3.0 Offset, Another Dimension

Earlier chapters have assumed that the shot and the geophone are
located in the same place. The reality is that there is often as much as a 3-
km horizontal separation between them. The 3-km offset is comparable to the
depth of many petroleum reservoirs.

Offset is another dimension in the analysis of data. At the time of writ-
ing, this dimension is often represented in field operations by about 48 chan-
nels. No one seems to believe, however, that 48 channels is enough. Record-
ing systems with as many as 1024 channels are coming into use.

The offset dimension adds three important aspects to reflection seismol-
ogy. First, it enables us to routinely measure the velocity of seismic waves in
rocks. This velocity has been assumed to be known in the previous chapters
of this book. Second, it gives us data redundancy: it gives independent meas-
urements of quantities that should be the same. Superposition of the meas-
urements (stacking) offers the potential for signal enhancement by destructive
interference of noise. Third (a disadvantage), since the offset is nonzero, pro-
cedures for migration take on another element of complexity. By the end of
this chapter we will be trying to deal with three confusing subjects at the
same time — dip, offset, and lateral velocity variation.

Theoretically it seems that offset should offer us the possibility of identi-
fying rocks by observing the reflection coefficient as a function of angle, both
for P waves and for P-to-S converted waves. The reality seems to be
that neither measurement can be made reliably, if at all. See Section 1.4 for a
fuller discussion of converted waves, an interesting subject for research, with a
large potential for practical rewards. See also Ostrander [1984] and Tatham
and Stoffa [1976]. The reasons for the difficulty in measurement, and the
resolution of the difficulty, are, however, not the goal of this book. This goal

is instead to enable us to deal effectively with that which is routinely observ-
able.
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Stacking Diagrams

First, define the midpoint y between the shot and geophone, and define
h to be half the horizontal offset between the shot and geophone:

y = 422 (1)
h o= 92”8 (1b)

The reason for using half the offset in the equations is to simplify and sym-
metrize many later equations. Offset is defined with ¢ — s rather than with
§ — ¢ so that positive offset means waves moving in the positive z direc-
tion. In the marine case, this means the ship is presumed to sail negatively
along the z-axis. In reality the ship may go either way, and shot points may
either increase or decrease as the survey proceeds. In some situations you can
clarify matters by setting the field observer’s shot-point numbers to negative
values.

Data is defined experimentally in the space of (s, ¢)- Equation (1)
represents a change of coordinates to the space of (y, A ). Midpoint-offset
coordinates are especially useful for interpretation and data processing. Since
the data is also a function of the travel time t, the full dataset lies in a
volume. Because it is so difficult to make a satisfactory display of such a
volume, what is customarily done is to display slices. The names of slices
vary slightly from one company to the next. The following names seem to be
well known and clearly understood:

(y, h=0, t) zero-offset section

(y, h=h_; , t) mnear-trace section

(v, h=const, t) constant-offset section

(y, h=h_,., t) far-trace section

(y =const, h, t) common-midpoint gather

(s =const, g, t) field profile (or common-shot gather)
(s, g=const, t) common-geophone gather

(s, g, t=const) time slice
(h, y, t=const) time slice

A diagram of slice names is in figure 1. Figure 2 shows three slices from
the data volume. The first mode of display is “engineering drawing mode.”
The second mode of display is on the faces of a cube. But notice that
although the data is displayed on the surface of a cube, the slices themselves
are taken from the interior of the cube. The intersections of slices across one
another are shown by dark lines.
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FIG. 3.0-1. Top shows field recording of marine seismograms from a shot at
location s to geophones at locations labeled g¢g. There is a horizontal
reflecting layer to aid interpretation. The lower diagram is called a stacking
diagram. (It is not a perspective drawing). Each dot in this plane depicts a
possible seismogram. Think of time running out from the plane. The center
geophone above (circled) records the seismogram (circled) that may be found
in various geophysical displays. Labels in the diagram below give common
names for the displays.

A common-depth-point (CDP) gather is defined by the industry and by
common usage to be the same thing as a common-midpoint (CMP) gather.
But in this book a distinction will be made. A CDP gather will be considered

to be a CMP gather with its time axis stretched according to some velocity
model, say,

(y=const, h, Vt2-4h 2/1} 2) common-depth-point gather
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FIG. 3.0-2. Slices from a cube of data from the Grand Banks. Left is
“engineering drawing” mode. At the right slices from within the cube are
shown as faces on the cube. (Data from Amoco. Display via Rick Ottolini’s
movie program).

This offset-dependent stretching makes the time axis of the gather become
more like a depth axis, thus providing the D in CDP. The stretching is
called normal moveout correction (NMO). Notice that as the velocity goes to
infinity, the amount of stretching goes to zero.

In industrial practice the data is not routinely displayed as a function of
offset. Instead, each CDP gather is summed over offset. The resulting sum is
a single trace. Such a trace can be constructed at each midpoint. The collec-
tion of such traces, a function of midpoint and time, is called a CDP stack.
Roughly speaking, a CDP stack is like a zero-offset section, but it has a less
noisy appearance.

The construction of a CDP stack requires that a numerical choice be
made for the moveout-correction velocity. This choice is called the stacking
velocity. The stacking velocity may be simply someone’s guess of the earth’s
velocity. Or the guess may be improved by stacking with some trial velocities
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to see which gives the strongest and least noisy CDP stack. More on stacking
in Section 3.5.

Figure 3 shows typical land and marine profiles (common-shot gathers).
The land data has geophones on both sides of the source. The arrangement
shown is called an uneven split spread. The energy source was a vibrator.
The marine data happens to nicely illustrate two or three head waves (see
Sections 3.5 and 5.2). The marine energy source was an air gun. These field
profiles were each recorded with about 120 geophones.
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FIG. 3.0-3. Field profiles. Left is a land profile from West Texas. Right is a
marine profile off the Aleutian Islands. (Western Geophysical).

What is ‘“Poor Quality’ Data?

Vast regions of the world have good petroleum potential but are hard to
explore because of the difficulty of obtaining good quality reflection seismic
data. The reasons are often unknown. What is *‘poor quality” data? From
an experimental view, almost all seismic data is good in the sense that it is
repeatable. The real problem is that the data makes no sense.

Take as an earth model a random arrangement of point reflectors. Its
migrated zero-offset section should look random too. Given the repeatability
that is experienced in data collection, data with a random appearance implies
a random jumble of reflectors. With only zero-offset data little else can be
deduced. But with the full range of offsets at our disposal, a more thoughtful
analysis can be tried. This chapter provides some of the required techniques.
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An interesting model of the earth is a random jumble of point scatterers
in a constant-velocity medium. The data would be a random function of time
and a random function of the horizontal location of the shot-geophone mid-
point. But after suitable processing, for each midpoint, the data should be a
perfectly hyperbolic function of shot-geophone offset. This would determine
the earth velocity exactly, even if the random scatterers were distributed in
three dimensions, and the survey were only along a surface line.

This particular model could fail to explain the “poor quality” data. In
that case other models could be tried. The effects of random velocity varia-
tions in the near surface or the effects of multiple reflections could be
analyzed. Noise in seismology can usually be regarded as a failure of analysis
rather than as something polluting the data. It is the offset dimension that
gives us the redundancy we need to try to figure out what is really happening.

Texture of Horizontal Bedding, Marine Data

Gravity is a strong force for the stratification of rocks, and in many
places in the world rocks are laid down in horizontal beds. Yet even in the
most ideal environment the bedding is not mirror smooth; it has some tez-
ture. We begin the study of offset with synthetic data that mimics the most
ideal environment. Such an environment is almost certainly marine, where
sedimentary deposition can be slow and uniform. The wave velocity will be
taken to be constant, and all rays will reflect as from horizontally lying mir-
rors. Mathematically, tezture is introduced by allowing the reflection
coefficients of the beds to be laterally variable. The lateral variation is
presumed to be a random function, though not necessarily with a white spec-
trum. Let us examine the appearance of the resulting field data.

Randomness is introduced into the earth with a random function of mid-
point y and depth z. This randomness is impressed on some geological
“layer cake” function of depth z. For every point in (y, z }-space, a hyper-
bola of the appropriate random amplitude must be superposed in the space of
offset A and travel time ¢.

What does the final data space look like? This question has little mean-
ing until we decide how the three-dimensional data volume will be presented
to the eye. Let us view the data much as it is recorded in the field. For each
shot point we see a frame in which the vertical axis is the travel time and the
horizontal axis is the distance from the ship down the towed hydrophone
cable. The next shot point gives us another frame, Repetition gives us a
movie. And what does the movie show?

A single frame shows hyperbolas with imposed texture. The movie shows
the texture moving along each hyperbola to increasing offsets. (I find that no
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# Synthetic marine data tape movie generation

integer kbyte,it,nt,ih,nh,is,ns,iz,nz,it0,iy

real p(512),b(512),refl(25,16),2(25),geol(25),random

open(3,file=="plot” ,status=’new’,access=’direct’,form=’unformatted’,recl=1)

nt = 512; nh = 48; ns = 10; nz = 25;kbyte =1

do iz=1,nz # Reflector depth
z(iz) = nt*random() # random() is on the interval (0.,1.)

do iz=1,nz # Reflector strength with depth.
geol(iz) = 2.*random()-1.

dois = 1,ns # Give texture to the Geology

do iz = 1,nz
refl(iz,is) = (1.+random())*geol(iz)

do it = 1,nt # Prepare a wavelet
b(it) = exp(-it*.08)*sin(.5*it-.5)
do is = ns,1,-1 { # Shots. Run backwards.
do ih = 1,nh { # down cable h = (g-s)/2
iy = (1s-1)+(ih-1) # y = midpoint
ly = 1 + (iy-ns*(iy/ns)) # periodic with midpoint
do it = 1,nt
p(it) = 0.
do iz = 1,nz { # Add in a hyperbola for each layer
1t0 = sqrt( z(iz)**2 + 100.#(ih-1)x2 )
do it = 1,nt-i1t0 { # Add in the wavelet

p(it+it0) = p(it-+it0) + refi(iz,iy)*b(it)

write(3,rec=kbyte) (p(it),it=1,nt); kbyte = kbyte+nt*4

}

stop; end

FIG. 3.0-4. Computer program to make synthetic field tapes in an ideal ma-
rine environment.

sequence of still pictures can give the impression that the movie gives).
Really the ship is moving; the texture of the earth is remaining stationary
under it. This is truly what most marine data looks like, and the computer
program of figure 4 simulates it. Comparing the simulated data to real
marine-data movies, I am impressed by the large amount of random lateral
variation required in the simulated data to achjeve resemblance to field data.
The randomness seems too great to represent lithologic variation. Apparently
it is the result of something not modeled. Perhaps it results from our incom-
plete understanding of the mechahism of reflection from the quasi-random
earth. Or perhaps it is an effect of the partial focusing of waves sometime

after they reflect from minor topographic irregularities. A full explanation
awaits more research.
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Texture of Land Data: Near-Surface Problems

Reflection seismic data recorded on land frequently displays randomness
because of the irregularity of the soil layer. Often it is so disruptive that the
seismic energy sources are deeply buried (at much cost). The geophones are
too many for burial. For most land reflection data, the texture caused by
these near-surface irregularities exceeds the texture resulting from the
reflecting layers.

To clarify our thinking, an ideal mathematical model will be proposed.
Let the reflecting layers be flat with no texture. Let the geophones suffer ran-
dom time delays of several time points. Time delays of this type are called
statics. Let the shots have random strengths. For this movie, let the data
frames be common-midpoint gathers, that is, let each frame show data in
(h,t)space at a fixed midpoint y. Successive frames will show successive
midpoints. The study of figure 1 should convince you that the travel-time
irregularities associated with the geophones should move leftward, while the
amplitude irregularities associated with the shots should move rightward. In
real life, both amplitude and time anomalies are associated with both shots
and geophones.

EXERCISES

1. Note that figure 1 is drawn for a shot interval As equal to half the geo-
phone interval Ag. Redraw figure 1 for As = Ag. Common-
midpoint gathers now come in two types. Suggest two possible
definitions for “‘near-offset section.”

2. Modify the program of figure 4 to produce a movie of synthetic midpoint
gathers with random shot amplitudes and random geophone time delays.
Observing this movie you will note the perceptual problem of being able
to see the leftward motion along with the rightward motion. Try to
adjust anomaly strengths so that both left-moving and right-moving pat-
terns are visible.

Your mind will often see only one,
blocking out the other, similar to
the way you perceive a 3-D cube,
from a 2-D projection of its edges.

3. Define recursive dip filters to pass and reject the various textures of shot,
geophone, and midpoint.
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3.1 Absorption and a Little Focusing

Sometimes the earth strata lie horizontally with little irregularity. There
we may hope to ignore the effects of migration. Seismic rays should fit a sim-
ple model with large reflection angles occurring at wide offsets. Such data
should be ideal for the measurement of reflection coefficient as a function of
angle, or for the measurement of the earth acoustic absorptivity 1/Q. In his
doctoral dissertation, Einar Kjartansson reported such a study. The results
were so instructive that the study will be thoroughly reviewed here. I don’t
know to what extent the Grand Isle gas field (Pan [1983]) typifies the rest of
the earth, but it is an excellent place to begin learning about the meaning of
shot-geophone offset.

The Grand Isle Gas Field: A Classic Bright Spot

The dataset Kjartansson studied was a seismic line across the Grand Isle
gas field, off the shore of Louisiana, and was supplied by the Gulf Oil Com-
pany. The data contain several classic “bright spots” (strong reflections) on
some rather flat undisturbed bedding. Of interest are the lateral variations in
amplitude on reflections at a time depth of about 2.3 seconds. (See figure 3).
It is widely believed that such bright spots arise from shallow gas-bearing
sands.

Theory predicts that reflection coefficient should be g, function of angle.
For an anomalous physical situation like gas-saturated sands, the function
should be distinctive. Evidence should be found on common-midpoint gathers
like those shown in figure 1. Looking at any one of these gathers you will
note that the reflection strength versus offset seems to be a smooth, sensibly
behaved function, apparently quite measurable. Using layered media theory,
however, it was determined that only the most improbably bizarre medium
could exhibit such strong variation of reflection coeflicient with angle, particu-
larly at small angles of incidence. (The reflection angle of the energy arriving
at wide offset at time 2.5 seconds is not a large angle. Assuming constant ve-
locity, arccos(2.3/2.6) = 28°). Compounding the puzzle, each common-
midpoint gather shows a different smooth, sensibly behaved, measurable
function. Furthermore, these midpoints are near one another, ten shot points
spanning a horizontal distance of 820 feet.
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Kjartansson’s Model for Lateral Variation in Amplitude

The Grand Isle data is incomprehensible in terms of the model based on
layered media theory. Kjartansson proposed an alternative model. Figure 2
illustrates a geometry in which rays travel in straight lines from any source to
a flat horizontal reflector, and thence to the receivers. The only complications
are ‘‘pods” of some material that is presumed to disturb seismic rays in some
anomalous way. Initially you may imagine that the pods absorb wave energy.
(In the end it will be unclear whether the disturbance results from energy
focusing or absorbing).

C
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The model above produces the disturbed data space sketched below.
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FIG. 3.1-2. Kjartansson’s model. Anomalous material in pods A, B, and C
may be detected by its effect on reflections from a deeper layer.
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Pod A is near the surface. The seismic survey is affected by it twice —
once when the pod is traversed by the shot and once when it is traversed by
the geophone. Pod C is near the reflector and encompasses a small area of it.
Pod C is seen at all offsets A but only at one midpoint, y,. The raypath
depicted on the top of figure 2 is one that is affected by all pods. It is at mid-
point y, and at the widest offset h max- Find the raypath on the lower
diagram in figure 2.

Pod B is part way between A and C. The slope of affected points in the
(v, h )-plane is part way between the slope of A and the slope of C.

Figure 3 shows a common-offset section across the gas field. The offset
shown is the fifth trace from the near offset, 1070 feet from the shot point.
Don’t be tricked into thinking the water was deep. The first break at about
.33 seconds is wide-angle propagation.

The power in each seismogram was computed in the interval from 1.5 to
3 seconds. The logarithm of the power is plotted in figure 4a as a function of
midpoint and offset. Notice streaks of energy slicing across the (y, h )plane
at about a 45° angle. The strongest streak crosses at exactly 45° degrees
through the near offset at shot point 170. This is a missing shot, as is clearly
visible in figure 3. Next, think about the gas sand described as pod C in the
model. Any gas-sand effect in the data should show up as a streak across all
offsets at the midpoint of the gas sand — that is, horizontally across the page.
I don’t see such streaks in figure 4a. Careful study of the figure shows that
the rest of the many clearly visible streaks cut the plane at an angle notice-
ably less than +45°. The explanation for the angle of the streaks in the
figure is that they are like pod B. They are part way between the surface and
the reflector. The angle determines the depth. Being closer to 45° than to
0%, the pods are closer to the surface than to the reflector.

Figure 4b shows timing information in the same form that figure 4a
shows amplitude. A CDP stack was computed, and each field seismogram
was compared to it. A residual time shift for each trace was determined and
plotted in figure 4b. The timing residuals on one of the common-midpoint
gathers is shown in figure 5.

The results resemble the amplitudes, except that the results become noisy
when the amplitude is low or where a “leg jump” has confounded the meas-
urement. Figure 4b clearly shows that the disturbing influence on timing
occurs at the same depth as that which disturbs amplitudes.

The process of inverse slant stack, to be described in Section 5.2 enables
us to determine the depth distribution of the pods. This distribution is
displayed in figures 4c and 4d.
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FIG. 3.1-5. Midpoint gather 220 (same as in figure 1b) after moveout. Shown
is a one-second window centered at 2.3 seconds, time shifted according to an
NMO for an event at 2.3 seconds, using a velocity of 7000 feet /sec. (Kjar-
tansson)

Rotten Alligators

The sediments carried by the Mississippi River are dropped at the delta.
There are sand bars, point bars, old river bows now silted in, a crow’s foot of
sandy distributary channels, and between channels, swampy flood plains are
filled with decaying organic material. The landscape is clearly laterally vari-
able, and eventually it will all sink of its own weight, aided by growth faults
and the weight of later sedimentation. After it s buried and out of sight the
lateral variations will remain as pods that will be observable by the seismolo-
gists of the future. These seismologists may see something like figure 6. Fig-
ure 6 shows a three dimensional seismic survey, that is, the ship sails many
parallel lines about 70 meters apart. The top plane, a slice at constant time,
shows buried river meanders. The data, shown in figure 6 is described more
fully by its donors, Dahm and Graebner [1982].

Focusing or Absorption?

Highly absorptive rocks usually have low velocity. Behind a low velocity
pod, waves should be weakened by absorption. They should also be
strengthened by focusing. Which effect dominates? How does the
phenomenon depend on spatial wavelength? A full reconstruction of the phy-
sical model remains to be done. Maybe you can figure it out knowing that
black on figure 4c denotes low amplitude or high absorption, and black on
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FIG. 3.1-6. Three-dimensional seismic data (Geophysical Services Inc.) from
the Gulf of Thailand. Data planes from within the cube are displayed on the

faces of the cube. The top plane shows ancient river meanders now sub-
merged.

figure 4d denotes low velocities.

EXERCISE

1. Consider waves converted from pressure P waves to shear S waves.

Assume an S-wave speed of about half the P-wave speed. What would
figure 2 look like for these waves?
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3.2 Introduction to Dip

The study of seismic travel-time dependence upon source-receiver offset
begins by calculating the travel times for rays in some ideal environments.

Sections and Gathers for Planar Reflectors

The simplest environment for reflection data is a single horizontal
reflection interface, which is shown in figure 1. As expected, the zero-offset
section mimics the earth model. The common-midpoint gather is a hyperbola
whose asymptotes are straight lines with slopes of the inverse of the velocity
vy. The most basic data processing is called common-depth-point stack or
CDP stack. In it, all the traces on the common-midpoint (CMP) gather are
time shifted into alignment and then added together. The result mimics a
zero-offset trace. The collection of all such traces is called the CDP-stacked
section. In practice the CDP-stacked section is often interpreted and
migrated as though it were a zero-offset section. In this chapter we will learn
to avoid this popular, oversimplified assumption.

Model Common-Midpoint Gather Constant-Offset Section
(horizontal layer) at Y for h 0
Yo
@-
V1
V2
t t

FIG. 3.2-1. Simplest earth model.
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The next simplest environment is to have a planar reflector that is
oriented vertically rather than horizontally. This is not typical, but is
included here because the effect of earth dip is more comprehensible in an
extreme case. Now the wave propagation is along the air-earth interface. To
avoid confusion the reflector may be inclined at a slight angle from the verti-
cal, as in figure 2.

Model Common-Midpoint Gather Zero-Offset Section
(almost vertical contact) at Y4
% Yo - h -
L \
N\
y \
1
V2
- .. '
-5 t t

FIG. 3.2-2. Near-vertical reflector, a gather, and a section.

Figure 2 shows that the travel time does not change as the offset
changes. It may seem paradoxical that the travel time does not increase as
the shot and geophone get further apart. The key to the paradox is that mid-
point is held constant, not shotpoint. As offset increases, the shot gets further
from the reflector while the geophone gets closer. Time lost on one path is
gained on the other.

A planar reflector may have any dip between horizontal and vertical.
Then the common-midpoint gather lies between the common-midpoint gather
of figure 1 and that of figure 2. The zero-offset section in figure 2 is a straight
line, which turns out to be the asymptote of a family of hyperbolas. The
slope of the asymptote is the inverse of velocity v ;.

The Dipping Bed

While the travel-time curves resulting from a dipping bed are simple,
they are not simple to derive. Before the derivation, the result will be stated:
for a bed dipping at angle o from the horizontal, the travel-time curve is
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t2v2 = 4 (y-yo)?sin®a + 4 £ 2 cos2a (1)

For a=45°, equation (1) is the familiar Pythagoras cone — it is just like
t2 =22+ 22 For other values of «, the equation is still a cone, but a less

familiar one because of the stretched axes.

For a common-midpoint gather at y = yy in (k, t }space, equation (1)
looks like t2=1¢2 + 4h2/v azpparmt. Thus the common-midpoint gather
contains an ezact hyperbola, regardless of the earth dip angle «. The effect
of dip is to change the asymptote of the hyperbola, thus changing the
apparent velocity. The result has great significance in applied work and is
known as Levin’s dip correction [1971]:

Y earth

(2)

v apparent COS(Oz)

(See also Slotnick [1959]). In summary, dip increases the stacking velocity.

Ja

FIG. 3.2-3. Rays from a common-midpoint gather.

Figure 3 depicts some rays from a common-midpoint gather. Notice that
each ray strikes the dipping bed at a different place. So a common-midpoint
gather is not a common-depth-point gather. To realize why the reflection
point moves on the reflector, recall the basic geometrical fact that an angle
“bisector in a triangle generally doesn’t bisect the opposite side. The reflection
point moves up dip with increasing offset.

Finally, equation (1) will be proved. Figure 4 shows the basic geometry
along with an “image” source on another reflector of twice the dip. For con-
venience, the bed intercepts the surface at Yo =0. The length of the line
s'g in figure 4 is determined by the trigonometric Law of Cosines to be

t2v2 = 82+g2—2s g cos 2«
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t?v2 = (y-hP+(y +h)2-2(y —h)(y +h)cos2a
t2v2 — 2(y2+h2)_2(y2_h2)(cos2a—sin2a)
t2 02 = 4 y?sin®a + 4 k2 cosla

which is equation (1).

- g

s a '

FIG. 3.2-4. Travel time from image source at s’ to ¢ may be expressed by
the law of cosines.

Another facet of equation (1) is that it describes the constant-offset sec-
tion. Surprisingly, the travel time of a dipping planar bed becomes curved at
nonzero offset — it too becomes hyperbolic.

The Point Response

Another simple geometry is a reflecting point within the earth. A wave
incident on the point from any direction reflects waves in all directions. This
geometry is particularly important because any model is a superposition of
such point scatterers. Figure 5 shows an example. The curves in figure 5
include flat spots for the same reasons that some of the curves in figures 1 and
2 were straight lines.

The point-scatterer geometry for a point located at (z,2) is shown in
figure 6.

The equation for travel time ¢ is the sum of the two travel paths

tv = \/z2+(s—x)2+\/z2+(g~x)2 (3)
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Model Common-Midpoint Gather Constant-Offset Section
(two point scatterers) at Yo Jor b
h ® y
Yo
@
o
o //
t t

FIG. 3.2-5. Response of two point scatterers. Note the flat spots.
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FIG. 3.2-6. Geometry of a point scatterer.

Cheops’ Pyramid

Because of the importance of the point-scatterer model, we will go to
considerable lengths to visualize the functional dependence among ¢, z, z,
s, and ¢ in equation (3). This picture is more difficult — by one dimension
— than is the conic section of the exploding-reflector geometry.

To begin with, suppose that the first square root in (3) is constant
because everything in it is held constant. This leaves the familiar hyperbola
in (g, t)space, except that a constant has been added to the time. Suppose
instead that the other square root is constant. This likewise leaves a hyper-
bola in (s, t)-space. In (s, g )-space, travel time is a function of s plus a
function of ¢. I think of this as one coat hanger, which is parallel to the s -
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axis, being hung from another coat hanger, which is parallel to the ¢ -axis.

FIG. 3.2-7. Left is a picture of the travel-time mountain of equation (3) for
fixed z and z. The darkened lines are constant-offset sections. Right is a
cross section through the mountain for large ¢ (or small 2 )- (Ottolini)

A view of the travel-time mountain on the (s, g }-plane or the (y, A )
plane is shown in figure 7a. Notice that a cut through the mountain at large
t is a square, the corners of which have been smoothed. A constant value of
t is the square contoured in (s, g )-space, as in figure 7b. Algebraically, the
squareness becomes evident for a point reflector near the surface, say, z-—0.
Then (3) becomes

vt = |s-z| + |g-z] (4)

The center of the square is located at (s, g )=(z, z). Taking travel time ¢
to increase downward from the horizontal plane of (s, g }space, the square
contour is like a horizontal slice through the Egyptian pyramid of Cheops.
To walk around the pyramid at a constant altitude is to walk around a
square. Alternately, the altitude change of a traverse over g at constant s
is simply a constant plus an absolute-value function, as is a traverse of s at
constant g¢.
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More interesting and less obvious are the curves on common-midpoint
gathers and constant-offset sections. Recall the definition that the midpoint
between the shot and geophone is y. Also recall that A is half the horizon-
tal offset from the shot to the geophone.

y = L322 (52)
po= 222 5b
. (5b)

A traverse of y at constant A is shown in figure 7. At the highest eleva-
tion on the traverse, you are walking along a flat horizontal step like the flat-
topped hyperboloids of figure 5. Some erosion to smooth the top and edges of
the pyramid gives a model for nonzero reflector depth.

For rays that are near the vertical, the travel-time curves are far from
the hyperbola asymptotes. Then the square roots in (3) may be expanded in
Taylor series, giving a parabola of revolution. This describes the eroded peak
of the pyramid.

Random Point Scatterers

Figure 8 shows a synthetic constant-offset section (COS) taken from an
earth model containing about fifty randomly placed point scatterers. Late
arrival times appear hyperbolic. Earlier arrivals have flattened tops. The ear-
liest possible arrival corresponds to a ray going horizontally from the shot to
the geophone.

—

y

N

t

FIG. 3.2-8. Constant-offset section over random point scatterers.
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Figure 9 shows a synthetic common-shot profile (CSP) from the same earth
model of random point scatterers. Each scatterer produces a hyperbolic
arrival. The hyperbolas are not symmetric around zero offset; their locations
are random. They must, however, all lie under the lines |g-s | = vt.
Hyperbolas with sharp tops can be found at late times as well as early times.
However, the sharp tops, which are from shallow scatterers near the geo-
phone, must lie near the lines |g-s | =

FIG. 3.2-9. Common-shot profile
over random point scatterers.

\ \\\’\VA\\\
‘Q

/5\\

Figure 10a shows a synthetic common-midpoint gather (CMP) from an
earth model containing about fifty randomly placed point scatterers. Because
this is a common-midpoint gather, the curves are symmetric through zero
offset. (The negative offsets of field data are hardly ever plotted). Some of
the arrivals have flattened tops, which indicate scatterers that are not directly
under the midpoint.

Normal-moveout (NMO) correction is a stretching of the data to try to
flatten the hyperbolas. This correction assumes flat beds, but it also works
for point scatterers that are directly under the midpoint. Figure 10b shows
what happens when normal-moveout correction is applied on the random
scatterer model. Some reflectors are flattened; others are ‘‘overcorrected.”

Forward and Backward Scattering: Larner’s Streaks

At some locations, near-surface waves overwhelm the deep reflections of
geologic interest. Compounding our difficulty, the near-surface waves are usu-
ally irregular because the earth is comparatively more irregular at its surface
than deeper down. On land, these interfering waves are called ground roll.
At sea, they are called water waves (not to be confused with surface waves on
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V:

FIG. 3.2-10. Common-midpoint gather on earth of randomly located point
scatterers (left). The same gathers after NMO correction (right).

water).

A model for such near-surface noises is suggested by the vertical
reflecting wall in figure 2. In this model the waves remain close to the sur-
face. Randomly placed vertical walls could result in a zero-offset section that
resembles the field data of figure 11. Another less extreme model for the sur-
face noises is the flat-topped curves in the random point-scatterer model.

In the random point-reflector model the velocity was a constant. In real
life the earth velocity is generally slower for the near-surface waves and faster
for the deep reflections. This sets the stage for some unexpected noise
amplification.

CDP stacking enhances events with the stacking velocity and discrim-
inates against events with other velocities. Thus you might expect that stack-
ing at deeper, higher velocity would discriminate against low-velocity, near-
surface events. Near-surface noises, however, are not reflections from horizon-
tal layers; they are more like reflections from vertical walls or steeply dipping
layers. But equation (2) shows that dip increases the apparent velocity. So it
is not surprising that stacking at deep-sediment, high velocities can enhance
surface noises. Occurrence of this problem in practice was nicely explained
and illustrated by Larner et al. [1983]

Velocity of Sideswipe

Shallow-water noise can come from waves scattering from a sunken ship
or from the side of an island or iceberg several kilometers to the side of the
survey line. Think of boulders strewn all over a shallow sea floor, not only
along the path of the ship, but also off to the sides. The travel-time curves
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FIG. 3.2-11. CDP stack with water noise from the Shelikof Strait, Alaska.
(by permission from Geophysics, Larner et al. [1983])

for reflections from the boulders nicely matches the random point-scatterer
model. Because of the long wavelengths of seismic waves, our sending and
receiving equipment does not enable us to distinguish waves going up and
down from those going sideways.

Imagine one of these shallow scatterers several kilometers to the side of |
the ship. More precisely, let the scatterer be on the earth’s surface, perpen-
dicular to the midpoint of the line connecting the shot point to the geophone.
A common-midpoint gather for this scatterer is a perfect hyperbola, as from
the deep reflector contributions on figure 9. Since it is a water-velocity hyper-
bola, this scatterered noise should be nicely suppressed by CDP stacking with
the higher, sediment velocity. So the “streaking” scatterers mentioned earlier
are not sidescatter. The ‘‘streaking” scatterers are those along the survey
line, not those perpendicular to it.

The Migration Ellipse

Another insight into equation (3) is to regard the offset A and the total
travel time ¢ as fixed constants. Then the locus of possible reflectors turns
out to describe an ellipse in the plane of (y—yo, z). The reason it is an
ellipse follows from the geometric definition of an ellipse. To draw an ellipse,
place a nail or tack into s on figure 6 and another into g . Connect the
tacks by a string that is exactly long enough to go through (¥ 2). An
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ellipse going through (y,, z) may be constructed by sliding a pencil along
the string, keeping the string tight. The string keeps the total distance tv
constant.

Recall (Section 1.3) that one method for migrating zero-offset sections is
to take every data value in (y, ¢ }space and use it to superpose an appropri-
ate semicircle in (y, z }space. For nonzero offset the circle should be general-
ized to an ellipse (figure 1.3-1).

It is not easy to show that equation (3) can be cast in the standard
mathematical form of an ellipse, namely, a stretched circle. But the result is
a simple one, and an important one for later analysis, so here we go. Equa-
tion (3) in (y, h }space is

to = 2 4 -ug-hP+/224(y —yg+ ) (6)
To help reduce algebraic verbosity, define a new y equal to the old one
shifted by y,. Also make the definitions

E Ve = 2d = 2¢ Y half (7a)
e = z% 4 (y +h)? (7b)
b o= 2% + (y-h) (7c)
a - b = 4y h (7d)
With these definitions, (6) becomes
2d = Va + Vb (8)
Square to get a new equation with only one square root.
4d? — (a +b) = 2Va vk (9)
Square again to eliminate the square root.
16d* - 8d%2(a +b) + (a +b6)2 = 44a b (10a)
16d* - 8d%(a +b) + (a-b) = o (10b)
Introduce definitions of a and b .
16d* - 8d2[222+2y2 4207 4+ 169242 = o (11)
Bring y and z to the right.
d* — d?h? = 4%(224 y?) - 4242 (12a)
d?(d2-h?%) = 42224 (d2-p2)y2 (12b)
d? = ——%2— + y? (12¢)
e
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Finally, recalling all earlier definitions,

22

h2
t2

t2 oy + (v ~yo)’ (13)
1 -

2
Y half

Fixing ¢, equation (13) is the equation for a circle with a stretched z-axis.
Our algebra has confirmed that the “string and tack” definition of an ellipse
matches the ‘“‘stretched circle” definition. An ellipse in model space is the
earth model given the observation of an impulse on a constant-offset section.

b, h
Yo

FIG. 3.2-12. Migration ellipse.
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FIG. 3.2-13. Undocumented data from a recruitment brochure. This data
may be assumed to be of textbook quality. The speed of sound in water is
about 1500 m/sec. Identify the events at A, B, and C. Is this a common-
shotpoint gather or a common-midpoint gather? (Shell Oil Company)
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OFFSET 3.8 Survey Sinking with the DSR

3.3 Survey Sinking with
the Double-Square-Root Equation

Exploding-reflector imaging will be replaced by a broader imaging con-
cept, survey sinking. A new equation called the double-square-root (DSR)
equation will be developed to implement survey-sinking imaging. The function
of the DSR equation is to downward continue an entire seismic survey, not
just the geophones but also the shots. After deriving the DSR equation, the
remainder of this chapter will be devoted to explaining migration, stacking,
migration before stack, velocity analysis, and corrections for lateral velocity
variations in terms of the DSR equation.

Peek ahead at equation (9) and you will see an equation with two square
roots. One represents the cosine of the wave arrival angle. The other
represents the takeoff angle at the shot. One cosine is expressed in terms of
lcg, the Fourier component along the geophone axis of the data volume in
(5,9, t)space. The other cosine, with kg, is the Fourier component along
the shot axis.

Our field seismograms lie in the (s, ¢ )plane. To move onto the (y,h)
plane inhabited by seismic interpreters requires only a simple rotation. The
data could be Fourier transformed with respect to y and A, for example.
Then downward continuation would proceed with equation (17) instead of
equation (9).

The DSR equation depends upon the reciprocity principle which we will
review first.

Seismic Reciprocity in Principle and in Practice

The principle of reciprocity says that the same seismogram should be
recorded if the locations of the source and geophone are exchanged. A physi-
cal reason for the validity of reciprocity is that no matter how complicated a

geometrical arrangement, the speed of sound along a ray is the same in either
direction.
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Mathematically, the reciprocity principle arises because the physical
equations of elasticity are self adjoint. The meaning of the term self adjoint is
illustrated in FGDP where it is shown that discretized acoustic equations yield
a symmetric matrix even where density and compressibility are space variable.
The inverse of any such symmetric matrix is another symmetric matrix called
the impulse-response matrix. Elements across the matrix diagonal are equal
to one another. Each element of any pair is a response to an impulsive
source. The opposite element of the pair refers to the interchanged source
and receiver.
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FIG. 3.3-1. Constant-offset section from the Central Valley of California.
(Chevron)

A tricky thing about the reciprocity principle is the way antenna pat-
terns must be handled. For example, a single vertical geophone has a natural
antenna pattern. It cannot see horizontally propagating pressure waves nor
vertically propagating shear waves. For reciprocity to be applicable, antenna
patterns must not be interchanged when source and receiver are interchanged.
The antenna pattern must be regarded as attached to the medium.
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I searched our data library for split-spread land data that would illus-
trate reciprocity under field conditions. The constant-offset section in figure 1
was recorded by vertical vibrators into vertical geophones. The survey was
not intended to be a test of reciprocity, so there likely was a slight lateral
offset of the source line from the receiver line. Likewise the sender and
receiver arrays (clusters) may have a slightly different geometry. The earth
dips in figure 1 happen to be quite small although lateral velocity variation is
known to be a problem in this area.

N

A

i i

0 1.0 2.0 3.0 4.0

FIG. 3.3-2. Overlain reciprocal seismograms.

In figure 2, three seismograms were plotted on top of their reciprocals.
Pairs were chosen at near offset, at mid range, and at far offset. You can see
that reciprocal seismograms usually have the same polarity, and often have
nearly equal amplitudes. (The figure shown is the best of three such figures 1
prepared).

Each constant time slice in figure 3 shows the reciprocity of many
seismogram pairs. Midpoint runs horizontally over the same range as in figure
1. Offset is vertical. Data is not recorded near the vibrators leaving a gap in
the middle. To minimize irrelevant variations, moveout correction was done
before making the time slices. (There is a missing source that shows up on
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the left side of the figure). A movie of panels like figure 3 shows that the
bilateral symmetry you see in the individual panels is characteristic of all
times. Notice however that there is a significant departure from reciprocity
on the one-second time slice around midpoint 120.
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FIG. 3.3-3. Constant time slices at 1 second and 2.5 seconds.
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In the laboratory, reciprocity can be established to within the accuracy of
measurement. This can be excellent. (See White’s example in FGDP). In the
field, the validity of reciprocity will be dependent on the degree that the
required conditions are fulfilled. A marine air gun should be reciprocal to a
hydrophone. A land-surface weight-drop source should be reciprocal to a
vertical geophone. But a buried explosive shot need not be reciprocal to a
surface vertical geophone because the radiation patterns are different and the
positions are slightly different. Fenati and Rocca [1984] studied reciprocity
under varying field conditions. They reported that small positioning errors in
the placement of sources and receivers can easily create discrepancies larger
than the apparent reciprocity discrepancy. They also reported that theoreti-
cally reciprocal experiments may actually be less reciprocal than presumably
nonreciprocal experiments.

Geometrical complexity within the earth does not diminish the applica-
bility of the principle of linearity. Likewise, geometrical complexity does not
reduce the applicability of reciprocity. Reciprocity does not apply to sound
waves in the presence of wind. Sound goes slower upwind than downwind.
But this effect of wind is much less than the mundane irregularities of field
work. Just the weakening of echoes with time leaves noises that are not
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reciprocal. Henceforth we will presume that reciprocity is generally applicable
to the analysis of reflection seismic data.

The Survey-Sinking Concept

The exploding-reflector concept has great utility because it enables us to
associate the seismic waves observed at zero offset in many experiments (say
1000 shot points) with the wave of a single thought experiment, the
exploding-reflector experiment. The exploding-reflector analogy has a few
tolerable limitations connected with lateral velocity variations and multiple
reflections, and one major limitation: it gives us no clue as to how to migrate
data recorded at nonzero offset. A broader imaging concept is needed.

Start from field data where a survey line has been run along the z-axis.
Assume there has been an infinite number of experiments, a single experiment
consisting of placing a point source or shot at s on the r-axis and record-
ing echoes with geophones at each possible location ¢ on the z-axis. So the
observed data is an upcoming wave that is a two-dimensional function of s
and ¢, say P(s,g,t). (Relevant practical questions about the actual
spacing and extent of shots and geophones are deferred until Sections 3.6 and
4.3).

Previous chapters have shown how to downward continue the upcoming
wave. Downward continuation of the upcoming wave is really the same thing
as downward continuation of the geophones. It is irrelevant for the continua-
tion procedures where the wave originates. It could begin from an exploding
reflector, or it could begin at the surface, go down, and then be reflected back
upward.

To apply the imaging concept of survey sinking, it is necessary to down-
ward continue the sources as well as the geophones. We already know how to
downward continue geophones. Since reciprocity permits interchanging geo-
phones with shots, we really know how to downward continue shots too.

Shots and geophones may be downward continued to different levels, and
they may be at different levels during the process, but for the final result they
are only required to be at the same level. That is, taking z, to be the depth

of the shots and z, to be the depth of the geophones, the downward-

continued survey will be required at all levels z =2, =2 .

The image of a reflector at (z,z) is defined to be the strength and
polarity of the echo seen by the closest possible source-geophone pair. Taking
the mathematical limit, this closest pair is a source and geophone located
together on the reflector. The travel time for the echo is zero. This survey-

sinking concept of imaging is summarized by
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Image (z,2) = Wave(s=z,g=z,z2,t=0) (1)

For good quality data, i.e. data that fits the assumptions of the downward-
continuation method, energy should migrate to zero offset at zero travel time.
Study of the energy that doesn’t do so should enable improvement of the
model. Model improvement usually amounts to improving the spatial distri-
bution of velocity.

Review of the Paraxial Wave Equation

In Section 1.5 an equation was derived for paraxial waves. The assump-
tion of a single plane wave means that the arrival time of the wave is given
by a single-valued ¢(z,z). On a plane of constant z, such as the earth’s
surface, Snell’s parameter p is measurable. It is

ot sin @

2 = ” = p (2a)

In a borehole there is the constraint that measurements must be made at a
constant z, where the relevant measurement from an upcoming wave would

be
2 11/2
ot _ _eosb |1 _ ﬂ] (2b)
0z v v2 Oz

Recall the time-shifting partial-differential equation and its solution U as
some arbitrary functional form f :

oUu ot U
b = "3 ot (32)
2 ot
U = t -] —/ d
f {az z (3b)

The partial derivatives in equation (3a) are taken to be at constant z , just as
is equation (2b). After inserting (2b) into (3a) we have

v _ [ ﬁt_)z V% ou e
8z v2 oz ot

Fourier transforming the wavefield over (z, t), wereplace 8/3t by -iw.
Likewise, for the traveling wave of the Fourier kernel exp(- 1wt + k. z ),
constant phase means that 9t /dz = k, /w. With this, (4a) becomes

1/2

v? w?

k2
oU —iw[ 1 ad U (4b)

2

The solutions to (4b) agree with those to the scalar wave equation unless v
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is a function of z, in which case the scalar wave equation has both upcom-
ing and downgoing solutions, whereas (4b) has only upcoming solutions.
Chapter 2 taught us how to go into the lateral space domain by replacing 1k,
by 8/0z. The resulting equation is useful for superpositions of many local
plane waves and for lateral velocity variations v (z).

The DSR Equation in Shot-Geophone Space

Let the geophones descend a distance dzg into the earth. The change
of the travel time of the observed upcoming wave will be

o _ _[_L_[_a_tlz}w (5a)
9z, v2 dg
Suppose the shots had been let off at depth dz, instead of at 2z=0. Like-
wise then,
o _ _[L_[_a_tm”z (5b)
Oz, v 2 Os

Both (5a) and (5b) require minus signs because the travel time decreases as
either geophones or shots move down.

Simultaneously downward project both the shots and geophones by an
identical vertical amount dz = a'zg = dz,. The travel-time change is the

sum of (5a) and (5b), namely,

ot ot ot ot
it = g 4 dz, = [ + ]dz (6)
Oz, 9 0z, ° 9z, Oz,
or
a2 S —
0z v2 dg v2 Js
This expression for 9t /32 may be substituted into equation (3a):
W2 2 "y
0z vl Og v 2 Os ot

Three-dimensional Fourier transformation converts upcoming wave data
u(t,s,g) to Ulw, k,, kg ). Expressing equation (8) in Fourier space gives

1/2 1/2
2 2
oU . 1 [kg] 1 [ks]
8z P b2 lw + 02 lw v

Recall the origin of the two square roots in equation (9). One is the cosine of
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the arrival angle at the geophones divided by the velocity at the geophones.
The other is the cosine of the takeoff angle at the shots divided by the veloci-
ty at the shots. With the wisdom of previous chapters we know how to go
into the lateral space domain by replacing z'kg by 0/0g and ik, by 8/ds.
To incorporate lateral velocity variation v(z ), the velocity at the shot loca-
tion must be distinguished from the velocity at the geophone location. Thus,

. 2 1/2
oU — W 2 |V
r 2 v@) ) "z | T
g dg
. 2 1/2
3 2
+ [ el ) I } U (10)
v(s) ds 2
Equation (10) is known as the double-square-root (DSR) equation in
shot-geophone space. It might be more descriptive to call it the survey-
sinking equation since it pushes geophones and shots downward together.
Recalling the section on splitting and full separation (Section 2.4) we realize
that the two square-root operators are commutative (v(s) commutes with
0/8g ), so it is completely equivalent to downward continue shots and geo-
phones separately or together. This equation will produce waves for the rays

that are found on zero-offset sections but are absent (Section 1.1) from the
exploding-reflector model.

The DSR Equation in Midpoint-Offset Space

By converting the DSR equation to midpoint-offset space we will be able
to identify the familiar zero-offset migration part along with corrections for
offset. The transformation between (g, s) recording parameters and (y,h)
interpretation parameters is

Y B g ;8 (118,)
po= 4 2_8 (11b)

Travel time ¢ may be parameterized in (g,5)space or (y,h)space.

Differential relations for this conversion are given by the chain rule for deriva-
tives:

ot _ Ot oy Ot 6 _ 1 (Bt Bt (12a)
dg¢ Jy dg oh 9g 2 (dy oh
6t _ 8t By , At 8h 1 (ot ot
8 0y ds Ok s 2 By Ok ] (12b)
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Having seen how stepouts transform from shot-geophone space to
midpoint-offset space, let us next see that spatial frequencies transform in
much the same way. Clearly, data could be transformed from (s, g }space to
(v, h )-space with (11) and then Fourier transformed to (lcy , ky, }-space. The
question is then, what form would the double-square-root equation (9) take in
terms of the spatial frequencies (Icy, k, )? Define the seismic data field in
either coordinate system as

U(s,9) = U'ly,h) (13)

This introduces a new mathematical function U’ with the same physical
meaning as U but, like a computer subroutine or function call, with a
different subscript look-up procedure for (y, k) than for (s, ¢).- Applying
the chain rule for partial differentiation to (13) gives

oU _ 8y 8U' . oh 9U!

8s  8s 8y | 9s oh (142)
oU 9y aU’ oh OU'

8¢ dg Jy dg Oh (14b)

and utilizing (11) gives

U 1 (8U' Q8U!

8 2oy ok ] (152)
oU 1 (38U au’

B~ 2% ta ] (15b)

In Fourier transform space where 8/8z transforms to tk, , equation (15),
when ¢+ and U=U"' are cancelled, becomes

ko= (k- k) (16a)
k, = —;—(ky+kh) (16b)

Equation (16) is a Fourier representation of (15). Substituting (16) into (9)
achieves the main purpose of this section, which is to get the double-square-
root migration equation into midpoint-offset coordinates:

" 2 11/2
_3_ ___2{ _[’vky+vkh]
BzU o iv [1 2w +
b ok 22 11/2
+ [1_[___vy2wvh ] } }U (17)

Equation (17) is the takeoff point for many kinds of common-midpoint
seismogram analyses. Some convenient definitions that simplify its
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appearance are

v k
G = z (18a)
w
v ks
s = (18b)
w
v /cy
Y = o (18c¢)
v k'h
H = 5o (184d)

Chapter 1 showed that the quantity v k,/w can be interpreted as the angle
of a wave. Thus the new definitions S and @ are the sines of the takeoff
angle and of the arrival angle of a ray. When these sines are at their limits of
+1 they refer to the steepest possible slopes in (s,t) or (g, t)space. Like-
wise, Y may be interpreted as the dip of the data as seen on a seismic sec-
tion. The quantity H refers to stepout observed on a common-midpoint
gather. With these definitions (17) becomes slightly less cluttered:

Lv o= L [ ViTreRP+ Vicway | v (19)

0z

Most present-day before-stack migration procedures can be interpreted
through equation (19). Further analysis of it will explain the limitations of
conventional processing procedures as well as suggest improvements in the
procedures.

EXERCISE

1. Adapt equation (17) to allow for a difference in velocity between the shot
and the geophone.
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3.4 The Meaning of the DSR Equation

The double-square-root equation contains most nonstatistical aspects of
seismic data processing for petroleum prospecting. This equation, which was
derived in the previous section, is not easy to understand because it is an
operator in a four-dimensional space, namely, (2,s,¢g,t). We will approach
it through various applications, each of which is like a picture in a space of
lower dimension. In this section lateral velocity variation will be neglected
(things are bad enough already!). Begin with

W 2@ (Vi—6® + VI_s2) v (12)

dz v
W _ e (VTT(vea? + ViIC@EP) U )

Zero-Offset Migration (H = 0)

One way to reduce the dimensionality of (1b) is simply to set H =0.
Then the two square roots become the same, so that they can be combined to
give the familiar paraxial equation:

vek
.Clg = _zwz 1 - y
dz v 4 2

v (2)

In both places in equation (2) where the rock velocity occurs, the rock velocity
is divided by 2. Recall that the rock velocity needed to be halved in order for
field data to correspond to the exploding-reflector model. So whatever we did
by setting H =0, gave us the same migration equation we used in Chapter 1.
Setting H = 0 had the effect of making the survey-sinking concept function-
ally equivalent to the exploding-reflector concept.

Zero-Dip Stacking (Y = 0)

When dealing with the offset A it is common to assume that the earth
is horizontally layered so that experimental results will be independent of the
midpoint y. With such an earth the Fourier transform of all data over y
will vanish except for ky = 0, or, in other words, for Y = 0. The two
square roots in (1) again become identical, and the resulting equation is once
more the paraxial equation:

212
dU ) v” ky

—_ = —tw— 1-
dz v 4 w2
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Using this equation to downward continue hyperboloids from the earth’s sur-
face, we find the hyperboloids shrinking with depth, until the correct depth
where best focus occurs is reached. This is shown in figure 1.

2=’Ut1 z=vt2 Z='Ut3

M

———

T

th=1t+2/v

FIG. 3.4-1. With an earth model of three layers, the common-midpoint gath-
ers are three hyperboloids. Successive frames show downward continuation to
successive depths where best focus occurs.

The waves focus best at zero offset. The focus represents a downward-
continued experiment, in which the downward continuation has gone just to a
reflector. The reflection is strongest at zero travel time for a coincident
source-receiver pair just above the reflector. Extracting the zero-offset value
at ¢t = 0 and abandoning the other offsets is a way of eliminating noise.
(Actually it is a way of defining noise). Roughly it amounts to the same
thing as the conventional procedure of summation along a hyperbolic trajec-
tory on the original data. Naturally the summation can be expected to be
best when the velocity used for downward continuation comes closest to the
velocity of the earth. Later, offset space will be used to determine velocity.
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Conventional Processing — the Separable Approximation

The DSR operator is now defined as the parenthesized operator in
equation (1b):

DSR(Y,H) = V1-(Y-HR +V1_(Y+H) (4)

In Fourier space, downward continuation is done with the operator
exp(twv ™! DSR z).

There is a serious problem with this operator: it is not separable into a
sum of an offset operator and a midpoint operator. Nonseparable means that
a Taylor series for (4) contains terms like Y2 H2. Such terms cannot be
expressed as a function of Y plus a function of H. Nonseparability is a
data-processing disaster. It implies that migration and stacking must be done
simultaneously, not sequentially. The only way to recover pure separability
would be to return to the space of S and G. (That is a drastic alternative,
far from conventional processing. We will return to it later).

Let us review the general issue of separability. The obvious way to get a
separable approximation of the operator V1 - X2- Y2 is to form a Taylor
series expansion, and then drop all the cross terms. A more clever approxima-

tion is V1-X2+ vV1i-Y2_ 1, which fits all Y exactly when X =0
and all X exactly when Y = 0. Applying this idea (though not the same
equation) to the DSR operator gives

SEP(Y,H) = 2+ [DSR(Y,0)-2]+ [DSR (0, H)- 2] (5a)
SEP(Y,H) = 2[1+(V1-Y2-1)+(V1-H2-1) (5b)

Notice that at H = 0 (5) becomes equal to the DSR operator. At Y =0
(5) also becomes equal to the DSR operator. Only when both H and Y
are nonzero does SEP depart from DSR .

The splitting of (5) into a sum of three operators offers an advantage like
the one offered by the 2-D Fourier kernel exp(ilcy y + tk, h ), which has a
phase that is the sum of two parts. It means that Fourier integrals may have
either ¥y or h nested on the inside. So downward continuation with SEP
could be done in (&, ky )-space as implied by (1b), or we could choose to
Fourier transform to (&, k, ) (ky,v), or (y,h) by appropriate nesting
operations.

It is convenient to give familiar names to the three terms in (56b). The
first is associated with time-to-depth conversion, the second with migration,
and the third with normal moveout.

SEP(Y,H) = TD + MIG(Y)+ NMO (H) (5¢)
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The approximation (5) can be interpreted as ‘“‘standard processing.”” The
first stage in standard processing is NMO correction. In (5) the NMO
operator downward continues all offsets at the earth’s surface, to all offsets at
depth. Selecting zero offset is no more than abandoning all other offsets. Like
stacking over offset, selecting zero offset reduces the amount of data under
consideration.

Ordinarily the abandoned offsets are not migrated. (Alternately, a clever
procedure for changing stacking velocities after migration involves migrating
several offsets near zero offset).

Since all terms in the SEP operator are interchangeable, it would seem
wasteful to use it to migrate all offsets before stack. The result of doing so
should be identical to after-stack migration.

Various Meanings of H =0

Recall the various forms of the stepout operator:

Forms of stepout operator 2H /v

ray trace | Fourier PDE
t
dt ky E,
L — | 9 = dt <
dh w h _{O 3

Reciprocity suggests that travel time is a symmetrical function of offset;
thus dt /dh vanishes at h = 0. In that sense it seems appropriate to apply
equation (2) to zero-offset sections. More precisely, the ray-trace expression
dt /dh strictly applies only when a single plane wave is present. Spherical
wavefronts are made from the superposition of plane waves. Then the
Fourier interpretation of H is slightly different and more appropriate. To
set w =0 would be to select a zero frequency component, a simple integral
of a seismic trace. To set k, =0 would be to select a zero spatial-
frequency component, that is, an integration over offset. Conventional stack-
ing may be defined as integration (or summation) over offset along a hyper-
bolic trajectory. Simply setting k, = 0 is selecting a hyperbolic trajectory
that is flat, namely, the hyperbola of infinite velocity. Such an integration
will receive its major contribution from the top of the data hyperboloid,
where the data events come tangent to the horizontal line of integration. (For
some historical reason, such a data summation is often called vertical stack).
Of the total contribution to the integral, most comes from a zone near the
top, before the stepout equals a half-wavelength. The width of this zone,
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which is called a Fresnel zone, is the major factor contributing to the integral.
The Fresnel zone concept was introduced in Section 1.2. The Fresnel zone
has been extracted from a field profile in figure 2.
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FIG. 3.4-2. (left) A land profile from Denmark (Western Geophysical) with
the Fresnel zone extracted and redisplayed (right).

The definition of the Fresnel zone involves a frequency. For practical
purposes we may just look at zero crossings. Examining figure 2 near one
second we see a variety of frequencies. In the interval between t=1.0 and
t=1.1 1 see about two wavelengths of low frequencies and about 5
wavelengths of high frequencies. The highest frequencies are the main con-
cern, because they define the limit of seismic resolution. The higher frequency
has about 100 half wavelengths between time zero and a time of one second.
As a rough generality, this observed value of 100 applies to all travel times.
That is, at any travel time, the highest frequency that has meaningful spatial
correlations is often observed to have a half period of about 1 /100 of the total
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travel time. We may say that the quality factor @ of the earth’s sedimen-
tary crust is often about 100. So the angle that we are typically thinking
about is cos 8° = .99.

Theoretically, the main differences between a zero-offset section and a
vertical stack are the amplitude and a small phase shift. In practical cases
they are unlikely to migrate in a significantly different way. It would be nice
if we could find an equation to downward continue data that is stacked at
velocities other than infinite velocity.

The partial-differential-equation point of view of setting H =0 is
identical with the Fourier view when the velocity is a constant function of the
horizontal coordinate; but otherwise the PDE viewpoint is a slightly more
general one. To be specific, but not cluttered, equation (1) can be expressed
in 15-degree, retarded, space-domain form. Thus,

8 v 8° 5° ]
—_— U = 0 6
[82+—iw8 8y2+8h2 j’ (6)

Integrate this equation over offset h. The integral commutes with the
differential operators. Recall that the integral of a derivative is the difference
between the function evaluated at the upper limit and the function evaluated
at the lower limit. Thus,

) v 82 v QU |[h=+
—_ —_— U dh —_— = 0 7
[ 8z+—iw8 8y2 [f ) +—iw8 oh | b =-o (72)

The wave should vanish at infinite offset and so should its horizontal offset
derivative. Thus the last term in (7a) should vanish. So, setting H = 0 has
the meaning

(Parazial operator) (vertical stack) = 0 (7b)

A problem in the development of (7b) was that, twice, it was assumed
that velocity is independent of offset: first, when the thin-lens term was omit-
ted from (6), and second, when the offset integration operator was inter-
changed with multiplication by velocity. If the velocity depends on the hor-
izontal z-axis, then it certainly depends on both midpoint and offset. In con-
clusion: If velocity changes slowly across a Fresnel zone, then setting H = 0
provides a valid equation for downward continuation of vertically stacked
data.

Clayton’s Cosine Corrections

A tendency exists to associate the sine of the earth dip angle with Y
and the sine of the shot-geophone offset angle with H. While this is roughly
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valid, there is an important correction. Consider the dipping bed shown in
figure 3.

FIG. 3.4-3. Geometry of a dip-
ping bed. Note that the line
bisecting the angle 28 does not
pass through the midpoint
between ¢ and s. (Clayton) O

The dip angle of the reflector is «, and the offset is expressed as the
offset angle f. Clayton showed, and it will be verified, that

Y
H = sinf cosa (8b)

I

sin a cos f (8a)

For small positive or negative angles the cosines can be ignored, and it is
then correct to associate the sine of the earth dip angle with Y and the sine
of the offset angle with H. At moderate angles the cosine correction is
required. At angles exceeding 45° the sensitivities reverse, and conventional
wisdom is exactly opposite to the truth. The reader should be wary of infor-
mal discussions that simply associate Y with dip and H with velocity.
“Larner’s streaks” in Section 3.2 were an example of mixing the eflects of dip
and offset. Indeed, at steep dips the usual procedure of using H to deter-
mine velocity should be changed somehow to use Y.

Next, (8) will be proven. The source takeoff angle is 75, and the
incident receiver angle is Yy - First, relate 7, and Y, to a and B
Adding up the angles of the smaller constructed triangle gives

(-;L—vs—a)+ﬁ+% = 7
Vs = ﬂ_a (Qa)

Adding up the angles around the larger triangle gives
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7y, = B+a (9b)

To associate the angles at depth, a and B, with the stepouts dt/ds and
dt /dg at the earth’s surface requires taking care with the signs, noting that
travel time increases as the geophone moves right and decreases as the shot
moves right. Recall from Section 3.3 equations (16) and (18), the definitions
of apparent angles Y and H,

v kg dt . .
Y-H = § = " = v = -sinq, = sin(a - B)
’ng dt
Y+H = ¢ = = v —— = +siny, = sin(a+ f)
w dg g

Adding and subtracting this pair of equations and using the angle sum for-
mula from trigonometry gives Clayton’s cosine corrections (8):

Y = %sin(a+ﬂ)+%sin(a~ﬂ) = sina cos

H = %sin(a+ﬁ)—%sin(a—ﬂ) = sinf cosa

Snell-Wave Stacks and CMP Slant Stacks

Setting the takeoff angle S to zero also reduces the double-square-root
equation to a single-square-root equation. The meaning of S = 0 is that
k, = 0 or equivalently that the data should undergo a summation (without
time shifting) over shot s. Such a summation simulates a downgoing plane
wave. The imaging principle behind the summation would be to look at the
upcoming wave at the arrival time of the downgoing wave (Section 5.7). As
explained further in Sections 5.2 and 5.3, S could also be set equal a constant,
to simulate a downgoing Snell wave.

A Snell wave is a generalization of a downgoing plane wave at nonverti-
cal incidence. The shots are not fired simultaneously, but sequentially at an
inverse rate of dt/ds =S /v. This could be simulated with field data by
summing across the (¢, s }-plane along a line of slope dt /ds. Setting S to
be some constant, say S = v dt /ds, also reduces the double-square-root
equation to a paraxial wave equation, just the equation needed to downward
continue the downgoing Snell wave experiment. Snell waves could be con-
structed for various p = dt/ds values. Each could be migrated and
imaged, and the images stacked over p. These ideas have been around
longer than the DSR equation, yet they have gained no popularity. What
could be the reason?
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A problem with Snell wave simulation is that the wavefield is usually
sampled at coarse intervals along a geophone cable, which itself never seems
to extend as far as the waves propagate. Crafty techniques to interpolate and
extrapolate the data are frustrated by the fact that on a common-geophone
gather, the top of the hyperbola need not be at zero offset. For dipping beds
the earliest arrival is often off the end of the cable. So the data processing
depends strongly on the missing data.

These difficulties provide an ecological niche for the common-midpoint
slant stack, namely, H = p v. (A fuller explanation of slant stack is in Sec-
tion 5.2). At common midpoint the hyperbolas go through zero offset with
zero slope. The data are thus more amenable to the interpolation and extrap-
olation required for integration over a slanted line. Setting H = p v yields

k, = —i"v— [\/1—(Y+pv)2+\/1—(Y——pv)2] (10)

This has not reduced the DSR equation to a paraxial wave equation, but it
has reduced the problem to a form manageable with the available techniques,
such as the Stolt or phase-shift methods. Details of this approach can be
found in the dissertation of Richard Ottolini [1982].

Why Not Downward Continue in (S,G)-Space?

If the velocity were known and the only task were to migrate, then there
would be no fundamental reason why the downward continuation could not
be done in (S, G )-space. But the velocity really isn't well known. The sensi-
tivity of migration to velocity error increases rapidly with angle, and angle
accuracy is the presumed advantage of (S, G }-space. Furthermore, the finite
extent of the recording cable and the tendency to spatial aliasing create the
same problems with (S, G )-space migration as are experienced with Snell
stacks. I see no fundamental reason why (S, G }space migration should be
any better than CMP slant stacks, and the aliasing and truncation situations
seem likely to be worse. Less ambitious and more practical approaches to the
wide-angle migration problem are found later in this chapter.

On the other hand, lateral velocity variation (if known) could demand
that migration be done in (s, g }space.

Still another reason to enter shot-geophone space would be that the shots
were far from one another. Then the data would be aliased in both midpoint
space and offset space. See Section 5.7.
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3.5 Stacking and Velocity Analysis

Hyperbolic stacking over offset may be the most important computer pro-
cess in the prospecting industry. It is more important than migration because
it reduces the data base from a volume in (s,9,t)space to a plane in
(v, t)space. At the present time few people who interpret seismic data have
computerized seismic data movies, so most interpreters must have their data
stacked before they can even look at it. Migration merely converts one plane
to another plane. Furthermore, migration has the disadvantage that it some-
times compounds the mess made by near-surface lateral velocity variation and
multiple reflections. Stacking can compound the mess too, but in bad areas
nothing can be seen until the data is stacked. In addition to its other drawing
points, stacking gives as a byproduct estimates of rock velocity.

Historically, stacking has been done using ray methods, and it is still
being done almost exclusively in this way. Migration, on the other hand, is
more often done using wave-equation methods, that is to say, by Fourier or
finite-difference methods. Both migration and stacking are hyperbola-
recognition processes. The advantages of wave-equation methods in migration
have been many. Shouldn’t these advantages apply equally to stacking? It
would seem so, but current industrial practice does not bear this out. The
reasons are not yet clear. So the latter part of this section really belongs to a
research monograph with the facetious title “Theory That Should Work Out
Soon.” More advanced ideas of velocity estimation are in Sections 5.0-5.4.
Wave-equation stacking and velocity-determination methods are ingenious.
Perhaps they have not yet been satisfactorily tested, or perhaps they are just
imperfectly assembled. The reader can guess, and time will tell.

One possible reason why much of this theory is not in routine industrial
use is that the issue of stacking to remove redundancy may be more appropri-
ately a statistical problem than a physical one. To allow for this contingency
I have included a bit on ““wave-equation moveout,” a way of deferring statisti-
cal analysis until after downward continuation. Another possibility is that
the problems of missing data off the ends of the recording cable and spatial
aliasing within the cable may be more flexibly attacked by ray methods than
by wave-equation methods. For this contingency I have included a brief sub-
section on data restoration. Whatever the case, the data-manipulation pro-
cedures in this chapter should be helpful.
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Normal Moveout (NMO)

Normal moveout correction (NMO) is a stretching of the time axis to
make all seismograms look like zero-offset seismograms. NMO was first dis-
cussed in Section 3.0. In its simplest form, NMO is based on the Pythagorean
relation tN2MO = t2- .7:2/ v2. In a constant velocity earth, the NMO correc-
tion would take the asymptote of the hyperbola family and move it up to
t = 0. This abandons anything on the time axis before the first arrival, and
stretches the remainder of the seismogram. The stretching is most severe
near the first arrival, and diminishes at later times. In the NMO example in
figure 1 you will notice the low frequencies caused by the stretch.

NMO correction may be done to common-shot field profiles or to CMP
gathers. NMO applied to a field profile makes it resemble a small portion of a
zero-offset section. Then geologic structure is prominently exhibited. NMO
on a CMP gather is the principal means of determining the earth’s velocity-
depth function. This is because CMP gathers are insensitive to earth dip.

Mathematically, the NMO transformation is a linear operation. It may
seem paradoxical that a non-uniform axis-stretching operation is a linear
operation, but axis stretching does satisfy the mathematical conditions of
linearity. Do not confuse the widespread linearity condition with the less
common condition of time invariance. Linearity requires only that for any
decomposition of the original data P into parts (say P, and P,) the sum
of the NMOed parts is equal the NMO of the sum. Examples of decomposi-
tions include: (1) separation into early times and late times, (2) separation
into even and odd time points, (3) separation into high frequencies and low
frequencies, and (4) separation into big signal values and small ones.

To envision NMO as a linear operator, think of a seismogram as a vector.
The NMO operator resembles a diagonal matrix, but the matrix contains
interpolation filters along its diagonal, and the interpolation filters are shifted
off from the diagonal to create the desired time delay.

Conventional Velocity Analysis

A conventional velocity analysis uses a collection of trial velocities. Each
trial velocity is taken to be a constant function of depth and is used to
moveout correct the data. Figure 2 (left) exhibits the CMP gather of figure 1
(left) after moveout correction by a constant velocity. Notice that the events
in the middle of the gather are nearly flattened, whereas the early events are
undercorrected and later events are overcorrected. This is typical because the
amount of moveout correction varies inversely with velocity (by Pythagoras),
and the earth’s velocity normally increases with depth. A measure of the
goodness of fit of the NMO velocity to the earth velocity is found by summing
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FIG. 3.5-1. CMP gather (Western Geophysical) from the Gulf coast shown at
the left was NMO corrected and displayed at the right.

the CDP gather over offset. Presumably, the better the velocities match, the
better (bigger) will be the sum. The process is repeated for many velocities.
The amplitude of the sum, contoured as a function of time and velocity, is
shown in figure 2 (right).

In practice additional steps may be taken before summing. The traces
may be balanced (scaled to be equal) in their powers and in their spectra (see
deconvolution in Section 5.5). Likewise the amplitude of the sum may be nor-
malized and smoothed. (See Taner and Koehler [1969]). Also the data may
be edited and weighted as explained in the next subsection.
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FIG. 3.5-2. NMO at constant velocity with velocity analysis. (Hale)
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The velocity giving the best stack is an average of the earth’s velocity
above the reflector. The precise definition of this average is deferred till Sec-
tion 5.4.

Mutes and Weights

An important part of conventional processing is the definition of a mute.
A mute is a weighting function used to suppress some undesirable portions of
the data. Figure 3 shows an example of a muted field profile. Weights and
mutes have a substantial effect on the quality of a stack. So it is not surpris-
ing that in practice, they are the subject of much theorizing and experimenta-
tion.
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FIG. 3.5-3. Left is a land profile from Alberta (Western Geophysical). On the
right it is muted to remove ground roll (at center) and head waves (the first
arrivals).

Often the mute is a one-dimensional function of r = A /t. Reasons can
be given to mute data at both large and small values of 7.

At small values of r, energy is found that remains near the shot, such as
falling dirt or water or slow ground roll.

At large values of r, there are problems with the first arrival. Here the
NMO stretch is largest and most sensitive to the presumed velocity. The first
arrival is often called a head wave or refraction. Experimentally, a head wave
is a wave whose travel time appears to be a linear function of distance.
Theoretically, a head wave is readily defined for layered media. The head
wave has a ray that propagates horizontally along a layer boundary. In prac-
tice, a head wave may be weaker or stronger than the reflections. A strong
head wave may be explained by the fact that reflected waves spread in three
dimensions, while head waves spread in only two dimensions.

Muting may be regarded as weighting by zero. More general weights
may be chosen to produce the most favorable CDP stack. A sophisticated
analysis would certainly include noise and truncation. Let us do a simplified
analysis. It leads to the most basic weighting function.

Ordinarily we integrate over offset along a hyperbola. Instead, think of
the three-dimensional problem. You really wish to integrate over a hyperbola
of revolution. Assume that the hyperboloid is radially symmetric. Weighting
the integrand by A allows the usual line integral to simulate integration over
the hyperboloid of revolution. A second justification for scaling data by offset
h  before stacking is that there is less velocity information near zero offset,
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where there is little moveout, and more velocity information at wider offset
where At /Ah is larger.

NMO Equations

The earth’s velocity typically ranges over a factor of two or more within
the depth range of a given data set. Thus the Pythagorean analysis needs
reexamination. In practice, depth variable velocity is often handled by insert-
ing a time variable velocity into the Pythagorean relation. (The classic refer-
ence, Taner and Koehler [1969], includes many helpful details). This approxi-
mation is much used, although it is not difficult to compute the correct
nonhyperbolic moveout. Let us see how the velocity function v(z) is
mathematically related to the NMO. Ignoring dip, NMO converts common-
midpoint gathers, one of which, say, is denoted by P(h,t), to an earth
model, say,

Q(h,2) = earth(z) X const(h) (1)

Actually, @ (h, z) doesn’t turn out to be a constant function of h, but that
is the goal.

The NMO procedure can be regarded as a simple copying. Conceptually,
it is easy to think of copying every point of the (h, t }-plane to its appropriate
place in the (h, z }-plane. Such a copying process could be denoted as

Qh,z(h,t)] = P(h,t) (2)
Care must be taken to avoid leaving holes in the (h, z)-plane. It is better to
scan every point in the output (k, z )-plane and find its source in the (h,t)-

plane. With a table t(h, z), data can be moveout corrected by the copying
operation

Qh,z) = P[h’t(h’z)] (3)

Using the terminology of this book, the input P (h,t) to the moveout
correction is called a CMP gather, and the output @ is called a CDP gather.

In practice, the first step in generating the travel-time tables is to change
the depth-variable 2 to a vertical travel-time-variable . So the required
table is t(h, 7). To get the output data for location (h,7) you take the
input data at location (h,¢). The most straightforward and reliable way to
produce this table seems to be to march down in steps of z, really 7, and
trace rays. That is, for various fixed values of Snell's parameter P, you
compute ¢(p,7) and h(p,7) from wv(r) by integrating the following equa-
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tions over T

d _ deodt 1 1 (4)
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2
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dr dr dz — \/W (%)

(In equations (4) and (5) dt/dz and dh /dz are based on rays, not wave-
fronts). Given t(p,r) and h(p,7), iteration and interpolation are required
to eliminate p and find t(h, 7). It sounds awkward — and it is — because
at wide angles there usually are head waves arriving in the middle of the
reflections. But once the job is done you can save the table and reuse it many
times. The multibranching of the travel time curves at wide offset motivates
a wave-equation based velocity analysis. The greatest velocity sensitivity
occurs just where the classic hyperbolic assumption and the single-arrival
assumption break down.

Linearity Allows Postponing Statistical Estimation

The linearity of wave-equation data processing allows us to decompose a
dataset into parts, process the parts separately, then recombine them. The
result is the same as if they were never separated.

For example, suppose a CMP gather is divided into two parts, say, inner
traces A and outer traces B. Let (A,0) denote a CMP gather where the
outer traces have been replaced by zeroes. Likewise, (0, B) could be
another copy of the gather where the inner traces have been replaced by
zeroes. We could downward continue (A, 0) and separately downward con-
tinue (0, B). After downward continuation, (4,0) and (0,B) could be
added. Alternately, we could pause, do some thinking about statistics, and
then choose to combine them with some weighting function. Figure 4 shows a
dataset of three traces decomposed into three datasets, one for each trace.
Semicircles depict the separate downward continuation of each trace. Each

semicircle goes through zero offset, giving the appropriately stretched, NMOed
trace.

The idea of using a weighting function is a drastic departure from our
previous style of analysis. It represents a disturbing recognition that we have
been neglecting something important in all scientific analysis, namely, statis-
tics! What are the ingredients that go into the choice of a weighting func-
tion? They are many. Signal and noise variances play a role. Some channels
may be noisy or absent. When final display is contemplated, it is necessary to
consider human perception and the need to compress the dynamic range, so
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FIG. 3.5-4. A three-trace CMP gather decomposed by traces. At the left,
impulses on the data are interpolated, depicting a hyperbola. At the right,
data points are expanded into migration semicircles, each of which goes
through zero offset at the apex of the hyperbola.

that small values can be perceived. Dynamic-range compression must be con-
sidered not only in the obvious (h, t)-space, but also in frequency space, dip
space, or any other space in which the wavefields may get too far out of bal-
ance.

There are many ways to decompose a dataset. The choice depends on
your statistical model and your willingness to repeat the processing many
times. Perhaps the parts of the data gather should be decomposed not by
their A values but by their values of r = 4 /t. Clearly, there is a lot to
think about.

Lateral Interpolation and Extrapolation of a CMP Gather

Practical problems dealing with common-midpoint gathers arise because
of an insufficient number of traces. Truncation problems are those that arise
because the geophone cable has a fixed length that is not as long as the dis-
tance over which seismic energy propagates. Figure 5 shows why cable trun-
cations are a problem for conventional, ray-trace, stacking methods as well as
for wave-equation methods. Aliasing problems are those that arise because
shots and geophones are not close enough together. Spatial aliasing of data
on the offset axis seems to be a more serious problem for wave-equation
methods than it is for ray-trace methods. The reason is that normal-moveout,
correction reduces the spatial frequencies. Gaps in the data, resulting from
practical problems with the geophones, cable, and access to the terrain, are
also frequently a snag.

Here these problems will all be attacked together with a systematic
approach to estimating missing traces. The technique to be described is the
simplest member of a more general family of missing data estimation pro-
cedures currently being developed at the Stanford Exploration Project.
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FIG. 3.5-5. Normal moveout at the earth velocity brings the cable trunca-
tions on good events to a good place, causing no problems. The cable trunca-
tions of diffractions and multiples, however, move to a’ and ¢’ , Where they
could be objectionable. Such corruption could make folly of sophisticated
time-series analysis of the waveform found on a CDP stack.

First do normal-moveout correction, that is, stretch the time axis to
flatten hyperbolas. The initial question is what velocity to use for the
normal-moveout correction. For trace interpolation the appropriate moveout
velocity turns out to be that of the dominating energy on the gather. On a
given dataset this velocity could be primary velocity at some times and multi-
ple velocity at other times. The reason for such a nonphysical velocity is this:
the strong events must be handled well, in order to save the weak ones.
Truncations of weak events can be ignored as a “second-order” problem. The
practical problem is usually to suppress strong water-velocity events in the
presence of weak sedimentary reflections, particularly at high frequencies. In
principle, we might be seeking weak P -SV waves in the presence of strong
P-P waves.

After NMO, the residual energy should have little dip, except of course
where missing data, now replaced by zeroes, forces the existing data to be
broad-banded in spatial frequency. In order to improve our view of this badly
behaved energy, we pass the data through a “badpass” filter, such as the
high-pass recursive dip filter discussed in Section 2.5.
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Notice that this filter greatly weakens the energy with small k&, that is, the
energy that was properly moveout corrected. On the other hand near the
missing traces, notice that the spectrum should be broad-band with k£ and
that such energy passes through the filter with almost unit gain.

The output from the ‘““badpass” filter is now ready to be subtracted from
the data. The subtraction is done selectively. Where recorded data exists,
nothing is subtracted. This completes the first iteration. Next the steps are
repeated, and iterated. Convergence is finally achieved when nothing comes
out of the badpass filter at the locations where data was not recorded. An
example of this process can be found in figure 6.
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FIG. 3.5-6. Field profile from Alaska with missing channels on the left
Western Geophysical), restored by iterative spatial filtering on the right.
Harlan)
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The above procedure has ignored the possibility of dip in the midpoint
direction. The effect of dip on moveout is taken up in Section 3.6.

This procedure is also limited because it ignores the possibility that
several velocities may be simultaneously present on a dataset. To really do a
good job of extending such a dataset may require a parsimonious model and a
velocity spectral concept such as the ones developed next and in Section 5.4.

In and Out of Velocity Space

Summing a common-midpoint gather on a hyperbolic trajectory over
offset yields a stack called a constant-velocity or a CV stack. A velocity
space may be defined as a family of CV stacks, one stack for each of many
velocities. CV stacking is a transformation from offset space to wvelocity
space. CV stacking creates a (¢, v }-space velocity panel from a (¢, h }-space
common-midpoint gather. Conventional industrial velocity estimation
amounts to CV stacking supplemented by squaring and normalizing. Linear
transformations such as CV stack are generally tnvertible, but the transfor-
mation to velocity space is of very high dimension. Forty-eight channels and
1000 time points make the transformation 48,000-dimensional. With present
computer technology, matrices this large cannot be inverted by algebraic
means. However, there are some excellent approximate means of inversion.

For unitary matrices, the transpose matrix equals the inverse matrix. In
wave-propagation theory, a transpose operator is often a good approximation
to an inverse operator. Thorson [1984] pointed out that the transpose opera-
tion to CV stacking is just about the same thing as CV stacking itself. To do
the operation transposed to CV stacking, begin with a velocity panel, that is,
a panel in (¢, v )space. To create some given offset h, each trace in the
(t, v)panel must be first compressed to undo the original NMO stretch.
That is, events must be pushed from the zero-offset time that they have in
the (¢, v )}panel to the time appropriate for the given A. Then stack the
(t, v )-panel over v to produce the seismogram for the given h. Repeat the
process for all desired values of h. The program for transpose CV stack is
like the program for CV stack itself, except that the stretch formula is
changed to a compensating compression.

The inversion of a CV stack is analogous to inversion of slant stack or
Radon transformation (Section 5.2). That is, the CV stack is almost its own
inverse, but you need to change a sign, and at the end, a filtering operation,
like rho filtering, is also needed to touch up the spectrum, thereby finishing
the job. It is the rho filtering that distinguishes tnverse CV stack from the
transpose of CV stack.
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The word transpose refers to matriz transpose. It is difficult to visualize
why the word transpose is appropriate in this case because we are discussing

data spaces that are two-dimensional and operators that are four-dimensional.
But if you will map these two- and four-dimensional objects to familiar one-
and two-dimensional objects by a transformation, such as equations (25) and
(26) in Section 2.2, then you will see that the word transpose is entirely
appropriate. The rho-type filtering required for CV stacks is slightly more
complicated than ordinary rho filtering — refer to Thorson’s thesis.

D LU

offset (km) offset (km)

3

U LTD
velocity (km/sec) velocity (km/sec)

FIG. 3.5-7. Panel D at the left is a CMP gather from the Gulf of Mexico
§Western Geophysicalz. The second panel (LU) is reconstructed data obtained

rom the third panel

a CV stack of the first panel. (Thorson)

U) by inverse NMO and'stack. The last panel (LTD) is

Figure 7 shows an example of Thorson’s velocity space inversion. Panel
D is the original common-midpoint gather. Next is panel LU, the approxi-
mate reconstruction of D from velocity space. The hyperbolic events are
reconstructed much better than the random noise. The random noise was not
reconstructed so well because the range of velocities in the CV stack was lim-
ited between water velocity and 3.5 km/sec. The next two panels (U) and
(LTD) are theoretically related by the “rho” filtering. LTD is the CV stack of
D. LU is the transpose CV stack of U.
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It is worth noting that there is a substantial amount of work in comput-
ing a velocity panel. A stack must be computed for each velocity. Velocity
discrimination by wave-equation methods will be described next and in Sec-
tion 5.4. The wave-equation methods are generally cheaper, though not fully
comparable in effect.

The (z,t)-plane Method

In the 15° continuation equation U, =-1/2v Uy, scaling the depth
z Is indistinguishable from scaling the velocity. Thus, downward continua-
tion with the wrong velocity is like downward continuation to the wrong

depth. Stephen M. Doherty [1975] used this idea in a velocity-estimation
scheme — see figure 8.
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FIG. 3.5-8. Two displays of the (z, t }-plane at zero offset. The earth model
is eight uniformly spaced reflectors under a water layer (a family of hyper-
boloids in (h,t) at z=0). The left display is the zero-offset trace. The
amplitude maximum at the focus is not visually striking, but the phase shift
is apparent. The right display is the z-derivative of the envelope of the zero-
offset trace.- A linear alignment along z'=wt' is more apparent. (Doherty)

t,
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The idea is to downward continue with a preliminary velocity model and
to display the zero-offset trace, a function of t’, at all travel-time depths 7.
If the maximum amplitude occurs at ¢’ = 7, then your preliminary model is
good. If the maximum is shifted, then you have some analysis to do before
you can say what velocity should be used on the next iteration.

Splitting a Gather into High- and Low-Velocity Components

A process will be defined that can partition a CMP gather, both
reflections and head waves, into one part with RMS velocity greater than that
of some given model ¥(z) and another part with velocity less than ¥ (z).

After such a partitioning, the low-velocity noise could be abandoned. Or
the earth velocity could be found through iteration, by making the usual
assumption that the velocity spectrum has a peak at earth velocity. As will
be seen later, various data interpolation, lateral extrapolation, and other sta-
tistical procedures are also made possible by the linearity and invertibility of
the partitioning of the data by velocity.

The procedure is simple. Begin with a common-midpoint gather, zero
the negative offsets, and then downward continue according to the velocity
model T(z). The components of the data with velocity less than T (z)
will overmigrate through zero offset to negative offsets. The components of
the data with velocity greater than ¥(z) will undermigrate. They will
move toward zero offset but they will not go through. So the low-velocity
part is at negative offset and the high-velocity part is at positive offset. If you
wish, the process can then be reversed to bring the two parts back to the
space of the original data.

Obviously, the process of multiplying data by a step function may create
some undesirable diffractions, but then, you wouldn’t expect to find an
infinitely sharp velocity cutoff filter. Clearly, the false diffractions could be
reduced by using a ramp instead of a step. An alternative to zeroing negative
h  would be to go into (kj,w)space and zero the two quadrants of sign
disagreement between k, and w.

This partitioning method unfortunately does not, by itself, provide a ve-
locity spectrum. Energy away from A& =0 is unfocused and not obviously
related to velocity. The need for a velocity spectrum motivates the develop-
ment of other processes.

Reflected Head Waves on Sections

It is common for an interpreter looking at a stacked section to identify a
reflected head wave. Experimentally it is just a hyperbolic asymptote seen in
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(v, t }space. Theoretically, it is a ray that moves away from a source along a
horizontal interface until it encounters an irregularity, a fault perhaps, from
which it reflects and returns toward the source. Reflected head waves are
sometimes called reflected refractions. This event provides an easy velocity
estimate, namely, = 2 dy /dt. From a processing point of view, such a ve-
locity measurement is unexpected, because automatic processing extracts all
velocity information in offset space, a space which many interpreters prefer to
leave inside the computer. Of course, for a reflected head wave to be
identified, a special geological circumstance must be present — a scatterer
strong enough to have its hyperbolic asymptote visible. The point scatterer
must also be strong enough to get through the typical suppression effects of
shot and geophone patterns and CDP stacking. The most highly suppressed
events, water velocity and ground roll, are just those whose velocities are
most often apparent on stacked sections. (Recall Larner’s streaks). Some
strong reflected refraction energy was present on the common-shot profile
shown in Section 3.2.

Velocity estimates made from reflections are averages of all the layers
above the reflection point. To get depth resolution, it is necessary to subtract
velocity estimates of different depth levels (Section 5.4). Because of the sub-
traction, accuracy is lost. So with reflected waves, there is naturally a trade-
off between accuracy and depth resolution. On the other hand, velocity esti-
mates from head waves naturally have a high resolution in depth.

Processing seems to ignore or discriminate against the backscattered head
wave, yet it is often seen and used. There must be an explanation. Perhaps
there is also a latent opportunity. From a theoretical point of view, Clayton’s
cosines showed that at wide angles the velocity and dip sensitivity of mid-
point and offset are exchanged. At late times another factor becomes
significant: the aperture of a cable length can be much less than the width of
a migration hyperbola. So, although it is easy to find an asymptote in mid-
point space, there is little time shift at the end of the cable in offset space.

What processing could take advantage of lateral reflectivity and could
enhance, instead of suppress, our ability to determine velocity in this way?
Start by stacking at a high velocity. Then use the idea that at any depth =z,
the power spectrum of the data U(w, k,) should have a cutoff at the evanes-
cent stepout p(z) = k, /w = 1/v(z). This would show up in a plot of the
power spectrum U* U, or better yet of the dip spectrum, as a function of
depth. Perhaps it would be still better to visually inspect the seismic section
itself after filtering in dip space about the expected velocity.

The wave-extrapolation equation is an all-pass filter, so why does the
power spectrum change with depth? It changes because at any depth z it is
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FIG. 3.5-9. The dip-spectrum method of velocity determination. To find the
velocity at any depth, seek the steepest dip on the section at that depth. On

the left, at the earth’s surface, you see the surface ground roll. In frames B
and C the slowest events are the asymptotes of successively faster hyperbolas.

necessary to exclude all the seismic data before ¢=0. This data should be
zeroed before computing the dip spectrum. The procedure is depicted in
figure 9.

To my knowledge this method has never been tried. I believe it is worth
some serious testing. Even in the most layered of geological regions there are
always faults and irregularities to illuminate the full available spectrum.
Difficulty is unlikely to come from weak signals. More probably, the potential
for difficulty lies in near-surface velocity irregularity.

EXERCISES

1. Assume that the data P(y, h, t) is constant with midpoint y. Given
a common-midpoint gather P (h,t, z=0), define a Stolt-type integral
transformation from P (h,t,2=0) to P (h=0, t,z) based on the
double-square-root equation:

Lp = ~z‘%[\/1—(Y+H)2+\/1—(Y—H)2]P

As with' Stolt migration, your answer should be expressed as a 2-D
inverse Fourier transform.

2. Start with a CDP gather u(h, ¢) defined (by reciprocity) at both posi-
tive and negative values of k. Describe the effect of the following opera-
tions: Fourier transform to U (ky, , w); multiply by 1 + sgn (w) sgn (ky );

transform back to (k, ¢ }-space.
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FIG. 3.5-E2. What is this?

3.6 Migration with Velocity Estimation

We often face the three complications dip, offset, and unknown velocity
at the same time. The double-square-root equation provides an attractive
avenue when the velocity is known, but when it isn’t, we are left with veloci-
ty-estimation procedures, such as that in the previous section, which assume
no dip. In this section a means will be developed of estimating velocity in the
presence of dip.

Dip Moveout — Sherwood’s Devilish

Recall (from Section 3.2) Levin's expression for the travel time of the
reflection from a bed dipping at angle « from the horizontal:

t?2v?2 = 4 (y-y4)?sin®a + 4 £ 2 cos?a (1)

In (k, t)-space this curve is a hyperbola. Scaling the velocity by cos «
makes the travel-time curve identical to the travel-time curve of the dip-free
case. This is the conventional approach to stacking and velocity analysis. It
is often satisfactory. Sometimes it is unsatisfactory because the dip angle is
not a single-valued function of space. For example, near a fault plane there
will be diffractions. They are a superposition of all dips, each usually being
weaker than the reflections. Many dips are present in the same place. They
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blur the velocity estimate and the stack.

In principle, migration before stack — some kind of implementation of
the full DSR equation — solves this general problem. But where do we get
the velocity to use in the migration equations? Although migration is some-
what insensitive to velocity when only small angles are involved, migration
becomes sensitive to velocity when wide angles are involved.

The migration process should be thought of as being interwoven with the
velocity estimation process. J.W.C. Sherwood [1976] showed how the two
processes, migration and velocity estimation, should be interwoven. The
moveout correction should be considered in two parts, one depending on
offset, the NMO, and the other depending on dip. This latter process was
conceptually new. Sherwood described the process as a kind of filtering, but
he did not provide implementation details. He called his process Devilish, an
acronym for ‘‘dipping-event velocity inequalities licked.” The process was
later described more functionally by Yilmaz as prestack partial migration, but
the process has finally come to be called simply dip moveout (DMO). We will
first see Sherwood’s results, then Rocca’s conceptual model of the DMO pro-
cess, and finally two conceptually distinct, quantitative specifications of the
process.

Figure 1 contains a panel from a stacked section. The panel is shown
several times; each time the stacking velocity is different. It should be noted
that at the low velocities, the horizontal events dominate, whereas at the high
velocities, the steeply dipping events dominate. After the Dewilish correction
was applied, the data was restacked as before. Figure 2 shows that the stack-
ing velocity no longer depends on the dip. This means that after Dewilish,
the velocity may be determined without regard to dip. In other words, events
with all dips contribute to the same consistent velocity rather than each dip-
ping event predicting a different velocity. So the Dewilish process should pro-
vide better velocities for data with conflicting dips. And we can expect a
better final stack as well.

Rocca’s Smear Operator

Fabio Rocca developed a clear conceptual model for Sherwood’s dip
corrections. Figure 3 illustrates Rocca’s concept of a prestack partial-
migration operator. Imagine a constant-offset section P(t,y, h=h,) con-
taining an impulse function at some particular (tg ¥o)- The earth model
implied by this data is a reflector shaped like an ellipse, with the shot point at
one focus and the receiver at the other. Starting from this earth model, a
zero-offset section is made by forward modeling — that is, each point on the
ellipse is expanded into a hyperbola. Combining the two operations —
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FIG. 3.6-1. Conventional stacks with varying velocity. (distributed by Digi-
con, Inc.)

constant-offset migration and zero-offset diffraction — gives the Rocca opera-
tor.

The Rocca operator is the curve of osculation in figure 3, i.e., the smile-
shaped curve where the hyperbolas reinforce one another. If the hyperbolas in
figure 3 had been placed everywhere on the ellipse instead of at isolated
points, then the osculation curve would be the only thing visible (and you
wouldn’t be able to see where it came from).

The analytic expression for the travel time on the Rocca smile is the end
of a narrow ellipse, shown in figure 4. We will omit the derivation of the
equation for this curve which turns out to be

1 = + (2)

The Rocca operator appears to be velocity independent, but it is not com-
pletely so because the curve cuts off at dt /dy = 2/v.
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FIG. 3.6-2. Deuvilish stacks with varying velocity. (distributed by Digicon,
Inc.)

The Rocca operator transforms a constant-offset section into a zero-offset
section. This transformation achieves two objectives: first, it does normal-
moveout correction; second, it does Sherwood’s dip corrections. The operator
of figure 3 is convolved across the midpoint axis of the constant-offset section,
giving as output a zero-offset section at just one time, say, t,. For each to
a different Rocca operator must be designed. The outputs for all ¢, values

must be superposed. Figure 5 shows a superposition of several Rocea smiles
for several values of to-

This operator is particularly attractive from a practical point of view.
Instead of using a big, wide ellipse and doing the big job of migrating each
constant-offset section, only the narrow, little Rocca operator is needed. From
figure 5 we see that the energy in the dip moveout operator concentrates nar-
rowly near the bottom. In the limiting case that & /vty is small, the energy
all goes to the bottom. When all the energy is concentrated near the bottom
point, the Rocca operator is effectively a delta function. After compensating
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FIG. 3.6-3. Rocca’s prestack partial-migration operator is a superposition of
hyperbolas, each with its top on an ellipse. Convolving (over midpoint)
Rocca’s operator onto a constant-offset section converts the constant-offset
section into a zero-offset section. (Gonzalez)

FIG. 3.6-4. Rocca’s smile. (Ronen)
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FIG. 3.6-5. Point response of dip moveout (left) compared to constant-offset
migration (right). (Hale)

each offset to zero offset, velocity is determined by the normal-moveout resi-
dual; then data is stacked and migrated.

The narrowness of the Rocca ellipsoid is an advantage in two senses.
Practically, it means that not many midpoints need to be brought into the
computer main memory before velocity estimation and stacking are done.
More fundamentally, since the operator is so compact, it does not do a lot to
the data. This is important because the operation is done at an early stage,
before the velocity is well known. So it may be satisfactory to choose the ve-
locity for the Rocca operator as a constant, regional value, say, 2.5 km /sec.

An expression for the travel-time curve of the dip moveout operator
might be helpful for Kirchhoff-style implementations. More to the point is a
Fourier representation for the operator itself, which we will ind next.

Hale’s Constant-Offset Dip Moveout

Hale [1983] found a Fourier representation of dip moveout. Refer to the
defining equations in table 1.

To use the dip-dependent equations in table 1, it is necessary to know
the earth dip «. The dip can be measured from a zero-offset section. On the
zero-offset section in Fourier space, the sine of the dip is vlc /2w. To stress
that this measurement applies only on the zero-offset section, we shall always
write Wo-

sina = 4 (3)
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NMO t—t, |t =+\/t2+4an%2

Levin’s NMO t—ty t = \/t 02 + 4h 29 2cos2a

DMO ty =ty | ta = \/t& - 4h%v 2sinla

TABLE 3.6-1. Equations for normal moveout and dip moveout. Substituting
the DMO equation into the NMO equation yields Levin’s dip-corrected NMO.

In the absence of dip, NMO should convert any trace into a replica of the
zero-offset trace. Likewise, in the presence of dip, the combination of NMO
and DMO should convert any constant-offset section to a zero-offset section.
Pseudo-zero-offset sections manufactured in this way from constant-offset sec-
tions will be denoted by Poltg h,y). First take the midpoint coordinate v
over to its Fourier dual ky. Then take the Fourier transform over time let-
ting wy be Fourier dual to to-

Po(wO,h,ky) -— fdtoe'w()to Po(t()’h’ky) (4)
Change the variable of integration from tg to ¢t .
dt -
0 twylto(t,
Polwg by ky) = [at, —= ™ pig oy nk)  (s)
n

Express the integrand in terms of NMOed data P, . This is done by means

dty twot o, )
Po(wO,h,ky) = fdtnT € 00" Pn(tn’h’ky) (6)
n
As with Stolt migration, the Jacobian of the transformation, dty/dt, scales
things but doesn’t do time shifts. The DMO is really done by the exponential
term.

Omitting the Jacobian (which does little), the over-all process may be
envisioned with the program outline:
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FIG. 3.6-6. Processing with dip moveout. (Hale)
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P(k,)=FT[P(y)]

Pu(tn) = NMO [P(t)]

forall k, { # three nested loops, interchangeable

forall A { # three nested loops, interchangeable

for all wy { # three nested loops, interchangeable
sum = 0O

for all t, { s s

. 2 h<k,
sum = sum + exp | twp [ ty +—2—)
Wo
}
Po((&)o,h,ky)=5um
11}
h’y)=FT2D[P0(w07hxky)]

]P,,(t,,,h,k,)

polto

Notice that the exponential in the inner loop in the program does not
depend on velocity. The velocity in the DMO equation in table 1 disappears
on substitution of sin o from equation (3). So dip moveout does not depend
on velocity.

The procedure outlined above requires NMO before DMO. To reverse
the order would be an approximation. This is unfortunate because we would
prefer to do the costly, velocity-independent DMO step once, before the itera-
tive, velocity-estimating NMO step.

Ottolini’s Radial Traces

Ordinarily we regard a common-midpoint gather as a collection of seismic
traces, that is, a collection of time functions, each one for some particular
offset h. But this (h,t) data space could be represented in a different
coordinate system. A system with some nice attributes is the radial-trace Sys-
tem introduced by Turhan Taner. In this system the traces are not taken at
constant A, but at constant angle. The idea is illustrated in figure 7.

Besides having some theoretical advantages, which will become apparent,
this system also has some practical advantages, notably: (1) the traces neatly
fill the space where data is nonzero; (2) the traces are close together at early
times where wavelengths are short, and wider apart where wavelengths are
long; and (3) the energy on a given trace tends to represent wave propagation
at a fixed angle. The last characteristic is especially important with multiple
reflections (Section 5.6). But for our purposes the best attribute of radial
traces is still another one.

Richard Ottolini noticed that a point scatterer in the earth appears on a
radial-trace section as an ezact hyperbola, not a flat-topped hyperboloid.
The travel-time curve for a point scatterer, Cheops’ pyramid, can be written
as a ‘“‘string length” equation, or a stretched-circle equation (Section 3.2).
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FIG. 3.6-7. Inside the data

volume of a reflection seismic

traverse are planes called radial- 0\1\‘
trace sections. A point scatterer m'\(“)
inside the earth puts a hyperbola

on a radial-trace section.

offset
W
S
Making the definition
. 2 h
n = — 7
sin ¥ > (7)
and substituting into equation (13) of Section 3.2, yields
1/2
vt — o |—% + (v - yo) (8)
cos%y 0

Scaling the z-axis by cos® gives the circle and hyperbola case all over
again! Figure 8 shows a three-dimensional sketch of the hidden hyperbola.

We will see that the radial hyperbola of figure 8 is easier to handle than
the flat-topped hyperboloid that is seen at constant A. Refer to the equa-
tions in table 2.

The second equation in table 2 is the usual exploding reflector equation
for zero-offset migration. It may also be obtained from the DSR by setting
H = 0. As written it contains the earth velocity, not the half velocity.
Equation (8) says that hyperbolas of differing 1 values are related to one
another by scaling the z-axis by cos. According to Fourier transform
theory, scaling z by a cos ¢ divisor will scale k, by a cost multiplier.
This means the first equation in table 2 can be used for migrating and
diffracting hyperbolas on radial-trace sections. Eliminating k, from the first
and second equations yields the middle equation w—wq 1n table 2. This mid-
dle equation combines the operation of migrating all offsets (really any radial
angle) and then diffracting out to zero offset. Thus the total effect is that of
offset continuation, i.e. NMO and DMO. The last two equations in table 2
are a decomposition of the middle equation w—w, into two sequential
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FIG. 3.6-8. An unexpected hyperbola in Cheops’ pyramid is the diffraction
hyperbola on a radial-trace section. (Harlan)

migration w—k, kj? + k2cos’y = 4w?/v?

zero-offset diff. | k, —w, lcy2 + k2 = 4w v?

DMO+NMO w—wy .25 v%fsin%ﬁ + wfcos?yh = w?

radial DMO W—w, .25 v2ky25in21,b +w? = W?

radial NMO Ws =W wo cos P = w,

TABLE 3.6-2. Equations defining dip moveout and ordinary moveout in
radial trace coordinates.

processes, w—w, and w,—w, These two processes are like DMO and
NMO, but the operations occur in radial space. Radial NMO is a simple
time-invariant stretch; hence the notation w, .

Unlike the constant-offset case, dip moveout is now done before the
stretching, velocity-estimating step. Let us confirm that the dip moveout is
truly velocity-independent. Substitute (7) into the radial DMO transforma-
tion in table 2 to get the equation for transformation from time to stretched
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time:

Ll k2 + wl = w? 9)
12 Y ’

We observe that the velocity v has dropped out of (9). Thus dip moveout
in radial coordinates doesn’t depend on velocity. Dip-moveout processing
w—w, does not require velocity knowledge. Radial coordinates offer the
advantage that this comparatively costly process is done before the velocity is

estimated w, —w,.

The dip-moveout process, w—w, , can be conveniently implemented with
a Stolt-type algorithm using (9).

The foregoing analysis has assumed a constant velocity. A useful practi-
cal approximation might be to revert to a v(z) analysis after the dip
moveout, just before conventional velocity analysis, stack, and zero-offset
migration.

Both the radial-trace method and Hale’s constant-offset method handle
all angles exactly in a constant-velocity medium, But neither method treats
velocity stratification exactly nor is it clear that this can be done — since nei-
ther method is rooted in the DSR. Yilmaz [1979] rooted his DMO work in the
DSR, so his method can be expected to be exact for velocity stratification, but
Yilmaz could not avoid angle-dependent approximations. So there remains
theoretical work to be done.

Anti-Alias Characteristic of Dip Moveout

You might think that if (y, &, t }-space is sampled along the y-axis at a
sample interval Ay, then any final migrated section P (y, z) would have a
spatial resolution no better than Ay. This is not the case.

The basic principle at work here has been known since the time of Shan-
non. If a time function and its derivative are sampled at a time interval 2A¢,
they can both be fully reconstructed provided that the original bandwidth of
the signal is lower than 1/(2At). More generally, if a signal is filtered with
m independent filters, and these m signals are sampled at an interval
m At , then the signal can be recovered.

Here is how this concept applies to seismic data. The basic signal is the
earth model. The various filtered versions of it are the constant-offset sec-
tions. Recall that the CDP reflection point moves up dip as the offset is
increased. Further details can be found in a paper by Bolondi, Loinger, and
Rocca [1982], who first pointed out the anti-alias properties of dip moveout.
At a time of increasing interest in 3-D seismic data, special attention should
be paid to the anti-alias character of dip moveout.
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EXERCISE

1. Describe the effect of the Jacobian in Hale’s dip moveout process.

3.7 Lateral Velocity Variation in Bigger Doses

To the interpreting geologist, lateral velocity variation produces a
strange distortion in the seismic section. And the distortion is worse than it
looks. The geophysicist is faced with the challenge of trying to deal with
lateral velocity variation in a quantitative manner. First, how can reliable
estimates of the amount of lateral velocity variation be arrived at? Then, do
we dare use these estimates for reprocessing data?

Our studies of dip and offset have resulted in straightforward pro-
cedures to handle them, even when they are simultaneously present. Unfor-
tunately, increasing lateral velocity variation leads to increasing confusion —
confusion we must try to overcome. Strong lateral velocity variation overlies
the largest oil field in North America, Prudhoe Bay. Luckily, however, we
have many idealized examples that are easy to understand. Any ‘“‘ultimate”
theory would have to explain these examples as limiting cases.

Let us review. The double-square-root equation presumably works if the
square roots are expanded and if we accept the usual limitation of accuracy
with angle. Our problem with the DSR is that it merely tells us how to
migrate and stack once the velocity is known. Kjartansson’s method of deter-
mining the distribution of (some function of) v(z,z) assumes straight rays,
no dip, and a single, planar reflector. On the other hand, stacking along with
prestack partial migration allows any scattering geometry but enables deter-
mination of v(z) only under the presumption that there is no lateral varia-
tion of velocity. Clearly, there are many gaps. We begin with comprehensi-
ble, special cases but ultimately sink into a sea of confusion.

Replacement Velocity: Freezing the Water

Sometimes you are lucky and you know the velocity. Maybe you know it
because you are dealing with synthetic data. Maybe you know it because you
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have already drilled 300 shallow holes. Or maybe you can make a good esti-
mate because you have a profile of water depth and you are willing to guess
at the sediment velocity. Often the velocity problem is really a near-surface
problem. Perhaps you have been dragging your seismic streamer over the
occasional limestone reefs in the Red Sea.

Assuming that you know the velocity and that the lateral variations are
near the surface, then you should think about the idea of a replacement veloc-
ity. For example, suppose you could freeze the water in the Red Sea, just
until it is hard enough that the ice velocity and the velocity of the limestone
reefs are equal. That would remove the unnecessary complexity of the
reflections from deep targets. Of course you can’t freeze the Red Sea, but you
can reprocess the data to try to mimic what would be recorded if you could.

First, downward continue the data to some datum beneath the lateral
variations. Then upward continue it back to the surface through the homo-
geneous replacement medium.

While in principle the DSR could be used for this job, in practice it
would be expensive and impractical. The best approach is to study the two
operations — going down, then going up — in combination. Since the two
operations are largely in opposition to each other, whatever is done to the
data should be just a function of the difference. For example, the equation

oP . 1 1 2
—_— = w + - P 1
2 v6) T V0) T o M)

combines the downward continuation with the upward continuation and
makes little change to the wavefield P when the velocities are nearly the
same. Equation (1) is basically a time-shifting equation. There is an industry
process known as static corrections. The word static implies time-invariant
— the amount of time shift does not depend on time. When the appropriate
corrections are merely static shifts, then the earth model has latera] velocity
variations in the near surface only. This is often the case. Equation (1) also
has the ability to do time-variable time shifts because wv (s) and v(g) can
be any function of depth z. Because of the wide-offset angle normally used,
it is desirable to extend (1) to a wider angle. Such extensions are found in
Lynn {1979]. Lynn also shows how partial differential equations can be writ-
ten to describe the influence of lateral velocity variation on stacking velocity.
Berryhill [1979] illustrated the use of the Kirchhoff method for an irregular
datum.

In practice, the problem of estimating lateral velocity variations is usu-
ally more troublesome than the application of these velocities during migra-
tion. Static time shifts are estimated from a variety of measurements
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including the elevation survey, travel times from the bottoms of shot holes to
the surface, and crosscorrelation of reflection seismograms. Wiggins et al.
[1976] provide an analysis to determine the static shifts from correlation meas-
urements.
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FIG. 3.7-1. Data (left) from Philippines with dynamic corrections (right). (by
permission from Geophysics, Dent [1983])

Where the lateral variation runs deeper the time shifts become time-
dependent. This is called the dynamic time-shift problem. To compute
dynamic time shifts, dip is assumed to be zero. Rays are traced through a
presumed model with laterally variable velocity. Rays are also traced through
a reference model with laterally constant velocity. The difference of travel
times of the two models defines the dynamic time shifts. See figure 1. Where
the lateral variation runs deeper still, the problem looks more like a migration
problem. Figure 2 illustrates a process called REVEAL by Digicon, Inc., who
have not revealed whether a time-shift method or a wave-equation method
was used. "

Lateral Shift of the Hyperbola Top

Figure 3 shows a point scatterer below a dipping interface. As usual
there is a higher velocity below. This is a simple prototype for many lateral-
velocity-variation problems. Surface arrival times will be roughly hyperbolic
with distortion because of the velocity jump at the interface. The minimum
travel time (hyperboloid top) has been displaced from its usual location
directly above the point scatterer. Observe that
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" BEFORE REVEAL

FIG. 3.7-2. Example of processing with a replacement velocity. Observe that
deeper bedding is now flatter and more continuous. (distributed by Digicon,
Inc.)

1. At minimum time, the ray emerges going straight up.
Minimum time is on the high-velocity side of the point scatterer.

3. Minimum time is displaced further from the scatterer as offset
increases.

The travel-time curve is roughly hyperbolic, but the asymptote on the right
side gives the velocity of the medium on the right side, and the asymptote on
the left approximately gives the velocity on the left.

Let T'(z) denote the travel time from the point scatterer to the surface
point z. The travel time for a constant-offset section is then t(y) =
T(y+h)+ T(y-h). To find the earliest arrival, set dt /dy = 0. This
proves that the slope at a on figure 3 is the negative of the slope at b. This
shows why the displacement of the top of the hyperboloid from the scatterer
increases with offset.

Lateral velocity variation causes hyperbolas to lose their symmetry.
Computationally, it is the lens term that tilts hyperbolas, causing their tops
to move laterally.
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FIG. 3.7-3. Rays emerging from a point scatterer beneath a velocity wedge
%left). Travel-time curve (right). The slope at a is the negative of that at
The midpoint between @ and b is at the top of the A >0 curve.

Phantom Diffractor

A second example of lateral velocity variation is figure 4, also taken from
Kjartansson’s dissertation. The physical model shown on the inset in figure 4
is three constant velocity wedges separated by broken line segments represent-
ing reflectors. The bottom edge of the model also represents a reflector. The
wavefield in figure 4 was made using the exploding-reflector calculation, which
Kjartansson regarded as a reasonable approximation to a zero-offset section.
Notice that under the tip of the 4 km/sec wedge is a small diffraction on the
bottom horizontal reflector. Because such a diffraction has nothing to do with
the flat reflector on which it is seen, it is termed a ‘“‘phantom’ diffraction.
Phantom diffractions are not easy to recognize, but they do occur. In reality,
the “‘bright spots’ in Section 3.1 were probably phantom diffractions. It has
been reported that phantom diffractions provide a means of prospecting for
small, high-velocity, carbonate reefs.

Wavefront Healing

Figure 5 (also in FGDP) shows another example of ray bending. The
first frame on the left shows a plane wave just after it has been distorted into
a wavy shape by the thin-lens term. After this the thin-lens term vanishes.
Later frames show the effect of increasing amounts of diffraction.
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FIG. 3.7-5. The first frame on the left shows a plane wave just after it has
been distorted into a wavy shape by the thin-lens term. After this the thin-
lens term vanishes. Subsequent frames show the effect of increasing amounts
of diffraction. Notice the lengthening of the wave packet and the healing of
the first arrival. (FGDP, p. 213, figure 10-22)

Fault-Plane Reflection

Across a single vertical fault in the earth the velocity will be a simple
step function of the horizontal coordinate. Rays traveling across such a fault
suffer in amplitude because of reflection and transmission coeflicients, depend-
ing on the angle. Since near-vertical rays are common, only small velocity
contrasts are required to generate strong internal reflections. By this reason-
ing, steep faults should be more distorted, and hence more recognizable, on
small-offset sections than on wide-offset sections or stacks.

This phenomenon is somewhat more confusing when seen in (z, t )-space.
Figure 6 was computed by Kjartansson and used in a quiz. Study this figure
and answer the questions in the caption. Here is a hint: A reflected ray
beyond critical angle undergoes a phase shift. This will turn a pulse into a
doublet that might easily be mistaken for two rays.

Figure 6 exhibits a geometry in which the exploding-reflector model fails
to produce all the rays seen on a zero-offset section. The exploding-reflector
model produces two types of rays: the ray that goes directly to the surface,
and the ray that reflects from the fault plane before going to the surface. A
zero-offset section has three rays: the two rays just mentioned, but moving at
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FIG. 3.7-6. Synthetic data from an exploding-reflector calculation for an
earth model containing a point scatterer and a velocity jump vifve = 1.2
across a vertical contact. (Kjartansson)
a
b

Is the point scatterer in the slow or the fast medium?
Identify four arrivals and diagram their raypaths.

¢) Identify and explain two kinds of computational artifacts.
d) Find an evanescent wave.

e) Find phase shift on a beyond-critical-angle reflection.

f) A zero-offset section has ray not shown above. Where?

double travel time, once up, once down; and in addition the ray not present in
figure 6, which hits the fault plane going one way but not the other way.

There is a simple way to make constant-offset sections in laterally vari-
able media when the reflector is just a point. The exploding-reflector seismo-
gram recorded at z=s is simply time convolved with the one recorded at
£ =g . Convolution causes the travel times to add. Even the non-exploding-
reflector rays are generated. Too bad this technique doesn’t work for reflector
models that are more complicated than a simple reflecting point.

Misuse of v(z) for Depth Migration

The program that generated figure 6 could be run in reverse to do a
migration. All the energy from all the interesting rays would march back to
the impulsive source. Would this be an effective migration program in a field
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environment? It is unlikely that it would. The process is far too sensitive to
quantitative knowledge of the lateral velocity jump. It is the quantitative
value that determines the reflection coefficient and ultimately the correct
recombination of all the wavefronts back to a pulse. To see how an incorrect
value can result in further error, imagine using the hyperbola-summation
migration method. Applied to this geometry this method implies weighted
summation over all the raypaths in the figure. The incorrect value would put
erroneous amplitudes on various branches. An erroneous location for the fault
would likewise mislocate several branches.

The lesson to be learned from this example is clear. Unnecessary bumps
in the velocity function can create imaginary fault-plane reflections. Con-
sistent with known information, a presumed migration velocity should be as
smooth as possible in the lateral direction. Unskilled and uninformed staff at
a processing center remote from the decision making should not have the free-
dom to introduce rapid lateral changes in the velocity model.

First-Order Effects, the Lens Term

Now let us be specific about what is meant by the lens term in the
present context of before-stack migration in the presence of lateral velocity
variation. Specializing the DSR equation to 15° angles gives

oU =_{[m RIC) s ]+

8z v(s)? 21w 8s?
1w v(g)? 8*
{v(g)Q T } K )

Rearranging the terms to group by behavior gives

U _ tw " 1w U -
dz v(s)? wv(g)?
v(s)* & v(g)® &
U
[22.0) 502 + 21w 9g° (3a)
oU : .
- = lens term + diffraction term (3b)

So you see the familiar type of lens term, but it has two parts, one for shifting
at the shot, and one for shifting at the geophone.
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The Migrated Time Section: An Industry Kludge

As geology becomes increasingly dramatic, reflection data gets more
anomalous. The first thing noticeable is that the stacking velocity becomes
unreasonable. In practice the available computer processes — based on inap-
propriate assumptions — will be tried anyway.

A stacking velocity will be chosen and a stack formed. How should the
migration be done? Most basic migration programs omit the lens term.
Although it is easy to include the lens term, the term is sensitive to lateral
variation in velocity. Since estimates of lateral variation in velocity always
have questionable reliability, use of a migration program with a lens term is
usually limited to knowledgeable interpreters. The lens term is usually omit-
ted from the basic migration utility program. Let us see what this means.

The migration equation is valid in some “local plane wave” sense, i.e.

w [1_[ v(y,z) k,(y,2) ]2}1/2

v(y, 2) w )

A magrated time section is defined by transforming the depth variable z in
(4) to a travel-time depth 7.

kz(y7z) -

(5)

w

kly,7) = w[l_lv(y,r) ky (v, 7) )2]1/2

The implementation of equation (5) requires no lens terms, so no large
sensitivity to lateral velocity variation is expected. Unfortunately, there is a
pitfall. The (y,z) coordinate system is an orthogonal coordinate system,
but the (y,7) system is not orthogonal [unless v (y )=const]. So equation
(4), which says that cos § = v/1 - sin20, is not correctly interpreted by (5).
A hyperbola would migrate to its top when it should be migrating toward the
low-velocity side.

In summary: In a production environment a great deal of data gets pro-
cessed before anyone has a clear idea of how much lateral velocity variation is
present. So the lens term is omitted. The results are OK if the lens term
happens to commute with the diffraction term. The terms do commute when
the lateral velocity variation is slow enough. Otherwise, you should reprocess
with the lens term. The reprocessing will be sensitive to errors in velocity.
Be careful!
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