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THE FAMILIAR THREE-ELEMENT MODEL OF AN INDUCTOR

HAS SOME SERIOUS SHORTCOMINGS, EVEN AT FREQUENCIES

WELL BELOW THE INDUCTOR’S SELF-RESONANT FREQUENCY.

A MORE USEFUL MODEL CORRECTLY PREDICTS AN INDUC-

TOR’S BEHAVIOR OVER A RANGE OF FREQUENCIES.

Of the three basic passive components—re-
sistors, capacitors, and inductors—inductors
are the least ideal and, therefore, the most dif-

ficult to model. The importance of a good model
is that it not only tells you which inductor is best
for your application, it also tells you how that in-
ductor will behave in your application.

Since early in the last century, engineers have
recognized the effect of distributed capacitance
within an inductor and the resulting self-resonant
frequency (Reference 1). The resulting simple
model of a single shunt capacitance across a lossy
inductor is therefore nearly 90 years old. This
model needs to be replaced because it does not,
and never has, correctly modeled an inductor.

STUDY THE OLD MODEL

The old model is easy to understand (Figure 1).
You measure the inductance at some frequency
well below the SRF (self-resonant frequency). You
calculate the capacitance from the SRF using the
following formula:

An important note to make here is that SRF
means self-resonant frequency; it does not mean
series-resonant frequency. The confusion comes
about because a capacitor is series-resonant at its
self-resonant frequency. An inductor is parallel-
resonant at its self-resonant frequency. The resist-
ance in the model is not the dc resistance of the in-
ductor but, rather, some different value that more
accurately simulates the response around the op-
erating frequency.

This model correctly predicts that the measured
inductance will increase as the frequency ap-

proaches the SRF, hence the earlier statement
about measuring the inductance well below the
SRF. The usual formula for the inductance is as fol-
lows, where HF is high frequency and LF is low fre-
quency:

Obviously this formula “blows up” at the SRF,
but its main use is to estimate how low a frequen-
cy you must use to correctly
measure the “low-fre-
quency inductance.” For
example, at f5SRF/10, the for-
mula predicts an error of only
1% in the measured value.

Notice that the model has the
capacitor across the series RL
circuit. It is unacceptable to put
the capacitor directly across the
inductor, although you may oc-
casionally see such models. A
moment’s thought reveals that
putting the capacitor directly
across the inductor gives infinite
impedance at self-resonance,
which is not a useful model.

So far, this old model seems to be workable, par-
ticularly with the often-stated rule that it is appli-
cable up to only some arbitrary frequency, such as
SRF/5.

OLD MODEL RUNS INTO DIFFICULTIES

It is impossible to cite one overriding parame-
ter of an inductor that takes precedence over all
others. For example, if you are designing an oscil-
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lator or a tuned circuit, Q is the most
important parameter. If you are
using the inductor as an RF-
blocking component, however, you are
interested only in its impedance mag-
nitude versus frequency. If you are us-
ing it in a filter, you want the induc-
tance to remain constant with fre-
quency.

Thus, there are three key facets of the
inductor to consider: its SRF, its Q as a
function of frequency, and its imped-
ance as a function of frequency. A use-
ful model must correctly simulate all
three facets over several decades of fre-
quency. This model then provides all
the necessary information as the oper-
ating frequency changes.

In the old model, it is a simple mat-
ter to calculate the peak-impedance fre-
quency; it occurs at self-resonance,
where, perhaps less obviously, the Q
falls to zero. It takes some more serious
manipulation to discover that the peak
Q occurs at SRF/=3PSRF/1.7.

In practice, manufacturers’ typical
data states that Q peaks at a point much
lower than this =3 factor. The range is
at least 2 to 50, and a range of 3 to 10 is
quite normal. This range is, of course,
from inductor family to family and does
not represent the variation of a partic-
ular part. It is impossible to deduce the
variation from part to part because the
data is unavailable.

So, the old model does not correctly
predict the position of the peak Q. Also,
the model fails miserably above self-res-
onance, where it predicts that the Q ris-
es monotonically with frequency to in-
finity. This failure is not very useful
either.

Putting a resistor in series with the ca-
pacitor handles the high Q above self-
resonance (Figure 2). Interestingly, this
approach also allows for variation of the
peak Q frequency, so that the model can
fit a Q peak frequency up to around
one-fifth the SRF. However, the model is
not good in the sense that the resistor
in series with the capacitor rapidly gets
up into the 1-kV region, and the curve
fit between the predicted Q and the
measured Q is not particularly close.

CONSTRUCT A BETTER MODEL

In contrast with the three-element
model of Figure 1, which is easy to deal

with mathematically, the four-element
model of Figure 2 is somewhat un-
pleasant, to say the least. A more inter-
esting model uses both series and shunt
resistors (Figure 3). The resistor in se-
ries with the inductor gives a Q that in-
creases with frequency. The resistor in
parallel with the inductor gives a Q that
decreases with frequency. The combi-
nation is therefore widely adjustable to
give a peak Q at any arbitrary frequen-
cy. If this frequency is a factor of 10 or
more away from the required SRF, then
the self-capacitance will have little ef-
fect on the established peak Q.

The beauty of this model comes from
the simplicity of the equations, where
Q

MAX
is the maximum value of Q:

and 

You can rearrange the formulas to
give the resistor values directly from the
Q

MAX
value and its frequency position:

and

As the Q
MAX

frequency ap-
proaches the SRF, there is a
strong interaction with the self-
capacitance. You should, there-
fore, expect some degree of it-
erative tuning of values. How-
ever, working out the math for

this new five-element model is not
something for the fainthearted to con-
template.

A PHYSICAL MODEL GETS REAL

So far, the presented model has been
a mathematical exercise, but you need
to answer a question about the physi-
cal inductor: What components, in the
correct place, give the right sort of re-
sponse? A more scientific basis for the
model results when you use the known
characteristics of the constituent parts
of a real inductor. Of course, the con-
struction of an inductor is generally so
simple that it is hard to imagine the spe-
cific constituent parts. However, you
can highlight two specific parts: the
core and the conductive path.

The conductive path is usually cop-
per, either in wire form or as a thin lay-
er of metal. The century-old “skin ef-
fect” then comes into play, and at some
radio frequency, the resistance of this
path will increase with the square root
of frequency. You could say, for argu-
ment’s sake, that this relationship be-
tween resistance and frequency happens
when the skin depth is one-third the
wire diameter or, alternatively, one-
third the conductor thickness.

For isolated copper conductors, the
skin depth at various frequencies is sim-
ple to calculate (Table 1). The skin
depth becomes more complicated when
turns in a winding are close to each oth-
er. This “proximity effect,” however,
concerns details that are beyond the
scope of this article.

The core loss is another matter. For
an air-cored inductor, there is no core
loss. For a UHF inductor wound on a
ceramic or other nonmagnetic core, the
core loss should also be minimal. On
the other hand, for iron or ferrite cores,
the loss will be at least proportional to
frequency. Analysis of ferrites used in
switched-mode power supplies, for ex-
ample, suggest that for the core loss, the
power law of frequency is 1.3 to 1.5.

Theoretical analysis of single-layer

Simply adding a resistor in series with the
capacitor improves the model in Figure 1. 
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TABLE 1—FREQUENCY VERSUS SKIN DEPTH
Frequency (kHz) Skin depth (µm)

0.050 9300
5 930

500 93
50,000 9.3
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coils suggests that the self-capacitance
is a function of the size and
shape of the coil and is unrelat-
ed to the number of turns (Reference
2). This approximation is good when
there are approximately 20 or more
turns equally spaced along the length
but becomes increasingly less valid as
the number of turns decreases.

A good example of this constant self-
capacitance rule is in the published data
on Ohmite (www.ohmite.com) KM-se-
ries molded RF inductors, which have
phenolic cores (Table 2). This self-ca-
pacitance rule also applies to iron-cored
inductors, such as the 9230 series of
molded RF chokes from JW Miller
Magnetics (www.jwmiller.com). The
chokes in the range of 1.2 to 10 mH all
have a self-capacitance of approximate-
ly 1 pF.

When the number of turns is very
small, the self-capacitance within a
family of inductors increases with the
number of turns, as shown by the SRF
data on Coilcraft (www.coilcraft.com)
Mini Spring air-cored inductors (Table
3).

The proof of any model is whether or
not it agrees with the real-world meas-
ured response. Unfortunately, most
standard Spice-based simulators cannot
directly simulate resistors whose values
are a function of frequency. On such
simulators it would therefore be neces-
sary to write a simulation script to step
the frequency, change the resistor val-
ues, and plot the results. This process is
not necessarily complicated, but it can
certainly be time-consuming. At least
three Spice simulators can handle resis-
tors that are a function of frequency:
PSpice (www.orcad.com), ICAP (www.
intusoft.com), and SpiceAge (www.
thoseengineers.co.uk).

CREATE A MATHEMATICAL MODEL

The first thing you need to do for
simulation purposes is decide how to
plot Q against frequency. You may re-
member the definition of Q for a series
resonant circuit:

You can represent a general imped-
ance as Z5R6jX. Thus, you can write
the Q of any general component as 

where Re(Z) and Im(Z) are the real and
imaginary parts of Z, respectively. This
formula allows you to write a script to
plot Q.

An alternative approach is to simu-
late the inductor mathematically using
a general math solver, such as Mathcad.

Although the math is complicated, it
is not complicated to just write down
the equation:

This equation represents just two se-
ries circuits, wired in parallel. The re-
sistor, R

HF
, in series with the capacitor,

modifies the frequency position of the
maximum Q point. It is difficult to use
R

HF
to tune the response of the model

above self-resonance because manufac-
turers’ data seldom even goes up to the
SRF, let alone beyond it.

This model of an inductor is essen-
tially the same one that Coilcraft uses to
model its inductors. The only difference
is that Coilcraft adds in a
small extra fixed resistor in
series with the model given
above. Unfortunately, the
Coilcraft model does not fit
the Coilcraft-published Q
data very well. However, the
published typical data is ac-

curately plotted and does provide use-
ful data against which you can compare
an alternate model.

You can achieve a better model by us-
ing a different variation with frequency
for the series loss resistance, which the
impedance equation represents using
the K=f term. This approach then
causes another problem with the mod-
el; the dimensions of K become bizarre.
A good approach to this problem is to
normalize the loss resistor to the self-
resonant frequency. For any inductor
worth modeling, it is a good approxi-
mation to say that the self-resonant fre-
quency is simply:

You can then conveniently write the
impedance equation as follows, where
0.5mh,1, and R

S
is the series loss re-

sistance:

You can adjust this model to accu-
rately fit the manufacturer’s data, but it
also has a couple of extra qualities. For
example, you can change the value of h
slightly without completely destroying
the previous response. If you used h on
the un-normalized frequency, the
change in K necessary to bring the
model back close to its previous setting
would be large. In other words, there is
a huge “gearing” effect on the parame-
ters in the un-normalized model. An-
other benefit is that as the self-capaci-
tance changes, the effective loss
resistance changes appropriately, and
the model seems more realistic relative
to an actual production spread.

AN APPLICATION EXAMPLE

The model of a 0805HQ16N induc-
tor (Coilcraft) is a good example be-
cause there is a big curve of its typical

The combination of the resistor in series with
the inductor, which gives a Q that increases
with frequency, and the resistor in parallel with
the inductor, which gives a Q that decreases
with frequency, results in a widely adjustable
combination that gives a peak Q at any arbi-
trary frequency.
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TABLE 2—CONSTANT SELF-CAPACITANCE RULE
Inductance Minimum SRF Calculated maximum 

(µH) (MHz) self-capacitance (pF)
0.15 525 0.61
0.47 310 0.56
1.5 160 0.66
4.7 90 0.67

.
R

L
Q 0ω

=

,
)ZRe(

)ZIm(

R

X
Q ==

.

fC2j/1R

1

fL2jfK

1
1

Z

HF π+
+

π+

=

.
LC2

1
SRF

π
=

.

fC2j/1R

1

fL2j)SRF/f(R

1
1

Z

HFS π+
+

π+

=

η



designfeature Inductor modeling

72 edn | September 27, 2001 www.ednmag.com

Q in the manufacturer’s data sheet.
The model values are: R

HF
56V,

L516.8 nH, C575 pF, R
S
5

1.95V, and h50.54. This new model
follows the published typical data to
within a Q of approximately 62 but
also realistically extrapolates Q beyond
the range given in the data sheet (Fig-
ure 4).

In the final application, you are real-
ly interested in the Q of an actual reso-
nant circuit. From the graph of the in-
ductor’s Q, you might conclude that
because the Q is 0 at its SRF, you can’t
use the inductor at this frequency. But
this conclusion is wrong. You need to
understand that there is a world of dif-
ference between the Q of a component
and the Q of a resonant circuit. The Q
of the inductor is 0 at its self-resonant
frequency because it appears entirely
resistive. However, if you were to plot
the impedance curve given by the mod-
el, you would find a sharp peak at the
SRF (Figure 5).

Ultimately, you want to know the se-
lectivity of the resonant circuit in terms
of the 3-dB bandwidth. The relation-
ship between this bandwidth and the Q
is:

A self-resonant inductor can have a
reasonable Q as a resonant circuit. Un-
fortunately, you can’t use an inductor as
a resonant circuit because you never
know where this self-resonant frequen-
cy will be. Manufacturers never tell you
the spread of self-resonant frequencies,

yet this figure is important to design
engineers. Without this information,
you can’t estimate the tolerance on the
self-capacitance of the inductor. Thus,
you can’t determine the necessary trim
range for the capacitor that you use to

resonate with the inductor.
Now that you have a representative

model of the inductor as a component,
you can predict the overall Q of an ac-
tual circuit. For this representation, as-
sume that the external capacitor has an
arbitrarily high Q. In other words, as-
sume that the capacitor is lossless.

To plot the circuit Q, you now want
to calculate the circuit in terms of its
parallel equivalent. You then use the
low-frequency value of the inductance
to evaluate the circuit Q, where R

P
is the

parallel equivalent resistance:

A comparison of the overall circuit Q
to the inductor Q reveals an interesting
result: The circuit Q is higher than the

inductor Q
(Figure 6). This
result is proba-
bly contrary to
what you have
been taught.
The point is
that the induc-
tor Q is worse
because of the

lossy self-capacitance. The external ca-
pacitance is considered lossless and,
therefore, increases the overall Q. Note
that the circuit Q above self-resonance
is meaningless; you would need to res-
onate the inductor with another induc-

tor above its self-resonant frequency,
which is a pointless exercise.

MODELING IN PRACTICE

This mathematical model is not easy
to use because the values are interrelat-
ed. The iterative procedure to arrive at
the values is as follows:

●  Set the inductor to the low-fre-
quency inductance value.

●  Set the capacitance according to
the typical self-resonant frequen-
cy. Guess at 15% higher than the
manufacturers’ minimum SRF in
the absence of other data, where

●  Set R
HF

51V and h50.50; then ad-
just R

S
until the peak Q is approx-

imately correct.
●  If the peak Q is in the wrong place,

you shift it by moving the SRF (ad-
justing C) or by changing R

HF
.

Making R
HF

bigger moves the peak
Q to a lower frequency.

●  Repeat moving the peak Q fre-
quency and then bringing the peak
Q amplitude back to the correct
value until you are happy with the
peak.

●  Now adjust the loss-correction
term,h, to modify the Q values lead-
ing up to the peak. A larger value of
h will make the low-frequency Q
readings higher (after the peak Q has
been set back to its correct value us-
ing R

S
). Increasing h also slightly

lowers the peak Q frequency.

The new model follows the published data for Q to within approximately 62 but also extrapolates
the Q beyond the range in the data sheet.
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TABLE 3—SELF-CAPACITANCE VERSUS NUMBER OF TURNS
Number Inductance Minimum SRF Calculated maximum 
of turns (nH) (GHz) self-capacitance (pF)

one 2.5 12.5 0.06
two 5.0 6.5 0.12

three 8.0 5.0 0.13
four 12.5 3.3 0.19
five 18.5 2.5 0.22
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Note that if the peak Q occurs at
much less than SRF/5, then the
model will require an addition-
al parallel resistor term. Expect this ad-
ditional resistor to be necessary for fer-
rite- and iron-based core materials,
where the Q peak can be as many as 50
times lower than the SRF.

The actual simulation time in this
process is essentially zero. The overall
time necessary depends on how good
you are at changing values to produce
the desired result. This approach is not
elegant, but it does produce a workable
result. You ordinarily will not need to
model that many inductors.

DRAW SOME CONCLUSIONS

It is impossible to theoretically pre-
dict where the peak Q of an inductor
occurs relative to its SRF. Manufactur-
ers’ data suggest that a figure of
SRF/f

Q(MAX) 
from 2 to 9 exists

even for the air- or ceramic-
cored inductors. Thus, the typical data
on the peak Q frequency of an inductor
is a vital piece of data to obtain from the
manufacturer.

To get the best performance from a
resonant circuit, the inductor Q needs
to be as high as possible. To achieve this
high Q, use an appropriate family of in-
ductors and a value such that the Q
peaks near the operating frequency.

Although inductors are available
with tolerances as low as 62%, low tol-
erance does not help greatly when the
inductor is running near SRF/2. The
implied variation of SRF from its min-
imum specified value to infinity gives
rise to a greater than 610% uncertain-
ty in the desired tuning frequency. It is,
therefore, important for manufacturers
to give both the upper and lower limits
of the SRF. Without manufacturers’
data, users end up inventing their own
tolerances for the self-capacitance. In
such cases, a figure of approximately
615% is not unreasonable.

For use as an ac-blocking compo-
nent, the model of an inductor need not
be complicated. All you need to know is
the minimum low-frequency induc-
tance and the SRF. You know that the
blocking impedance will always be
greater than or equal to 2pfL to the
minimum SRF. If you go beyond the
SRF, you will eventually hit a series-res-

onant point at which a local minimum
impedance exists. It is hard enough get-
ting data up to self-resonance, let alone
up to the first series resonance. How-
ever, you should be fairly safe if you
don’t subject the inductor to frequen-
cies greater than approximately 1.5
times the quoted minimum SRF.

The key thing to remember is that if
the data is not in the data sheet, you
need to contact the supplier to get it. If
enough engineers pester them, manu-
facturers will provide the data you
need.k
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A plot of the model’s predicted impedance versus frequency shows a sharp peak at the inductor’s
self-resonant frequency.
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The circuit Q, in a dotted line, is higher than the inductor Q.
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