagonal,

this completes the evaluation of the 2; The entire array is

g -
given on the next page. If instead of three modes, only one is
considered, the corresponding three-port impedance matrix is obtained
from our seven-port matrix by eliminating any two of the first three
rows and colums, and the same members of the second set of three
rows and colums, then suppressing the mode index nurber in what
remains. With a trivial renumbering of ports, it will be seen to be

identical with that given by Auld (8).
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D. The TETM Plate Electromechanical Impedance Matrix

Having the matrix array for the posited Fig. 13, we now show that
this same array appears fram the equations governing the motion of the
crystal plate, obtained in Chapter II, when the properly analogous
quantities are paired. Once this has been done, an appeal to the fact
that the acoustic and transmission-line waves cbey the same equations
of motion within the region -h < X < h and have the same boundary
values, will establish the fact that Fig. 13 constitutes a true analog
up to the mechanical boundaries. After the mechanical boundary net-
works have been- added, in Chapter V, the analogy for a single plate
will be camplete in all respects.

In keeping with (2.52) and (2.53) we adopt the choices

Ve = ATi(-w (r=i=1,3,3), (3.35)
Vi = ATy (6l (T=iv3= 45,0 ), (3.36)
o= Yy : (r=1) ) (3.37)

where T;i (i h) refers to the value of Tgi at the top, resp., bottom,
of the plate.

Note that the choice here pertains to the total stress T;i ’
and not simply to the "wavy" portion, "i"; .

The currents are taken as

T, = —djew = —jouth, (522423, (33

78
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H
I

F UL = H{Ou (R (32i32450), (3.39)

° 0

I, = I,, (327), (3.40)
where, again, u(; (¥ h) refers to the value of u(i) at x3=fh.

The reason for the sign difference between (3.38) and (3.39) is
this: the transmissibn—line equations (2.42), (2.43) have a convention
regarding the variables; the voltage and current are always measured
in the same sense, and, as a wave progresses down the line, this sense
‘does not change. On the other hand, we have chosen our port currents
I; , in Fig. 13, to be always directed into the port at the terminal
which is considered positive. The mechanical voltages have an unchanged
sense along the transmission lines. Labeling in this manner is con-
venticnal for lumped networks, and preserves a nice symmetry between
*input" and "output," but makes inevitable the reversal of signs
elsewhere. It seems to us least undesirable to incorporate them, as
we have done, in the distinction between (3.38) and (3.39).

Based upon these choices relating circuit variables and physical
quantities, the impedance matrix elements will depend upon quotients
of stress camponents and camponents of displacement, both in the
nomal-coordinate system.

By definition, the impedance element Z’:S is obtained from

>

o °
Z, = Ve /T, (3.41)
with all currents equal to zero except for I; . The physical
significance of having six of the seven currents equal to zero is

this: since the first six currents have been taken to be proportional
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to the displacement components at the bottom and top faces of the
plate, in the normal coordinates, we see that if % is equal to

seven, referring to the electrical port current, the fact that all
mechanical currents are zero means the plate is completely clamped

at the top and bottom surfaces, and, since the piezoelectric drive

is located only there, the crystal plate cannot move. This statement
parallels our remarks about the traction-free case where the stresses
vanished in the normal coordinate system, because they vanished in

‘the untransformed system, and (6?) is nonsingular. When % is not
equal to seven, then only five of the six mechanical currents are zero,
and only one plate surface is clamped and cannot move. The other
surface has, in general, all components of motion in the untransformed
system; however, these are not independent, but bear constant ratios

to one another as dictated by the direction cosines of the transforma-
tion, since I: is compounded of untransformed components of motion
in the ratio. of the /s(ji) . 'This becomes more readily apparent when the
impedance components are evaluated, as we now do.

As one would expect, the same conclusions we came to in the
network case, regarding certain impedance components being identical
save for change of mode index nunber, are valid here. This allows us
to cut down on the nurber of elements to be evaluated.

Again, four categories of impedances are recognized. The first

(-]
77 '
reciprocal of (3.15) because, in that case, the tractions, but not

is the electrical input impedance Z this differs from the

the displacements, were forced to be zero. We take u? (i=1,2,3)

to be identically zero everywhere. This satisfies (2.39).
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Equation (2.41) becames

¢=a, ¥y +bs . (3.42)
Application of the boundary conditions (3.2) then gives

b3=0,

as = (ﬁ/h . (3.43)

From (2.20),(3.12),(3.43) and (3.14) we arrive at

2. = (v / %), = 1 [y Co, (3.44)
The remaining impedances may be cbtained by assuming one of
the u‘; to be finite and the other two to be identically zero.
Because the uio are unocoupled in the bulk, they satisfy (2.39)
separately. A value of zero satisfies (2.39), and makes four of
the six mechanical currents vanish. The fifth is made to vanish by
chosing the finite u? to be a solution of (2.39) in such a manner
that it is zero at the appropriate surface, and non-zero at the

other. Choosing

4

O ®

acocamplishes this; the sign being chosen to make H.? vanish at
X3 = 3h , respectively.

For definiteness, we take

0 4

(3.46)

everywhere, and, as a solution to (2.39),

. O]
u = dl AA/Y\. % (l’)—')ls) . (3.47)
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As a consequence of the requirement that, now,

If,’= 0,

plus (3.12), we have
D3= 0;
and, by (2.20)
a3= 0’
so that, fram (2.38), we get
o (‘.) °

Ty = € Ui (3.48)

With (3.46) we obtain

] -]
Ts2 = T = o, (3.49)
which leads to
o - [-] -]
Vo = V3 = Ve =1V, = o (3.50)

]
Ti
zero. We shall amit doing it, but it is very easily shown by changing

and, hence, the Z having the subscripts 21,31,51 and 61, are
the mode index number (i) of the u(i) that is chosen to remain

finite, that the 27; are symmetric, so that impedance elements with

3
subscripts 12,13,15 and 16 are also zero. It also then appears that,
additionally, the following-subscripted elements vanish, along with their
symmetrically-related partners: 23,24,26,34,35,45,46 and 56.

We now continue to determine the finite impedance camponents

stemming from our choice (3.46), (3.47). Using (3.48) and (3.47)
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gives

) DY O}
Ty = =% ¢ G, cax (h-x3) (3.51)

so that, by (3.35), (3.36), and (3.27),

0 0w 0
Vi = =%« ¢ At (3.52)

and

o n 0
Vi = =xen G AL (3.53)

1;’ is abtained from (3.38) and (3.47):

]

I, = —q® G, e b, , (3.54)

s0 we have determined

()
z, = Z [ (jten8) (3.55)

plus

o n ) ,
Z, = B [(jan &) (3.56)

and use has been made of (2.45), (2.54) and (2.56).
Making other choioces for (i) in (3.45), and using both the plus
and minus signs therein, for each such choice, a repetition of the

steps directly above leads to

O]

[ 0 Z
Z, = Z = 2 3.57
] 4y ’]' for O, ) (3.57)
(2)
° 0 20
Zpn = £55 = ) (3.58)

jfome,_
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0)

‘?33 = Z“ = - % )
9 ton O3 (3.59)

which are the same as (3.24), (3.25) and (3.26); also

U]

o o 2
Zy = Zuy = > )
4‘ ] e' (3060)
@
° ° Zo
225 = 252 = \ ] ) (3.61)
j an By
and &)
° ° Zo
Z, = Za = j e O3 (3.62)

These are the same as (3.28), (3.29) and (3.30), while (3.44) is
the same as (3.31).

All but the electro-mechanical transfer imp;adances have been
obtained; this calculation follows next.

Once again we use (3.46), (3.47), and compute the voltage
developed across the open electrical port. For the same reasons
given following (3.47), a,is again' zero, while the quantity bj
is of no concern because it does not enter the expression for V7o '
which is

o

v, = [ Ple=th) = @lr=-)] (3.63)

° ° ° 5
v—; = [H,(-l—k) - u;(—H)] €z /533 3 (3.64)



this last expression following from (2.41) with a; =0 and the
choices (3.46), (3.47) for the u; . Substituting the particular

(o)
fom for u, given by (3.47) makes V(—; become

o ° . 5
Vg = = q| Cajz Un 6, /633 . (3.65)
The current Icl) is obtained from (3.54), so the impedance 2911 is
o o &
Zy = € ‘W € .
U 313 /(1 33) (3.66)
Recalling the definitions (3.14) and (3.17) allows us to put this in
the form
N,

Zy = :
(! j‘O Co 2

(3.67)
which is seen to agree with (3.32).
Continuing exactly as we have proceeded above to determine

zgl , but with interchanges of index numbers, one may similarly

show that
° g M
£z = £ = : 3.68
7 74 jw Co ) ( )
° ° M.
Zyy = I T je C, ’ (3.69)
and
[ [ N3
Loy = Zn = . : (3.70)
g w C,

These relations are identical with (3.32), (3.33) and (3.34). The

85
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symretry of the Z;i about the main diagonal makes the determination
camplete, and, it is seen that our assignments (3.35) to (3.40) are,
in every respect, consistent with the posited Fig. 13 and with the
equations governing the physics of the system, so that the impedance
matrices obtained from the physics and the figure are identical.
The impedance matrix is further seen to have the property that all
mechanical ports are on an equal footing, the only difference being
the arbitrarily assigned port numbers; this property also follows at
once from Fig. 13.

This section has developed the seven-port impedance matrix
from the physical equations goverming the problem. Upon camparison
with the matrix of Section C, one sees they are identical. This
justifies not only our choice of pairings of variables between the
circuit and the problem, but proves that Figure 13 is an exact
representation of the physical problem as seen at the ports ( o ).
We remark again that the camplete problem involves additicnal
circuitry, so that the mechanical conditions at the layer surfaces
can be expressed in untransfommed variables, instead of those super-
scripted with the degree sign. Within the nommal-coordinate frame-
work, however, the representation of Figure 13 is exact. One
additional topic remains to be considered yet, and this concerns the
piezoelectric drive, to which we devote the next section. We mention
in passing that we have marked out upon our unbounded plate a portion
of area A and have characterized this; the entire plate is simply
more such areas, with all of them in parallel. It will be noticed

that the LEIM case treated in Chapter IV presents the dual situation
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of portions of a single plate characterized as being in series

electrically.

E. Piezoelectric Tractions.

We noted in Section IB 5, the historical development of the
oconcept of piezoelectric tractions taking place at discontinuities.
In this regard, Holland's work (102) deserves special mention as it
pertains to piezo-vibrators and stacks of plates, and he emphasized
the surface~traction aspect in these situations.

Wel have arrived, in our work, at circuit representations which
place just such an interpretation in evidence. That is, our circuits
portray the piezo-drive effect as a phenomenon that takes place at
the surfaces of the plate, and therefore the schematic shares this
accordance with the nature of the physical problem.

This section discusses the drive mechanism further and leads wp
to a demonstration that the circuits, such as those of Fig. 10 and
13, are true analogs; they provide realizations not only at the
seven ports, but are valid within the bulk of the layer, as well,

The physical reason for the location of the piezo-drive transformers
at the layer boundaries can be seen as follows. Newton's equations
(2.1), transformed to nomal coordinates, are

o o e O
o= Ty = pUe (3.71)

where the F].Lo are components of mechanical force density. The Fio

arise fram the differentiation of the stresses, which from {2.38), are

° 6y o °

Tsc =L W + &, a, . (2.38)
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The quantity ag, in turn, is a uniform electric field, from

(2.41) , which depends for its value upon the boundary conditions
imposed (see, e.g., (3.6), (3.43} and above (3.48)). Differentiation
of (2.38) yields no ocontribution fram the second temm on the right
within the bulk of the crystal, where e;i @, is constant. However,
each surface produces a discontinuity, so the differentiation yields
a delta-function of force density, located at the surface. This will,
in general, result in all three components of F, being produced

there. In the event that the material comprising the plate is not

piezoelectrically homogeneous, additicnal contributions to F. will
be produced because the tem Q, e;’gc-)3 is then not always zero. We do
not consider this further, but it may be treated by the method set
forth in Chapter VI.

The delta-functions of piezoelectric force density are represented
by our transfomers, which are located at the surface and exert finite
forces, but have no spatial extensions.

The mechanical variables, represented by (3.35), (3.36), (3.38)
and (3.39) as port wvoltages V; and port currents I; occur at the
surfaces X 3= th, as do the piezoelectric drive temms discussed above.

Therefore, making use of (2.47) and (2.52),

N o

() o e
V (et petr) = (Ve = ATZ) = AT . (3.72)

3 3
Also, from (2.53) and (%.38), (2.39),

(©) ° o !
T (atpot (™) = I = —joU; | (T=1,33), (3.73)
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and
() . 0 . °

T (alpal(T)) = =Ip = =g U, (T=4,56), (3.74)
since V(1) and 11 are the transmission-line variables, these are then
expressed directly in terms of known values at the surface. The
boundary values at the transmission-line ends, expressed by (3.72),
(3.73) and (3.74), are the same as those appearing at the plate surface
in the physical problem. This, plus the fact that the network and
the acoustic problem obey the same transmission~line equations within
the bulk, as shown in Chapter II, guarantees that the network is a
true analog, and that corresponding quantities are matched on a
point-for-point basis along the spatial coordinate from -h to +h.

In the results of Chapter V we shall obtain suitable mechanical

boundary networks to be attached to Fig. 13, which will then became

canplete.,



